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Section 1

The CP problem



QCD parameters

▶ QCD can be written schematically as (see e.g., Dine (2000))

L ∼ 1
αS

GG+ q̄i�Dq− q̄Mq

▶ Described by a coupling, αS, and the quark mass matrix

▶ What about the CP violating

G̃G?

▶ That’s a total derivative; can be written as G̃G = ∂µKµ
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Wait, there’s another parameter

▶ We can ignore total derivatives, right?
▶ Wrong, it cannot be neglected because of finite-action instantons
▶ Thus, must consider

L ∼ 1
αS

GG+ q̄i�Dq− q̄Mq+ θ G̃G

▶ A new parameter, θ? Can it be shifted away?
▶ After chiral rotations and shifts in CP-violating phases, phyically invariant

parameter remains:

θ̄ = θ + arg detM
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Electric dipole moments

▶ Electric dipole moments (EDMs) violate CP;

H = −d · E

▶ For the neutron, the relevant low-energy operator is n̄γ5σµνn Fµν

▶ The contribution from θ̄ to the neutron EDM

|d| = 3.6× 1016 θ̄ e cm

▶ Contributions from other CP violating phase are about 10−32 e cm
▶ Constraints on neutron EDM (Abel et al., 2020) imply that

θ̄ ≲ 10−10
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Why is the QCD angle so small?

▶ We almost forgot about θ̄. Turns out it must be tiny anyway.Weird
▶ The effective angle was a sum of two contributions

θ̄ = θ + arg detM

▶ Why do they cancel precisely or why are they both so small?

▶ Maybe θ̄ = 0? CP broken in nature; nothing special about θ̄ = 0

▶ Life would be much the same if θ̄ ≫ 10−10. No obvious anthropics (see e.g., Dine
et al. (2018)) though maybe θ̄ > 0.1 spoils nucleosynthesis (Lee et al., 2020)

▶ Set it and forget it? θ̄ only RG stable in simple models (Hook, 2019)

▶ Does this fine-tuningmatter?
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Section 2

Fine tuning



Fine-tuning in everyday life

We know that showers that require fine-tuning are bad showers!
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Fine-tuning in physics

In high-energy physics, a theory is considered fine-tuned or unnatural if small
variations in its parameters result in dramatic changes in its predictions. For reviews,
see Nelson (1985); Giudice (2008); Craig (2023)

Fine-tuning in a scientific theory
is like a cry of distress from na-
ture, complaining that something
needs to be better explained
(Weinberg, 2015)
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History of fine-tuning

▶ 1934—Weisskopf’s calculation of
electron self-energy (Weisskopf, 1934)

▶ 1938— Dirac’s large numbers
hypothesis (Dirac, 1938)

▶ 1973—Wilson understanding of
effective field theory (Wilson and
Kogut, 1974)

▶ 1974— Gaillard and Lee predict charm
quark mass (Gaillard and Lee, 1974)

▶ 1988—Weinberg makes anthropic
argument (Weinberg, 1989)
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Popularity of fine-tuning — data from INSPIRE

▶ 1974— first hit by Georgi and Pais
(1974)

▶ 1979— ’t Hooft (1980)

▶ 1987— Barbieri-Giudice
measure (Barbieri and Giudice, 1988)

▶ 2000— fine-tuning at LEP (Kane and
King, 1999)

▶ 2006— pre-LHC forecasts

▶ 2010 onward— LHC-era
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Foundations of fine-tuning

By Bayes’ theorem, for a modelM and experimental data D

P(M |D) = P(D |M) P(M)

P(D)

▶ P(M)— Prior belief in the model
▶ P(M |D)— Posterior belief after seeing data
▶ P(D |M)— Evidence, which can be written as an integral over a model’s

parameters for prior p(Θ |M)

P(D |M) =
∫

P(D |M, Θ) p(Θ |M) dΘ

9



Occam’s Razor

Entities should not be multiplied beyond necessity

▶ Celebrated in physical sciences by e.g., Aristotle, Galileo and Newton (Sober, 2015;
McFadden, 2023)

▶ Criticized in social sciences (Gelman, 2009) and biology (Crick, 1989)

Occam’s razor is a useful tool in the physical sciences, but it
can be dangerous in biology. Physicists may create models
that are too neat, too powerful, and too clean. (Crick, 1989)
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Foundations for Occam’s Razor

Ockham says that we should prefer the simpler [hypothe-
sis] … intuition assents at once. But this only set the stage
for centuries of discussion over precisely what is meant by
simplicity … It is interesting to see the mechanism by which
Bayes’s theorem usually justifies but in some cases modifies
this intuition (Jaynes, 1979)

The Bayes factor is seen to function as a fully automatic Oc-
cam’s Razor — cutting back to the simpler model whenever
there is nothing to be lost by so doing (Smith and Spiegel-
halter, 1980)
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Foundations for Occam’s Razor

Ockham’s razor, far from being merely an ad hoc principle,
can under many practical situations in science be justified as
a consequence of Bayesian inference (Jefferys and Berger,
1992)

One might think that one has to build a prior over mod-
els which explicitly favours simpler models. But as we will
see, Occam’s Razor is in fact embodied in the application of
Bayesian theory (Rasmussen and Ghahramani, 2000)
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Illustration of the Automatic Razor (MacKay, 1991, 2003)

Observed data
Data that could have been observed
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Section 3

Axion solutions



The CP problem once more

▶ We have that

θ̄ = θ + arg detM

▶ Assuming flat distributions for the
angles θ and arg detM, we predict that
QCD angle could be anything

▶ Wouldn’t it be nice to build a model
that predicts θ̄ = 0? −π 0 π

Effective QCD angle, θ

P
D

F
(a

.u
.)

QCD angle could be anything
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Solutions to the strong CP problem

There are a few ways forward. For reviews see e.g., Peccei (2008); Hook (2019); Strumia
(2025)

▶ Make the problem trivial by rotation — e.g., ifmu = 0, θ̄ can be rotated
away (’t Hooft, 1976), but simplemu = 0 approach ruled out by lattice QCD (Davies
et al., 2022)

▶ Fix it in the UV — impose a CP symmetry and break it spontaneously in a
controlled way e.g., Nelson (1984); Barr (1984)

▶ Relax θ̄ → 0 by dynamics

⇒ axion solutions
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The QCD axion

▶ Relaxing θ̄ → 0 natural because of Vafa and
Witten (1984) theorem tells us that minimum
energy state at θ = 0

▶ However, θ is a parameter, so it cannot relax to
that minimum

▶ We need to promote it to a dynamical field to
relax it — the axion and the Peccei-Quinn
mechanism (Peccei and Quinn, 1977; Weinberg,
1978; Wilczek, 1978)
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The axion

▶ Add a pseudo-scalar field, a

▶ By effective-field theory rules, write down(
θ +

a
f

)
G̃G

▶ Anomalous global symmetry!

θ → θ − α and a → a+ αf
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The PQ mechanism

▶ By anomalous symmetry, anywhere we had θ̄, we now write a/f+ θ̄

▶ Contributions to EDM ∝ a/f+ θ̄

▶ By Vafa and Witten (1984) theorem, the ground state now at a/f+ θ̄ = 0

▶ Thus dynamical axion field relaxes effective QCD angle to zero
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Original CP Axion
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Axion
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Effective QCD angle, θ
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Predicts QCD angle should vanish!

CP Axion
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Favored by automatic razor

▶ The QCD axion predicts θ̄ = 0

▶ The SM predicts θ̄ could be anything

▶ We observe θ̄ ≲ 10−10

▶ QCD axion favored by about 1010
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Section 4

Are axion solutions to the CP problem fine-tuned?



Realistic theory

▶ This was only an EFT

▶ We can embed in a UV theory by making axion pseudo-Goldstone boson from a
complex scalar with a global U(1) symmetry

▶ What would the automatic razor say here?
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Beyond the Standard Model

u d c s t b ? Matter — quarks

e νe µ νµ τ ντ ? Matter — leptons

γ g W Z ? Force carriers

H ? Origin of mass — Higgs

a ? Solution to strong CP problem & dark matter — axion

? ? ? ? ? ? ? New Physics
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Quantum gravity

Quantum gravity breaks all global symmetries

▶ Maybe. Folk theorem but no one actually knows

▶ What happens to global charge in a black hole? See e.g. Kallosh et al. (1995)

▶ This means that there are gravitational corrections to the axion potential that
break the shift symmetry (Ghigna et al., 1992; Kamionkowski and March-Russell,
1992; Barr and Seckel, 1992)
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Quality problem

▶ This is the quality problem — the anomalous shift symmetry in the EFT and
PQ-symmetry in a UV theory aren’t protected from gravity

▶ In particular, in an EFT approach we can write higher-order Planck-suppressed
operators that spoil the axion potential

▶ The axion no longer relaxes to a/f+ θ̄ → 0
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What happened to Vafa and Witten (1984) theorem?

▶ Wemust add appropriate dynamics to the Vafa and Witten (1984) result

▶ Gravity breaks the anomalous shift symmetry

▶ Axion no longer appears only as a/f+ θ̄

▶ Axion cannot relax a/f+ θ̄ → 0
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Potential with gravity turned on
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Predictions with gravity turned on

▶ This is just a
cartoon; what does it
really look like?

▶ Depends on
assumptions about
Wilson coefficients
of Planck-suppressed
operators

▶ Can we compute it? −π 0 π
Effective QCD angle, θ

P
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F
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Damn those UV corrections!

What does the model
predict now?

BY:

REASON:

QC REJECT

Nature
Gravity breaks

global symmetries
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Is θ a parameter after all?

This is a subtle matter (Dvali, 2006; Kaplan et al., 2025)

[T]he θ term of QCD is not a parameter of the theory that
can be set to zero by imposition of symmetries on the Hamil-
tonian. Rather it reflects a choice of vacuum state or eigen-
state of the QCD vacuum …
In classical physics, the Lagrangian and Hamiltonian are dual
descriptions of the same physical system. Parameters of the
Lagrangian are also parameters of the Hamiltonian. In quan-
tum mechanics this is not the case (Kaplan et al., 2025)
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Types of Uncertainty (O’Hagan, 2004)

▶ Epistemic Uncertainty: Due to lack of knowledge
▶ Can be reduced by gathering more information
▶ From Greek episteme (knowledge)

▶ Aleatory Uncertainty: Due to randomness and chance
▶ Unpredictable, no matter how much information is available
▶ From Latin alea (a dice game)

Roman dice — probability interpreted as fate & divine
intervention from gods
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De Finetti’s View on Probability (de Finetti, 2017)

PROBABILITY DOES NOT EXIST

▶ Probability, if regarded as something with objective
existence, is a misleading misconception

▶ Comparison to superstitions like phlogiston, ether, and
absolute space and time

▶ Objective probabilities are an attempt to materialize our
uncertainty

▶ de Finetti wrote an appendix on quantum theory, but
possibly wasn’t aware of Bell’s inequality
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Does it matter?

▶ In θ̄ = θ + arg detM, the first term random (from quantum) and the second term
unknown

▶ Unknown and random are treated identically in Bayesian formalism. Analysis of
fine-tuning unchanged

▶ If θ isn’t a parameter, though, imposing symmetries to forbid it make no sense

▶ Dynamic solutions, e.g. axion, are unaffected
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Conclusions

▶ Strong CP problem justified in Bayesian formalism

▶ Extent to which quality problem spoils axion solutions in Bayesian formalism
unclear at present — please don’t scoop us

▶ Two interpretations of QCD angle θ

— Unknown parameter — we don’t know it, our uncertainty is
epistemic

— Random — outcome of quantum mechanical measurement,
uncertainty is aleatoric

▶ Doesn’t make any difference for understanding quality problem

▶ Strengthens case for dynamic solutions such as axion
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