

Small Instantons and the Post-Inflationary QCD Axion in a Special Product GUT

Yuichiro Nakai

T. D. Lee Institute & Shanghai Jiao Tong U.

based on Hor, YN, Suzuki, Xu, arXiv:2504.02033 [hep-ph]

Strong CP Problem

QCD Lagrangian for strong interactions allows

$$\mathcal{L}_{ heta} = heta rac{g_s^2}{32\pi^2} G^{a\mu
u} \widetilde{G}^a_{\mu
u}$$

explicitly violating **CP** symmetry.

The physical strong CP phase : $ar{ heta} \equiv heta - rg \det{(M_u M_d)}$

The current upper bound on the neutron electric dipole moment

$$|\bar{\theta}| < 10^{-11}$$

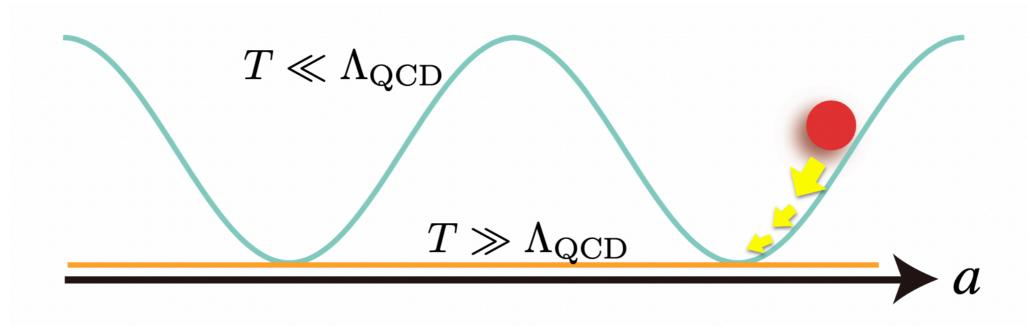
Why is $ar{ heta}$ so small ??

Some shifts of $ar{ heta}$ would not provide a visible change in our world.

Axion Solution

The most common explanation is **the Peccei-Quinn mechanism** that the strong CP phase is promoted to a dynamical variable.

$$\mathcal{L}_{ heta} = \left(heta + rac{a}{f_a}
ight) rac{g_s^2}{32\pi^2} G^{a\mu
u} \widetilde{G}^a_{\mu
u}$$



Fuminobu Takahashi slide

The axion a dynamically cancels the strong CP phase!

Axion Solution

- Axion is <u>a pseudo-Nambu-Goldstone boson</u> associated with spontaneous breaking of a global U(1)_{PQ} symmetry.
- Non-perturbative QCD effects break the U(1)PQ explicitly and generate the axion potential:

$$V(a) \sim m_\pi^2 f_\pi^2 \cos\left(\theta + \frac{a}{f_a}\right)$$

- Axion is a good dark matter candidate.
- Cosmological consequences :
- ★ U(1)PQ breaking before inflation

 Isocurvature perturbations
- ★ U(1)PQ breaking after inflation Formation of topological defects

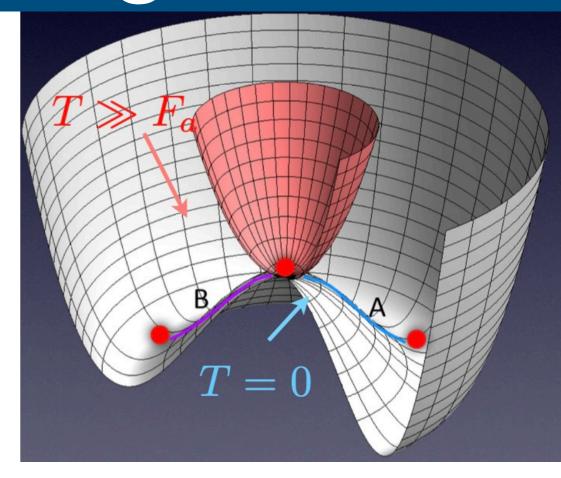
Cosmic Strings

U(1)PQ breaking after inflation

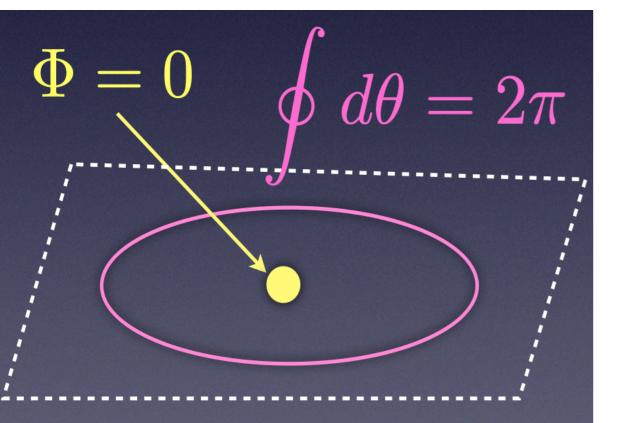
Axion is a phase direction of PQ scalar:

$$\Phi_{\rm PQ} \sim v_{\rm PQ} e^{i\theta_a}$$

Axion field acquires spatial variations across the Universe.



Masahiro Kawasaki slide



Formation of cosmic strings

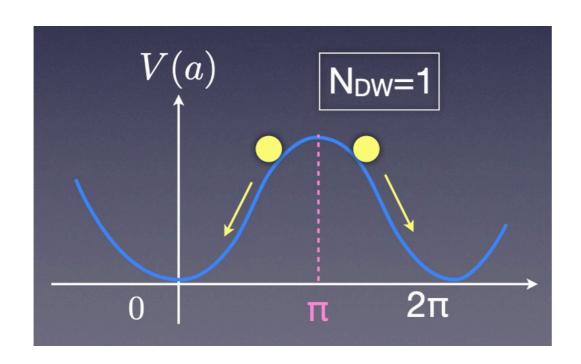
Domain Walls

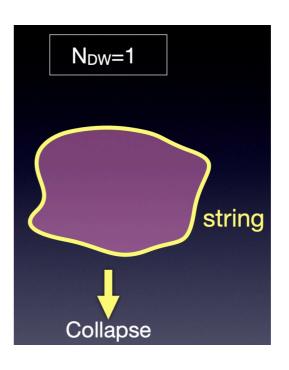
As the Universe expands and cools, the axion gets a potential with N_{DW} minima.

Domain wall number (associated with color anomaly)

N_Dw = 1

Domain walls form as disk-like structures attached to strings and eventually <u>collapse due to their tension</u>.





Masahiro Kawasaki slide

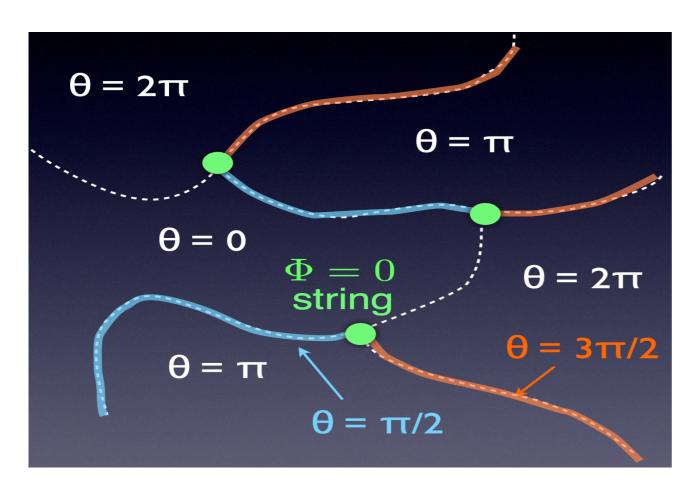
Decay of the string-domain wall network produces a lot of axions which dominate the axion DM abundance.

Domain Walls

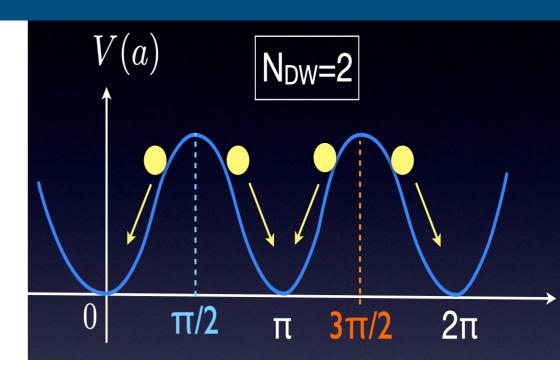
N_{DW} > 1

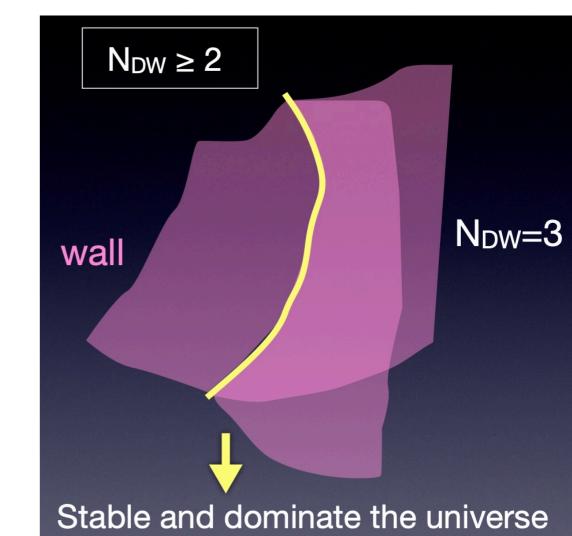
Domain walls form a **stable** network that eventually <u>dominates the Universe</u>.

Domain wall problem



Masahiro Kawasaki slide





Bias Term

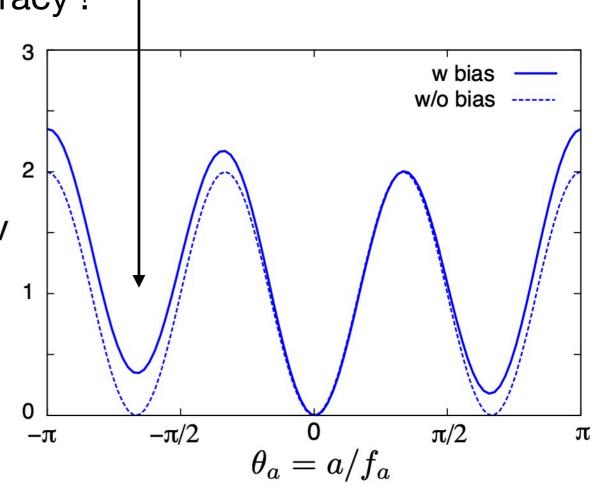
A potential solution to the domain wall problem is to introduce a small explicit breaking of the $U(1)_{PQ}$ symmetry (Bias term).

Bias term lifts the vacuum degeneracy!

★ Axion DM abundance is changed.

However ...

★ Ad hoc introduction of the bias term is unsatisfactory.



★ The minimum of the extra potential contribution needs to be aligned with that of the QCD potential to solve the strong CP problem.

Small Instanton

QCD θ-vacuum: superposition of *n*-vacua (energy degenerate but topologically distinct)

$$|\theta\rangle = \sum_{n=-\infty}^{\infty} e^{-in\theta} |n\rangle = \cdots + |0\rangle + e^{-i\theta} |1\rangle + \cdots$$

Instanton describes the tunneling effect between degenerate *n*-vacua

Instanton: localized object in Euclidean spacetime, satisfying Euclidean EOM with non-trivial topology and minimize Euclidean action

SU(2) BPST instanton solution with Q = 1:

$$egin{aligned} rac{g^2}{32\pi^2}\int d^4x\, F^{a\mu
u} \widetilde{F}^a_{\mu
u}igg|_{ ext{inst.}} &= Q\quad (Q\in\mathbb{Z}) \ A^a_\mu(x)igg|_{1- ext{inst.}} &= 2\eta_{a\mu
u} rac{(x-x_0)_
u}{(x-x_0)^2+
ho^2} \ & ext{Position} \end{aligned}$$

Small Instanton

Instantons contribute to the axion potential $\propto \exp\left(-\frac{8\pi^2}{a^2(1/a)}\right)$

In QCD, large-size instantons dominate the axion potential due to asymptotic freedom.

A hidden gauge sector beyond QCD

Small instanton effects A possible origin of the bias term!

The SM gauge group is embedded into a larger UV gauge group.

GUT is a natural candidate.

However, a naive embedding into SU(5) GUT does not work because the resulting small instanton effects do not lift the vacuum degeneracy.

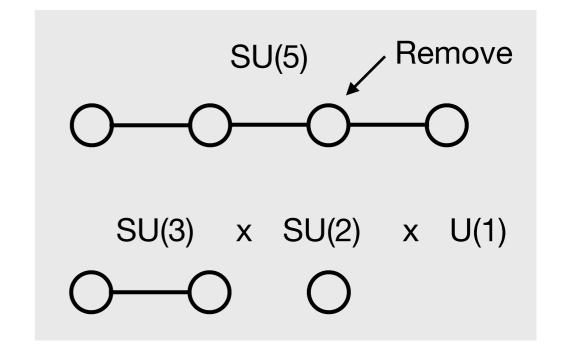
Special Subalgebra

Simple Lie algebras possess not only regular subalgebras but also special subalgebras.

Regular subalgebras: systematically obtained by removing nodes from Dynkin diagrams.

Special subalgebras:

do not follow this scheme!



To identify the SM gauge group as such a special subgroup of a UV gauge group is essential to obtain **small instanton effects** resolving the vacuum degeneracy of the axion potential.

Special Product GUT

Our GUT model:

$$\underline{SU(10)} \times SU(5)_1 \to \underline{SU(5)_V} \supset SU(3)_C \times SU(2)_L \times U(1)_Y$$

$$\supset SU(5)_2 : \text{Special embedding} \qquad \text{Diagonal subgroup}$$

- All SM matter fields are charged under SU(5)₁.
- A vector-like pair of PQ-charged fermions transform as (anti-)fundamental reps. under SU(10), so that Now = 1.
- After GUT breaking, # of vector-like pairs of PQ-charged quarks is <u>larger than one</u>, due to special embedding.

Domain wall problem ??

• The apparent vacuum degeneracy is lifted by small instanton effects on the axion potential that operates as a PQ-violating bias term.

Special Embedding

We focus on a gauge symmetry breaking : SU(2N) o SU(N)

$$T_{\mathrm{UV}}^{m} \; (m=1,...,(2N)^{2}-1)$$
 ; SU(2N) generators

$$T_{\mathrm{IR}}^{a} \; (a=1,...,N^{2}-1) \; : \mathsf{SU(N)} \; \mathsf{generators}$$

$$T_{
m IR}^a = {\cal O}^{am} T_{
m UV}^m$$
 Coefficients

r rep. of SU(N) is embedded into the fundamental rep. of SU(2N)

$$\operatorname{tr}(T_{\mathrm{UV}}^{m}T_{\mathrm{UV}}^{n}) = \frac{1}{2}\delta^{mn} \quad \operatorname{tr}(T_{\mathrm{IR}}^{a}T_{\mathrm{IR}}^{b}) = \underline{T_{\mathrm{IR}}(\mathbf{r})}\delta^{ab}$$

Dynkin index

$$c \equiv \frac{T_{\rm IR}(\mathbf{r})}{1/2}$$

Special embedding corresponds to c > 1.

Special Embedding

Consider a Weyl fermion that transforms as the fundamental rep. of SU(2N) but behaves as the **r** rep. of the SU(N) subgroup:

$$\mathcal{D}_{\mu}\psi = \partial_{\mu}\psi - ig_{\text{UV}}A^{m}_{\text{UV},\mu}(T^{m}_{\text{UV}})\psi$$
$$\supset \partial_{\mu}\psi - ig_{\text{IR}}A^{a}_{\text{IR},\mu}(T^{a}_{\text{IR}})\psi$$

A part of SU(2N) gauge field is expressed in terms of SU(N) gauge field:

In our GUT model, $\mathbf{r} = \mathbf{10}$ rep. of $SU(5) \subset SU(10)$ leading to $\mathbf{c} = \mathbf{3}$.

Theta term :
$$\int \frac{g_{\rm UV}^2}{8\pi^2} {\rm tr}(F_{\rm UV} \wedge F_{\rm UV}) = \int \frac{cg_{\rm IR}^2}{8\pi^2} {\rm tr}(F_{\rm IR} \wedge F_{\rm IR})$$

SU(10) x SU(5)

To achieve $SU(10) \times SU(5)_1 \to SU(5)_V$ we introduce a Higgs field :

$$\Phi_a^{ij}: ({\bf 10},\ \overline{\bf 10}) \qquad \begin{array}{c} a\,(=1-10)\ : {\rm SU(10)\ index} \\ i,j\,(=1-5)\ : {\rm SU(5)_1\ indices} \end{array}$$

VEV of Φ is described by the embedding of the $\overline{\bf 10}$ rep. of SU(5)₁ into the anti-fundamental rep. of SU(10):

$$\langle \Phi \rangle = v \mathbf{1}_{10 \times 10}$$

A further breaking of $SU(5)_V \to SU(3)_C \times SU(2)_L \times U(1)_Y$ is induced by the VEV of an additional Higgs field in the **24** rep. of SU(5)₁.

Field	Spin	SU(10)	$SU(5)_1$	$U(1)_{PQ}$	$U(1)_{\eta}$
Φ	0	10	$\overline{10}$	0	0
$24_{H}^{(1)}$	0	1	24	0	0

SU(10) x SU(5)

Three generations of the SM quarks and leptons and the Higgs field are charged under SU(5)₁.

Field	Spin	SU(10)	$SU(5)_1$	$U(1)_{PQ}$	$U(1)_{\eta}$
$10_f^{(1)}(f=1-3)$	1/2	1	10	0	0
$\bar{5}_f^{(1)}(f=1-3)$	1/2	1	5	0	0
$oldsymbol{5}_{H}^{(1)}$	0	1	5	0	0

The PQ mechanism is implemented by a PQ breaking field and a vector-like pair of PQ-charged fermions (KSVZ fermions) that transform as (anti-)fundamental reps. under SU(10).

Field	Spin	SU(10)	$SU(5)_1$	$U(1)_{PQ}$	$U(1)_{\eta}$
ψ	1/2	10	1	+1	-1
$ar{\psi}$	1/2	10	1	0	+1
$\Phi_{ ext{PQ}}$	0	1	1	-1	0

SU(10) x SU(5)

In non-SUSY models, a gauge coupling unification is not automatic.

To achieve unification, we introduce extra light fermions.

Embedded into GUT multiplets

α^{-1} 60			· · · · · ·	
				$U(1)_Y$
50				$U(1)_{Y}$ $SU(2)_{L}$ $SU(3)_{C}$
				$SU(3)_C$
40			_	
30				
20				
10				
10				
104	108	1012	10	16
		[GeV]		

One-loop RGE

Field Spin
$$SU(10)$$
 $SU(5)_1$ $U(1)_{PQ}$ $U(1)_{\eta}$ $\Psi_{99,f'}$ $(f'=1-4)$ $1/2$ **99 1** 0 0 $\Psi_{75,f'}^{(1)}$ $(f'=1-4)$ $1/2$ **1 75** 0

Under
$$SU(5) \subset SU(10)$$
 99 = 75 \oplus 24

All components except the SU(2)L triplet and SU(3)c octet acquire large masses.

Spontaneous CPV

The minimum of the axion potential generated by small instanton effects needs to be aligned with that of non-perturbative QCD effects.

Spontaneous CP violation

We introduce complex scalar fields with $\arg(\langle \eta_{\alpha} \rangle) = \mathcal{O}(1)$

Field	Spin	SU(10)	$SU(5)_1$	$U(1)_{PQ}$	$U(1)_{\eta}$	— Forbid dangerous terms
$\eta_{\alpha}(a=1,2)$	0	1	1	0	-1	at the classical level.

<u>To reproduce the CKM phase</u>, η couple to the mixing term between the KSVZ fermion sector and the SM sector:

$$\begin{split} \mathcal{L} \sim & \Phi_{\mathrm{PQ}} \psi \bar{\psi} + \sum_{f=1-3, \alpha=1,2} a^u_{\alpha f} \eta_{\alpha} \bar{\psi}^a(\Phi)^{ij}_a \mathbf{10}^{(1)}_{ij,f} \\ & + y^u_{ff'} \mathbf{10}^{(1)}_f \mathbf{10}^{(1)}_{f'} \mathbf{5}_H + y^d_{ff'} \mathbf{10}^{(1)}_f \bar{\mathbf{5}}^{(1)}_{f'} \mathbf{5}_H^{\dagger} \end{split} \quad \text{All coefficients are real.}$$

Spontaneous CPV

The setup is similar to the Nelson-Barr mechanism.

Up-type quark mass matrix:

$$\mathcal{L} \sim (\underline{q_{uf}} \underbrace{U}_{\uparrow} \underbrace{Q_{u}}) \mathcal{M}_{u} \begin{pmatrix} \bar{u}_{f'} \\ \bar{U} \\ \bar{Q}_{u} \end{pmatrix} \qquad \mathcal{M}_{u} = \begin{pmatrix} (m_{u})_{ff'} & 0 & A^{*} \\ A^{\dagger} & v_{PQ} & 0 \\ 0 & 0 & v_{PQ} \end{pmatrix}$$
$$\mathbf{10}_{f}^{(1)} \bar{\psi} \quad \psi \qquad \qquad A^{*} = \sum_{\alpha} a_{\alpha f}^{u} \eta_{\alpha} \quad (m_{u})_{ff'} \equiv y_{ff'}^{u} v_{SM}$$

O(1) CKM phase is properly generated when $(a^u \langle \eta \rangle)_f \gtrsim v_{\rm PQ}$

Since determinant is real, the physical θ -parameters of SU(10), SU(5)₁ or SU(3)c vanish at the tree-level.

Radiative corrections can still generate nonzero corrections.

QCD effects

Theta terms @ UV:

$$\int \frac{\theta_{10}g_{10}^2}{8\pi^2} \operatorname{tr}(F_{10} \wedge F_{10}) + \frac{\theta_5g_5^2}{8\pi^2} \operatorname{tr}(F_5 \wedge F_5)$$

After the breaking of $SU(10) \times SU(5)_1 \rightarrow SU(5)_V$

Theta term @ IR :
$$\int \frac{\theta_c g^2}{8\pi^2} \mathrm{tr}(F \wedge \underline{F})$$
 gauge field
$$\frac{1}{g^2} = \frac{\boxed{3}}{g_{10}^2} + \frac{1}{g_5^2} \qquad \theta_c = \underline{3}\theta_{10} + \theta_5$$
 Special embedding

Axion: $\Phi_{\mathrm{PQ}} \sim v_{\mathrm{PQ}} e^{i \theta_a}$

QCD effects

A vector-like pair of SU(2) doublet KSVZ (anti-)quarks and a pair of SU(2) singlet (anti-)quarks appear after GUT breaking.

Axion coupling to gluons:

$$\int (3\theta_a + \theta_c) \frac{g^2}{8\pi^2} \operatorname{tr}(G \wedge G)$$

Pion mass and decay constant $V_{\rm QCD} \approx -\frac{m_u m_d}{(m_u+m_d)^2} \underline{m_\pi^2 f_\pi^2} \cos\left(3\theta_a + \underline{\bar{\theta}_c}\right)$ Physical phase

A contribution from radiative corrections with spontaneous CPV : $\,ar{ heta}_c \ll 10^{-2}$

Axion potential seems to correspond to the case with $N_{DW} = 3$.

Small instanton effects

The instanton effects can be captured by a local fermion operator.

- ★ One flavor of KSVZ fermions in the (anti-)fundamental reps. of SU(10)
- ★ Four flavors of Weyl fermions in the 99 rep. of SU(10)

We assume an approximate chiral symmetry:

$$\Psi_{99} \to \Psi_{99} e^{i\beta}, \quad \Psi_{75}^{(1)} \to \Psi_{75}^{(1)} e^{-i\beta}$$

Mass terms are suppressed by a small parameter $\kappa \ll 1$:

$$\mathcal{L} \sim \kappa^2 M(\Psi_{99})_b^a (\Psi_{99})_a^b + \kappa^{\dagger 2} \underline{M}(\Psi_{75}^{(1)})_{ij}^{kl} (\Psi_{75}^{(1)})_{kl}^{ij}$$

GUT scale $\,M \sim M_{
m Pl}$

24 multiplet within **99** acquires a mass of $\mathcal{O}(\kappa^2 M)$

Small instanton effects

Instanton NDA

Csaki, D'Agnolo, Kuflik, Ruhdorfer (2024)

$$V_{\text{bias}} \approx C_{10} \left(\frac{2\pi}{\alpha_{\text{UV}}(M)} \right)^{2 \times 10} (\Phi_{\text{PQ}} + \Phi_{\text{PQ}}^{*})$$

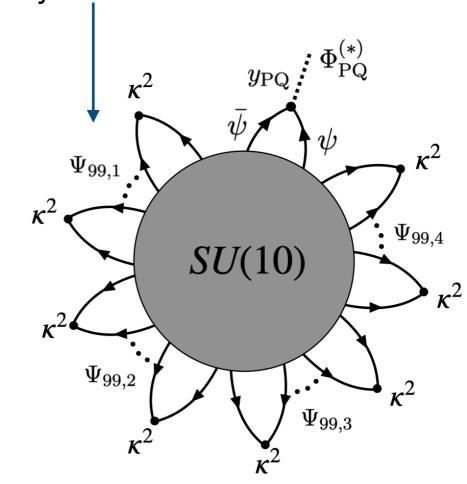
$$\times \int \frac{d\rho}{\rho^{5}} \left(\Lambda_{SU(10)} \rho \right)^{b_{0}} \underline{e^{-2\pi^{2}\rho^{2}M^{2}}} y_{\text{PQ}} (\kappa^{2}M\rho)^{10N_{F}} \rho$$

$$\approx (\kappa^{2})^{10N_{F}} C_{10} \left(\frac{2\pi}{\alpha_{\text{UV}}(M)} \right)^{2 \times 10} \underline{e^{-2\pi^{2}}}$$

$$\times \frac{\Phi_{\text{PQ}}}{M} M^{4} e^{-2\pi/\alpha_{\text{UV}}(M)} + c.c.$$

Suppression originating from SU(10) breaking

Each flavor of Ψ_{99} has 2T(Adj) = 20 legs closed by 10 mass vertices.



't Hooft vertex

 $\Lambda_{SU(10)}^{b_0}=M^{b_0}e^{-rac{8\pi^2}{g_{
m UV}^2(M)}} \qquad b_0$: one-loop beta function coefficient

 C_{10} : SU(10) instanton density $y_{
m PQ}$: Yukawa coupling of ФрQ and KSVZ fermions

Small instanton effects

We use the following estimate in our analysis:

$$V_{\text{bias}} = 3 \times 10^{2} (\kappa^{2})^{40} \frac{e^{-2\pi/\alpha_{\text{UV}}}}{\alpha_{\text{UV}}^{20}} e^{-2\pi^{2}} M^{3} \Phi_{\text{PQ}} + c.c.$$

$$= 6 \times 10^{2} \epsilon \frac{e^{-2\pi/\alpha_{\text{UV}}}}{\alpha_{\text{UV}}^{20}} e^{-2\pi^{2}} M^{3} v_{\text{PQ}} \cos(\theta_{a}) \quad \epsilon \equiv (\kappa^{2})^{40}$$

This axion potential corresponds to the case with $N_{DW} = 1$.

cf. QCD effects

$$V_{\text{QCD}} \approx -\frac{m_u m_d}{(m_u + m_d)^2} m_{\pi}^2 f_{\pi}^2 \cos \left(3\theta_a + \bar{\theta}_c\right)$$

Axion potential from small instanton effects provides a bias term!

Post-Inflation Axion

PQ symmetry is spontaneously broken after reheating.

We focus on the scenario where the axion field starts to oscillate due to the axion mass originated from the bias term:

$$m_{\mathrm{bias}}^2 \equiv \frac{\partial^2 V_{\mathrm{bias}}/\partial \theta_a^2}{v_{\mathrm{PO}}^2}$$

Temperature when the oscillation starts:

$$m_a(T_1) \approx m_{\text{bias}} = 3H(T_1) \quad H(T_1)^2 \approx \frac{\pi^2}{90M_{\text{Pl}}^2} g_* T_1^4$$

$$T_1 > 0.98 \,\text{GeV} \left(\frac{v_{\text{PQ}}/3}{10^{12} \,\text{GeV}}\right)^{-0.19} \equiv \underline{T_{1,\text{QCD}}}$$

Temperature when the axion would start to oscillate with non-perturbative QCD effects if there was no bias term

Domain walls decay in a similar way as the standard Now = 1 case.

Post-Inflation Axion

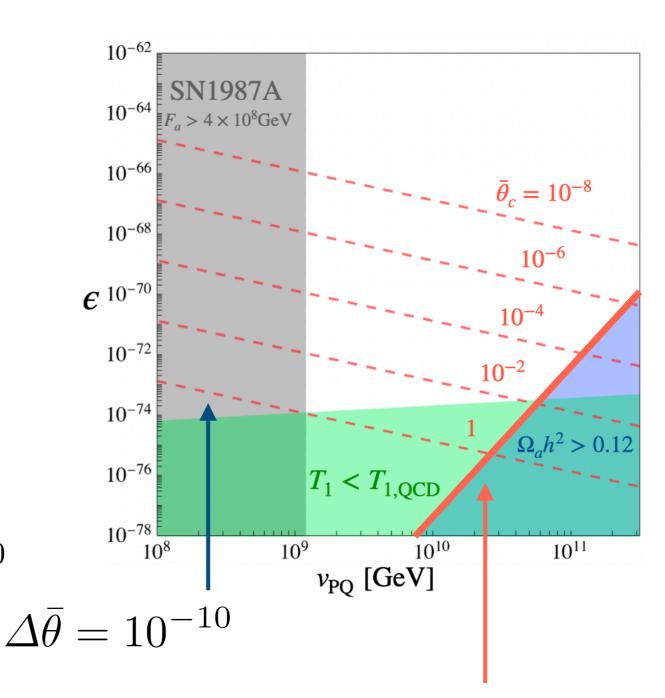
Axion abundance:

$$\Omega_a h^2 \approx 2 \times 10^{-12} \, \frac{v_{\rm PQ}}{T_1}$$

A large bias term shifts the axion potential minimum:

$$\Delta \bar{\theta} \equiv \frac{m_{\rm bias}^2 v_{\rm PQ}^2}{m_a^2 F_a^2} \bar{\theta}_c$$

Neutron EDM \rightarrow $\Delta \bar{\theta} \lesssim 10^{-10}$



Correct axion DM abundance

A regime explored by ongoing and future experiments!

$$\rightarrow v_{\rm PQ} \gtrsim 6 \times 10^{10} \, {\rm GeV}$$

Summary

- We have presented a special product GUT model equipped with a viable post-inflationary QCD axion.
- The model includes a vector-like pair of KSVZ fermions with $N_{DW} = 1$.
- After GUT breaking, # of vector-like pairs of PQ-charged quarks is larger than one, which seems to encounter the domain wall problem.
- Small instanton effects on the axion potential operate as <u>a PQ-violating bias term</u> and allow the decay of domain walls.
- We have achieved <u>a domain-wall-free UV completion for an IR model</u> where Now appears larger than one.
- The model gives a prediction for <u>a dark matter axion window</u> different from the ordinary N_{DW} = 1 case.