

通过直接核反应研究奇特核结构以及壳演化

陈 洁 南方科技大学

1

□研究背景:追踪壳演化;奇特核结构

,转移反应一单粒子结构:

自旋轨道劈裂"气泡核"³²Si(d,p)³³Si

非弹性散射反应—集体结构:

¹⁰Be偶极共振态的加强; ¹⁶C的Z=6壳层; ¹²Be...

远离稳定线的奇特核结构和壳演化

- Describe the [strong] force governing the arrangement of protons & neutrons
- What are the limits of atomic nuclei?
- How & Where are the chemical elements formed?
- > What are the origins of the regular emergent patterns observed in nuclei?

不稳定原子核结构——壳层与幻数演化

1/2 Woods-Saxon Woods-Saxon + spin-orbit interaction

(126)

82

50

28

20

8

2

(92)

(58)

(40)

(20)

(8)

(2)

=13/2 1/2

7/2 9/2

11/2 1/2

3/2

5/2

7/2

9/2

1/2

5/2

3/2

-7/2

3/2

1/2

5/2

3/2

· 3/2 5/2

不稳定原子核结构——壳层与幻数演化

不稳定原子核结构——重元素起源

不稳定原子核结构——弱束缚核奇特结构

- Halo, Borromean nuclei, three body system, intruder states
- New experimental insights on rare nuclei to challenge theoretical predictions.

不稳定原子核结构——弱束缚核奇特结构

ΠΡ

(**p**)

Monte Carlo Shell Model (MCSM) Otsuka, T., Abe, T., Yoshida, T. et al. Nat 8 Commun 13, 2234 (2022).

单粒子转移反应一追踪单粒子轨道能量演化

- □ 单核子转移: 单粒子态, 激发能, 角动 量, 谱因子, e.g.,(*d*,*p*), …
- □ 核子对转移: 对关联效应, e.g., (*p*,*t*), (*t*,*p*), (³He,*p*), …
- □ 非弹激发:集体激发模式, e.g, (*p,p*'),
 (*d,d*'), (α,α'), …

单粒子转移反应一追踪单粒子轨道能量演化

单粒子转移反应一追踪单粒子轨道能量演化

Large gap between the B(E2) (or 2⁺ energy)measurements and transfer measurements

❑ Inverse kinematics → Kinematics compression → 超导螺线管装置
❑ Resolution ← Compromise → Statistics → "活性靶"气体探测器

通过超导螺线圈实现高能量分辨

ISS @ CERN

HELIOS @ ANL

SOLARIS @ FRIB

- 幻数 N=8 消失
- **Isomeric state**: 0_2^+ 331(12) ns E0 decay: e+e- pair creation

J. Chen et al. PLB 781 (2018) 412–416

J. Chen et al. Phys. Rev. C L031302 (2021)

ISS & HIE-ISOLDE @CERN:¹¹Be(d,p)¹²Be实验测量

- Directly resolve the isomer 0⁺₂ state

ISOLDE Solenoidal Spectrometer at CERN

ideal energy: 10MeV/u 130-keV FWHM resolution

PI: Jie Chen

TABLE I. Excitation energies E_x , transferred orbital angular momentum ℓ , spin-parities J^{π} , shell-model orbital $n\ell s$ and spectroscopic factors S for the low-lying states in ¹²Be observed in the present ¹¹Be $(d, p)^{12}$ Be reaction.

$E_x ({\rm MeV}))$	ℓ	J^{π}	$n\ell s$	S
g. s.	0	0^+	$1s_{1/2}$	0.3(3)
2.109	2	2^+	$1d_{5/2}$	0.45(4)
2.251	3	0^+	$1s_{1/2}$	0.39(6)
2.715	1	1^{-}	$0p_{1/2}$	0.72(6)
3.182(7)	1	0^{-}	$(0p_{1/2})$	0.71(7)
4.186(15)	1	2^{-}	$2p_{1/2}$	0.08(1)
4.59(2)	2	2^+	$0d_{5/2}$	0.02(1)
4.99(2)	(0)	0^+	$(1s_{1/2})$	0.70(20)
5.30	(2)	2^+	$0d_{5/2}$	

By S. M. Wang

Two-nucleon density distributions

Halo structures in excited states

- g.s: mixture of a dineutron structure and a cigarlike configuration
- 0₂+ state: Enhanced radius: Two-neutron halo structure?
- 0- states: Near-threshold state! Halo-like structure

J. Chen et al., under preparation

C. R. Hoffman *et al*. Phys. Rev. C 89, 061305(R) (2014)

Isomeric state 0₂+: radius estimation

Halo structure?

S(g.s.)=0.30(3) S(0₂+)= 0.39(6)

Their matter radius can be estimated with:

$$R_{\rm m}^{2} = ((A-2)/A)(R_{\rm c}^{2} + 2R_{\rm v}^{2}/A)$$

$$R^2 = 10/12(R_{10Be}^2 + 2R_v^2/12)$$

R_{10Be}=2.40 fm

 0_1 + = 19% (s)+ 24%(p)+ 57%(d); S_n=3.17 MeV 0_2 + = 23% (s)+ 59%(p)+ 18%(d); S_n=0.93 MeV

Therefore, R_{01+} = 2.56 fm experimental: 2.57(10) fm R_{02+} = 2.79 fm

中心密度降低

		36Sc	37Sc	38Sc	39Sc	40Sc	41Sc	42Sc	43Sc	44Sc	45Sc	46Sc	47Sc	48Sc	49Sc	50Sc	
	34Ca	35Ca	36Ca	37Ca	38Ca	39Ca	40Ca	41Ca	42Ca	43Ca	44Ca	45Ca	46Ca	47Ca	48Ca	49Ca	
32K	33K	34K	35K	36K	37K	38K	39K	40K	41K	42K	43K	44K	45K	46K	47K	48K	
31Ar	32Ar	33Ar	34Ar	35Ar	36Ar	37Ar	38Ar	39Ar	40Ar	41Ar	42Ar	43Ar	44Ar	45Ar	46/		
30CI	31CI	32CI	33CI	34CI	35CI	36CI	37CI	38CI	39CI	40CI	41CI	42CI	43CI	44CI	45	00	3/2
295	30S	31S	32S	33S	34S	35S	36S			365	40S	41S	42S	43S	44S	45S	
28P	29P	30P	31P	32P	33P	34P	35P	36P	37P	38P	39P	40P	41P	42P	43	1 -	
27Si	28Si	29Si	30Si	31Si	32Si	33Si	34Si	35		34 S	38Si	39Si	40Si	41Si	42	IS	1/2
26AI	27AI	28AI	29AI	30AI	31AI	32AI	33AI	34AI	35AI	36AI	37AI	38AI	39AI	40AI	41AI	42AI	

A. Mutschler, et al, Nature Physics13, 155 (2016)

G. Burgunder, et al, Phy. Rev. Lett. 112, 042502 (2014)

B. P. Kay, et al, Phy. Rev. Lett. 119, 182502 (2017).

自旋轨道劈裂

S

Man - Gouppont Mage

自旋轨道劈裂

G. Burgunder, et al, Phy. Rev. Lett. 112, 042502 (2014)

B. P. Kay, et al, Phy. Rev. Lett. 119, 182502 (2017).

使用SOLARIS测量³²Si(*d,p*)³³Si

自旋轨道劈裂演化趋势

--Z=12-20, N=17-21附近的自旋轨道劈裂由弱束缚主导,可以被1p轨道接近 中子分离能阈值的效应所描述

自旋轨道劈裂演化趋势

RMF 计算不能描述实验观测的N=19自旋轨道演化趋势 原因:缺少核子关联?自旋轨道相互作用只是表面项?

Letter

Evolution of the nuclear spin-orbit splitting explored via the ${}^{32}Si(d,p){}^{33}Si$ reaction using SOLARIS

J. Chen ^{a,b,©},*, B.P. Kay^b, C.R. Hoffman^b, T.L. Tang^b, I.A. Tolstukhin^b, D. Bazin^c, R.S. Lubna^c, Y. Ayyad^d, S. Beceiro-Novo^c, B.J. Coombes^e, S.J. Freeman^{f,g}, L.P. Gaffney^h, R. Garg^c, H. Jayatissa^b, A.N. Kucheraⁱ, P. MacGregor^f, A.J. Mitchell^e, W. Mittig^c, B. Monteagudo^{c,j}, A. Munoz-Ramos^d, C. Müller-Gatermann^b, F. Recchia^{k,l}, N. Rijal^c, C. Santamaria^c, I.Z. Serikow^c, D.K. Sharp^f, J. Smith^m, J.K. Stecenko^m, G.L. Wilsonⁿ, A.H. Wuosmaa^m, X. Yuan^o, J.C. Zamora^c, Y.N. Zhang^o 所需束流强度: 10⁴ pps How about weak beams?

通过活性靶气体探测器AT-TPC研究直接核反应

- ■大体积活性靶气体探测器 (1米*0.5米) → 气体同时是探测媒介和反应靶
- 很高的有效靶厚度 🛶 可以进行几百粒子每秒的测量
- 可以使用纯的氘或氢气 🛶 有效降低本底,副反应道

非弹性散射反应一原子核的集体激发

- □ 单核子转移: 单粒子态, 激发能, 角动 量, 谱因子, e.g.,(*d*,*p*), …
- □ 核子对转移: 对关联效应, e.g., (*p*,*t*), (*t*,*p*), (³He,*p*), …
- □ 非弹激发:集体激发模式, e.g, (*p,p*'),
 (*d,d*'), (α,α'), …

非弹性散射反应一原子核的集体激发

原子核非弹性散射 🔿 单极、偶极、四级激发模式以及强度测量

非弹性散射反应一原子核的集体激发

0.01

0

25

50

 θ_{cm} (degree)

75

100

J. Chen *et al.*, Phy. Rev. C 106, 064312 (2022)

A. M. Bernstein, V. R. Brown, and V. A. Madsen, Comments Nucl. Part. Phys. 11, 203 (1983). A. M. Bernstein, V. R. Brown, and V. A. Madsen, Phys. Rev. Lett. 42, 425 (1979)

Isoscalar-dipole excitation operator :

$$\frac{e}{2}r^3Y_1$$

- ➢ 与核物质的压缩性质密切相 关
- ▶ 相较于isovector dipole excitation operator是高阶项, 较难观测
- ▶ 晕核大的半径使得 isoscalardipole excitation 强度较大
- ▶ 也是不对称集团结构的标志

AT-TPC & SOLARIS 耦合使用的首次实验

-- Testing its capability for measuring direct reactions

>¹⁰Be $(d,d')^{10}$ Be and ¹⁰Be $(d,p)^{11}$ Be:First direct reaction measurement using the AT-TPC coupling with SOLARIS Filled with D₂: 600 Torr 10Be beams @ 9.1 MeV/u 2000 pps

B=3 T

Spokesperson: Daniel Bazin; Jie Chen

- Energy resolution ~ 700 keV
- Simultaneous measurement of (d,p) (d,t) and (d,d') reactions with ~100 pps beam within one week!
- Open wide opportunities in the future with weak exotic beams

¹⁰Be同位旋标量软偶极共振态

¹⁰Be同位旋标量软偶极共振态

-- ¹⁰Be中的近阈值偶极共振态

Near-Threshold Dipole Strength in ¹⁰Be with Isoscalar Character

J. Chen ($D^{1,2,*}$, Y. Ayyad ($D^{3,\dagger}$, D. Bazin (D^4 , W. Mittig⁴, M. Z. Serikow (D^4 , N. Keeley⁵, S. M. Wang ($D^{6,7}$, B. Zhou^{6,7}, J. C. Zamora (D^4 et al.

Show more 🔷 🗸

Phys. Rev. Lett. 134, 012502 - Published 9 January, 2025

DOI: https://doi.org/10.1103/PhysRevLett.134.012502

Ex

¹⁶C是否存在Z=6的幻数?

1963年诺贝尔奖 玛丽亚·格佩特-梅耶

幻数Z=6的实验证据 14C 15C 16C 17C 18C 19C

碳同位素质子分布半径、B(E2)压低

¹⁶C是否存在Z=6的幻数?

101(2): 024601.

¹⁶C非弹性散射的实验结果

¹⁶C非弹性散射的实验结果

M_{N}	0 26
M_{P}	0.50

2+态能量:¹⁶O - 6.917 MeV ¹⁴C - 7.012 MeV ¹⁶C - 6.100 MeV

¹²Be 非弹性散射与转移反应

¹²Be 非弹性散射与转移反应

⁶He偶极共振态的实验理论结果总结

表1实验与理论上给出的 ⁶ He的1-偶极共振态可能的能量和宽度							
文献	实验反应道或理论模型	$E_{\rm x}({\rm MeV})$	Γ(MeV)				
[17]	⁶ Li(⁷ Li, ⁷ Be) ⁶ He (50 MeV/u)	未发现					
[18]	⁶ Li(⁷ Li, ⁷ Be) ⁶ He (65 MeV/u)	~ 4.0	4 ± 1				
[19]	⁶ Li(t, ³ He) ⁶ He	~5.0	≈2.5				
[21]	¹⁰ <u>B(</u> π–, <u>pt</u>)	4-5	≈1.5				
[22]	⁸ He (p, t)	5.3	2 ± 1				
[24]	NCSM/RGM	不存在					
[25]	六体计算	≈3-4					

- Theoretically, soft dipole excitation in ⁶He can be explained as an isoscalar compressional dipole resonance.
- In order to clarify isoscalar resonance character in ⁶He, it is necessary to study the soft dipole resonance via (d, d') or (α, α') reactions, which was suggested by L. V. Chulkov.
- There is yet no evidence of isoscalar soft dipole resonance of ⁶He.

L. V. Chulkov et al., Eur. Phys. J.A 51, 97 (2015)

通过非弹性散射研究⁶He和偶极共振

利用活性靶气体探测器MATE测量42MeV/u能量下的⁶He束流与α和质子非弹性散射反应来布局⁶He的束缚激发态以及共振态

活性靶探测器的基本工作原理示意图

◆ MATE将先后被充满200Torr的异丁烷和He+CO₂混合气体

◆ 零度探测器将被用于测量 beam-like recoil

机器学习方法进行数据处理

机器学习方法用于AT-TPC实验数据分析

M. P. Kuchera et al., NIM A940, 156 (2019)

弹性散射事件在不 同平面的径迹投影

熔合反应事件在不 同平面的径迹投影

利用Resnet对弹性散射事件和熔合反应事件进行分类,准确率为99.25%

利用Resnet对反应顶点进行重建

研究手段: 直接核反应

口直接核反应是研究壳演化与奇特核结构的重要实验手段

- 转移反应—单粒子结构:

³²Si(*d*,*p*)³³Si: 自旋轨道劈裂存在光滑的演化,与"气泡

核"假设矛盾

¹¹Be(*d,p*)¹²Be: N=8幻数的消失与核心形变、连续态耦合等效应 密切相关

省切伯大

非弹性散射反应—集体结构:

¹⁰Be偶极共振态的加强:集团结构效应

□国内外装置为相关研究提供了广泛的实验机会

招聘广告: 南方科技大学课题组招收博士后2名(长期有效、待遇优厚)、科研助理、博士(硕士) 研究生

邮箱: <u>chenjie@sustech.edu.cn</u>

电话: 173-1948-5122 (同微信)

