Nuclear structure with *ab initio* No-Core Shell Model

尹鹏 (Peng Yin) 河南科技大学

Collaborators:

- 左维, 赵行波, 杜伟杰, 李贺, 王惠仁, 房栋梁 (近物所) 周波 (复旦大学)
- 陈洁 (南方科技大学)

James P. Vary, Pieter Maris (Iowa State University) Mark Caprio (University of Notre Dame) Andrey Shirokov (Moscow State University) Patrick Fasano (Argonne National Laboratory) Sonia Bacca (Johannes Gutenberg-Universität Mainz)

> 第二届核结构与反应少体问题研讨会 **惠州** 2025.1.13-1.19

Outline

- •No-Core Shell Model
- Long range operators
- Sum rules with NCSM
- Two-body currents of LENPIC interaction
- Monopole transition form factor of ⁴He
- Time-dependent basis function for nuclear reactions

SciDAC/NUCLEI: https://nuclei.mps.ohio-state.edu/

Non-relativistic ab initio approaches

Few-body methods

- Faddeev Equation for A=3 system
 - > typically in momentum space
- Faddeev-Yakuboski Equations for A=4 system
 - \succ can nowadays be pushed to A=5 and 6 (Lazauskas)
- Hyperspherical Harmonics A=6

> Many-body methods

- Variational Monte-Carlo (A<=12)</p>
- ➢ Green's Function Monte-Carlo (A<=12)</p>
- Configuration Interaction (CI) methods (NCSM (A<=20), Coupled Cluster</p>
- Nuclear Lattice Simulations
- In-Medium SRG (IM-SRG)
- Supercomputer Era
- Quantum computing Era?

Ab initio No-Core Shell Model

No-Core Shell model

$$\hat{\mathbf{H}}_{\mathsf{rel}} = \hat{\mathbf{T}}_{\mathsf{rel}} + \sum_{i < j} V_{ij} + \sum_{i < j < k} V_{ijk} + \dots$$

- > Expand wavefunction in basis states $|\Psi\rangle = \sum a_i |\Phi_i\rangle$
- > Express Hamiltonian in basis $\langle \Phi_j | \hat{\mathbf{H}} | \Phi_i \rangle = H_{ij}$
- > Diagonalize Hamiltonian matrix H_{ij}
- > No-Core: All *A* nucleons are treated equally
- Complete basis: exact results (Caveat: complete basis is infinite dimensional)
- > In practice:
 - Truncate basis
 - Study behavior of observables as function of truncation
- Computational challenge:
 - > Construct large ($10^{10} \times 10^{10}$) sparce symmetric matrix
 - > Obtain lowest eigenvalues&-vectors corresponding to low-lying spectrum and eigenstates

P. Navratil, J. P. Vary and B.R. Barrett, *Phys. Rev. Lett.* **84**, 5728 (2000); *Phys. Rev. C* **62**, 054311 (2000)

Basis Expansion

> Expand A-body wave function in basis functions

$$\Psi(r_1,\ldots,r_A)=\sum a_i\Phi_i(r_1,\ldots,r_A)$$

> Use basis of single Slater Determinants of Single-Particle states

$$\Phi_{i}(r_{1},...,r_{A}) = \frac{1}{\sqrt{(A!)}} \begin{vmatrix} \phi_{i1}(r_{1}) & \phi_{i2}(r_{1}) & \dots & \phi_{iA}(r_{1}) \\ \phi_{i1}(r_{2}) & \phi_{i2}(r_{2}) & \dots & \phi_{iA}(r_{2}) \\ \vdots & \vdots & & \vdots \\ \phi_{i1}(r_{A}) & \phi_{i2}(r_{A}) & \dots & \phi_{iA}(r_{A}) \end{vmatrix}$$

> Single Particle basis states $\phi_{ik}(r_k)$:

• HO, Coulomb-Sturmian, Natural orbitals

> M-scheme: Many-body basis states: eigenstates of J_z > N_{max} truncation: $\sum (2 n_{ik} + l_{ik}) \leq N_0 + N_{max}$

- Exact factorization of CoM in HO basis
- Suitable for excited states

Main Challenges

- 2x AMD EPYC 7763 (Milan) CPUs
- 64 cores per CPU
- AVX2 instruction set
- 512 GB of DDR4 memory total
- 204.8 GB/s memory bandwidth per CPU
- 1x HPE Slingshot 11 NIC
- PCIe 4.0 NIC-CPU connection
- 39.2 GFlops per core
- 2.51 TFlops per socket
- 4 NUMA domains per socket (NPS=4)

Partition	# of nodes	CPU	GPU
GPU	1536	1x AMD EPYC 7763	4x <u>NVIDIA A100</u> (40GB)
	256	1x AMD EPYC 7763	4x <u>NVIDIA A100</u> (80GB)
CPU	3072	2x AMD EPYC 7763	-
Login	40	1x AMD EPYC 7713	1x <u>NVIDIA A100</u> (40GB)

- Computationally demanding => needs new algorithms & high-performance computers
- Requires convergence assessments and extrapolation tools to retain predictive power
- Current limit 10¹⁴ (Perlmutter):
 ¹²C (N_{max}=12), ⁶He (N_{max}=22)
- Achievable for nuclei up to A~20 with largest computers available

Scientific Computing in the USA

DOE Computer facilities for scientific computing

- National Energy Research Scientific Computing center (NERSC)
 - Iocated at LBNL
 - about 9,000 users
 - many different small and medium-size projects
 - most computing time allocated to DOE Office of Science
 - 12.5% Nuclear Physics (2022)
 - 74 different Nuclear Physics projects (2022)
- Oakridge Leadership Computing Facility (OLCF)
 - relatively small user base
 - limited number of large projects
- Argonne Leadership Computing Facility (ALCF)
 - relatively small user base
 - limited number of large projects

also NSF Computer facilities, as well as local university computing resources

P. Maris, NTSE2024, Busan

Supercomputing Era from a personal perspective

P. Maris, NTSE2024, Busan

NERSC

- Seaborg (2002-2008) IBM SP, 416 nodes, 6,656 cores, 6,656 GB Franklin (2009-2012) Cray XT4, 9,572 nodes, 38,288 cores, 76,576 GB Hopper (2010-2015) Cray XE6, 6,384 nodes, 153,216 cores, 216,832 GB Edison (2013-2019) Cray XC30, 5,200 nodes, 124,800 cores, 332,800 GB Cori-KNL (2016-2023) Cray XC40, 9,688 nodes, 658,784 cores, 893 TB Perlmutter-GPU (2022-), NVIDIA GPUs HPE Cray EX, 1,792 GPU nodes, 768 TB
- Perlmutter (2022-): HPE Cray EX, 3,072 CPU nodes, 1,536 TB
- NERSC-10 planned for 2026

OLCF

P. Maris, NTSE2024, Busan

- Jaguar (2008-2012) Cray XT5, 37,538 nodes, 150,152 cores
 - first supercomputer to run scientific application at petaflop rate
 - ▶ nuclear theory early science project: ${}^{14}C \rightarrow {}^{14}N \beta$ decay
- Frontier (2023-), AMD GPUs, 9,402 nodes, 4.5 PB
- ALCF

•

- Intrepid (2009-2013), IBM Blue Gene/P
- Mira (2013-2019), IBM Blue Gene/Q 48 racks, 49,152 nodes, 786,432 cores, 768 TB
- Theta (2017-2023), Cray XC40 4.2k nodes, 270k cores, 874 TB
- Aurora (2024-), 63,744 Intel Data Center GPUs, > 7 PB

HPC is entering the Exascale computing era !

Pre-History: Many-Fermion Dynamics

- General fortran77 code for (No-Core) Configuration Interaction calculations of many-fermion and many-boson systems, dating back to the early nineties Vary, The Many-Fermion Dynamics Shell-Model Code, ISU, 1992 (unpublished)
 - Vary and Zheng, ISU report, 1994 (unpublished)
- Contributors in period 1996 2006
 - Petr Navratil (now at TRIUMF, Canada)
 - Jim Coyle (still at ISU)
 - Andreas Nogga (now at JUELICH, Germany)
- Lanczos algorithm for obtaining lowest eigenvalues and vectors
- Large scale calculations: distributed-memory systems using MPI
- Mixed precision: matrix elements and vectors in single precision, but overlaps for orthonormalization in double precision
- Observables (besides energies)
 - static: r^2 , μ , Q, occupation probabilities, ...
 - transitions: M1, E2, and GT (assuming isospin symmetry)

Effective Nucleon Interaction Chiral Perturbation Theory (xPT)

Weinberg's χ PT allows for controlled power series expansion

R. Machleidt and D.R. Entem, Phys. Rep. 503, 1 (2011); E. Epelbaum, H. Krebs, U.-G Meissner, Eur. Phys. J. A51, 53 (2015); Phys. Rev. Lett. 115, 122301 (2015)

Binding Energies with LENPIC-SMS chiral EFT

P. Maris, H. Le, A. Nogga, R. Roth, J.P. Vary Front. Phys. 11, 1098262 (2023)

- ► NN potential up to N⁴LO⁺
- 3NFs at N²LO
- SRG evolved to $\alpha = 0.08 \text{ fm}^4$
- LECs fitted to
 - NN scattering data
 - ³H binding energy
 - Nd scattering
- Parameter-free predictions
- Error bars
 - numerical uncertainty
 - chiral EFT uncertainty from Bayesian analysis

Adapted from P. Maris, LENPIC Annual Meeting, Bonn, March 11-13, 2024

Excitation energies from effective field theory with quantified uncertainties

Theory minus experiment for selected excitation energies No data **Bayesian 95%** intervals for two forces (blue & red) Check if ≈95% of bars overlap zero

-3

 $^{-2}$

 $^{-1}$

0

Objectives

- Predict properties of ground and excited states of light nuclei with robust theoretical error estimates.
- Test consistent <u>LENPIC</u> chiral effective field theory (EFT) interactions with 2- and 3-nucleon forces.
- Extend and test a Bayesian statistical model that learns from the order-by-order EFT convergence pattern to account for correlated excitations.

Impact

- First test of novel chiral nucleon-nucleon potentials with consistent three-nucleon forces.
- Demonstrates understanding of theoretical uncertainties due to chiral EFT expansion.
- Accounting for correlations produces agreement with experimental excitation energies (see figure).
- Exceptions in ¹²C and ¹²B indicate different theoretical correlations in the nuclear structure.

Accomplishments

P. Maris et al, Phys. Rev. C 103, 054001 (2021); Editors' Suggestion; arXiv: 2012.12396 [nucl-th]

Origin of the Anomalous Long Lifetime of ¹⁴C

P. Maris,¹ J. P. Vary,¹ P. Navrátil,^{2,3} W. E. Ormand,^{3,4} H. Nam,⁵ and D. J. Dean⁵

- Solves the puzzle of the long but useful lifetime of ¹⁴C
- Establishes a major role for strong 3-nucleon forces in nuclei
- Strengthens foundation for guiding experiments

Daejeon16 NN interaction

Based on SRG evolution of Entem-Machleidt "500" chiral N3LO to $\lambda = 1.5 \text{ fm}^{-1}$ followed by Phase-Equivalent Transformations (PETs) to fit selected properties of light nuclei.

A.M. Shirokov, I.J. Shin, Y. Kim, M. Sosonkina, P. Maris and J.P. Vary, "N3LO NN interaction adjusted to light nuclei in ab exitu approach," Phys. Letts. B 761, 87 (2016); arXiv: 1605.00413

Application to excited states of p-shell nuclei

(Maris, Shin, Vary, in preparation)

- difference of extrapolated E_b
- extrapolation uncertainties: max of E_b uncertainties
- good agreement with positive and negative parity spectra
- need large bases for 'intruder' and 'non-normal parity' states
- spectrum ¹⁰B
 - correct gs 3⁺ and excited 1⁺
 - third 1⁺ 'intruder' state
- excited 0⁺ state in ¹²C
 - Hoyle state?
 - see MCNCSM results below

Tetraneutron díscovery confirms prediction

Objectives

- Ab initio nuclear theory aims for parameter-free predictions of nuclear properties with controlled uncertainties using supercomputer simulations
- Specific goal is to predict if the tetraneutron (4-neutron system) has a bound state, a low-lying resonance or neither

Experiment and theory for the tetraneutron's resonance energy and width. *Ab initio* No-Core Shell Model (NCSM) and Gamow Shell Model (GSM) predictions use different neutron-neutron interactions and different basis function techniques.

Impact

- Discovery in 2022 announced in Nature [1] confirms *ab initio* theory predictions from 2016 [2] of a short-lived tetraneutron resonance at low energy and the absence of a tetraneutron bound state
- Demonstrates the predictive power of *ab initio* nuclear theory since theory and experiment are within their combined uncertainties
- Sets stage for further experimental and theoretical research on new states of matter formed only of neutrons
- Shows need to anticipate a long wait time for experimental confirmation of such an exotic phenomena, ~ 6 years in this case
- Emphasizes the value of DOE supercomputer allocations (NERSC) and support for multi-disciplinary teamwork (SciDAC/NUCLEI)

Accomplishments

[1] M. Duer, et al., Nature 606, 678 (2022)

[2] A.M. Shirokov, G. Papadimitriou, A.I. Mazur, I.A. Mazur, R. Roth and J.P. Vary, "Prediction for a four-neutron resonance," Phys. Rev. Lett. 117, 182502 (2016)

Alpha clusters in Carbon-12 from ab initio theory & statistical learning

Oliectiner	Impact
Ab initio nuclear theory aims for parameter-free predictions of critical nuclear properties with controlled uncertainties	 Ground state found to have 6% alpha clustering while Hoyle state discovered to be 3-alphas 61% of the time
using supercomputer simulations	• With this high percentage of 3-alphas, the Hoyle state is
Specfic goal is to determine extent of alpha clustering in the Ground state and the Hoyle state of Carbon-12 $\binom{12}{12}$	formation of ¹² C, the key element for organic life
Ground state and the noyle state of Carbon-12 (C)	• Statistical learning confirms 3-alpha feature of Hoyle state

Ab initio Monte-Carlo Shell Model results for density contours of 12C Ground state and first excited 0⁺ (Hoyle) state using the Daejeon16 two-nucleon potential. Simulations were performed on Fugaku in Japan, the world's largest supercomputer at the time.

Accomplishments

T. Otsuka, T. Abe, T. Yoshida, Y. Tsunoda, N. Shimizu, N. Itagaki, Y. Utsuno, J. Vary, P. Maris and H. Ueno, "Alpha-Clustering in Atomic Nuclei from First Principles with Statistical Learning and the Hoyle State Character," Nature Communications 13:2234 (2022)

Long range operators

¹⁵C Experiment

 $\frac{M_n}{M_p} = \frac{\langle J_f || \sum_{i \in n} r_i^2 Y_2(\hat{r}_i) || J_i \rangle}{\langle J_f || \sum_{i \in p} r_i^2 Y_2(\hat{r}_i) || J_i \rangle}$

$\hbar\Omega$	$17 { m MeV}$			$18 \mathrm{MeV}$			Extrapolation	Experiment
N_{max}	4	6	8	4	6	8		l I
$E_{g.s.}(\frac{1}{2}_{1}^{+})$ [MeV]	-100.034	-104.146	-106.091	-100.194	-104.134	-106.019	-107.793(45)	-106.503 [54]
$E_x(\frac{5}{2}1^+)$ [MeV]	0.556	0.941	1.169	0.494	0.908	1.148	1.440(9)	0.740(15) [54]
$B(E2;\frac{5}{2}_{1}^{+}\rightarrow\frac{1}{2}_{1}^{+}) \ [e^{2}fm^{4}]$	0.699	0.938	1.115	0.658	0.899	1.080	2.025(30)	0.97(2) [28]
$\mu_{\rm g.s.}(\frac{1}{2}{}_1^+) \; [\mu_{\rm N}]$	-1.723	-1.717	-1.711	-1.720	-1.714	-1.709	-1.633(53)	1.315(70) [55]
$\mu(\frac{5}{2}_{1}^{+}) \ [\mu_{\rm N}]$	-1.464	-1.442	-1.428	-1.467	-1.443	-1.429	-1.407(9)	1.758(30) [55]
$M_n/M_p \ (\frac{5}{2}1^+ \rightarrow \frac{1}{2}1^+)$	3.870	3.649	3.578	3.876	3.652	3.575	3.529(6)	3.6(4)

J. Chen et al., Phys. Rev. C 106, 064312 (2022)

J. Chen *et al.*, Phys. Rev. C **106**, 064312 (2022) H. Li, D. Fang, H. J. Ong, A. M. Shirokov, J. P. Vary, P. Yin, X. Zhao, Phys. Rev. C **110**, 064325 (2024)

H. Li, D. Fang, H. J. Ong, A. M. Shirokov, J. P. Vary, P. Yin, X. Zhao, Phys. Rev. C 110, 064325 (2024)

$$I_M = \sum_{\mu}^{M} |\langle \mu | \hat{O} | i \rangle|^2 g(\omega_{\mu}) \qquad \qquad \alpha_E = \frac{8\pi}{9} \sum_{k} \frac{B(E1; J_0 \to J_k)}{E_k - E_0} = \frac{1}{2\pi^2} \int_{\omega_{\text{th}}}^{\infty} d\omega \frac{\sigma_{\gamma}^{\text{ud}}(\omega)}{\omega^2}$$

- Sum rule: response of nuclei to external field probe
- Direct techniques: only available for deuteron
- Indirect techniques: Lorentz integral transform, Lanczos sum rule method
- A>2, direct calculation?

P. Yin, A. M. Shirokov, P. Maris, P. J. Fasano, M. A. Caprio, H. Li, W. Zuo, J. P. Vary, Phys. Lett. B **855**, 138857 (2024)

- 5522 1- states
- 30 GPU nodes, 16800 Lanczos iterations, 21 hours

- Robust convergence with respect to N_{max}
- Uncertainty due to N_{max} truncation and energy truncation
- Direct calculation is feasible and robust
- Independent of diagonalization techniques

P. Yin, A. M. Shirokov, P. Maris, P. J. Fasano, M. A. Caprio, H. Li, W. Zuo, J. P. Vary, Phys. Lett. B **855**, 138857 (2024).

$$\alpha_E = \frac{8\pi\alpha}{9} \int_{E_T} \frac{dE}{E} \frac{1}{e^2} \frac{dB(E1)}{dE}$$

Fig. 3. The *B*(E1) distribution obtained by the present work compared with previous results from GSI [5] and MSU [23]. The experimental *B*(E1) distributions are also compared with the three-body calculations (black solid line from this work, red dashed line from Ref. [90]) and *ab initio* six-body calculation (blue dotted line) [91].

PHYSICAL REVIEW C 86, 064316 (2012)

Nuclear electric polarizability of ⁶He

R. Goerke,^{1,2,*} S. Bacca,^{2,†} and N. Barnea^{3,‡}

¹Department of Physics, University of Toronto, 60 St. George St., Toronto, Ontario M5S 1A7, Canada ²TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada ³Racah Institute of Physics, Hebrew University, 91904, Jerusalem, Israel (Received 11 September 2012; revised manuscript received 19 November 2012; published 19 December 2012)

We present an estimate of the nuclear electric polarizability α_E of the ⁶He halo nucleus based on sixbody microscopic calculations. Wave functions are obtained from semirealistic two-body interactions using the hyperspherical harmonics expansion method. The polarizability is calculated as a sum rule of the dipole response function using the Lanczos algorithm and also by integrating the photoabsorption cross section calculated via the corentz integral transform method. We obtain $\alpha_E = 1.00(14)$ fm³, which is much smaller than the published value $\alpha_E^{exp} = 1.99(40)$ fm [Pachucki and Moro, Phys. Rev. A **75**, 032521 (2007)] extracted from experimental data. This points toward a potential disagreement between microscopic theories and experimental observations.

Photonuclear sum rules and the tetrahedral configuration of ⁴He

Doron Gazit,¹ Nir Barnea,¹ Sonia Bacca,² Winfried Leidemann,^{3,4,*} and Giuseppina Orlandini^{3,4,*} ¹The Racah Institute of Physics, The Hebrew University, 91904 Jerusalem, Israel ²Gesellschaft für Schwerionenforschung, Planckstr. 1, D-64291 Darmstadt, Germany ³Department of Physics, George Washington University, Washington DC 20052, USA ⁴Istituto Nazionale di Fisica Nucleare, Gruppo Collegato di Trento, Italy (Received 15 September 2006; published 14 December 2006)

$$m_n(\bar{\omega}) \equiv \int_{\omega_{\rm th}}^{\bar{\omega}} d\omega \, \omega^n \, \sigma_{\gamma}^{\rm E1UR}(\omega),$$

$$\Sigma^{\text{TRK}} \equiv m_0(\infty) = \frac{\mathcal{G}}{2} \langle 0 | [\mathbf{D}, [H, \mathbf{D}]] | 0 \rangle$$
(4)

(1)

$$\Sigma^{\text{BSR}} \equiv m_{-1}(\infty) = \mathcal{G} \langle 0 | \mathbf{D} \cdot \mathbf{D} | 0 \rangle$$
(5)

$$\Sigma^{\text{PSR}} \equiv m_{-2}(\infty) = \mathcal{G} \sum_{n} (E_n - E_0)^{-1} |\langle n | \mathbf{D} | 0 \rangle|^2.$$
(6)

$$\Sigma^{\text{BSR}} = \mathcal{G} \left[Z^2 \langle r_p^2 \rangle - \frac{Z(Z-1)}{2} \langle r_{pp}^2 \rangle \right]$$
(14)

$$\left\langle r_{pp}^{2}\right\rangle \equiv \frac{1}{Z(Z-1)}\left\langle 0|\sum_{i,j=1}^{Z}(\mathbf{r}_{i}-\mathbf{r}_{j})^{2}|0\right\rangle.$$
(15)

r_{pp} with NCSM: Daejeon 16
⁴He: 2.487 fm
⁶He: 2.645 fm
r_p with NCSM: Daejeon 16
⁴He: 1.90 fm
⁶He: 1.514 fm

M. Huang, T. Frederico, P. Maris, P. Yin, R. Basili, P. Fasano, J. P. Vary, in preparation

Eable 1 Numerical values of $\langle r_{00}^2 \rangle^{1/2}$, $\langle r'^2 \rangle^{1/2}$ and ρ as extracted from experimental values of σ_{-1} and \Re

Nucleus	$\sigma_{-1} (exp)$ (mb)	<i>R</i> (exp) °) (fm)	$\langle r_{\rm pp}^2 \rangle^{1/2}$ (fm)	$\langle r'^2 \rangle^{1/2}$ (fm)	ρ
	2.3 *)	1.63 ± 0.04	2.38	1.19	0.16
	2.1 ^b)		2.43	1.22	0.14
⁷ Li	4.64°)	2.41	3.73	2.15	0.05
ве	5.19)	2.51	3.77	2.31	0.03
¹² C	8.81)	2.45	3.50	2.26	0.03
¹⁶ O	14.5 °)	2.72	3.86	2.56	0.02
⁴⁰ Ca	45.5 [°])	3.48	4.89	3.37	0.01
90Zr	70.6 ^d)	4.28	6.01	4.20	~0
²⁰⁸ Pb	229.2 ^d)	5.50	7.74	5.43	~0

Constrain photoabsorption/strength function with nuclear structure calculations!

Monopole form factor with NCSM

Monopole transition form factor of ⁴He

- Ground state: benchmark few-body methods
- Hiyama: Gaussian expansion, simplified force
- Bacca: HH+LIT, realistic *NN*+3*N* from chiral EFT

21.84

21.01

20,21

0.0

 0^{+}_{2}

3_{He+n}

20.578

Editors' Suggestion Featured in Physics

New experiment Mainz

Status quo in 2023

Problem with chiral EFT becomes stronger

Measurement of the α-Particle Monopole Transition Form Factor Challenges Theory: A Low-Energy Puzzle for Nuclear Forces?

S. Kegel[®], ¹ P. Achenbach[®], ¹ S. Bacca[®], ^{1,2} N. Barnea[®], ³ J. Beričič, ⁴ D. Bosnar[®], ⁵ L. Correa, ^{6,1} M. O. Distler[®], ¹
A. Esser, ¹ H. Fonvieille, ⁶ I. Friščić[®], ⁵ M. Heilig, ¹ P. Herrmann, ¹ M. Hoek[®], ¹ P. Klag, ¹ T. Kolar[®], ^{7,4} W. Leidemann[®], ^{8,9}
H. Merkel[®], ¹ M. Mihovilovič, ^{1,4} J. Müller, ¹ U. Müller[®], ¹ G. Orlandini[®], ^{8,9} J. Pochodzalla[®], ¹ B. S. Schlimme[®], ¹
M. Schoth, ¹ F. Schulz, ¹ C. Sfienti[®], ^{1,*} S. Širca[®], ^{7,4} R. Spreckels, ¹ Y. Stöttinger, ¹ M. Thiel[®], ¹ A. Tyukin, ¹
T. Walcher[®], ¹ and A. Weber¹

PHYSICAL REVIEW LETTERS 131, 242502 (2023)

Featured in Physics

3

2

00

 $|F_{rel}(q^2)|^2 \cdot 10^4/(4\pi)$

Description of the Proton-Decaying 0^+_2 Resonance of the α Particle

N. Michel⁽⁰⁾,^{1,2,3} W. Nazarewicz⁽⁰⁾,⁴ and M. Płoszajczak⁽⁰⁾

PHYSICAL REVIEW LETTERS 133, 239901(E) (2024)

Erratum: Description of the Proton-Decaying 0^+_2 Resonance of the α Particle [Phys. Rev. Lett. 131, 242502 (2023)]

N. Michel[®], W. Nazarewicz, and M. Płoszajczak

(Received 15 July 2024; revised 9 October 2024; published 4 December 2024)

Ab Initio Calculation of the Alpha-Particle Monopole Transition Form Factor

Check

M. Viviani · A. Kievsky · L. E. Marcucci · L. Girlanda

Study of the Alpha-particle Monopole Transition form Factor

In the news

BUCKTAR PRESICE

From Sonia Bacca

	pro-physik.de	LIVESCIANCE
Physics About BROWSE PRESS COLLECTIONS Q Search artic		Scientists tried to solv
	Rätsel um Anregung von α-Teilchen	confused than ever
	26.04.2022 Theoretisch bestimmte und gemeenen	News By Anna Demming published June 27, 2
Line Helium Nucleus be	überein.	Helium is the simplest element in
Probing the Helland		Le mystère du noya
Ground State	Am Mainzer Teilchenbeschleuniger "Mami" hat die A1-Kollaboration im Rahi Anrequing eines g-Teilchens von seinem Grundzustand zum ersten angereg	énigme persistante
Ground State	Genauigkeit systematisch vermessen. Die Gegenüberstellung von Experime	nuclé
Evgeny Epelbaum	zugehörigen Niederenergie-Theorie zeigt, dass die Anregung von α-Teilchen Kernkräften nicht korrekt beschrieben wird – und wirft damit viele Fragen a	PUBLIÉ LE 28 JUIN 2023 À 18845 PAR LAURIE
Quantamagazine Physics Mathematics Biology Computer Science Topics Archive		

PHYSICS TODAY

A New Experiment Casts Doubt on the SHARE Leading Theory of the Nucleus 9

📪 12 | JL By measuring inflated helium nuclei, physicists have challenged o understanding of the force that binds protons and neutrons.

Theory and experiment disagree on alpha particles G

12 May 2023

f

Electron-scattering experiments on excited helium nuclei open questions about the ac art nuclear models.

IN/FCCIAICE

e the mystery of the ended up more

023

the periodic table with more

au d'hélium : une pour la physique aire

I MODIFIÉ LE 28 JUIN 2023

From Sonia Bacca

Two important comments

E. Epelbaum, Physics 16 (2023) 58

Threshold energy:

"The form factor may depend on the energy difference between the position of the resonance and the two-body breakup threshold, so any uncertainties in calculating the excitation energy would translate into relatively large uncertainties in the form factor predictions."

⇒ investigate role of threshold energy

Kamimura, Prog. Theor. Exp. Phys. (Letter) Vol. 2023, 071D01 (2023)

Bound vs Continuum:

Claim that "the large difference between the calculated form factors does not stem from numerical methods but from the Hamiltonian. However, the comparison between the methods was performed only for the calculation based on the bound-state approximation."

 \Rightarrow investigate role of continuum

None of the theories gets E_r and Γ_r correct

Evaluation by Tilley et al, NPA 541 (1992) 1-104

 $E_r = 0.39 \text{ MeV}$ $\Gamma_r = 0.50 \text{ MeV}$

Pionless EFT with RGM: Kirscher and Griesshammer, EPJA 54, 137 (2018) $E_r = 0.38 \pm 0.25 \text{MeV}$

Monopole transition form factor of ⁴He

Two-body currents LENPIC interaction

$$\boldsymbol{\mu} = \frac{1}{2} \int_{\mathbb{R}^3} d^3 x \, \boldsymbol{x} \times \bar{\boldsymbol{j}}(\boldsymbol{x})$$

Magnetic moments of A = 3 nuclei obtained from chiral effective field theory operators

Soham Pal,^{1,*} Shiplu Sarker^{,1} Patrick J. Fasano^{,2,†} Pieter Maris,¹ James P. Vary^{,1} Mark A. Caprio^{,2} and Robert A. M. Basili³

¹Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011-3160, USA

²Department of Physics and Astronomy, University of Notre Dame, Notre Dame, Indiana 46556-5670, USA

³Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011-3160, USA

PHYSICAL REVIEW C 106, 054608 (2022)

Calculations of the $np \rightarrow d\gamma$ reaction in chiral effective field theory

Weijie Du ^(a),^{1,*} Soham Pal,¹ Mamoon Sharaf ^(a),¹ Peng Yin ^(a),^{1,2} Shiplu Sarker ^(a),¹ Andrey M. Shirokov ^(a),³ and James P. Vary ^(a) ¹Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50010, USA ²Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China ³Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow 119991, Russia

$$\bar{\sigma}_{-2} \equiv \frac{1}{2\pi^2} \int_{E_B}^{\infty} \frac{\sigma(E_{\gamma})}{E_{\gamma}^2} dE_{\gamma} = \bar{\alpha} + \bar{\beta}$$

$$\bar{\alpha} = \alpha_E + \frac{Z\alpha \langle \mathbf{r}^2 \rangle}{3Am_N} + \alpha_N + \cdots$$

$$\bar{\beta} = \frac{2\alpha}{3} \sum_{n \neq 0} \sum_{M_n, \lambda} \frac{|\langle \Psi_n, M_n | \mu_{1,\lambda} | \Psi_0, M_0 \rangle|^2}{E_n - E_0} - \frac{Z\alpha \langle \mathbf{r}^2 \rangle}{6m_N} - \frac{\alpha \langle \mathbf{D}^2 \rangle}{2Am_N} + \beta_N + \beta_\pi + \frac{0.76}{8} \frac{N^2 LO}{N^2 LO} + \frac{N^2 LO}{E_1 - E_0} + \frac{N^2 LO}{6m_N} + \frac{N^2 LO}{2Am_N} + \frac{N^2 LO}{N^2 LO} + \frac{N^2 LO}{N^$$

- Updated photoabsorption data
- Two-body current: 5%

Shiplu Sarker, P. Yin et al., in preparation

复旦:郝子锐

Summary

- > Introduction to *ab initio* NCSM approach
- Long range operators
- > Sum rules with NCCI
- > Monopole transition form factor of ⁴He

Two-body currents

Outlook

- Photoabsorption reaction
- Neutrino-nucleus reaction
- > $n+\alpha$, $p+^{3}H$, $n+^{3}He...$ scatterings
- Coulomb dissociation of light nuclei

NCSM with continuum (P. Navratil)

- $3He(\alpha,\gamma)7Be \text{ and } 3H(\alpha,\gamma)7Li$
- 7Li(p,e+e-)8Be: X17
- α+α
- p+7Be and p+7Li
- 8Li(n,γ)9Li, 7Be(p,γ) 8B

Time Dependent Basis Function

Scattering at sub-barrier with the tBF approach

- Natural extension of *ab initio* nuclear structure approaches, e.g., NCSM
- Non-perturbative

• Full quantal coherence

> Weijie Du, Peng Yin*, Yang Li, Guangyao Chen, Wei Zuo, Xingbo Zhao, and James P. Vary, *Phys. Rev. C* 97, 064620 (2018);

- Weijie Du, Peng Yin, Guangyao Chen, Xingbo Zhao, and James P. Vary, in Proceedings of the International Conference "Nuclear Theory in the Supercomputing Era–2016" (NTSE-2016), Khabarovsk, Russia, September 19–23, 2016;
- Peng Yin, Weijie Du, Wei Zuo, Xingbo Zhao and James P. Vary, J. Phys. G (2022);
- Weijie Du, James P. Vary, Xingbo Zhao, Wei Zuo, Phys. Rev. A 104, 012611 (2021).
- Peng Yin, Weijie Du, Wei Zuo, Xingbo Zhao and James P. Vary, arXiv 2208.00267

Peng Yin, Weijie Du, Wei Zuo, Xingbo Zhao and James P. Vary, arXiv 2208.00267

d+²⁰⁸Pb scatterings at E_d =7 MeV and θ =150° Convergence with respect to N_{max} and E_{cut}

- Initial state: deuteron ground state with M=-1;
- P₀ is the probability of the initial state;
- The asymptotic value is well converged with respect to Nmax and Ecut. Peng Yin, Weijie Du, Wei Zuo, Xingbo Zhao and James P. Vary, arXiv 2208.00267

- P is the probability of states other than the initial state;
- Allowed states (solid lines) populate first. Forbidden states (dotted lines) populate afterward;
- 6 allowed states populate dominantly in the early stage of the time evolution.

Occupation probabilities of np states after d+²⁰⁸Pb scattering E_d =7 MeV and θ =150° : LENPIC-N⁴LO

Observables for d+²⁰⁸**Pb scattering**

d+²⁰⁸Pb scattering E_d=3-7 MeV Sensitivity to NN interactions

Peng Yin, Weijie Du, Wei Zuo, Xingbo Zhao and James P. Vary, arXiv 2208.00267

Conclusions/Perspectives

- Non-perturbative time-dependent basis function approach;
- Application to $d+^{208}$ Pb scattering;
- Extension of the tBF method to heavier projectiles, e.g., rare isotopes,...: using wavefunctions from NCSM.
- Extension to higher incident energies: adding strong interaction between scattering nuclei.
- Two-body electromagnetic operators from chiral effective field theory.
- Quantum consideration of center of mass motion of the projectile.
- Quantum computing