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Chapter 1

Introduction

Paolo Calafiura∗,§, David Rousseau†,¶ and Kazuhiro Terao‡,‖

∗Lawrence Berkeley National Laboratory
1 Cyclotron Rd, Berkeley, California 94720, USA
†Université Paris-Saclay, CNRS/IN2P3, IJCLab

91405 Orsay, France
‡SLAC National Accelerator Laboratory

2575 Sand Hill Rd., Menlo Park, California 94025, USA
§pcalafiura@lbl.gov

¶david.rousseau@ijclab.in2p3.fr
‖kterao@slac.stanford.edu

1. Artificial Intelligence at the Frontiers

of High-Energy Physics

Traditional Artificial Intelligence and Machine Learning (AI/ML)

approaches have been applied to High-Energy Physics for decades

[1–3], and they played a role in the Higgs boson discovery in 2012.

In recent years, following the growth in these approaches in indus-

try, modern AI/ML methods, such as deep learning, have become

the state-of-the-art in several areas of Computational High-Energy

Physics (HEP). For example, Boosted Decision Trees (Chapter 2),

which are an integral part of many HEP analyses, are increasingly

replaced by deep neural networks operating on high-level physics

objects (Chapter 3).

1

https://doi.org/10.1142/9789811234026_0001
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Accelerated AI/ML platforms for training and inference (Part

IV) have been crucial for recent advancements in AI for HEP. For

example, neutrino experiments have shown how Convolutional Neu-

ral Networks outperform traditional algorithms on image-like data

(Chapter 10). Deep learning methods are also used for Particle Iden-

tification and Jet Classification (Part VI). The opportunity to train

large-scale generative models (Part III) may allow replacing tradi-

tional Monte Carlo simulation in some of the most resource-intensive

HEP applications.

As the field develops, so does the potential for more transfor-

mative changes, including graph networks that capture the struc-

ture of experimental data (Chapters 11 and 12), and anomaly

detection methods that monitor its quality (Chapter 5). New data

analysis paradigms such as model-independent resonance searches

(Chapter 4) and likelihood-free inference (Chapter 16) promise to

increase the physics reach of HEP experiments. As analysis meth-

ods become more sophisticated, principled strategies to quantify

and minimize statistical and systematic uncertainties associated with

their predictions (Chapters 17 and 18) will be key. AI/ML methods

also have a place in theoretical problems, such as estimating parton

distribution functions, which cannot be computed from first princi-

ples QCD alone and need to be determined using experimental data

(Chapter 19).

Finally, the organization of open AI/ML challenges and the avail-

ability of associated datasets (Chapter 20) have helped create a

research community of physicists, data scientists, and computer sci-

entists, several of whom have contributed to this book.

2. Why This Book, and Who Should Read It?

This book aims to close the gap between generic AI/ML textbooks

and research papers discussing AI/ML applications in HEP. Can deep

neural networks be used to reconstruct data and infer physics bet-

ter than a traditional approach? What can we find using anomaly

detection techniques on data from particle colliders? How are gen-

erative models used to support physics modeling? Can Bayesian



December 14, 2021 16:13 Artificial Intelligence for High Energy Physics 9in x 6in b4322-ch01 page 3

Introduction 3

neural networks help infer uncertainties on physics measurement?

These are a few of many research questions faced and addressed

by physicists with AI/ML expertise. Through topical reviews writ-

ten by leading experts, this book guides HEP researchers to apply

state-of-the-art methods to their challenges and hopefully provide

them with the foundations to push the boundaries and develop new

AI/ML techniques.

Target readers include students, postdocs, and experienced physi-

cists looking for an overview of AI/ML techniques to apply to their

research. The book may also be useful to data scientists, ML experts,

and scientists from other domains interested in how Computational

HEP has embraced modern AI/ML methods.

3. Pre-requisites

This book assumes a basic working knowledge of AI/ML (includ-

ing linear models, gradient-based optimization and regularization,

and neural networks), data analysis (e.g. function fitting, likelihood

maximization, and error analysis), and introductory particle physics.

Readers who have contributed to an HEP analysis using classic sta-

tistical tools and are familiar with basic ML concepts should benefit

most from this book.

Many online courses provide an excellent introduction to modern

AI/ML, including [4]. Several textbooks [5–7] complement them by

covering in detail AI/ML conceptual foundations and applications.

Finally, the HEP community organizes several schools and work-

shops (e.g. [8]) that provide lectures and tutorials on basic and

advanced “AI for HEP” topics.

4. How to Use This Book

This book is organized by physics application. Using the table of con-

tents and the abstract at the beginning of each chapter, the reader

can navigate directly to the part or chapter relevant to their appli-

cation. Each chapter is self-contained and provides an introduction

to the concepts, practical examples of their applications to HEP,
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and a survey of recent research. Given how fast the field is evolv-

ing, some emerging topics have not been included,a however, authors

have striven to cover the most recent public studies.

As the book covers the many steps required to derive a physics

result from the analysis of HEP data, it could also be used as a text-

book for a course about AI/ML applications to HEP data analysis.

Furthermore, this book surveys many research challenges across

various sub-fields in particle physics, including cosmology, neutrino

physics, collider physics, and particle phenomenology. We hope that

it will encourage the reader to join our vibrant research community.
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Boosted Decision Trees
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Boosted decision trees are a very powerful machine learning technique.
After introducing specific concepts of machine learning in the high-
energy physics context and describing ways to quantify the performance
and training quality of classifiers, decision trees are described. Some
of their shortcomings are then mitigated with ensemble learning, using
boosting algorithms, in particular AdaBoost and gradient boosting.
Examples from high-energy physics and software used are also presented.

1. Introduction

Decision trees are a machine learning technique that appeared in

the mid-1980s and are still the subject of advanced studies in the

field. Because it is a sophisticated supervised multivariate technique,

learning from examples, it is important to remember that before

applying it to real data (e.g. collisions from a high-energy physics

experiment), it is crucial to have a good understanding of the data

and of the physics model used to describe them (simulated samples,

reconstruction and identification efficiencies, etc.). Any discrepancy

between the real data and physics model (that is, features in the data

that are not reproduced by the physics model because the simulation

is incorrect or because the real data were not properly groomed) will

provide an artificial separation that the decision trees will use, mis-

leading the analyzer. The hard (and interesting) part of the analysis

is in building the proper physics model, not in “just” extracting the

signal. But once this is properly done, decision trees (and especially

9

https://doi.org/10.1142/9789811234026_0002


December 14, 2021 16:13 Artificial Intelligence for High Energy Physics 9in x 6in b4322-ch02 page 10

10 Y. Coadou

their boosted versions) provide a very powerful tool to increase the

significance of any analysis.

Ever since their first use by the MiniBooNe collaboration for anal-

ysis and particle identification [1, 2] and by the D0 experiment for

the first evidence of single top quark production [3, 4], boosted deci-

sion trees have been a primary tool in high-energy physics to increase

the discovery potential and measurement precision of experiments,

in particular at the Tevatron and at the LHC. They are still highly

relevant (and highly performing) in 2021, even though deep neural

networks are becoming a serious contender.

As this is the first chapter of this book, some of the basic concepts

useful in the context of high-energy physics when using most tech-

niques presented in this and other chapters are summarized in Sec. 2.

Section 3 explains how a decision tree is constructed, what parame-

ters can influence its development and what its intrinsic limitations

are. One possible extension of decision trees, boosting, is described in

detail in Sec. 4, and other techniques trying to reach the same goal as

boosting are presented in Sec. 5. Popular software implementations

are introduced in Sec. 6, before reaching conclusions in Sec. 7.

2. Specificity of High-Energy Physics

All techniques presented in this book need to learn from examples.

After a short list of definitions to have a common language between

the physicist and the computer scientist in Sec. 2.1, several training

strategies are presented in Sec. 2.2, as well as how to deal with the

samples to minimize training bias and maximize statistical power.

In order to properly assess the performance of a classifier, cross-

validation is introduced in Sec. 2.3. Section 2.4 describes typical usage

of machine learning algorithms in high-energy physics. Several figures

of merit are described in Sec. 2.5 and overtraining is addressed in

Sec. 2.6.

2.1. Terminology

Here are a few terms that take on different meanings in a high-energy

physics or machine learning context.



December 14, 2021 16:13 Artificial Intelligence for High Energy Physics 9in x 6in b4322-ch02 page 11

Boosted Decision Trees 11

Event All information collected during a collision inside a detec-

tor, or reproduced from a Monte Carlo simulation of such

collisions (equivalent to a “sample” in machine learning lit-

erature).

Sample A collection of events, a dataset.

Variable A property of the event or of one of its constituents (“fea-

ture” in machine learning).

Cut To cut on a variable is to apply a threshold on this variable

and keep only events satisfying this condition. A cut-based

analysis is applying such thresholds on several variables to

select events.

Event weight In high-energy physics events usually have an asso-

ciated weight, which depends on how many events were gen-

erated (relating to the process cross section and collected

luminosity) and various corrections applied to simulations to

account for differences between data and Monte Carlo pre-

dictions (jet energy scale or object identification efficiency

are such weights). When using machine learning techniques

all events are often treated equal by default. It is therefore

important for the physicist to make sure to give the proper

initial weight to all its input events. Then machine learning

algorithms may internally reweight the events for their own

purpose, but the starting point will correspond to the physical

distributions. The concept is similar to importance weighting

in machine learning, where events are given a larger weight to

account, for instance, for their scarcity in the training sample.

2.2. Splitting samples for training

Decision trees, as many of the techniques presented in this book,

belong to the class of algorithms using supervised learning: during

training, the classifier is presented only with events for which it knows

features (discriminating variables) and class label (for instance in the

binary case, whether the event is signal or background).

In order to not introduce bias, it is important to use an inde-

pendent set of events during training, events that are then not used
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when performing a measurement. The usual approach is to split the

dataset in three parts: a training sample from which to learn the

task, a validation sample to evaluate performance and possibly opti-

mize the classifier hyperparameters, and a testing sample for the

actual measurement. In high-energy physics, simulated Monte Carlo

events are often used for these three samples, and the performance

on the testing sample is compared to that on data collected from the

detector (never seen during training). Discrepancies between testing

sample and data introduce a potential pitfall, that can be addressed

with transfer learning and domain adaptation [5].

In general labeled data are “expensive” to produce: hiring people

to label images or translate speech, collecting X-ray images and med-

ical diagnosis, etc. In high-energy physics very accurate, though not

perfect, event generators and detector simulators are available. Mod-

els can be trained on the samples they provide, which are however

quite costly in resources so that they should be used with parsimony.

At the same time an increasing training set size is often associated

with improved classifier performance. Monte Carlo samples can be

split in half, one half for training (holding out part of this dataset for

validation) and one for testing. By doing this half of the sample is

“wasted”, not used for either training or testing, decreasing the qual-

ity of the training and of the measurement. The use of the sample can

be maximized by performing two trainings: train the same classifier

on the two halves (say, one on events with an even event number and

one on events with an odd event number), and when testing, apply

the classifier which did not see the event during training (so, the one

trained on odd events is applied on even ones, and vice versa). The

concept can be generalized to any number of splits, increasing the

number of trained classifiers, each of them using a larger fraction of

the available dataset for training.

2.3. Cross-validation

Training machine learning algorithms is usually a stochastic prob-

lem, the randomness coming from the training sample content, the

optimization process or the technique itself. This means that when
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training only once, there is a possibility to obtain an “abnormal”

result by chance, too good or too bad compared to what could be

expected. In high-energy physics some training samples may be lim-

ited in size and become very sensitive to this issue. To get a proper

estimate of the mean performance and associated uncertainty (the

variability of the algorithm output, originating from the training pro-

cedure), it may be better to perform several trainings. This principle

was introduced with the so-called K-fold cross-validation, originally

for decision trees [6]. After dividing a training sample L into K sub-

sets of equal size, L =
⋃

k=1,...,K Lk, a classifier Tk is trained on the

L − Lk sample and tested on Lk. This produces K classifiers, from

which the mean performance and associated uncertainty is extracted.

It helps in choosing the best model (each being tested with cross-

validation), rather than relying on a single training for each model

(which may or may not have an upward or downward performance

fluctuation). Once the model is chosen, it can be retrained on the

full (larger) training set, assuming its performance should approach

the observed mean performance.

2.4. Using machine learning

This book describes various ways of using machine learning in high-

energy physics to accomplish many different tasks. Boosted decision

trees are mostly used to separate a rare signal from a large back-

ground in physics analyses or to identify physics objects in the detec-

tor (see several use cases in Sec. 4.8.1). In practice, these results are

obtained in two ways. By applying a threshold on the boosted deci-

sion tree output a region or working point can be defined, as shown

in Fig. 1(a): cutting at 0.83 defines a b-tagging working point with

70% efficiency on b-jets and a rejection factor (defined as the inverse

of efficiency) of 313 (8) against light-flavored jets (c-jets) [7]. The

second approach consists in using the shape of the boosted decision

tree output as the discriminating variable for the final analysis. As

an example, in Fig. 1(b) the bins of “BDT score” for all components

of the physics model are included in a binned likelihood fit to the

data. The low score values help constrain the background, and the
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Fig. 1. (a) Output of the boosted decision tree used to identify jets originating
from b-quarks in ATLAS [7]. (b) Boosted decision tree output used in a fit between
data and physics model to extract the tt̄tt̄ signal [8].

high score bins reveal the need of the signal contribution to match

the data, leading to the first evidence for the production of tt̄tt̄ in

ATLAS [8].

2.5. Figures of merit

It is nowadays very easy, in just a few lines, to write the code to train

and apply various machine learning algorithms, with several software

options on the market (see Sec. 6). The lengthy part is more in the

design and optimization of the model itself (that is, what algorithm,

structure, hyperparameters to put in these few lines), and how to pick

the best one. Several measures that are commonly used, in particular

in high-energy physics, are presented below.

2.5.1. ROC curve and area under the curve

The receiver operating characteristic curve, or ROC curve, is a rep-

resentation of the capacity of a binary classifier to separate the two

classes, as its discrimination threshold is varied. It is plotting the true

positive rate (or recall, a measure of the proportion of actual posi-

tives that are correctly identified as such) against the false positive
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Fig. 2. Example ROC curve. The hatched area is the area under the curve. The
dashed line corresponds to random guessing.

rate (or fall-out, actual negatives improperly identified as positive),

obtained when scanning the classifier output. In the context of signal

and background, it shows signal efficiency vs. background efficiency

(or background rejection, defined as 1 − efficiency). An example is

shown in Fig. 2. In this convention, the better the classifier, the closer

the curve is to the top right corner. The dashed line in the middle

represents the performance of a classifier that is randomly guessing,

rejecting or accepting 50% of signal and background in all cases. This

is the worst achievable performance.

To compare ROC curves between classifiers, the area under the

curve, AUC (hatched area in Fig. 2) can be computed. Perfect sep-

aration gives an AUC of one, while random guessing corresponds to

an AUC of 0.5.

A single number summary is of course practical, but hides details

of the ROC curves being compared. If one ROC curve is systemat-

ically above the other, its AUC is larger and reflects better perfor-

mance across the board. But if two ROC curves cross each other,

then the interpretation of the AUC is more tricky: depending on the

usage of the classifier, a higher curve at high background rejection

may be more interesting than one at high efficiency for instance, so

how to interpret the AUC is up to the analyzer. To partially account

for this effect, it is also possible to compute the AUC only above a

certain threshold.
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2.5.2. Significance

In a physics analysis, the AUC is rarely the number of interest to

optimize. It is more typical to aim for the best cross-section sig-

nificance s√
s+b

or excess significance s√
b
, where s (b) is the sum of

weights (see Sec. 2.1) of signal (background) events. With n events

in data, the observed significance is obtained by replacing s by n− b.
Given a machine learning algorithm output, typically in the range

[0, 1] or [−1, 1], as is done when producing the ROC curve, s and b are

computed above a threshold on the discriminant output, scanning its

full range. It usually goes through a maximum towards high-output

values, before decreasing when statistics become too small. This max-

imum significance corresponds to the optimal value on which to cut

on the discriminant to get the best possible analysis.

This simple-minded formula is very popular in high-energy

physics but has shortcomings, and a refined version (counting experi-

ment supposing a single Poisson distributed value, with known back-

ground) gives the approximate median significance [9]:

AMS =

√
2
(
(s+ b) ln

(
1 +

s

b

)
− s
)
.

Expanding the logarithm in s/b leads back to the previous for-

mula, qualifying the validity of the approximation (requires s� b):

AMS =
s√
b
(1 +O(s/b)) .

Optimizing the AMS corresponds to optimizing the ROC curve,

focusing on the region with very high background rejection. This is

the typical regime of a physics analysis.

There is usually an uncertainty on the background, which affects

the significance. To extract their final results, modern analyses rely

on advanced statistical models with a complex machinery (usually

based on the RooStat framework [10]) accounting for all possible sys-

tematic effects. Running this whole infrastructure during machine

learning training optimization is usually prohibitive (complexity,

CPU cost), so a simpler proxy to the analysis performance measure

is necessary.
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The simplest way to account partially for background uncertainty

(σb ≡ ||b−bsyst||) is to replace
√
b by the quadratic sum of

√
b and σb:

s√
b+ σ2b

.

A refined version of the AMS can also take into account the back-

ground uncertainty [11]:

AMS1 =

√
2

(
(s+ b) ln

s+ b

b0
− s− b+ b0

)
+

(b− b0)2
σ2b

,

with b0 =
1

2

(
b− σ2b +

√
(b− σ2b )2 + 4(s + b)σ2b

)
.

Expanding in powers of s/b and σ2b/b gives back the simpler for-

mula:

s√
b+ σ2b

(
1 +O(s/b) +O(σ2b/b)

)
.

Finally, to account for the shape of the discriminant rather than

only choosing the best cut in a counting experiment, it is possible

to replace the global counts s, b and σb by their counts in each bin,

summing up contributions of N bins of discriminant output:

AMSsum1 =

√√√√ N∑
i

(
2

(
(si + bi) ln

si + bi
b0i

− si − bi + b0i

)
+

(bi − b0i)2
σ2bi

)
,

b0i =
1

2

(
bi − σ2bi +

√
(bi − σ2bi)2 + 4(si + bi)σ

2
bi

)
.

2.6. Controlling overtraining

Overtraining is what happens when a classifier learns too much about

the specific details of the training sample, while these features are

not representative of the underlying distributions. It may then be tar-

geting noise, or misrepresent regions with too little statistics to train

on. When applying such a classifier on the testing sample, its perfor-

mance will be worse than that of a classifier immune to this issue,
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because it does not generalize well. It should be noted that what

is often called overtraining here and in the following, in accordance

with high-energy physics usage, is usually referred to as overfitting in

the machine learning community. This is the so-called bias–variance

trade-off [12]: it is difficult to minimize both the bias (the differ-

ence between the prediction of the model and the correct value it

tries to predict) and variance (the variability of the model prediction

for a given event, when considering multiple realizations of this same

model). Increasing model complexity lowers the bias while increasing

variance.

A particular type of overtraining is very easy to avoid, by fol-

lowing good practices from Sec. 2.2: never use training events when

making the final measurement, which has to be performed on an

independent set of events, never seen during training. Otherwise, the

performance will be artificially enhanced on the “testing” sample and

comparisons with the application to data will be impossible (or worse

if not noticed).

Several techniques exist to mitigate overtraining, generically

referred to as regularization. They typically add a penalty for com-

plexity to the loss function that is minimized during training (the

function that maps each event to a real number quantifying the dif-

ference between the predicted and true classes or values). With classi-

fier f and loss function L, a regularization term R(f) is added to the

loss function, which becomes L(f) + λR(f), where λ is a parameter

controlling the importance of the regularization term. This will favor

simpler models (increasingly simpler with larger values of λ, with the

risk of underfitting with too much regularization), less susceptible to

overtraining. R(f) can take various forms, like L1 (L2) regulariza-

tion based on the sum of weights (sum of squared weights) used

to describe neural networks, or the number and depth of trees (see

Sec. 3.5.2). Sparsity (setting many weights to zero [13]) and dropout

(randomly dropping out nodes during training [14]) are more recent

very effective approaches for neural networks. Ensemble learning (see

Secs. 3.5.3 and 5) is another approach.

It is important to check whether the model suffers from overtrain-

ing. As shown in Fig. 3 this can be achieved by monitoring the error
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Fig. 3. Overtraining estimation using the error rate as a function of the number of
trees (for boosted decision trees) or epochs (for neural networks). Black curves are
measured on the training sample and red curves on the validation sample. The
optimal classifier corresponds to the “best” label. The hatched areas represent
overtraining: beneficial in blue (but underfitting), detrimental in orange (over-
fitting). (a) Typical curves, with the best model at the minimum of the testing
curve, and overfitting beyond with decrease of performance. (b) The best model
is overtrained but still improves performance. (c) Typical curves for boosted deci-
sion trees with flattening testing error rate: all models in the flat area perform
equally well despite increasing overtraining. (d) Interpolation regime: the best
classifier is obtained after the training error has reached zero.

rate (or the loss function) during training, as a function of the num-

ber of trees with boosted decision trees or training epoch with neural

networks, on the training and validation samples. Figure 3(a) is the

canonical example of such curves. The training error tends towards

zero, while the testing curve first follows the training curve, reaches

a minimum and increases again. The best classifier is the one at the
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minimum, training further will reduce performance and cause over-

fitting: the classifier has too much capacity (complexity) with respect

to the training sample. Selecting the model at the minimum means

early stopping [12].

In many cases though, the situation is similar to Fig. 3(b): the

training and testing curves follow each other but start diverging while

still both improving. The classifier is therefore already learning speci-

ficities of the training set, but still learning properties that general-

ize well and improve performance on the validation set. The testing

curve goes through a minimum, corresponding to the best model,

and increases again, this time showing detrimental overtraining as

the performance decreases on the validation set (overfitting regime).

This is the typical U-shaped curve arising from the bias–variance

trade-off.

The curves could also look like Fig. 3(c), where the testing curve

never goes through a minimum and instead flattens. Once in the

plateau, all classifiers are equivalent in terms of performance on the

validation set, while the training error keeps improving (and could

reach zero, this is the so-called interpolation regime [15]). This is a

typical curve for boosted decision trees.

Finally the situation could correspond to Fig. 3(d). At the interpo-

lation threshold the training error reaches zero, but continued train-

ing of high-capacity classifiers leads to a double descent curve: the

testing performance keeps increasing while the training error stays

at zero [16].

3. Decision Trees

Decision trees are a machine learning technique first developed in

the context of data mining and pattern recognition [6], which then

gained momentum in various fields, including medical diagnosis [17,

18], insurance and loan screening, or optical character recognition of

handwritten text [6].

It was developed and formalized by Breiman et al. [6] who pro-

posed the CART algorithm (Classification And Regression Trees)

with a complete and functional implementation of decision trees.
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The basic principle is rather simple: it consists in extending a

simple cut-based analysis into a multivariate technique by continu-

ing to analyze events that fail a particular criterion. Many, if not

most, events do not have all characteristics of either signal or back-

ground (for a two-class problem). The concept of a decision tree is

therefore to not reject right away events that fail a criterion, and

instead to check whether other criteria may help to classify these

events properly.

In principle, a decision tree can deal with multiple output classes,

each branch splitting in many subbranches. In this chapter, almost

only binary trees will be considered, with only two possible classes:

signal and background. The same concepts generalize to non-binary

trees, possibly with multiple outputs.

Section 3.1 describes the decision tree building algorithm, con-

trolled by hyperparameters presented in Sec. 3.2. The way to split

nodes is explained in Sec. 3.3, while Sec. 3.4 describes how deci-

sion trees can advantageously deal with input variables and how to

optimize their list. Finally Sec. 3.5 reports several shortcomings of

decision trees, with suggestions to address them.

3.1. Algorithm

Mathematically, decision trees are rooted binary trees (as only trees

with two classes, signal and background, are considered). An example

is shown in Fig. 4. A decision tree starts from an initial node, the

root node. Each node can be recursively split into two daughters

or branches, until some stopping condition is reached. The different

aspects of the process leading to a full tree, indifferently referred to as

growing, training, building or learning, are described in the following

sections.

Consider a sample of signal (si) and background (bj) events, each

with weights ws
i and wb

j , respectively, described by a set �xi of vari-

ables. This sample constitutes the root node of a new decision tree.

Starting from this root node, the algorithm proceeds as follows:

(1) If the node satisfies any stopping criterion, declare it as terminal

(that is, a leaf) and exit the algorithm.
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Fig. 4. Graphical representation of a decision tree. Blue rectangles are internal
nodes with their associated splitting criterion; leaves are terminal nodes with their
purity.

(2) Sort all events according to each variable in �x.

(3) For each variable, find the splitting value that gives the best

separation between two children, one with mostly signal events,

the other with mostly background events (see Sec. 3.3 for details).

If the separation cannot be improved by any splitting, turn the

node into a leaf and exit the algorithm.

(4) Select the variable and splitting value leading to the best sep-

aration and split the node in two new nodes (branches), one

containing events that fail the criterion and one with events that

satisfy it.

(5) Apply recursively from step 1 on each node.

This is a greedy algorithm, not guaranteed to find the optimal solu-

tion. At each node, all variables can be considered, even if they have

been used in a previous iteration: this allows to find intervals of inter-

est in a particular variable, instead of limiting oneself to using each

variable only once.
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It should be noted that a decision tree is human readable: exactly

which criteria an event satisfied in order to reach a particular leaf can

be traced. It is therefore possible to interpret a tree in terms of, e.g.,

physics, defining selection rules, rather than only as a mathematical

object.

In order to make the whole procedure clearer, let us take the tree

in Fig. 4 as an example. Consider that all events are described by

three variables: x, y and z. All signal and background events make

up the root node.

All events are first sorted according to each variable:

xs1 ≤ xb34 ≤ · · · ≤ xb2 ≤ xs12 ,
yb5 ≤ yb3 ≤ · · · ≤ ys67 ≤ ys43 ,
zb6 ≤ zs8 ≤ · · · ≤ zs12 ≤ zb9 ,

where superscript si (bj) represents signal (background) event i (j).

Using some measure of separation between classes (see below) the

best splitting for each variable may be (arbitrary unit):

x < 1.53 separation = 5,

y < 0.01 separation = 3,

z < 25 separation = 0.7.

The best split is x < 1.53, and two new nodes are created, the left

one with events failing this criterion and the right one with events

satisfying it. The same algorithm is applied recursively to each of

these new nodes. As an example, consider the right-hand-side node

with events that satisfied x < 1.53. After sorting again all events in

this node according to each of the three variables, it was found that

the best criterion was x < 1.8, and events were split accordingly into

two new nodes. This time the right-hand-side node satisfied one of

the stopping conditions and was turned into a leaf. From signal and

background training events in this leaf, the purity was computed as

p = 0.91. The left-hand-side node keeps splitting further.
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The decision tree output for a particular event i is defined by how

its �xi variables behave in the tree:

(1) Starting from the root node, apply the first criterion on �xi.

(2) Move to the passing or failing branch depending on the result of

the test.

(3) Apply the test associated to this node and move left or right in

the tree depending on the result of the test.

(4) Repeat step (3) until the event ends up in a leaf.

(5) The decision tree output for event i is the value associated with

this leaf.

There are several conventions used for the value attached to a

leaf. It can be the purity p = s
s+b where s (b) is the sum of weights of

signal (background) events that ended up in this leaf during training.

It is then bound to [0, 1], close to 1 for signal and close to 0 for

background.

It can also be a binary answer, signal or background (mathemat-

ically typically +1 for signal and 0 or −1 for background) depending

on whether the purity is above or below a specified critical value (e.g.

+1 if p > 1
2 and −1 otherwise).

Looking again at the tree in Fig. 4, the leaf with purity p = 0.91

would give an output of 0.91, or +1 as signal if choosing a binary

answer with a critical purity of 0.5.

3.2. Tree hyperparameters

The number of hyperparameters of a decision tree is relatively lim-

ited. The first one is not specific to decision trees and applies to

most techniques requiring training: how to normalize signal and back-

ground with respect to each other before starting the training? Con-

ventionally the sums of weights of signal and background events are

chosen to be equal (balanced classes), giving the root node a purity of

0.5, that is, an equal mix of signal and background. Decision trees are

not particularly sensitive to this original normalization as in practice,

a few early splits will produce nodes with more balanced categories,
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therefore only leading to a limited inefficiency in the training process

which only impacts marginally the final discriminating power.

Other hyperparameters concern the selection of splits. A list of

discriminating variables is needed, and a way to evaluate the best

separation between signal and background events (the goodness of

the split). Both aspects are described in more detail in Sec. 3.3 and

Sec. 3.4.

The splitting has to stop at some point, declaring such nodes as

terminal leaves. Conditions to satisfy can include:

• a minimum leaf size. A simple way is to require at least Nmin train-

ing events in each node after splitting, to ensure the statistical sig-

nificance of the purity measurement, with a statistical uncertainty√
Nmin. It becomes a little bit more complicated with weighted

events, as is normally the case in high-energy physics applications.

Using the effective number of events instead may be considered:

Neff =

(∑N
i=1 wi

)2∑N
i=1 w

2
i

,

for a node with N events associated to weights wi (Neff = N for

unweighted events).

• having reached perfect separation (all events in the node belong

to the same class).

• an insufficient improvement with further splitting.

• a maximum tree depth, if the tree cannot have more than a certain

number of layers (for purely computational reasons or to have like-

size trees).

Finally a terminal leaf has to be assigned to a class. This is clas-

sically done by labeling the leaf as signal if p > 0.5 and background

otherwise.

3.3. Splitting a node

The core of a decision tree algorithm resides in how a node is split into

two. Consider an impurity measure i(t) for node t, which describes
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to what extent the node is a mix of signal and background. Desirable

features of such a function are that it should be:

• maximal for an equal mix of signal and background (no separa-

tion).

• minimal for nodes with either only signal or only background

events (perfect separation).

• symmetric in signal and background purities, as isolating back-

ground is as valuable as isolating signal.

• strictly concave in order to reward purer nodes. This tends to favor

asymmetric end cuts with one smaller node and one larger node.

A figure of merit can be constructed with this impurity function,

as the decrease of impurity for a split S of node t into two children

tP (pass) and tF (fail):

Δi(S, t) = i(t)− pP · i(tP )− pF · i(tF ),

where pP (pF ) is the fraction of events that passed (failed) split S.

The goal is to find the split S∗ that maximizes the decrease of

impurity:

Δi(S∗, t) = max
S∈{splits}

Δi(S, t).

It will result in the smallest residual impurity, which minimizes the

overall tree impurity.

A stopping condition can be defined using the decrease of impu-

rity, not splitting a node if Δi(S∗, t) is less than some predefined

value. Such early-stopping criterion requires care, as sometimes a

seemingly very weak split may allow child nodes to be powerfully

split further (see Sec. 3.5.2 about pruning).

Common impurity functions (exhibiting most of the desired fea-

tures mentioned previously) are illustrated in Fig. 5:

• the misclassification error: 1−max(p, 1− p),
• the (cross) entropy [6]: −∑i=s,b pi log pi, with pb = 1 − ps and

ps = p,

• the Gini index of diversity [19].
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Fig. 5. Impurity measures as a function of signal purity.

The Gini index is the most popular in decision tree implementations.

It typically leads to similar performance to entropy.

Other measures are also used sometimes, which do not satisfy

all criteria listed previously but attempt at optimizing signal signif-

icance, a typical final goal in high-energy physics applications (see

Sec. 2.5.2):

• cross-section significance (optimizing s√
s+b

): − s2

s+b ,

• excess significance (optimizing s√
b
): − s2

b .

3.4. Variable selection

Overall decision trees are very resilient to most factors affecting

variables. They are not too much affected by the “curse of dimen-

sionality”, which forbids the use of too many variables in most multi-

variate techniques. For decision trees the CPU consumption scales as

nN logN with n variables and N training events. It is not uncommon

to encounter decision trees using tens [4] or hundreds [2] of variables,

although this is usually frowned upon in high-energy physics: more

variables means more distributions and correlations to check, more



December 14, 2021 16:13 Artificial Intelligence for High Energy Physics 9in x 6in b4322-ch02 page 28

28 Y. Coadou

complex interplay with systematic uncertainties, more dependence

on the Monte Carlo event properties that are usually used during

training and may not match real data so well, so physicists tend to

reduce the list of discriminating variables to typically 10–15. On the

other hand adding variables tends to always improve the performance

of decision trees (see Sec. 4.8.1 for an example).

3.4.1. Manipulating variables

With most machine learning algorithms, a careful preparation of

inputs is necessary to achieve good performance. Although not detri-

mental to decision trees, such manipulations are not really compul-

sory as decision trees tend to be very stable under such transforms.

A decision tree is immune to duplicate variables: the sorting of

events according to each of them would be identical, leading to the

exact same tree. The order in which variables are presented is com-

pletely irrelevant: all variables are treated equal. The order of events

in the training samples is also irrelevant.

If variables are not very discriminating, they will simply be

ignored and will not add any noise to the decision tree. The final

performance will not be affected, it will only come with some CPU

overhead during both training and evaluation.

Decision trees can deal easily with both continuous and discrete

variables, simultaneously.

Another typical task before training a multivariate technique is

to transform input variables by for instance making them fit in the

same range (normalization), having unit variance (standardization)

or taking the logarithm to regularize the variable. This is totally

unnecessary with decision trees, which are completely insensitive to

the replacement of any subset of input variables by (possibly differ-

ent) arbitrary strictly monotone functions of them (e.g. converting

MeV to GeV), as the same ordering of events would induce the same

splits on the dataset, producing the same decision tree. This means

that decision trees have some immunity against outliers. The above

is strictly true only if testing all possible cut values while evaluat-

ing the optimal split. If there is some computational optimization

(e.g., check only 20 possible cuts on each variable), it may not work
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anymore and some transformation of inputs may be beneficial, at the

very least to speed up convergence (numerical precision could also

be a factor).

If linear correlations exist between variables, first decorrelating

the input variables and then feeding them to the decision tree may

help. If not doing this decorrelation, a decision tree will anyway find

the correlations but in a very suboptimal way, by successive approx-

imations, adding complexity to the tree structure without perfor-

mance gain.

3.4.2. Mean decrease impurity

It is possible to rank variables in a decision tree, adding up the

decrease of impurity (see Sec. 3.3) for each node where the vari-

able was used to split, hence computing the mean decrease impurity

(MDI). The variable with the largest decrease of impurity is the best

variable. A shortcoming of this approach is that it is computed on

the training set only, and may be exaggerating the importance of

some variables because of overfitting.

There is another shortcoming with variable ranking in a decision

tree: variable masking. Variable xj may be just a little worse than

variable xi and would end up never being picked in the decision tree

growing process. Variable xj would then be ranked as irrelevant. But

if xi were removed, then xj would become very relevant. Note that

this is not important in terms of pure performance of the tree: it did

find the optimal way to use both variables in this particular training.

If trying to learn something from the tree structure on the other hand,

like deriving selection rules, this phenomenon will interfere with the

potential understanding.

There is a solution to this feature, called surrogate splits [6]. For

each split, a comparison is made between training events that pass

or fail the optimal split and events that pass or fail a split on another

variable. The split that mimics best the optimal split is called the

surrogate split. This can be taken into consideration when ranking

variables. It has applications in case of missing data: the optimal

split can be replaced by the surrogate split.
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All in all, variable rankings should never be taken at face value.

They do provide valuable information but should not be over-

interpreted.

3.4.3. Permutation importance

The shortcomings of MDI discussed above are partially addressed

with a different technique called permutation importance or mean

decrease accuracy (MDA). While MDI mostly works for decision

trees, permutation importance is suited for all models using tabu-

lar data. It is defined as the decrease of performance of an already

trained model when applying it on a sample after randomly shuf-

fling a single discriminating variable [20]. If the variable is of any

use, the performance should decrease when submitted to this noisy

input, and more so if the tree relies heavily on this feature for its

prediction. Repeating this for all input variables, the importance of

each of them can be ranked. The operation can be done multiple

times, shuffling each variable differently, in order to get a mean value

and uncertainty on variable importance. As with MDI, the measured

importance is not telling anything about the intrinsic merit of a sin-

gle variable (in terms of physics meaning for instance), but is rather

a measure of its importance for this particular training.

Another advantage of this approach is that it can be applied on

the validation set as well. Variables that are important on the training

set but not on the validation set may be a source of overfitting.

As with MDI however, correlations may hide the intrinsic per-

formance of a variable. If two variables are correlated and only one

is shuffled, the proper information is still accessible, giving a lower

importance to both. Once again, interpreting variable rankings must

be done with care.

3.4.4. Choosing variables

It may sound obvious that only well discriminating variables should

be used as input features to the decision tree training. It is neverthe-

less not trivial to achieve: variables are often correlated, they come

in large numbers, and can be more or less discriminating in vari-

ous regions of the input-feature phase space. The decision tree will
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isolate subregions, whose properties are not readily available when

measuring any kind of discrimination in the full training set.

Brute force is a possibility: with a limited number of N features,

train all possible combinations of N , N − 1, etc., variables, and pick

the best one according to some metric (see Sec. 2.5). In reality this

becomes quickly impractical.

Instead, a commonly used approach in high-energy physics is

backward elimination [21], which starts from the full list of N vari-

ables used to train a tree (TN ). Then train all decision trees with

N − 1 variables and keep the best performing one on the validation

set (TN−1). Starting from these N − 1 variables, train all decision

trees with N − 2 variables to build TN−2, and so on. Usually the

performance of tree Tk will decrease with k, and it is up to the ana-

lyzer to decide how much performance to lose compared to getting

a simpler (possibly more robust) tree. This is the usual trade-off of

cost and complexity.

The selection can also be done in reverse, starting from k = 1

variable, training all trees with k+1 variables, keeping the best one

on the validation set and moving to k + 2 variables, until k = N

(forward greedy selection [21]). The advantage is that one can stop

adding variables once the performance curve seems to saturate. It is

on the other hand not equivalent to backward elimination, as it may

miss powerful variable combinations.

It can be tempting to train a tree with many variables and then

remove the lowest ranked. Although quicker, it will most certainly

be suboptimal because of the shortcomings of such rankings, as

described in Secs. 3.4.2 and 3.4.3. The ranking is only relevant to the

corresponding tree, and as soon as one of the variables is removed

the others may be reshuffled.

3.5. Limitations

Despite all the nice features presented above, decision trees are known

to be relatively unstable. If trees are too optimized for the training

sample, they may not generalize very well to unknown events, as they

would depend on the training sample (see Sec. 3.5.1). This can be

mitigated with pruning, described in Sec. 3.5.2. Combining several
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classifiers can also improve the overall performance, as shown in

Sec. 3.5.3.

3.5.1. Training sample composition

A small change in the training sample can lead to drastically different

tree structures (high variance), rendering the physics interpretation

a bit less straightforward. As such, a decision tree is not stable, where

stability means that a slight change of the inputs does not change

much the output [21]. For sufficiently large training samples, the

performance of these different trees will be equivalent, but on small

training samples variations can be very large. This does not give too

much confidence in the result.

Moreover a decision tree output is by nature discrete, limited by

the purities of all leaves in the tree. To decrease the discontinuities the

tree size and complexity has to increase, which may not be desirable

or even possible. Then the tendency is to have spikes in the output

distribution at specific purity values, or even two delta functions at

±1 if using a binary answer rather than the purity output.

3.5.2. Pruning a tree

When growing a tree, each node contains fewer and fewer events,

leading to an increase of the statistical uncertainty on each new

split. The tree will tend to become more and more specialized, focus-

ing on properties of the training sample that may not reflect the

expected result, had there been infinite statistics to train on. Its

variance increases.

A first approach to mitigate this effect and keep the variance

under control, sometimes referred to as pre-pruning, has already been

described in Sec. 3, using stopping conditions. The limitation is that

requiring too big a minimum leaf size or too much of an improvement

may prevent further splitting that could be very beneficial later on.

Another approach consists in building a very large tree and then

cutting irrelevant branches (which target too closely the training

sample and would not generalize well) by turning an internal node
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and all its descendants into a leaf, removing the corresponding sub-

tree. This is post-pruning, or simply pruning.

There are many different pruning algorithms available. Expected

error pruning [22] starts from a fully grown tree and compares the

expected error of a node to the weighted sum of expected errors from

its children. If the expected error of the node is less than that of the

children, then the node is pruned. This does not require a separate

pruning sample. With reduced error pruning [22] the misclassifica-

tion rate on a pruning sample for the full tree is compared to the

misclassification rate when a node is turned into a leaf. If the sim-

plified tree has better performance, the subtree is pruned. Finally,

cost–complexity pruning is part of the CART algorithm [6] and the

most used. Starting from a fully grown tree, the cost–complexity

is computed as the sum of misclassification rate and a term pro-

portional to the number of nodes in the tree (the complexity part,

penalizing larger trees). A sequence of decreasing cost–complexity

subtrees is generated, and their misclassification rate on the pruning

sample is computed. It will first decrease, and then go through a

minimum before increasing again. The optimally pruned tree is the

one corresponding to the minimum.

It should be noted that the best pruned tree may not be optimal

or necessary when part of a forest of trees, such as those introduced

in the following sections.

3.5.3. Ensemble learning

Pruning is helpful in maximizing the generalization potential of a

single decision tree. It nevertheless does not address other shortcom-

ings of trees like the discrete output or lack of stability. A way out

is to proceed with averaging several trees, with the added potential

bonus that the discriminating power may increase. Such approaches

belong to the general theoretical framework of ensemble learning [23].

Many averaging techniques have been developed. Bagging, boosting

and random forests are such techniques and will be described in the

following sections.
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Fig. 6. (a) Description of 2D space combining three discriminants. (b) Three
separate decision trees and their combination [24].

The power of ensemble learning resides in the much richer descrip-

tion of the input patterns when using several classifiers simultane-

ously. It is applicable to other machine learning techniques than

decision trees. As shown in the example of Fig. 6(a) in a simple

2D case, a classifier may split the space in two (partitions 1/2/3),

but three classifiers each doing this can possibly give more complete

information about seven regions, each region being represented by

three numbers (C1/C2/C3). When all three classifiers give the same

answer, the confidence increases. Using decision trees as in Fig. 6(b),

three simple decision trees give a crude separation of classes 1 and 2,

while averaging them produces a decision contour that is much closer

to the actual class separation.

4. Boosted Decision Trees

As will be shown in this section, the boosting algorithm has turned

into a very successful way of improving the performance of any type

of classifier, not only decision trees. After a short history of boosting

in Sec. 4.1, the generic algorithm is presented in Sec. 4.2 and specific

implementations (AdaBoost and gradient boosting) are described

in Secs. 4.3 and 4.4. Boosting is illustrated with a few examples

in Sec. 4.5. Other boosting implementations are shown in Sec. 4.6.

The use of boosting for regression rather than classification is pre-

sented in Sec. 4.7. Finally the application of boosted decision trees in
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high-energy physics, where it is so far the machine learning algorithm

of choice, is illustrated in Sec. 4.8.

4.1. Introduction

The first provable algorithm of boosting was proposed in 1990 [25].

It worked in the following way:

• train a classifier T1 on a sample of N events;

• train T2 on a new sample with N events, half of which were mis-

classified by T1;

• build T3 on events where T1 and T2 disagree.

The boosted classifier was defined as a majority vote on the outputs

of T1, T2 and T3.

Following up on this idea boosting by majority [26] was introduced

in 1995. It consisted in combining many learners with a fixed error

rate. This was an impractical prerequisite for a viable automated

algorithm, but was a stepping stone to the first functional boosting

algorithm, called AdaBoost [27].

Boosting, and in particular boosted decision trees, have become

increasingly popular in high-energy physics and are extensively used

in physics analyses and object identification at the Tevatron and the

LHC (see Sec. 4.8 for a few examples).

4.2. Boosting algorithm

It is hard to make a very good discriminant, but relatively easy to

make simple ones which are certainly more error-prone (high bias)

but are still performing at least marginally better than random guess-

ing. Such discriminants are called weak classifiers. The goal of boost-

ing is to combine such weak classifiers into a new, more stable one,

with a smaller error rate (with lower bias than the individual classi-

fiers) and better performance.

Consider a training sample Tk containing Nk events. The ith event

is associated with a weight wk
i , a vector of discriminating variables

�xi and a class label yi = +1 for signal, −1 for background. The

pseudocode for a generic boosting algorithm is:
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Initialize T1

for k in 1..Ntree

train classifier Tk on Tk

assign weight αk to Tk
modify Tk into Tk+1

The boosted output is some function F (T1, . . . , TNtree), typically

a weighted average:

F (i) =
Ntree∑
k=1

αkTk(�xi).

Thanks to this averaging, the output becomes quasi-continuous,

mitigating one of the limitations of single decision trees (see

Sec. 3.5.1).

Note that in this process, once a particular tree is trained it is

never modified, but just added to the mix. This is a different approach

from, e.g., neural networks, in which the same weights are repeatedly

updated over epochs to converge towards the final classifier.

4.3. AdaBoost

One particularly successful implementation of the boosting algorithm

is AdaBoost [27]. AdaBoost stands for adaptive boosting, referring to

the fact that the learning procedure adjusts itself to the training data

in order to classify it better. There are many variations for the actual

implementation, and it is the most common boosting algorithm. It

typically leads to better results than without boosting, up to the

Bayes limit as will be seen later.

An actual implementation of the AdaBoost algorithm works as

follows. After having built tree Tk, events in the training sample

Tk that are misclassified by Tk should be checked, hence defining

the misclassification rate R(Tk). In order to ease the math, let us

introduce some notations. Define I : X → I(X) such that I(X) = 1 if

statement X is true, and 0 otherwise. A function can now be defined

that tells whether an event is misclassified by Tk. In the decision tree
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output convention of returning only {±1} it gives:
isMisclassifiedk(i) = I

(
yi × Tk(i) ≤ 0

)
,

while in the purity output convention (with a critical purity of 0.5)

it leads to:

isMisclassifiedk(i) = I
(
yi × (Tk(i)− 0.5) ≤ 0

)
.

The misclassification rate is now:

R(Tk) = εk =

∑Nk
i=1 w

k
i × isMisclassifiedk(i)∑Nk

i=1w
k
i

.

This misclassification rate can be used to derive a weight associated

to tree Tk:

αk = β × ln
1− εk
εk

,

where β is a free parameter to adjust the strength of boosting (set to

one in the original algorithm). Similarly to the naming convention of

other machine learning algorithms, it can be seen as a learning rate

or shrinkage coefficient and drives how aggressive boosting should be.

The core of the AdaBoost algorithm resides in the following step:

each event in Tk has its weight changed in order to create a new

sample Tk+1 such that:

wk
i → wk+1

i = wk
i × eαk ·isMisclassifiedk(i).

This means that properly classified events are unchanged from

Tk to Tk+1, while misclassified events see their weight increased by

a factor eαk . The next tree Tk+1 is then trained on the Tk+1 sample.

This next tree will therefore see a different sample composition with

more weight on previously misclassified events, and will therefore

try harder to classify properly difficult events that tree Tk failed

to identify correctly, while leaving alone those events that previous

iterations can handle properly. The final AdaBoost result for event

i is

T (i) =
1∑Ntree

k=1 αk

Ntree∑
k=1

αkTk(i).
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As an example, assume for simplicity the case β = 1. A not-so-

good classifier, with a misclassification rate ε = 40% would have

a corresponding α = ln 1−0.4
0.4 = 0.4. All misclassified events would

therefore get their weight multiplied by e0.4 = 1.5, and the next

tree will have to work a bit harder on these events. Now consider a

good classifier with an error rate ε = 5% and α = ln 1−0.05
0.05 = 2.9.

Misclassified events get a boost of e2.9 = 19 and will contribute

decisively to the structure of the next tree! This shows that being

failed by a good classifier brings a big penalty.

It can be shown [28] that the misclassification rate ε of the boosted

result on the training sample is bounded from above:

ε ≤
Ntree∏
k=1

2
√
εk(1− εk).

If each tree has εk �= 0.5, that is to say, if it does better than random

guessing, then the conclusion is quite remarkable: the error rate falls

to zero for a sufficiently large Ntree. A corollary is that the training

data is overfit.

Overtraining is usually regarded as a negative feature. Does this

mean that boosted decision trees are doomed because they are too

powerful on the training sample? Not really. As shown in Sec. 2.6

what matters most is not the error rate on the training sample, but

rather the error rate on the testing sample. In the case of Fig. 3(a)

or Fig. 3(b) boosting should stop when the minimum is reached

(early stopping). It has however been routinely observed [29–31] that

boosted decision trees often do not go through such a minimum, but

rather tend towards a plateau in testing error (see Fig. 3(c)). Boost-

ing could be stopped after having reached this plateau.

In a typical high-energy physics problem, the error rate may not

even be what should be optimized. A good figure of merit on the

testing sample would rather be the significance. Figure 7(a) illus-

trates this behavior, showing how the significance saturates with an

increasing number of boosting cycles. Arguably one could stop before

the end and save resources, but at least the performance does not

deteriorate with increasing boosting.
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Fig. 7. Behavior of boosting. (a) Significance as a function of the number of
boosted trees. (b) Signal efficiency vs. background efficiency for single and boosted
decision trees, on the training and testing samples. (c) Misclassification rate of
each tree as a function of the number of boosted trees. (d) Weight of each tree as
a function of the number of boosted trees.

Another typical curve to optimize is the signal efficiency vs. the

background efficiency (the ROC curve, see Sec. 2.5.1). Figure 7(b)

clearly exemplifies this interesting property of boosted decision trees.

The performance is clearly better on the training sample than on the

testing sample (the training curves are getting very close to the upper

left corner of perfect separation), with a single tree or with boosting,

a clear sign of overtraining. But the boosted tree is still performing

better than the single tree on the testing sample, proof that it does

learn something more than memorizing the training sample.

No clear explanation has emerged as to why boosting leads to

such features, with typically no loss of generalization performance
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due to overtraining, but some ideas have come up. It may have to

do with the fact that during the boosting sequence, the first tree is

the best while the others are successive minor corrections, which are

given smaller weights. This is shown in Figs. 7(c) and 7(d), where the

misclassification rate of each new tree separately is actually increas-

ing, while the corresponding tree weight is decreasing. This is not

surprising: during boosting the successive trees are specializing on

specific event categories, and can therefore not perform as well on

other events. So the trees that lead to a perfect fit of the training

data are contributing very little to the final boosted decision tree

output on the testing sample. When boosting decision trees, the last

tree is not an evolution of the first one that performs better, quite

the contrary. The first tree is typically the best, while others bring

dedicated help for misclassified events. The power of boosting does

not rely in the last tree in the sequence, but rather in combining a

suite of trees that focus on different events.

A probabilistic interpretation of AdaBoost was proposed [31]

which gives some insight into the performance of boosted decision

trees. It can be shown that for a boosted output T flexible enough:

eT (i) =
p(S|i)
p(B|i) .

This means that the AdaBoost algorithm will tend towards the Bayes

classifier, the maximum reachable separation.

Finally, AdaBoost performance and its tendency to generalize well

despite matching very closely the training data (to the extent that

in many documented cases, to keep boosting even after the training

error has reached zero still improves the performance on the testing

sample [29], in the interpolation regime [15]) have been qualitatively

understood with the margins explanation [29, 32]. A classifier can

be more sure of some predictions than of others (recall Fig. 6(a)),

and could then generalize better. By boosting, AdaBoost tends to

increase the margins on the training set, even after reaching zero

training error. For each event, the margin accounts for the sepa-

rability between classes, measured by the proportion of trees that

misclassify each event. For event x with truth label y, the margin
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y × T (x) for boosted decision tree T is

y × T (x) = y∑Ntree
k=1 αk

Ntree∑
k=1

αkTk(x)

=
1∑Ntree

k=1 αk

⎛
⎝ ∑

k:y=Tk(x)

αk −
∑

k:y �=Tk(x)

αk

⎞
⎠,

that is, the difference between the weights of single trees that classify

x correctly and the weights of trees that misclassify x. Boosting more

means adding small corrections that tend to increase the margin

for each event. This increases the confidence in the prediction, more

likely to be correct. It makes a link with support vector machines [33],

although this did not bring great insights to improve AdaBoost in

the end.

This shortcoming suggests that there may be other explanations,

as discussed in [15], focusing on the interpolation regime when the

training error has already reached zero but boosting further still leads

to testing error improvement (better generalization). The combina-

tion of large trees focusing on extremely local neighborhoods of the

training dataset and averaging over a large number of trees seems to

prevent overfitting efficiently. This has been interpreted in the more

general framework of double descent risk curve [16]. With boosting,

the interpolating regime behavior (see Fig. 3(d)) may kick in even

before the interpolating threshold, possibly explaining why typical

boosted decision tree training curves look like Fig. 3(c).

4.4. Gradient boosting

While trying to understand how AdaBoost and other boosting algo-

rithms work, they were originally recast in the statistical framework

of arcing algorithms (an acronym for adaptive reweighting and com-

bining) [34, 35]. At each step, a weighted minimization is performed

followed by a recomputation of the classifier and weighted input. This

was further developed to become gradient boosting [30]. Boosting is

formulated as a numerical optimization problem, trying to minimize
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the loss function by adding trees using a gradient descent procedure

rather than giving a higher weight to misclassified events.

Formally, consider a model F built iteratively, its imperfect

instance at step k being Fk. Fk is therefore an approximation of

the best possible model (in some cases Fk(x) �= y), which is to be

improved at the next iteration. This is achieved by adding a new

component hk such that:

Fk+1(x) = Fk(x) + hk(x) = y,

or equivalently:

hk(x) = y − Fk(x).

Rather than training Fk+1 a new classifier can be trained to fit the

residual y − Fk(x), which corresponds to the part that the current

model Fk cannot treat correctly. If Fk+1(x) is still not satisfactory,

new iterations can be fitted.

The link with gradient descent is explicit when considering the

particular case of the mean squared error (MSE) loss function (a

typical case for regression problems, see Sec. 4.7):

LMSE(x, y) =
1

2
(y − Fk(x))

2 .

Minimizing the loss J =
∑

i LMSE(xi, yi) by adjusting all Fk(xi)

leads to:

∂J

∂Fk(xi)
=
∂LMSE(xi, yi)

∂Fk(xi)
= Fk(xi)− yi.

Residuals can therefore be interpreted as negative gradients:

hk(xi) = yi − Fk(xi) = − ∂J

∂Fk(xi)
.

The concept can be generalized to any differentiable loss function

instead of MSE. For instance AdaBoost corresponds to an exponen-

tial loss e−Fk(x)y.

There are several variants of gradient boosting algorithms on the

market. Techniques presented in Sec. 5 with subsampling of the train-

ing set and tree parameters can be used (in particular a bagging-like
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approach without replacement), leading to stochastic gradient boost-

ing [36]. These regularization techniques help prevent overfitting.

4.5. Boosting examples

The examples of this section illustrate typical behaviors of boosted

decision trees.

4.5.1. The XOR problem

The XOR problem is a small version of the checkerboard, illustrated

in Fig. 8. With enough statistics (Figs. 8(a) and 8(c)), even a single
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Fig. 8. The XOR problem. Signal is in blue, background in red. The left column
(a and c) uses sufficient statistics, while the right column has a limited number
of training events. The top plots (a and b) show the signal and background
distributions as well as the criteria used by the first decision tree. Bottom plots
(c, d) illustrate the background rejection vs. signal efficiency curves for the first
decision tree (red) and for the boosted decision trees (black), all run on the same
testing events.
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tree is already able to find more or less the optimal separation, so

boosting cannot actually do much better.

The exercise can be repeated, this time with limited statistics

(Figs. 8(b) and 8(d)). Now a single tree is not doing such a good

job anymore. Boosted decision trees, on the other hand, are doing

almost as well as with full statistics, separating almost perfectly sig-

nal and background. This illustrates very clearly how the combina-

tion of weak classifiers (see for instance the lousy performance of

the first tree) can generate a high-performance discriminant with a

boosting algorithm.

4.5.2. Number of trees and overtraining

This example uses a highly correlated dataset, shown in Fig. 9(a).

Figure 9(b) compares the performance of a single decision tree

and boosted decision trees with an increasing number of trees (from

5 to 400). All other parameters are kept to their default value in

the TMVA package [37]. The performance of the single tree is not so

good, as expected since the default parameters make it very small,

with a depth of 3 (it should be noted that a single bigger tree could

solve this problem easily). Increasing the number of trees improves
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Fig. 9. (a) 2D dataset and decision contour corresponding to several discrimi-
nants. (b) Background rejection vs. signal efficiency curves for a single decision
tree (dark green) and boosted decision trees with an increasing number of trees
(5–400).
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the performance until it saturates in the high-background rejection

and high-signal efficiency corner. Adding more trees does not seem

to degrade the performance, the curve stays in the optimal corner.

Looking at the contours in Fig. 9(a) it wiggles a little for larger

boosted decision trees, as they tend to pick up features of the training

sample. This is overtraining.

Another sign of overtraining also appears in Fig. 10, showing the

output of the various boosted decision trees for signal and back-

ground, both on the training and testing samples: larger boosted

decision trees tend to show differences between the two samples

(as quantified by a Kolmogorov–Smirnov (KS) test in the figures,

especially Fig. 10(f)), as they adjust to peculiarities of the training

sample that are not found in an independent testing sample. The

output acquires a “better” shape with more trees, really becoming

quasi-continuous, which would allow to cut at a precise efficiency or

rejection.
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Fig. 10. Comparison of the output on training (markers) and testing (his-
tograms) signal (blue) and background (red) samples for boosted decision trees
with 1, 5, 10, 50, 100 and 400 trees (from top left to bottom right). The
Kolmogorov–Smirnov test quantifies the (dis)agreement between training and
testing outputs.
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Fig. 11. (a) Maximum significance of all boosted decision trees. (b) Boost weight
of each tree. (c) Error fraction of each tree (0.5 means random guessing).

Both figures do exhibit clear signs of overtraining, but is it really

an issue? As mentioned before (see Sec. 2.6) what really matters

in the end is the performance in data analysis and on the testing

sample. One way to evaluate this is to compute the maximum signif-

icance s/
√
s+ b (see Sec. 2.5.2). It is shown in Fig. 11(a) for the same

boosted decision trees as shown in Fig. 10, with increasing number

of trees. The best significance is actually obtained with the 400-tree

boosted decision tree, following what was described at the end of

Sec. 4.3. To be fair, the performance is very similar already with

10 trees. Now, comparing the outputs in Fig. 10, if interested in a

smoother result, 10 trees might not be enough, but 50 would proba-

bly do, without the overhead of eight times more trees. Such a choice

should in any case not be made based on overtraining statements

comparing performance on the training and testing samples (as some

are tempted to do, seeing an increasing disagreement, quantified by

the KS test, between outputs on the training and testing samples),

but rather on final expected physics performance (the final number

of the analysis, for instance the significance from the complete statis-

tical analysis, possibly including systematic uncertainties). Boosted

decision trees are often in the situation described in Fig. 3(c), mean-

ing that their performance is not decreasing when boosting longer,

even as the discrepancy in performance between train and test keeps

increasing.

This example also illustrates the performance of each tree in a

boosting sequence. Figure 11(b) shows the rapid decrease of the
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weight αk of each tree, while at the same time the corresponding mis-

classification rate εk of each individual tree increases rapidly towards

just below 50%, that is, random guessing (Fig. 11(c)). It confirms

that the best trees are the first ones, while the others are only minor

corrections.

4.6. Other boosting algorithms

AdaBoost is but one of many boosting algorithms. It is also referred

to as discrete AdaBoost to distinguish it from other AdaBoost flavors.

The Real AdaBoost algorithm [31] defines each decision tree output

as follows:

Tk(i) = 0.5× ln
pk(i)

1− pk(i) ,

where pk(i) is the purity of the leaf on which event i falls. Events are

reweighted as:

wk
i → wk+1

i = wk
i × e−yiTk(i)

and the boosted result is T (i) =
∑Ntree

k=1 Tk(i). Gentle AdaBoost and

LogitBoost (with a logistic function) [31] are other variations.

ε-Boost, also called shrinkage [30], consists in reweighting mis-

classified events by a fixed factor e2ε rather than the tree-dependent

αk factor of AdaBoost. ε-LogitBoost [31] is reweighting them with

a logistic function e−yiTk(i)

1+e−yiTk(i) . ε-HingeBoost [2] is only dealing with

misclassified events:

wk
i → wk+1

i = I(yi × Tk(i) ≤ 0).

Finally, the adaptive version of the “boost by majority” [26] algo-

rithm is called BrownBoost [38]. It works in the limit where each

boosting iteration makes an infinitesimally small contribution to the

total result, modeling this limit with the differential equations that

govern Brownian motion.

4.7. Boosted regression trees

From their very introduction [6], trees have been considered for clas-

sification (decision trees) and for regression (regression trees), where
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instead of identifying “signal-like” or “background-like” regions of

phase space, tree leaves each contain a single real value supposed to

approach the target function.

During tree building for regression, the maximization of the

decrease of impurity in decision trees is replaced by the reduction

of the standard deviation or of the mean squared error:

d(t) =
1

Nt

∑
Nt

(y − ŷt)2,

for a node t with Nt events, regression target y of each event in the

node and mean value ŷt of regression targets of all events in the node.

Another typical choice for d is the mean absolute error:

1

Nt

∑
Nt

|y −median(y)t| .

Constructing a regression tree is about finding the attribute that

return the highest reduction in d (i.e. the most homogeneous nodes)

when going from node t to nodes tP and tF (see Sec. 3.3 for nota-

tions):

Δd(S, t) = d(t)− pP · d(tP )− pF · d(tF ).

The splitting stops when nodes become too small or when their

internal variation is sufficiently small. The regression tree output is

the mean (or median if using the mean absolute error) value of the

training events in the corresponding (leaf) node. So a regression tree

partitions the feature space of input variables into hyperrectangles

and then fits a constant inside each box.

When boosting regression trees, there are no longer properly and

wrongly classified events, so the misclassification rate cannot be com-

puted to reweight events. Instead the average loss 〈Lk〉 after the kth
tree is computed over the training sample, and the boosting quantity

βk = 〈Lk〉/ (1− 〈Lk〉) is derived. The reweighting of events is then

computed based on their individual loss Lk(i):

wk
i → wk+1

i = wk
i × β1−Lk(i)

k .
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The training process is then similar to that of boosted decision

trees, and the final prediction of the fitted value is the weighted

average of all tree outputs.

4.8. Boosted decision trees in high-energy physics

Boosted decision trees have become very popular in high-energy

physics. A few usage examples are presented in Sec. 4.8.1. Their

proper usage also means addressing issues linked to systematic uncer-

tainties, as reported in Sec. 4.8.2.

4.8.1. Use cases

The MiniBooNe experiment at Fermilab, searching for neutrino oscil-

lations, was the first in the field to compare the performance of dif-

ferent boosting algorithms and artificial neural networks for analysis

and particle identification [1, 2], on Monte Carlo samples. Trees with

up to 120 variables were tested, with different boosting algorithms

and up to thousands of trees. These studies introduced boosted deci-

sion trees in the particle physics world.

The concept of boosted decision trees was picked up by the D0

experiment at Fermilab, leading to the first evidence (and then obser-

vation) of single top quark production in Tevatron data [3, 4]. Among

the 49 variables used, some had very similar definitions (like the

scalar sum of transverse momentum of various jets), which was ben-

eficial as not all of them suffer from the same mismeasurements on

an event-by-event basis. Boosted decision trees happened to perform

slightly better than two other techniques used: the matrix element

calculation and Bayesian neural networks. Without such advanced

techniques, the signal could not have been seen with the dataset

available at the time: the total uncertainty on the model predic-

tion was much larger than the expected signal, as illustrated in

Fig. 12(a). This also means that no single distribution (apart from

the boosted decision tree output shown in Fig. 12(b)) could really

show the new observed process, leading to scepticism in the commu-

nity (“I want to see a mass peak!” is a common argument, reflect-

ing on the fact that people are more confident in the result if they
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Fig. 12. Usage of boosted decision trees in physics analysis [4]. (a) A discriminat-
ing variable, with uncertainty larger than the expected signal (in blue). (b) The
boosted decision tree output with much smaller uncertainty. (c, d) Discriminating
variable when selecting only events with low (high) boosted decision tree output,
showing background (signal)-like shape.

can see the signal in a physical distribution). Various cross-checks

were performed to increase the degree of belief in the final outcome

(removing top-quark-mass-related variables during training, validat-

ing the description of the boosted decision tree output in regions

depleted in signal, analyzing the shape of other variables after select-

ing low- or high-boosted decision tree output events enriched in

background or signal events as shown in Fig. 12(c) and Fig. 12(d),

respectively, etc.).
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Since then, boosted decision trees have become a bread and butter

technique in high-energy physics and are extensively used in physics

analyses (to extract their tiny signal from large backgrounds or dis-

tinguish between different signals) and object identification at the

Tevatron or the LHC. In the ATLAS experiment τ -lepton identifica-

tion [39] and flavor tagging [7] used boosted decision trees in Run 2,

and the τ -lepton energy is estimated with boosted regression trees.

The LHCb trigger was reoptimized, comparing the performance of

several tree-based algorithms to neural networks [40], while their

muon identification performance for the Run 3 of the LHC will profit

from improvements thanks to gradient boosting [41].

The latest result has just been published at the time of writing,

reporting the first evidence for tt̄tt̄ production in ATLAS [8], shown

in Fig. 1(b). The one analysis using the most boosted decision trees

is probably the observation of the diphoton decay of the Higgs boson

by the CMS experiment [42]. The diphoton vertex is selected with a

boosted decision tree, while another one estimates, event-by-event,

the probability for the vertex assignment to be within 10 mm of the

diphoton interaction point. Photons are identified with a boosted

decision tree, and their energy is corrected with a boosted regression

tree that provides the energy and its associated uncertainty. Finally

several boosted decision trees are used to select the various signal

regions and extract signal from these different categories.

Beyond object identification and calibration, and final discrimi-

nant in physics analyses, boosted decision trees can also be used to

reduce the number of potential object combinations in order to find

the correct match between the observed objects in the detector and

their probable source of production. Such a “reconstruction BDT”

was used to look for the associated production of a Higgs boson and

a pair of top quarks, tt̄H(bb̄) [43].

Lately there is a tendency towards deep neural networks and their

many flavors to replace boosted decision trees in the various stages of

analysis [44, 45]. Boosted decision trees nevertheless remain a favorite

in high-energy physics, for their ease of use, high-performance out-

of-the-box, limited required tuning of hyperparameters and resilience

against overtraining.



December 14, 2021 16:13 Artificial Intelligence for High Energy Physics 9in x 6in b4322-ch02 page 52

52 Y. Coadou

4.8.2. Systematic uncertainties

There is an a priori, especially among physicists not very familiar

with machine learning techniques, to distrust their output because

they are not a measurable quantity with a physical meaning like an

invariant mass. They are indeed complex variables, but so are for

instance energy quantities for reconstructed particles in the detec-

tor. Uncertainties on such “basic” variables are typically evaluated

by varying the value of a requirement, changing the calibration of

objects that go into the variable, etc. The boosted decision tree out-

put (or of any such multivariate technique) is no different: its inputs

can be varied according to their know uncertainties (for instance

varying the jet energy scale will have a correlated impact on all dis-

criminating variables that depend on jets) and their effect propa-

gated through the boosted decision tree (the shifted inputs will lead

to a different boosted decision tree output), to see how much these

changes impact the analysis. This gives the size of the uncertainty

on the multivariate discriminant output.

That being said, the Peter Parker principle applies: “With great

power comes great responsibility”. Boosted decision trees are very

powerful, and will target small areas of phase space where potentially

not all known systematic uncertainties are strictly valid. Then extra

uncertainties may be needed, not so much on the technique itself but

rather due to the fact that it extracts information from less well-

known regions.

Usually boosted decision trees are trained on the nominal Monte

Carlo samples and are therefore completely oblivious to the effect of

systematic uncertainties. This could lead to bad results once they are

introduced, if the boosted decision trees are sensitive to them, and

when applied on real data. One way to possibly mitigate this effect

is with one form of data augmentation, training the boosted deci-

sion trees on a mixture of nominal and systematically shifted events,

hence increasing the training statistics and allowing the boosted deci-

sion trees to see other events than the nominal ones during training

to learn their features. The nominal performance should decrease,
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but with the hope that systematic uncertainties will have less of an

impact on the final measurement. Experience with this approach is

inconclusive. If the physics model is not properly describing the real

data, then the performance will also be affected. It can be partially

addressed with domain adaptation [5] (as described elsewhere in this

book).

5. Other Averaging Techniques

As mentioned in Sec. 3.5.3 the key to improving a single decision

tree performance and stability is averaging. Other techniques than

boosting exist, some of which are briefly described below. As with

boosting, statistical perturbations are introduced to randomize the

training sample, hence increasing the predictive power of the ensem-

ble of trees.

Bagging (Bootstrap AGGregatING) was proposed in [46]. It con-

sists in training trees on different bootstrap samples drawn ran-

domly with replacement from the training sample. Events that are

not picked for the bootstrap sample form an “out-of-bag” valida-

tion sample. The bagged output is the simple average of all such

trees, with a reduced variance compared to individual trees.

Random forests is bagging with an extra level of randomiza-

tion [20]. Before splitting a node, only a random subset of dis-

criminating variables is considered. The fraction can vary for each

split for yet another level of randomization.

Trimming is not exactly an averaging technique per se but can be

used in conjunction with another technique, in particular boosting,

to speed up the training process. After some boosting cycles, it is

possible that very few events with very high weight are making up

most of the total training sample weight. Events with very small

weights may be ignored, hence introducing again some minor sta-

tistical perturbations and speeding up the training. ε-HingeBoost

is such an algorithm (see Sec. 4.6).
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6. Software

Many implementations of decision trees exist on the market. Some

of them, all open source, are briefly presented below.

The most popular in high-energy physics is TMVA [37], inte-

grated into ROOT. It includes single decision trees, boosted trees

with AdaBoost and gradient boost, bagging and random forests.

Being part of ROOT it is very straightforward to use within usual

analysis frameworks, both in C++ and Python. It includes tools

for data preparation and makes it simple to compare performance

between many algorithms, not only tree-based ones. Already men-

tioned Refs. [7, 8, 39, 42, 43] are but a few examples of TMVA usage

in the field.

Another implementation has gained visibility in high-energy

physics: XGBoost [47]. It entered the field after receiving to special

HEP meets ML award during the Higgs boson machine learning chal-

lenge (HiggsML) hosted by Kaggle [11] (described in Chapter 20). It

features a high-performing, scalable gradient boosting implementa-

tion, capable of using GPU and large cluster parallelization. Instead

of the greedy algorithm described in Sec. 3.1, the authors devel-

oped an approximate algorithm that proposes candidate splitting

points according to percentiles of the input variables, and then

maps the variables into buckets according to these splits to find the

best solution. Many analyses at the LHC are now using it (see, for

instance, [48]).

Other implementations have lower usage in high-energy physics so

far while being used in other fields. LightGBM (light gradient boost-

ing machine [49]), originally developed by Microsoft, is competing

with XGBoost in speed, scalability and performance. It builds trees

in a very different way from what was presented in this chapter, with

a histogram-based decision tree learning algorithm. Scikit-learn [50]

is a very popular machine learning framework with several tree-

related implementations and utilities for data preparation. Finally

CatBoost [51] is a new gradient boosting implementation from Yan-

dex used in commercial services as well as in high-energy physics, for

instance in LHCb [41].
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7. Conclusion

This chapter introduced what decision trees are and how to construct

them, as a powerful multivariate extension of a cut-based analysis.

Advantages are numerous: their training is fast, they lead to human-

readable results (not black boxes) with possible interpretation by a

physicist, can deal easily with all sorts of variables and with many

of them, with in the end relatively few parameters.

Decision trees are, however, not perfect and suffer from the piece-

wise nature of their output and a high sensitivity to the content of

the training sample. These shortcoming are for a large part addressed

by averaging the results of several trees, each built after introducing

some statistical perturbation in the training sample. Among the most

popular such techniques, boosting (and its AdaBoost and gradient

boost incarnations) was described in detail, providing ideas as to why

it seems to be performing so well while being very resilient against

overtraining. Other averaging techniques were briefly presented.

Boosted decision trees have now become quite fashionable in high-

energy physics. Following the steps of MiniBooNe for analysis and

particle identification and D0 for the first evidence and observation

of single top quark production, other experiments and analyses are

now using them routinely, in particular at the LHC.

Boosted decision trees are still a very active field of development,

with academic groups and private companies testing their limits,

providing new software [47, 49, 51] and using them to target recent

issues like resistance to adversarial attacks (see e.g. [52, 53]).
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1. Introduction: Pre-Deep Learning State-of-the-Art

The goal of the statistical analysis of particle physics data is to infer

bounds on parameters of physical theories, such as the masses of par-

ticles or their rate of production in specific interactions. These statis-

tical tasks, which involve classification, hypothesis testing, regression,

and goodness-of-fit testing, require a statistical likelihood model

p(x|θ) which describes the probability of observing experimental data

x for specific values of the parameters θ of a physical theory.

59

https://doi.org/10.1142/9789811234026_0003


December 15, 2021 10:30 Artificial Intelligence for High Energy Physics 9in x 6in b4322-ch03 page 60

60 P. Baldi, P. Sadowski & D. Whiteson

Unfortunately, the statistical likelihood model can almost never

be expressed analytically, due to the complex nature of the relation-

ship between the theoretical parameters θ and the high-dimensional

(102–108) data x. Instead, statistical models are typically estimated

from samples generated using Monte Carlo methods [1, 2], whose

computational expense limits the dimensionality of the feature space

to O(100). In this context, it becomes vital to reduce the dimen-

sionality of the data, and many initial applications [3–5] of machine

learning to particle physics focused on development of classifiers,

which offered powerful ways to perform this dimensional reduction

and produce a single feature which summarizes much of the available

information relevant to the statistical question.

Early applications of machine learning in physics [6, 7] were

largely limited to shallow machine learning methods including

boosted decision trees and artificial neural networks with a single

hidden layer. This was primarily for historical reasons, including

broad unawareness of the power of deep neural networks, misguided

thinking and publications about local minima or vanishing gradients,

as well as concerns over the problem of interpreting their output.

In addition, it was well known that neural networks with a single

hidden layer have universal approximation properties [8], although

highly nonlinear functions may require an intractable number of hid-

den nodes. The combination of these circumstances led physicists to

focus on shallow rather than deep machine learning methods, and

shallow classifiers rapidly proliferated in physics (see [6] for an early

application of neural networks). The approach successfully boosted

the performance of many statistical analyses by allowing physicists

to employ multiple observables, and was commonly referred to as

“multi-variate analysis”. Such applications reduced the dimensional-

ity of the feature space to one or two, allowing for estimation of the

statistical models needed for inference tasks.

While dimensional reduction nearly always involves some loss of

information, it does not necessarily reduce relevant information, as

the statistical task usually only requires a subset of the informa-

tion. The Neyman–Pearson lemma shows that the optimal decision

boundary for a hypothesis test between two statistical models (in any
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dimension feature space) can be determined by knowledge of their

ratios; the full models are not needed. However, it was long suspected

that shallow networks fell short of capturing all of the relevant infor-

mation contained in the feature space. While it is not possible to

directly estimate the absolute optimal performance without build-

ing an optimal classifier, it is possible to demonstrate that a given

network is not optimal by finding a more powerful example.

A common experience in pre-deep-learning particle physics was to

perform exhaustive feature engineering to simplify the task for the

shallow classifier. A shallow network on four vectors,a for example,

would be compared to a shallow network with features built using

domain knowledge. Such domain-specific expert features are gener-

ally nonlinear functions of four vectors that capture physical insights

about the data. Almost invariably, the expert features would boost

the performance, despite adding no unique information, demonstrat-

ing that the shallow classifiers had failed to discover these non-linear

strategies on their own.

This feature-search approach is labor-intensive and not necessarily

optimal; a robust machine learning method would obviate the need

for this additional step and capture all of the available classification

power directly from the raw data. Thus, the stage was set for deep

learning.

2. Application of Deep Learning to Four Vectors

In this section, we describe a benchmark classification task [9, 10]

that exemplifies a common use case for machine learning in parti-

cle physics: discrimination between signal and background processes.

This example demonstrates a common failure mode of shallow net-

works on four vectors, which exhibit reduced performance compared

to networks that use features engineered with domain knowledge.

aFour vectors in momentum space are a generalization of three-dimensional
momentum, including the total energy E, as (E, p̄) and are typically used in
particle physics to specify a particle’s momentum and total energy.
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2.1. Benchmark case for Higgs bosons

A typical classification task in particle physics distinguishes between

a signal process, where new particles are produced, and one or more

background processes, which mimic the nature and number of par-

ticles observed, but can be distinguished by their kinematics. An

example [9] examined by experiments at the LHC is the produc-

tion of a heavy electrically-neutral Higgs boson (gg → H0), which

decays to a heavy electrically-charged Higgs boson (H±) and a W

boson [11, 12]. The H± boson subsequently decays to a second W

boson and the light Higgs boson, h0 observed by the ATLAS [13] and

CMS [14] experiments. The light Higgs boson decays predominantly

to a pair of bottom quarks, giving the process:

gg → H0 →W∓H± →W∓W±h0 →W∓W±bb̄, (1)

which leads to W∓W±bb̄ shown in Fig. 1. For the benchmark case

here, mH0 = 425GeV and mH± = 325GeV have been assumed.

The background process mimics this signal but without the Higgs

boson intermediate state. It produces a pair of top quarks, each of

which decay to Wb, also giving W∓W±bb̄.
Both processes yield the same set of observed particles: one

charged lepton, four jets (two of which have b-tags) and missing

transverse momentum. Together, the twenty-one individual momen-

tum components of these particles comprise our low-level feature set.

b

b̄

W
Wg

g

H0

H±

h0

(a)

g

g

t

t̄

b

b̄

W+

W−

(b)

Fig. 1. Diagrams describing (a) the signal process involving new exotic Higgs
bosons H0 and H±; and (b) the background process involving top-quarks (t). In
both cases, the resulting particles are two W bosons and two b-quarks.
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Fig. 2. Distributions of example low-level input features for Higgs benchmark.
Shown are the simulated signal (black solid) and background (red dotted)
marginal distributions of transverse momenta (pT) of (a) the most energetic jet
and (b) the lepton.

The low-level features show some differences between the sig-

nal and background processes — Fig. 2 shows the marginal distri-

butions for two of these kinematic features. However, we see even

larger differences in higher-level features constructed using domain

knowledge of the different intermediate states. As the difference in

the two hypotheses lies mostly in the existence of new intermedi-

ate Higgs boson states, it is possible to distinguish between the two

hypotheses by attempting to identify whether the intermediate state

existed by reconstructing its characteristic invariant mass. In the

signal hypothesis we expect peaks in m�ν , mjj, mbb̄, mWbb̄, mWWbb̄,

while the background should peak in mj�ν and mjjj. Figure 3 shows

the difference in distributions for two of these high-level variables.

2.2. Performance

Deep neural networks (DNN) were compared to shallow neural net-

works (NN) and boosted decision trees (BDT) on three different

subsets of input features: the low-level features only, the high-level

features only, and both. Performance on the test set was measured
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Fig. 3. Distributions of example high-level features for Higgs benchmark. Shown
are the simulated signal (black) and background (red) events for marginal distri-
butions of (a) the three-jet invariant mass and (b) the bottom-quark and anti-
bottom-quark pair.

in terms of Area Under the ROC curve (AUC) and discovery signifi-

cance (Table 1), as well as signal efficiency and background rejection;

see Fig. 4.

The shallow neural networks and BDTs trained with the high-

level features perform significantly better than those trained on only

the low-level features, demonstrating the importance of feature engi-

neering in shallow machine learning models. However, training all

three methods with only the high-level features leads to lower per-

formance than training with the complete set of features, indicating

that the low-level features contain additional information that is not

being captured by these engineered features. Only the deep learning

approach shows nearly equal performance using the low-level features

and the complete features. This suggests that it is automatically

discovering high-level abstractions similar to those captured by the

hand-engineered features, obviating the need for laborious feature

engineering.

2.3. Discussion

It is widely accepted in experimental high-energy physics that

machine learning is a powerful approach boosting statistical power
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Table 1. Comparison of the performance of several learning tech-
niques: boosted decision trees (BDT), shallow neural networks
(NN), and deep neural networks (DNN) for three sets of input
features: low-level features, high-level features and the complete
set of features. Each neural network was trained five times with
different random initializations. The table displays the mean Area
Under ROC Curve (AUC) of the signal-rejection curve in Fig. 4,
with statistical uncertainty measured in cross-validation shown in
parentheses. Below is shown the expected significance of a discov-
ery (in units of Gaussian σ) for 100 signal events and 1000 ± 50
background events.

AUC
Technique Low-level High-level Complete

BDT 0.73 (0.01) 0.78 (0.01) 0.81 (0.01)
NN 0.733 (0.007) 0.777 (0.001) 0.816 (0.004)
DNN 0.880 (0.001) 0.800 (< 0.001) 0.885 (0.002)

Discovery significance
Technique Low-level High-level Complete

NN 2.5σ 3.1σ 3.7σ
DNN 4.9σ 3.6σ 5.0σ
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Fig. 4. Background rejection vs. signal efficiency on the Higgs benchmark for
(a) shallow neural networks (NN) and (b) deep neural networks (DN). Curves are
plotted for models trained using the low-level features only (black), the high-level
features only (red), and the complete set of features (blue).
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in exotic particle searches. Until the advent of deep learning, physi-

cists reluctantly accepted the limitations of the shallow machine

learning classifiers — laboriously constructing nonlinear feature com-

binations to help guide shallow networks and BDTs. This benchmark

study shows that advances in deep learning can lift these limitations

by automatically discovering powerful feature combinations directly

from low-level features. Similar conclusions were reached in other

benchmark cases, such as in searches for tt̄h production [15].

3. Parameterized Networks

The deep learning approach described above solves a simple signal

vs. background classification task for a hypothesized particle with a

particular mass. But the mass of a hypothesized particle is generally

unknown. In practice, a hypothesized particle will have a range of

possible masses, each of which would produce a different type of

signal in the data. The classification tasks at different masses are

closely related, but distinct. Physicists need a way to evaluate this

class of signal hypotheses against the null (background) hypothesis.

A naive way to address this problem is to perform a finite num-

ber of individual comparisons. For each of K possible mass values, a

hypothesized particle with that mass is simulated using Monte Carlo

to produce a data set, and a machine learning model is trained to

discriminate between it and the background. Methods from statistics

can be used to account for the problem of multiple-hypothesis test-

ing (e.g. the Bonferroni correction [16]). However, this naive approach

is too conservative when the data distributions from different mass

values are related. In practice, the distribution is expected to vary

smoothly with the continuous parameter of the particle — that is, one

expects similar mass values to result in similar distributions of obser-

vation data. This suggests the use of machine learning to model the

relationship between the mass parameter and the data distribution.

A machine learning solution to this problem is to train a single

classifier to perform particle searches for an entire range of possi-

ble mass values [17, 18]. This is done by extending the list of input

features to include one or more additional parameters that describe

the larger scope of the problem such as a new particle’s mass. The
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approach can be applied to any classification model; however, neural

networks provide a smooth interpolation in this new parameter space,

while tree-based classifiers may not. A single parameterized network

can replace a set of individual networks trained for specific cases, as

well as smoothly interpolate to cases where it has not been trained. In

the case of a search for a hypothetical new particle, this greatly sim-

plifies the task — by requiring only one network — as well as making

the results more powerful — by allowing them to be interpolated

between specific values. In addition, they may outperform isolated

networks by generalizing from the full parameter-dependent dataset.

In this section we describe the use of parameterized neural networks

and provide a realistic example. For a real application, see [19–22].

3.1. Parameterized network structure and training

A standard neural network takes as input a vector of features, x̄,

and computes a function of these features, f(x̄). Parameterized net-

works address the case where the task is part of a larger context,

described by one or more parameters, θ̄, by computing a function of

both inputs: f(x̄, θ̄). Thus, a parameterized neural network makes

different predictions for input x̄ for different contexts θ̄; see Fig. 5.

x1

x2
fa(x1,x2)

= a

x1

x2
f(x1,x2, )

x1

x2
fb(x1,x2)

= b

Fig. 5. Traditional neural networks (left) with input features (x1, x2) are trained
with examples from fixed values of some latent parameter θ = θa, θb. Neither
network performs optimally for intermediate values of θ. A parameterized network
(right) is trained with input features (x1, x2) as well as the input parameter θ;
such a network is trained with examples at several values of the parameter θ and
interpolates for intermediate values. At test time, the user provides θ.
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Unlike other networks, a parameterized network requires a value of θ̄

to perform inference on input x̄, as the network output is a function

of both.

Parameterized neural networks require some additional considera-

tions during training. Each training example for such a parameterized

network has the form (x̄, θ̄, y)i, where y is the target output. However,

in classification problems θ̄ may not be meaningful for a particular

target class. For example, the mass of a new particle is not meaningful

for the background training examples. To avoid divulging informa-

tion about y, one must randomly assign values [18] to θ̄ according to

the same distribution used for the signal class.

Another issue is that the distribution of θ̄ in the training set repre-

sents a prior distribution that influences the final model, and should

be specified carefully. Traditionally, θ̄ is determined by the hypothe-

sis and fixed during detector simulations, producing samples from a

conditional distribution p(x̄|θ̄, y); in parameterized neural networks,

the training data would typically be generated by first sampling θ̄

from a class-specific prior p(θ̄|y) then x̄ from p(x̄|θ̄, y). The robust-

ness of the resulting parameterized classifier to the distribution of

θ̄ in the training sample will depend on the physics encoded in the

distributions p(x̄|θ̄, y) and how much they change with θ̄. The prior

p(θ̄|y) should be chosen carefully and should be considered when

interpreting results, just as one would carefully consider a fixed θ̄

when building and evaluating a traditional classifier. In the studies

presented below, the training data consists of equal sized samples

for a few discrete values of θ̄ — the conditional distribution p(x̄|θ̄, y)
varies smoothly enough in θ̄ that this reasonably approximates a

uniform prior over θ̄.

3.2. Physical example

Parameterized networks address a common problem in searches for

new particles of unknown mass, and we provide an illustrative exam-

ple from [18]. Consider the search for a new particle X which

decays to tt̄, examining the most powerful decay mode in which

tt̄ → W+bW−b̄ → qq′b�νb̄. The dominant background is standard
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Fig. 6. Feynman diagrams showing (a) the production and decay of the hypo-
thetical particle X → tt̄, as well as (b) the dominant standard model background
process of top quark pair production. In both cases, the tt̄ pair decay to a single
charged lepton (�), a neutrino (ν) and several quarks (q, b).

model tt̄ production, which is identical in final state but distinct in

kinematics due to the lack of an intermediate resonance. Figure 6

shows diagrams for the signal and background processes.

The set of event-level features include 21 low-level kinematic fea-

tures resulting from reconstruction algorithms and 5 high-level fea-

tures which incorporate physics domain knowledge. The distributions

of four high-level features are shown in Fig. 7 to illustrate the

differences between the signal distribution at different values of the

particle mass, mX , and the background distribution.

In order to test how well a parameterized neural network gen-

eralizes to new parameter values, an experiment compared the

performance of a fixed neural network architecture trained on three

different training data sets with different distributions of mX , and

tested on a data with mX = 1000GeV. The three different training

data sets contained signal samples with different mass distributions:

(1) mX = 1000GeV only; (2) mX = 500, 750, 1000, 1250, 1500 GeV;

and (3)mX = 500, 750, 1250, 1500 GeV (nomX = 1000GeV). In each

case, the training set contains 7M examples, the test set contains 1M,

and approximately the same number of training and testing examples

are used per mass point. On each data set, the same neural network

architecture was trained, containing five 500-dimensional ReLU lay-

ers followed by a logistic output unit for binary classification. Param-

eters were initialized from a Gaussian distribution with mean zero
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Fig. 7. Distributions [18] of high-level event features for the decay of X → tt̄
with two choices of mX as well as the dominant background process; see text for
definitions.

and width 0.1, and updated using stochastic gradient descent with

mini-batches of size 100 and 0.5 momentum. The learning rate was

initialized to 0.1 and decayed by a factor of 0.89 every epoch. Train-

ing was stopped after 200 epochs.

The results show that the parameterized network not only

matches the performance of a network trained on a single mass

value, but is able to generalize to mass values it has never seen

before. Figure 8 shows that the parameterized network trained on

mX = 500, 750, 1000, 1250, 1500 GeV matches the performance of

the fixed network trained on mX = 1000 only. In the third data

set, mX = 1000 samples are removed from the training set so that

the network must interpolate its solution, but the performance is
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Fig. 8. Performance comparison [18] of signal-to-background discrimination
for four classes of networks on a test sample with mX = 1000 GeV. A
parameterized network trained on all masses mX = 500, 750, 1000, 1250, 1500
(magenta) performs just as well as a traditional network trained with only
mX = 1000 GeV (red). A second parameterized network trained with only
mX = 500, 750, 1250, 1500 is forced to interpolate the solution at mX = 1000 GeV
(blue), but performs equally well. However, a traditional non-parameterized net-
work trained with all the mass points (black) shows a reduced performance.
The results are indistinguishable for cases where the networks use only low-
level features (shown) or low-level as well as high-level features (not shown, but
identical).

unchanged, demonstrating that the parameterized network is able to

generalize even in this high-dimensional example.

We note, however, that while the ability of the parameterized

network was demonstrated in this case, and we expect this ability

to generalize due to networks excellent performance in interpolation

tasks, one cannot claim to predict similar quality of interpolation

for an arbitrary task. Performance in a specific task would require a

dedicated study.

The high dimensionality of this problem makes it difficult to

visually explore the dependence of the neural network output on

the parameter mX . However, Fig. 9 compares the performance of

the parameterized network to a single network trained at mX =

1000GeV when applied across the mass range of interest, a common
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Fig. 9. Performance comparison [18] of signal-background discrimination for a
network parameterized by mass (blue), a traditional network trained on all mass
values (black), and a traditional network trained only on mX = 1000 GeV. As
expected, the network trained at a single mass shows decreasing AUC (from ROC
curves in Fig. 8) as the mass deviates from the value in the training sample. The
network trained on all masses does not perform optimally at mX = 1000 GeV,
but the parameterized network performs well at all mass values. The trend of
improving AUC vs. mass reflects the increasing separation between the signal
and background samples with mass, see Fig. 7.

use case. This demonstrates the loss of performance incurred by some

traditional approaches and recovered in this approach. Similarly, we

see that a single network trained an unlabeled mixture of signal sam-

ples from all masses has reduced performance at each mass value

tested.

4. Handling Sets of Four Vectors

The deep neural network architectures discussed so far have con-

sisted entirely of sequential layers, where each layer is fully-connected

to the layer below. However, a key advantage of artificial neural

network models is the ability to design neural network architec-

tures that reflect properties of the data. These architecture design
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choices enable us to constrain the class of functions to be consid-

ered, or more generally, incorporate an implicit bias for some func-

tions over others. Examples include convolutional neural networks,

Siamese neural networks, and various forms of recursive neural net-

works [23]. These architecture designs have been critical to the suc-

cess of deep learning in computer vision, natural language processing,

and bioinformatics. In this section, we examine the neural network

design choices that can be used to handle sets of four vectors in

physics.

Neural networks can be designed to have two key properties that

are relevant to sets: invariance and equivariance. First, a function

implemented by a neural network is invariant with respect to an

operation if applying that operation to the input does not affect the

output. A common example from deep learning is object detection

with a convolutional neural network that is invariant to translations

of the input image — the function output could be a single value cor-

responding to whether an object is present in the image, regardless

of whether a translation operation is applied to the image. Second, a

function implemented by a neural network is said to be equivariant

with respect to an operation if applying that operation to the input

results in a predictable change in the output. In a convolutional neu-

ral network, each convolutional layer is equivariant to translations

because translating the input leads to a deterministic translation in

the output representation.

For machine learning models that take sets as inputs, it is often

desirable to have a model that is invariant or equivariant with respect

to permutation of the set elements. For example, 3D vision models

perform object detection from a set of 3D points on the surface of

an object [24], and astronomy models predict the redshift of galax-

ies from a set of nearby galaxies [25, 26]. Similarly, exotic particle

searches in physics involve classifying collision events based on sets

of resulting four vectors. The function to be learned should be invari-

ant to the ordering of the set elements. There are at least three ways

to try to create supervised neural network models that are invariant

to an operation: (1) data-augmentation, (2) canonicalization, and

(3) architecture design. We discuss each in turn.
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4.1. Data-augmentation

In data-augmentation, the training data is expanded by applying an

operation to all training examples. In practice, it is usually more

efficient to apply a random operation to the input data at training

time. Either way, the network is forced to learn how to be invariant to

that operation. For example, in object-detection models it is common

to augment the data during training with random translations, rota-

tions, and mirroring operations. On four vectors, ordering and boost-

ing operations [27, 28] can augment the data. The disadvantage of

this approach is that the model must learn that the output should be

invariant — this requirement is not enforced by the model. Because

this can make the learning problem much more difficult, it is typically

used as a last resort when the other methods are not available.

4.2. Canonicalization

The second way to achieve invariance is through canonicalization of

the input. In this method, the input is always mapped to some canon-

ical element of the group defined by the operation, which enforces

invariance without any other constraints on the model. An example

is to enforce translational invariance in computer vision by “center-

ing” an image at some deterministically-chosen point, or enforcing

rotational invariance by rotating the image around that point until

it is oriented along some canonical axis (as in [29] for jet substruc-

ture classification). For sets of four vectors, permutation invariance

can be achieved by sorting the particles based on pT, as is done in

[30]. A potential disadvantage of this approach, besides having to

come up with a good canonicalization scheme, is that the canonical-

ization procedure can introduce discontinuities in the function to be

learned — a canonicalization that is sensitive to small changes in the

inputs is undesirable, and could be worse than no canonicalization

at all.

4.3. Architecture design

The third way to achieve equivariance and invariance in machine

learning is through architecture design, where the hypothesis space
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is constrained to functions that satisfy the condition. For example

in convolutional neural network architectures, the convolution layers

are equivariant to translations, and together with pooling layers they

can be made invariant to translations. These architectures have been

critical to the success of deep learning in computer vision [31]. Invari-

ance to other input transformations can also be enforced through

combinations of weight-sharing and pooling operations. Ideas from

Lie group theory can be applied to this problem [32, 33]. One can triv-

ially define neural network architectures that guarantee invariance to

any transformation by defining an ensemble model that applies iden-

tical subnetworks to every possible transformation of the input, then

pooling the result. Clearly this becomes intractable — or at least

inefficient — for applications where the number of elements in the

group is large or infinite, but there are often simpler approaches.

For input sets, permutation invariance can be achieved by:

(1) applying an identical subnetwork to each set element, using

shared weights; then (2) pooling the output. The shared weights

result in equivariance to permutations of the inputs, since the new

outputs will be equivalent to the permutation of the original out-

puts. The second step achieves invariance, e.g. with max or mean

pooling of the possibly-multidimensional outputs. Designing neural

network architectures that account for data symmetries like permu-

tation invariance is one example of incorporating physics knowledge

into the machine learning model, which is discussed more in the next

section.

5. Physics-aware Networks

In applying machine learning to physics problems, one is often pre-

sented with the challenge of bringing physics knowledge to bear on

the machine learning models [34, 35]. This situation can present

itself in different forms: choosing of the relevant input and out-

put variables, adding priors or regularization terms in the loss

function, or imposing constraints on the neural architectures. Each

of these contributes to explicit or implicit model bias, which can

greatly affect the resulting performance. Often it is difficult to pre-

dict how these choices will affect performance, so they are treated
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as hyperparameters and optimized by trying different variations.

Here we consider two different situations corresponding to physics-

informed architecture design and incorporation of physics con-

straints.

5.1. Physics-informed architecture design

The permutation-invariant models described above are one example

of incorporating domain-knowledge into a neural network architec-

ture. We can design neural network architectures that account for

additional physics knowledge by taking advantage of other archi-

tecture design motifs. These include the local connectivity, weight

sharing, and pooling of convolutional neural networks, but also skip

connections [36], gating [37, 38], and attention [39–41]. We briefly dis-

cuss two other physics-informed neural network architectures appli-

cable to four vectors.

One example of a physics-informed neural network architecture is

[34]. Decaying particles in the detector typically result in decay prod-

ucts that are hierarchically clustered in space and time (jet substruc-

tures). Thus, sets of four vectors often have additional structure that

can be exploited. When the clustering hierarchy of each event can be

reconstructed, for example using a sequential recombination jet algo-

rithm [42], this additional information can be incorporated into the

network. Recursive neural network architectures can be constructed

to match the topology of the jet clustering algorithms, analogous to

models from Natural Language Processing that take advantage of

sentence parse trees [43, 44]. The recursive physics neural network

architecture is constructed on a per-event basis to reflect the tree

structure of that event. In addition to the properties of permutation

invariance (assuming each node is permutation invariant) and scal-

ability to an arbitrary number of set elements, this model has the

additional property of local connectivity among related elements in

the set, which can lead to better generalization.

Another example is the Lorentz-Boosted Neural Networks in [45],

in which the first hidden layer of the network is interpreted as “com-

posite particles” and corresponding “rest frames,” and represented as
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linear combinations of the input four vectors. Each learned composite

particle is then boosted into its corresponding rest frame using the

nonlinear Lorentz transformation. The resulting feature representa-

tions are then fed into a neural network, and the entire system is

trained using back-propagation. The major advantage of this archi-

tecture is that it constrains the representation of the data into a form

that is readily interpreted by physicists (i.e. Lorentz-transformed

four vectors) and for which physically meaningful features can be

extracted such as invariant masses, pseudorapidities, and so forth.

Yet another example is the approach described in [46], which uses

recursive neural networks, of the form of transformer architectures

[41, 47] used in language processing and tensor attention mechanisms,

applied to many-jet event reconstruction in a manner that is invariant

to any permutation of the four vectors in the variable-size input set.

5.2. Incorporating physics constraints

Here, we consider the situation where there are physical laws, in

the form of exact equations, relating the values of some of the rel-

evant variables. In addition to physics, many fields of science and

engineering (e.g. fluid dynamics, hydrology, solid mechanics, chem-

istry kinetics) have exact, often analytic, closed-form constraints, i.e.

constraints that can be explicitly written using analytic functions

of the system’s variables. Examples include translational or rota-

tional invariance, conservation laws, or equations of state. While

physically-consistent models should enforce constraints to within

machine precision, data-driven algorithms often fail to satisfy well-

known constraints that are not explicitly enforced. In particular,

while neural networks may provide powerful classification and regres-

sion tools for nonlinear systems, they may optimize overall perfor-

mance while violating these constraints on individual samples.

Despite the need for physically-informed neural networks for com-

plex physical systems [48–51], enforcing constraints [52] has been lim-

ited mostly to physical systems governed by specific equations, such

as advection equations [53–55], Reynolds-averaged Navier–Stokes

equations [56, 57], or quasi-geostrophic equations [58]. Thus, it is
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necessary to have methods that can enforce analytic constraints in

more general settings. Here, we describe two general ways for enforc-

ing constraints, first in a soft way, and then in a hard way.

In general, let us assume that there is a constraint of the form

C(x, y, z) = 0 that must be satisfied by the input variables x, the

output variables y, and possibly some auxiliary variables z. If E is

the error function of the neural network trained on the pairs (x, y),

we can enforce the constraints in a soft way by adding a penalty

term to the loss function, e.g. using a new loss function of the form

E ′ = E + λC2 where λ is an additional hyperparameter controlling

the strength of the corresponding regularization (or equivalently log

prior) terms. This approach has been used for instance in climate

modeling [59–61]. While this approach can be effective, there is no

guarantee that the constraints may not be violated.

A general way for enforcing constraints in a hard way is described

in [62]. There are several possible implementation of this idea, but

the gist of it is to augment the basic neural architecture with an

additional neural network to enforce the constraints. For this, we can

first decompose y non-uniquely as y = (y1, y2). Then, we introduce a

first neural network with adaptive weights that produces an output

y′1, trying to predict y1 from x. This is followed by a second network

which computes y′2 from x, y′1 and z, enforcing the constraint C to

machine precision. The weights of the second network are fixed and

determined by the knowledge of C. For instance, the second network

can be linear if the constraint C is linear. We can then combine the

two networks into a single overall architecture whose final output is

the vector (y′1, y
′
2). This output always satisfies the constraint C by

construction. Furthermore, it can be compared to the target (y1, y2)

and the resulting errors can be backpropagated through the combined

network, through both the fixed and adjustable weights. As a result

of this approach, the constraint C is satisfied at all times, both during

and after learning.

6. Conclusions

We have reviewed the advent of deep learning in high-energy physics,

first used in classification tasks operating on four-vector features
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before being applied to tracks, images, graphs, and low-level detector

data. Even in the case of four-vectors where the number of features is

relatively small, deep learning can be used to improve classification

performance and incorporate domain knowledge in various forms. In

particular, neural networks can be designed to model a set of related

functions using parameterized networks, capture permutation invari-

ance in sets with weight-sharing and pooling, and incorporate addi-

tional physics constraints through architecture design or augmented

loss functions.
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[38] K. Cho, B. van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk and Y. Bengio, Learning phrase representations using
RNN encoder–decoder for statistical machine translation, in Proc. 2014
Conf. Empirical Methods in Natural Language Processing (EMNLP).
(2014).

[39] D. Bahdanau, K. Cho and Y. Bengio, Neural machine translation by jointly
learning to align and translate, ICLR (2014); arXiv:1409.0473 [cs.CL].

[40] T. Luong, H. Pham and C. D. Manning, Effective approaches to atten-
tion-based neural machine translation, in Proc. 2015 Conf. Empirical Meth-
ods in Natural Language Processing (2015).

[41] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
�L. Kaiser and I. Polosukhin, Attention is all you need, in Advances in Neural
Information Processing Systems (2017).

[42] M. Cacciari, G. P. Salam and G. Soyez, The anti-kt jet clustering algorithm,
J. High Energy Phys. 04 (2008) 063; arXiv:0802.1189 [hep-ph].

[43] C. Goller and A. Kuchler, Learning task-dependent distributed represen-
tations by backpropagation through structure, in IEEE Int. Conf. Neural
Networks, 1996 (IEEE, 1996).

http://dx.doi.org/10.1103/PhysRevD.93.094034
http://dx.doi.org/10.1103/PhysRevD.94.112002
http://dx.doi.org/10.1007/JHEP01(2019)057
http://arxiv.org/abs/1702.00748
http://dx.doi.org/10.1007/s41781-018-0007-y
http://arxiv.org/abs/1711.02633
http://dx.doi.org/10.3115/v1/D14-1179
http://arxiv.org/abs/1409.0473
http://dx.doi.org/10.18653/v1/D15-1166
http://dx.doi.org/10.1088/1126-6708/2008/04/063
http://arxiv.org/abs/0802.1189


December 15, 2021 10:30 Artificial Intelligence for High Energy Physics 9in x 6in b4322-ch03 page 82

82 P. Baldi, P. Sadowski & D. Whiteson

[44] R. Socher, C. C. Lin, C. D. Manning and A. Y. Ng, Parsing natural scenes
and natural language with recursive neural networks, in Proc. 28th Int. Conf.
Machine Learning (ICML-11) (2011).

[45] M. Erdmann, E. Geiser, Y. Rath and M. Rieger, Lorentz boost networks:
autonomous physics-inspired feature engineering, JINST 14(06) (2019)
P06006.

[46] M. Fenton, A. Shmakov, T. Ho, S. Hsu, D. Whiteson and P. Baldi, Permuta-
tionless many-jet event reconstruction with symmetry preserving attention
networks, preprint (2020); arXiv:2010.09206.

[47] J. Devlin, M.-W. Chang, K. Lee and K. Toutanova, Bert: Pre-training of
deep bidirectional transformers for language understanding, preprint (2018);
arXiv:1810.04805.

[48] M. Reichstein, G. Camps-Valls, B. Stevens, M. Jung, J. Denzler, N. Carval-
hais and Prabhat, Deep learning and process understanding for data-driven
Earth system science, Nature 566(7743) (2019) 195.

[49] K. J. Bergen, P. A. Johnson, M. V. de Hoop and G. C. Beroza, Machine
learning for data-driven discovery in solid earth geoscience, Science 363
(2019) 6433.

[50] A. Karpatne, G. Atluri, J. H. Faghmous, M. Steinbach, A. Banerjee, A. Gan-
guly, S. Shekhar, N. Samatova and V. Kumar, Theory-guided data science:
A new paradigm for scientific discovery from data, IEEE Trans. Knowledge
Data Eng. 29(10) (2017) 2318.

[51] J. Willard, X. Jia, S. Xu, M. Steinbach and V. Kumar, Integrating
physics-based modeling with machine learning: A survey, preprint (2020);
arXiv:2003.04919.

[52] P. Márquez-Neila, M. Salzmann and P. Fua, Imposing hard constraints on
deep networks: Promises and limitations, preprint (2017); arXiv:1706.02025.

[53] M. Raissi, P. Perdikaris, and G. E. Karniadakis, Physics informed deep learn-
ing (part I): Data-driven solutions of nonlinear partial differential equations,
preprint (2017); arXiv:1711.10561.

[54] Y. Bar-Sinai, S. Hoyer, J. Hickey, and M. P. Brenner, Learning data-
driven discretizations for partial differential equations, Proc. Natl. Acad.
Sci. 116(31) (2019) 15344.

[55] E. de Bezenac, A. Pajot, and P. Gallinari, Deep learning for physical pro-
cesses: Incorporating prior scientific knowledge, J. Statist. Mech. Theory
Exp. 2019(12) (2019) 124009.

[56] J. Ling, A. Kurzawski, and J. Templeton, Reynolds averaged turbulence
modelling using deep neural networks with embedded invariance, J. Fluid
Mech. 807 (2016) 155.

[57] J. L. Wu, H. Xiao and E. Paterson, Physics-informed machine learning
approach for augmenting turbulence models: A comprehensive framework,
Phys. Rev. Fluids 3(7) (2018) 074602.

[58] T. Bolton and L. Zanna, Applications of deep learning to ocean data infer-
ence and subgrid parameterization, J. Adv. Model. Earth Syst. 11(1) (2019)
376.

http://dx.doi.org/10.1038/s41586-019-0912-1
http://dx.doi.org/10.1126/science.aau0323
http://dx.doi.org/10.1109/TKDE.2017.2720168
http://arxiv.org/abs/2003.04919
http://arxiv.org/abs/1706.02025
http://arxiv.org/abs/1711.10561
http://dx.doi.org/10.1073/pnas.1814058116
http://dx.doi.org/10.1017/jfm.2016.615
http://dx.doi.org/10.1103/PhysRevFluids.3.074602
http://dx.doi.org/10.1029/2018MS001472


December 15, 2021 10:30 Artificial Intelligence for High Energy Physics 9in x 6in b4322-ch03 page 83

Deep Learning from Four Vectors 83

[59] A. Karpatne, W. Watkins, J. Read and V. Kumar, Physics-guided neural
networks (PGNN): An application in lake temperature modeling, preprint
(2017); arXiv:1710.11431.

[60] X. Jia, J. Willard, A. Karpatne, J. Read, J. Zwart, M. Steinbach, and
V. Kumar, Physics guided RNNs for modeling dynamical systems: A case
study in simulating lake temperature profiles, in SIAM Int. Conf. Data Min-
ing, SDM 2019 (2019); arXiv:1810.13075.

[61] M. Raissi, A. Yazdani, and G. E. Karniadakis, Hidden fluid mechan-
ics: Learning velocity and pressure fields from flow visualizations, Science
367(6481) (2020) 1026.

[62] T. Beucler, M. Pritchard, S. Rasp, J. Ott, P. Baldi and P. Gentine, Enforcing
analytic constraints in neural-networks emulating physical systems, preprint
(2019); arXiv:1909.00912 [physics.comp-ph].

http://arxiv.org/abs/1710.11431
http://arxiv.org/abs/1810.13075
http://dx.doi.org/10.1126/science.aaw4741


B1948  Governing Asia

B1948_1-Aoki.indd   6B1948_1-Aoki.indd   6 9/22/2014   4:24:57 PM9/22/2014   4:24:57 PM

This page intentionally left blankThis page intentionally left blankThis page intentionally left blankThis page intentionally left blank



January 27, 2022 16:40 Artificial Intelligence for High Energy Physics 9in x 6in b4322-ch04 page 85

c© 2022 World Scientific Publishing Company

https://doi.org/10.1142/9789811234033 0004

Chapter 4

Anomaly Detection for Physics Analysis
and Less Than Supervised Learning

Benjamin Nachman

Lawrence Berkeley National Laboratory,
Berkeley, CA 94720, USA

bpnachman@lbl.gov

Modern machine learning tools offer exciting possibilities to qualitatively
change the paradigm for new particle searches. In particular, new meth-
ods can broaden the search program by gaining sensitivity to unforeseen
scenarios by learning directly from data. There has been a significant
growth in new ideas and they are starting to be applied to experimen-
tal data. This chapter introduces these new anomaly detection meth-
ods, which range from fully supervised algorithms to unsupervised, and
include weakly supervised methods.

1. Introduction

Searching for new particles and forces of nature is one of the main

goals of HEP. Despite hints for new fundamental structure, there has

been no convincing evidence since the discovery of the Higgs Boson

in 2012 [1, 2]. All of the major HEP experiments are engaged in an

extensive search program and the goal of this chapter is to explore

the dependence of these efforts on particular models and to examine

how machine learning may be able to significantly broaden existing

efforts.

In particular, the main topic of this chapter is machine learning-

based anomaly detection. An anomaly is an unexpected feature of the

data and as such all searches for new particles are anomaly detection

analyses. The main feature of the searches described in this chapter

that separates them from others is the level of model dependence in
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various parts of the analysis. In particular, this chapter will focus on

searches that rely as little as possible on signal and background mod-

els for both achieving sensitivity to new physics as well as calibrating

the background. This is in contrast to most dedicated searches that

are optimized with a particular signal model. All of these concepts

will be made more precise below.

This chapter is organized as follows. Section 2 introduces tradi-

tional searches for new particles in HEP and how model dependence

plays a role in the analysis development and statistical procedure.

The remaining sections review various types of machine learning-

based anomaly detection approaches. These sections are organized

by how labeled examples are (or are not) provided to train machine

learning classifiers (supervision). In particular, the chapter covers

supervised learning (Secs. 3 and 4), unsupervised learning (Sec. 5),

weakly supervised learning (Sec. 6), and lastly hybrid approaches

(Sec. 7). Recent results from ATLAS and CMS are highlighted in

Sec. 8 and the chapter ends with conclusions and outlook in Sec. 9.

2. Model Dependence in HEP Data Analysis

A typical search for new phenomena begins by selecting a target sig-

nal model or class of models, S. Then, simulations of the signal and

of the Standard Model (SM) background B are performed. These

simulations are used to inform the construction of a test statistic λ

that is based on features x ∈ R
N . A threshold c is chosen so that

Pr(λ > c|S + B) is significantly larger than Pr(λ > c|B). A com-

bination of simulations and data-driven methods are used to esti-

mate these tail probabilities given the observed data. A discovery is

declared when the data are much more consistent with the S + B

hypothesis than the B-only hypothesis.a If instead the data are more

consistent with the B-only hypothesis, then one can set limits on the

production cross section of a hypothetical signal.

aIt could also be that the data are inconsistent with both hypotheses. This is one
of the motivations for the widely used CLs procedure [3].
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In this paradigm, models are used in two important ways. First,

models of both S and B are used to choose λ. In the absence of

nuisance parameters and for a single signal model, the Neyman–

Pearson lemma [4] states that for a fixed probability of rejecting

the null hypothesis when it is true (level or type I error rate), the

probability for rejecting the null hypothesis when the alternative is

true (power) is maximized with the likelihood ratio test statistic.

Typically, λ is chosen manually by scanning features that are known

to enhance the likelihood ratio. A growing number of searches use

various machine learning methods to strive for optimal performance.

Machine learning methods can also be used to extend beyond a “cut-

and-count” approach to achieve an unbinned optimal test statistic [5].

When a search involves profiling nuisance parameters or composite

alternative hypotheses (multiple signal models), there is no uniformly

most powerful test statistic. In these cases, the likelihood ratio is still

a reasonable target and there are also a variety of inference-aware

methods for achieving optimality [6, 7].

Second, models are used to determine the p-values Pr(λ > c|S+B)

and Pr(λ > c|B). In some cases, simulations are used to directly esti-

mate these probabilities using Monte Carlo (MC) methods. In many

cases, data are used as part of the density estimation. The extent

to which data can be used depends on assumptions about the back-

ground and the signal in the targeted region of phase space. Even if

the p-values are ultimately computed entirely from data using para-

metric or non-parameteric methods, simulations often play a key role

in validating the assumptions that justify the data-based procedure

or in deriving method non-closure uncertainties.

One can categorize a search strategy by its S- and B-dependence

for both the signal sensitivity and background specificity, as shown in

Fig. 1. As described above, most searches can be placed in the lower

left part of Fig. 1(a) (signal sensitivity). Searches with a clear sig-

nal hypothesis that can be accurately simulated, but with a complex

or hard-to-simulate background are found in the upper left part of

Fig. 1(a). The searches depicted in the lower right corner of Fig. 1(a)

will be discussed further in Sec. 3 and the remaining search strate-

gies illustrated in the top right corner of Fig. 1(a) will be described
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Fig. 1. A graphic depicting the classification of searches by their dependence on
models of the signal and Standard Model (SM) background for both (a) gaining
signal sensitivity (choosing the test statistic λ) and (b) calibrating the back-
ground p-values. The Model Unspecific Search for New Physics (MUSiC) [8–10]
and General Search [11–13] are results from the CMS and ATLAS Collabora-
tions, respectively. LDA stands for Latent Dirichlet Allocation [14, 15], ANODE
stands for ANOmaly detection with Density Estimation [16], SALAD stands for
Simulation Assisted Likelihood-free Anomaly Detection [17] and CWoLa stands
for Classification Without Labels [18–20]. Direct density estimation is a form of
side-banding where the multidimensional feature space density is learned condi-
tional on the resonant feature. Figure reproduced from [16].

in Secs. 5, 6, and 7. The notion of optimality is more complicated

for these anomaly detection approaches because there is no single

signal model hypothesis. However, one can still consider optimality

in the context of a different hypothesis test: data vs. background.

Let pbackground(x|B) be the density describing the background and

pdata(x) be the density observed in a signal region. One can view

anomaly detection as positing pbackground(x|B) as the null hypothesis

with pdata(x) as the alternative hypothesis. By construction, the data

are consistent with the alternative hypothesis, but this does not mean

that the null hypothesis can be rejected. As a simple hypothesis test,

the Neyman–Pearson lemma guarantees that pbackground/pdata is an

optimal test statistic. An anomaly detection technique is defined to

be asymptotically optimal if there is some limit in which it approaches
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this optimal test statistic. While many of the techniques in Secs. 6

and 7 are asymptotically optimal, most of the methods presented in

Sec. 5 are not.

Achieving signal sensitivity is not sufficient to produce a physics

result — one must also calibrate the background. Said another way,

selecting anomalous events is irrelevant if there is no context to pro-

vide information on their strangeness. Precise background calibration

is a key difference in anomaly detection between industry and HEP.

In the former, anomalies are often off-manifold (e.g. a flying elephant)

instead of local over-densities (e.g. more elephants than expected at

a watering hole) and so it is less important that the background rate

be known precisely. A variety of common methods are highlighted in

Fig. 1(b). Pure MC estimation is reserved for final states that are rel-

atively simple and precisely known theoretically and experimentally

such as pure electroweak processes with only charged leptons [21].

Many searches use the control region method whereby simulations

are calibrated using event selections that are close to the final phase

space, but sufficiently far away that the expected signal purity is low.

The requirement on signal purity introduces a dependence on the sig-

nal model. Two “fully data-driven” approaches are the ABCD and

sideband methods. In both approaches, the data are used directly

to transport predictions from a control region to the signal sensitive

region instead of relying on simulation for this extrapolation. In the

ABCD method, two classifiers f and g and two working points a

and b are constructed and then four regions called A,B,C and D

are defined by f ≶ a and g ≶ b (for a machine learning version of

ABCD, see [22–24]). If f and g are independent, then one can relate

the background prediction in the region f > a and g > b to the

other three regions. The ABCD method depends on the background

model by verifying independence and on the signal model by verify-

ing low-signal contamination in the sidebands. The sideband method

requires knowledge of one feature where the signal should be localized

and the background is not localized. Regions away from the signal

are then defined as sidebands and a fit can be used to interpolate the

background prediction into the signal region. Resonant new physics

is expected to be localized at the mass of the new particle, so this is
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a moderately weak assumption. Relatively simple parametric models

are often used for the fit, although machine learning approaches have

also been proposed for this purpose [16, 17, 25, 26].

A core requirement of the sideband method is that the background

is not localized where the potential signal should be localized. While

this is generally true inclusively because background processes are

often non-resonant, machine learning classifiers can artificially intro-

duce localized features in the background. This often happens if a

classifier is trained to distinguish a resonant signal from the SM back-

ground and a feature sensitive to the mass of the new particle is used

in the training. One can simply remove mass-sensitive features from

the training, but powerful classifiers can learn the mass indirectly

through subtle correlations with other useful features. A variety of

decorrelation techniques exist to solve this problem [22, 27–40]. In

the context of neural networks, one can add terms to the loss function

to achieve automatic decorrelation:

L(f) =
∑
i

Lclassifier(f(xi), yi) + α (1− yi)Ldecorrelation(f(xi),mi),

(1)

where α ≥ 0 is a hyperparameter, Lclassifier is the usual classifier loss
such as binary cross entropy or mean squared error, f is the classifier,

x are the features, y are the labels (y = 0 is background), and m is

the feature that needs to be independent from f . In one approach,

Ldecorrelation is itself a neural network [31] that is designed to learn m

from f . This adversarial method is optimized as a minimax solution

whereby the second neural network is as bad as possible when decor-

relation is achieved. Another possibility is forb Ldecorrelation to be a

measure of dependence between f(x) and m such as the distance

correlation [34]. The later introduces only one free parameter (α)

compared with thousands of parameters in adversarial method, but

may be less flexible and can require large batches during training.

bTechnically, for the distance correlation, this loss is applied at the level of a
batch because it requires computing expectation values over pairs of events.
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It is also possible to relax the decorrelation assumption by allowing

for a controlled dependence on m [40].

In practice, analyses can mix and match strategies from Figs. 1(a)

and 1(b). Some methods are naturally paired, such as those described

in Secs. 6 and 7, as they were developed in the context of the side-

band method. Decorrelation techniques that were first introduced

for background estimation can also be important for signal sensi-

tivity. The interplay between independence and signal sensitivity is

discussed in Secs. 6 and 7. The remainder of this chapter focuses on

machine learning methods for achieving signal sensitivity.

3. Signal Independent, Background Model Dependent

In some sense, all searches for physics beyond the Standard

Model are anomaly detection analyses because anything discov-

ered would be anomalous by definition. Furthermore, many searches

publish “model-independent limits”. Such limits are signal model-

independent only in the cross-section, but are strongly signal model-

dependent in the acceptance. The rest of this chapter will instead

focus on searches that do not target a particular signal model,

although they often target a class of models such as resonance decays

into a particular final state. Many searches are relatively inclusive

and not optimized for a particular signal (e.g. the inclusive dijet

search at the LHC [41, 42]). While such searches are broadly sensitive,

this chapter will not focus on them because they are not actively opti-

mized for sensitivity to new physics aside from general considerations

(e.g. avoid large rapidity gaps in the case of dijets). Signal model-

independent searches have a long history in HEP and have been

performed by D0 [43–46], H1 [47, 48], ALEPH [49], CDF [50–52],

CMS [8–10, 53] and ATLAS [11–13]. The general strategy in these

analyses is to directly compare data with simulation in a large num-

ber of exclusive final states (bins).

Recent proposals extend this methodology to be unbinned by

using nearest neighbors [54], cluster similarity [55] and neural net-

works [56, 57]. Another innovation in [56] is the introduction of a new
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loss function that leads the neural network to learn the log likelihood

ratio directly:

L(f) =
∑
i

(1− yi)(ef(xi) − 1)− yi f(xi). (2)

In the asymptotic limit (sufficient training data and network/training

flexibility), one could then interpret the neural network output

as log likelihood ratio which has analytic formulae for computing

p-values [58–60]. Interpreting the output directly as a test statistic/

likelihood ratio estimator has also been used for a variety of other

studies related to simulation-based inference and domain adaptation

[17, 61–70].

The approaches mentioned above are nearly signal model inde-

pendent. The only signal model dependence is in the selection of the

targeted phase space and analysis features. This is particularly ben-

eficial for non-resonant new physics,c where there are fewer methods

available. However, there is a strong dependence on the background

model. Any significant mis-modeling of the background spectrum

will be flagged as an anomaly. Therefore, potential signals need to

be larger than these mis-modelings and the false positive rate must

be calibrated to account for the expected deviations between data

and simulation.

4. Supervised Approaches

The remainder of this chapter focuses on searches that do not use dif-

ferences between background simulations and data to directly achieve

signal sensitivity. Many of the following methods still heavily rely on

background simulations for the most natural background calibration

method, but that is not discussed further here. In general, techniques

can be classified based on their level of supervision. Fully supervised

approaches use data with labels of signal and background for the yi
in their loss functions. Unsupervised approaches have no per-instance

labels and must resort to other methods of identifying structure in

cThis may not apply to cases of strong signal-background interference.
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data. A variety of methods called weakly supervised are based on

incomplete label information and will be introduced in Sec. 6.

One strategy for supervised anomaly detection is to train with

a signal simulation that includes a variety of individual signal pro-

cesses. This idea was explored in one of the first modern machine

learning based anomaly detection procedures called anti-QCD tag-

ging [38] (see also [71]). Instead of using a discrete set of signal models

[72], a signal dataset was generated using flat matrix elements. This

means that there is no special energy scale in the problem and there is

broad coverage for all of the kinematic configurations that can occur

with a certain number of final state objects. In this way, no particu-

lar signal masses were preferred, but the classifier was able to learn

generic features of a large class of signal models such as the number

of prongs within a jet. A generic feature of anomaly detection that

was well-characterized in [38] is that these approaches are less sen-

sitive than dedicated searches for targeted signal models. However,

anomaly detection methods can be more sensitive than dedicated

searches for non-targeted signal models.

5. Unsupervised Approaches

Unsupervised methods do not use per-instance labels. The strat-

egy of these approaches is to identify events that are unlike typical

background events. One way to do this would be to learn the den-

sity pbackground(x) and then consider events with pbackground(x)� 1.

Learning high-dimensional densities is difficult and so this has not

yet been studied.d Instead, the approaches that have been studied so

far use compression methods (see also representation learning [73]).

Two networks f and g encode and decode data, respectively. These

networks are trained to be near inverses of each other: f(g(x)) ≈ x.

The target of f is regularized so that the compression is lossy. The

idea is that events with f(g(x)) ≈ x should be common and thus

dDensity estimation has been studied in the context of likelihood ratio estima-
tion [16].
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ignored while events with f(g(x)) far from x are anomaly candi-

dates. This strategy has been studied in the context of autoencoders

(AE)/variational autoencoders (VAE [74, 75]) [76–82] and genera-

tive adversarial networks (GANs [83]) [84]. Figure 2 illustrates the

method for vanilla autoencoders. The lossy compression is achieved

by limiting the expressivity of f and the dimensionality of f(x).

Both f and g are trained at the same time when minimizing the loss

|f(g(x)) − x|2. A classifier is created using the loss (“reconstruction

error”). Ideally, typical events should have a lower reconstruction

loss than events that were not used or at least minimally present in

the training of the autoencoder. This is explicitly demonstrated in

the bottom plot of Fig. 2, where the more typical generic QCD jet

processes have a much lower reconstruction loss than top quark pair

production or gluino production. Other strategies for regulating the

latent space are possible, such as requiring it to be of a particular

form. Variational autoencoders (VAEs) use this strategy, where the

latent space is typically required to be a multivariate Gaussian dis-

tribution. The anomaly detection based on a GAN presented in [84]

is conceptually similar to the way AEs are used for anomaly detec-

tion, but the model is trained using a bidrectional GAN [85] instead

of a variational autoencoder setup. Another unsupervised approach

using a clustering method was proposed in [86].

A challenge with unsupervised approaches is that the signal may

not occupy regions of low pbackground. If instead, the signal is an over-

density in a region of relatively high background probability density,

then it may be well-reconstructed by compression methods. Addi-

tionally, a feature of some compression methods is that high recon-

struction loss may not necessarily correspond to low pbackground. For

example, consider a simple autoencoder trained to compress two

dimensions into one dimension. Further suppose that the background

is a bivariate Gaussian. A limited capacity network may simply learn

f(x0, x1) = ρσ1
σ0
(x0 − μ0) + μ1, where μi, σi are the mean and stan-

dard deviation of the ith direction and ρ is the correlation coefficient.

This function is the minimum variance unbiased estimator of x1 given

x0. If the signal is also a Gaussian with mean far from the line defined

by f(x), then it will have a poor reconstruction error. However, the
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Fig. 2. An illustration of a vanilla autoencoder-based anomaly detection strat-
egy. The top diagram illustrates how the image of a jet is compressed and then
restored with two neural networks. The bottom plot is the reconstruction error
|f(g(x))− x|2, which is higher for processes that were not used or at least mini-
mally present in the training of the autoencoder. Figure reproduced from [76].

signal could also be on the line, but from the (μ0, μ1). This would

correspond to a very low pbackground, but also a low reconstruction

error. Despite these challenges, AEs are popular in HEP and beyond

(see [87] and papers that cite it) and are sufficiently generic that

they may be complementary to the approaches described in the next

sections.

6. Weak Supervision and Topic Modeling

One challenge with the unsupervised methods in the previous section

is that they do not explicitly use the (potential) presence of signal in
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the data. This section will introduce methods that make use of the

presence of the signal by using supervised learning without explicit

per instance labels. One setting where this is possible is the case of

mixed samples. Suppose that there are two sets of dataM0 andM1,

each of which is a mixture of S and B. If the per-instance labels are

known, then one can train a fully supervised classifier. However, if

these sets are from real events, then per-instance labels are unknown.

A variety of weakly supervised methods have been developed for this

setting [18, 88–90]. The first of these posited that the fractions t

of signal in each dataset are known. Then, one can train a weakly

supervised classifier:

fweak = argminf ′:Rn→[0,1]L
(

N∑
i=1

f ′(xi)
N

− t
)
, (3)

which should be contrasted with the fully supervised case:

fsupervised = argminf ′:Rn→[0,1]

N∑
i=1

L (f ′(xi)− yi) , (4)

where in both cases, L is a loss function such as mean squared error.

This modification to the loss is effective, but (a) requires significant

modification to the learning setup (learn on average instead of per-

instance) and (b) requires the fractions to be known.e An alternative

approach is the classification without labels (CWoLa) [18] framework.

In this setup, one assigns labels to each event and then performs

supervised learning with the assigned labels. In particular, all events

fromM0 are labeled 0 and all the events inM1 are labeled 1. This is

illustrated in the left part of Fig. 3. One can show that if the CWoLa

classifier is optimal for distinguishingM0 from M1, then it will be

also optimal at distinguishingf S from B. The right plot of Fig. 3

shows that the CWoLa classifier achieves the same performance as

eThe label fractions need not be known exactly for optimal performance [90].
fIf 0 ↔ 1, then one may learn to anti-tag the signal. This simply then requires
that one know which ofM0 orM1 is expected to have a higher signal proportion.
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Fig. 3. The left diagram illustrates the setup of the CWoLa method and the
right plot demonstrates that the weakly supervised CWoLa can achieve the same
performance as a fully supervised classifier trained with the same features. In the
right plot, a better classifier would be up and to the right (gluon jet rejection is
one minus the gluon jet efficiency). Figure reproduced from [18].

a fully supervised classifier on a particular quark-jet vs. gluon-jet

classification task. This is particularly powerful because the fully

supervised classifier has per instance labels yi while the CWoLa clas-

sifier has far less information. Before proceeding, it is important to

consider the assumptions of the CWoLa method. Most importantly,

this approach only works if the differences between p(S|M0) and

p(S|M1) (similarly for the background) are small compared to the

difference between p(S|M0) and p(B|M0). In other words, the sig-

nal events from M0 and M1 should be statistically identical (and

the same for the background). The only other requirement is that

the signal fractions should not be the same. The effective statistics

available to learn scale like nsignal(y0− y1) so the closer the fractions

y0 and y1 are to each other, the worse the classification performance

will be. In the limit y0 → 0 and y1 → 1, CWoLa simply approaches

fully supervised classification. Note that in order to make the per-

formance curve in Fig. 3, one needs at least a small set of labeled

examples or the class fractions. If one does not need to know the

actual performance, this is not necessary.
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A variety of related concepts have been introduced for similar pur-

poses. The sPlot [91, 92] method learns to decompose a dataset into

its constituent processes without per-instance labels, but it requires

knowing p(x|S) and p(x|B) for at least a subset of the features.

The topic modeling introduced in [93] and further studied in [93–96]

relaxes this requirement by extracting information directly from data

using extreme regions of phase space that are nearly pure S or

B. Another variation that seeks to solve the challenge of different

classes sharing common features is the Latent Dirichlet Allocation

(LDA) [14] approach to mixed-membership models in [15, 97].

There are many ways to combine the weakly supervised methods

described above with anomaly detection. One approach combines

CWoLa with a bump hunt in a feature mres as illustrated in Fig. 4.

In particular, two mixed samples are constructed by using a signal

region around a hypothetical resonance and a sideband region. The

sideband region should be as close as possible to the signal region

in order to ensure that the background is nearly the same in the

two mixed samples. The other features used for training the CWoLa

classifier need to be nearly independent of mres. The bottom plots in

Fig. 4 illustrates the performance of this “CWoLa hunting” method

to a dijet search at the LHC using the dijet mass asmres and other jet

substructure features to train the CWoLa classifier. In the absence

of an injected signal, the p-values are consistent with uniform while

when there is signal injected, the initially 1.5σ excess is automati-

cally enhanced to a 7σ potential discovery. In order to make the most

use of the data and to avoid a large trials factor, this search involves

a complex k-fold cross-training procedure. The look elsewhere effect

would be significant if the same data were used for training and

applying the CWoLa classifier as local fluctuations would be ampli-

fied. One way around this is to divide the data in half and train one

one part and test on the other. The local fluctuations in both halves

are uncorrelated and thus there is no additional trails factor aside

from the one in the scan of mres. This procedure is extended to k-fold

in [19, 20] to avoid using only half of the data.
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discovery.
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7. Hybrid Approaches

One of the main limitations of the CWoLa hunting method is

that the features used for training the CWoLa classifier must be

nearly independent of mres. One hybrid solution proposed to miti-

gate this problem is ANODE [16]. In this method, one first learns

psideband(x|mres) in the sideband regions and then psignal region(x|m)

from the signal region. The ratio of the interpolated psideband(x|mres)

to psignal region(x|m) serves as an asymptotically optimal likelihood

ratio estimator. There have been significant advances in direct den-

sity estimation and the demonstration of ANODE in [16] makes use

of masked autoregressive flows [98], a type of normalizing flow [99].

Density learning is unsupervised because there are no labels and one

typically learns p via a maximum likelihood loss function. The main

challenge in direct density estimation is that one needs a neural net-

work that integrates to unity. In the normalizing flows setting, this

is accomplished by starting with a known density (often a Gaussian)

and then applying a series of variable changes with tractable Jaco-

bians. In ANODE, one never compares signal region and sideband

region directly and so it is more robust to correlations between x and

mres; in fact,mres can be one of the dimensions of x. This is illustrated

in Fig. 5, which shows that when correlations are artificially intro-

duced to spoil the CWoLa hunting approach, ANODE is still able to

provide signal sensitivity. With advances in neural density estima-

tion (see e.g. Neural Autoregressive Flows [100] and Neural Spline

Flows [101]), it is likely that methods like ANODE will continue to

improve. A key difference for HEP compared to industrial applica-

tions is that one needs quantitatively precise density estimation — it

is not good enough to produce examples that qualitatively look real-

istic (as in the case of cat and celebrity pictures — see e.g. https://

thispersondoesnotexist.com).

Another hybrid solution is Simulation Assisted Likelihood-free

Anomaly Detection (SALAD) [17] (see also SA-CWoLa [102]).

The motivation of this method is that while simulations are only

an approximation to nature, they do encode significant physics

https://thispersondoesnotexist.com
https://thispersondoesnotexist.com
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Fig. 5. The performance of CWoLa and ANODE classifiers on a dataset with
artificial correlations. The CWoLa classifier learns a non-trivial function for signal
region vs. sideband region and as a result has only random performance on the
signal. In contrast, by learning the numerator and denominator of the likelihood
ratio separately, ANODE is more robust to such correlations (but still worse than
the dedicated fully supervised tagger). Figure reproduced from [16].

information that it would be useful to incorporate into a classi-

fier. To this end, a parameterized reweighting function w(x|m) ≈
pdata(x|m)/psimulation(x|m) is learned in sidebands and then interpo-

lated to the signal region [61]. Any classifier can then be used to

distinguish the reweighted simulation in the signal region from the

data in that region. If the reweighting is effective, the result should

not depend on the simulation. At the same time, the closer the ini-

tial simulation is to the data, the less reliant the method is on an

effective learning and interpolation for w(x|m).

A third hybrid method is Tag N’ Train (TNT) [103], which com-

bined autoencoders with CWoLa. The motivation is that in the origi-

nal CWoLa hunting method, the two mixed samples are nearly 100%

of a single class (background) so as a first step, a weak classifier (using

an autoencoder — see Sec. 5) slightly purifies the samples before using

CWoLa to train a more powerful classifier. As discussed in Sec. 6, the

purer the samples, the larger the effective statistics for the CWoLa

training and thus the more powerful it will be as a classifier.
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It is likely that no one method will be able to cover every scenario

and so a diversity of approaches will be needed to ensure broad cov-

erage. Mixing different approaches may provide further advantages

over single algorithms using either entirely supervised or entirely

un/weakly supervised methods.

8. Results with Collider Data

This chapter will close with a highlight of two recent results from the

CMS and ATLAS Collaborations. Figure 6 presents the first applica-

tion of CWoLag in a physics analysis. The CWoLa classifier is used

to distinguish generic multijet events from tt̄ production and uses
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Fig. 6. A CWoLa classifier (Boosted Decision Tree) used to purify the tt̄ + bb̄
final state by the CMS Collaboration. Figures reproduced from [104].

gSee [95] for the first measurement to study the related idea of topic modeling.
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two regions with O(10%) signal purity. The ultimate goal of this

analysis is to study the tt̄ + bb̄ process that is an inherently inter-

esting probe of the strong force and is also an important process

for Higgs physics in the tt̄+ h final state. Multijet backgrounds are

exceptionally difficult to simulate accurately and the CWoLa clas-

sifier provides a solution to train directly from data. While not an

anomaly detection search, this analysis demonstrates the feasibility

of learning directly from unlabeled data.

The first machine learning anomaly detection result with data

is presented in Fig. 7 from the ATLAS Collaboration. This search

made use of the CWoLa hunting approach described in Sec. 6 and

targets a dijet final state. This final state is complex and challenging

to model, so data-driven methods are critical. When the jets are due

to hadronically decaying particles that are much lighter than the

target resonance mass, their decay products will be collimated and

fully contained inside single jets. The substructure of these jets can

be exploited to enhance the signal sensitivity.

As the first search of its kind, a limited feature space (two-

dimensional) was used to help with the technical and sociological

integration of this new methodology into the experimental program.

With a two-dimensional feature space, the classifier output can be

directly visualized as an image. Examples of these images are shown

in the top plots of Fig. 7, where the automatic identification of an

injected signal is demonstrated. The bottom plot of Fig. 7 shows

that for particular models, the CWoLa hunting analysis is able to set

the strongest limits for particular models. One of the most interest-

ing challenges that is like no other analysis is that the event selection

depends on the data. This means that for every injected signal model,

for every signal strength, the entire CWoLa hunting procedure has

to be rerun. Aside from making it challenging to recast this analy-

sis, a large number of neural networks (O(104)) must be trained to

produce Fig. 7.

The methods discussed in this section have not yet resulted in the

detection of an anomaly in collider data at the time of writing, but

this is only the beginning of an expanding program that will produce

exciting physics results for many years to come.
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Fig. 7. Plots from the recent CWoLa hunting search performed by the ATLAS
Collaboration [105]. The top two plots show the CWoLa classifier output in one
particular signal region on the left with no injected signal and with an injected
signal with masses indicated by the cross in the right plot. The CWoLa classifier is
able to automatically identify the signal-like region. While there was no significant
evidence for new particles in this first search, the ATLAS Collaboration has set
limits on the production cross section for particular models.

9. Conclusions and Outlook

Given the current lack of convincing evidence for new fundamen-

tal structure from HEP experiments, it is critical that the program
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of dedicated searches be complemented with more model agnostic

methods. The methods presented in this chapter represent a snap-

shoth of the rapidly developing area of machine learning for anomaly

detection in HEP.

To help catalyze new ideas in anomaly detection for HEP,i the

LHC Olympics 2020 was developed [108]. This data challenge sets

up a realistic environment where there is “simulation” and “data”,

where both are generated on a computer, but possibly from different

physics programs. Furthermore, the “data” comes without labels and

may contain some amount of signal. A variety of methods have been

deployed to these datasets, exposing interesting features of the var-

ious procedures and helping to prepare for analysis with real data.

With the first results from collider data presented in Sec. 8, the field

enters a new era where methods must be adapted and modified to

meet the needs of real data and new methods must be developed to

ensure broad coverage.

Addressing the conceptual, computational, and other challenges

associated with the growing field of machine learning-assisted

anomaly detection in HEP will make for an exciting research pro-

grams in the years ahead.

Acknowledgments

This work was supported by the U.S. Department of Energy, Office

of Science under contract DE-AC02-05CH11231. I thank Kees Benk-

endorfer, Jack Collins, Aviv Cukierman, Gregor Kasieczka, Luc Le

Pottier, and David Shih for countless discussions about anomaly

detection that have contributed to the framing presented in this

hSee [106] for a more updated list of papers in this area.
iA parallel effort under development is described in [107]. This dataset is planned
to be a concoction of SM processes and uses high-level objects instead of low-level
hadrons as in the LHC Olympics. While the current plan does not include multiple
generators to emulate “data” and “simulation”, the large number of events and
heterogeneous composition of physics processes offers an interesting complement
to the LHC Olympics.



December 14, 2021 16:14 Artificial Intelligence for High Energy Physics 9in x 6in b4322-ch04 page 106

106 B. Nachman

chapter. Furthermore, I thank Gregor Kasieczka for detailed com-

ments on the manuscript. I also thank Anders Andreassen, Patrick

Komiske, Eric Metodiev, Matt Schwartz, and Jesse Thaler for many

helpful discussions about learning from mixed samples.

References

[1] CMS Collaboration, S. Chatrchyan et al., Observation of a new boson at
a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B
716 (2012) 30–61; arXiv:1207.7235.

[2] ATLAS Collaboration, G. Aad et al., Observation of a new particle in the
search for the standard model Higgs boson with the ATLAS detector at
the LHC, Phys. Lett. B 716 (2012) 1–29; arXiv:1207.7214.

[3] A. L. Read, Presentation of search results: The CLs technique, J. Phys. G
28 (2002) 2693–2704.

[4] J. Neyman and E. S. Pearson, On the problem of the most efficient tests
of statistical hypotheses, Phil. Trans. R. Soc. Lond. A 231 (1933) 289.

[5] B. Nachman, A guide for deploying deep learning in LHC searches: How
to achieve optimality and account for uncertainty, SciPost Phys. 8 (2020)
090; arXiv:1909.03081.

[6] P. De Castro and T. Dorigo, INFERNO: Inference-aware neural optimisa-
tion, Comput. Phys. Commun. 244 (2019) 170–179; arXiv:1806.04743.
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High energy physics (HEP) experiments involve large and complex detec-
tion apparatuses, which need to be operated with high availability to
profit at best from the expensive beam time provided by modern particle
accelerators. HEP data analysis relies on well understood experimental
equipment to chase statistically rare phenomena. These requirements call
for constant and reliable monitoring to spot potential malfunctioning.
For this reason, HEP collaborations build complex data quality mon-
itoring (DQM) infrastructures and procedures, targeting prompt iden-
tification of anomalies arising from either hardware problems or data
processing. The HEP monitoring problems are usually challenging for
conventional statistical-based methods due to their inherently multidi-
mensional nature. The goal of this chapter is to explore how machine
learning (ML) methods of anomaly detection can help improve the exist-
ing DQM pipeline, under the specific constraints derived from the crit-
ical role of data validation: interpretability of the results and long-term
maintainability of the system.

1. Introduction

At the Large Hadron Collider (LHC), the physics data acquisition

is a multiple steps process, which involves very complex and large

115
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hardware (both detector and accelerator) and software systems. The

detector components collect raw data about the interaction of the

particles with the sensitive layers and the trigger system discards

the vast majority of bunch collisions. Due to the size and complexity

of these systems, transitory or permanent failures of components are

unavoidable. Such failures produce erroneous data. Stringent quality

criteria must be imposed so that only certifiably good data are passed

further to physics analysis. This certification process is called data

quality monitoring (DQM) and is a long-established vital procedure

in any modern large-scale high energy physics (HEP) experiment.

Failures are not only unavoidable but relatively frequent. For

instance, 10%a of the detector components may manifest problems,

while 2%b of the acquired data is discarded. The relatively high figure

of detector components failures is not mostly due to significant, easily

detectable, malfunctions of the detector as a whole, but to localized

problems. Thanks to the essential redundancy in the detector, in

most cases, entirely relevant physics analysis can still be achieved on

the data taken by the not-faulty parts of the detector. However, all

operational imperfections must be annotated. Thus, a critical goal of

the monitoring system, besides the sensitivity, is to be as specific as

possible in spotting the defects.

The ever increasing detector complexity and the volume of moni-

toring data call for a paradigm shift in HEP monitoring, as the tech-

niques in use are swiftly reaching their limits. Machine learning (ML)

techniques promise a breakthrough, towards gradually automating

the DQM scrutiny and extending the monitoring coverage.

The successes of the neural networks in quality control applica-

tions encourage its application to other, more sensitive challenges in

HEP, e.g. searches of physics beyond the standard model (Chapter 4).

The goal of this chapter is to explore how ML methods of anomaly

detection can help improving the existing DQM pipeline, under the

specific constraints derived from the critical role of data validation:

aCalculations are based on the CMS drift tube sub-detector data [1].
bCalculations are based on the CMS data certification procedure [2].
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interpretability of the results, and long-term maintainability of the

system.

To be concrete, we will mostly consider case studies from the

CMS DQM. However, the general setting and the challenges are very

similar in the other LHC experiments. For more details, see [3–5] for

the presentation of ATLAS, LHCb and ALICE DQM procedures.

The chapter presents increasingly difficult use cases. In summary,

we show that anomaly detection methods based on deep learning are

both efficient and effective. The proposed methods are precisely spot-

ting the problematic data and provide some level of interpretability,

making them acceptable to the DQM production system.

The rest of the chapter is organized as follows. Section 2 provides

a general outline of the CMS-DQM pipeline, followed by a short sur-

vey on ML anomaly detection in Sec. 3. Then, we present the use

cases. They can be divided into two groups. In the first one, the

main difficulty is to model the problem, based on domain knowl-

edge. Here, standard tools and techniques, i.e. CNNs (Sec. 4.1), deep

autoencoders (Secs. 4.2, 4.3 and 5) and LSTMs (Sec. 7) suffice. In

contrast to these, we will also cover a use case corresponding to an

open issue for ML research: adapting the recent developments in

variational inference to anomaly detection (Sec. 6).

2. Data Quality Monitoring for the LHC Experiments

In this section, we overview the DQM scrutiny in the LHC experi-

ments. We focus on the CMS experiment as we are most familiar with

it. For showing a full picture, Sec. 2.5 presents an out-of-experiment

example of monitoring the accelerator complex.

2.1. Overview

The LHC physics analyzes are performed only on good-quality data

coming from the LHC collisions. Hence, prompt and accurate identi-

fication and flagging of the problematic data is required. In the CMS

collaboration, imposing quality criteria is performed by the two main

domains of the monitoring chain.
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• Online monitoring provides live feedback on the quality of the data

while they are being acquired, allowing the operator crew to react

to unforeseen issues identified by the monitoring application.

• Offline monitoring, also referred to as data certification, was

designed to certify the quality of the data collected and stored on

disk using centralized processing (referred to as the event recon-

struction, that converts detector hits into a list of detected parti-

cles, each associated with energy and direction).

The first online step is a prerequisite to an offline phase, in which

detector experts monitor the data collected in a given period (typi-

cally a week) and decide which portion of the collected dataset meets

the acceptance criteria. However, the two validation steps differ in

three main aspects.

• The latency of the evaluation process. Online monitoring is

required to identify anomalies in quasi-real-time to allow the opera-

tors to intervene promptly while the offline procedure has a typical

timescale of several days.

• The fraction of the data which they have access to. Generally,

CMS online processing runs at a rate of 100 Hz, corresponding

to approximately 10% of the data written to disk for analysis (in

order not to flood the monitoring system). The offline processing

takes as input the full set of events accepted by the trigger system

(∼1 kHz of collisions).

• The granularity of the monitored detector components. While

offline monitoring requires identifying the only overall status of

the sub-detectors, online should determine faulty sub-detector

elements.

Despite their specific characteristics, these two steps rely on the

same failure detection strategy: the scrutiny of a long list of prede-

fined statistical tests, selected to detect a set of possible known failure

modes. The results of these tests are presented as a set of multidi-

mensional histograms (mostly one-dimensional) for experts’ conve-

nience. The experts compare each distribution to a corresponding

reference, derived from good-quality data in line with predetermined
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validation guidelines. The good-quality data comes from the periods

of the detector operating without any problems. The experts also

look for unexpected effects that could affect analysis level quantities,

e.g. noise spikes, dead areas or detector problematic calibrations.

2.2. Experiment online legacy methods:

The example of CMS drift tubes

The CMS failure detection algorithms focus on the interpretation

of detector data organized in the form of histograms. The CMS

DQM visualization tool, described in [6], displays those histograms

organized geographically. The anomaly detection performed by the

experts is very often related to identifying and discriminating healthy

patterns from problematic ones. If such regions appear during the

detector operation, the collaboration needs to know precisely when

the problem appeared and how to intervene. Detector experts input

their knowledge of the detector into binary classification algorithms

targeting common and foreseen failure scenarios.

A class of these problems is based on counting the number of

electronic hits per read-out channel. A concrete example could be the

data recorded by the CMS drift tube (DT) chambers of the muon

spectrometer, outlined in Fig. 1. It is an excellent illustration of an

approach widely used by the CMS sub-detector communities and is

referred to as occupancy monitoring.

The DT occupancy matrix can be viewed as a varying size two-

dimensional array organized with a layer (row) and channel (column)

indices. The method used in the online monitoring production sys-

tem targets a specific failure scenario, by far the most frequent: a

region of cells not providing any electronic signal, large enough to

affect the track reconstruction in the chamber. It is usually related

to temporary problems in the readout electronics. Examples of this

kind of failures are shown in Figs. 1(b) and 1(c). The legacy strategy

simply counts the area of dead (yielding exactly zero hits) regions

without considering spatial proximity information. The strategy eval-

uates samples for each one of 250 DT chambers and assembles them

in so-called summary plots. In this manner, human shifter, i.e. a
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(a)

(b)

(c)

Fig. 1. Example of visualization of occupancy data for three CMS DT chambers.
The data in (a) manifest the expected behavior despite having a dead channel in
layer 1. The chamber in the plot in (b) instead shows regions of low occupancy
across the 12 layers and should be classified as faulty. Figure (c) suffers from a
region in layer 1 with lower efficiency, which should be identified as anomalous.
From [1].

trained expert monitoring plots in real time, has a broad overview

of the sub-detector status in one or a few plots. The first response

human decision is based on the summary plot but the plot informa-

tion is determined by an algorithm, such as the one described above,

subject to performance fluctuations due to, for example, changing

running conditions. For instance, the DT legacy occupancy monitor-

ing strategy regards Fig. 1 instance (a) as non-problematic, correctly

classifies the chamber in Fig. 1(b) as anomalous, but it is not sensitive

enough to flag the chamber in Fig. 1(c).

The current level of automation extends to the infrastructure that

creates the plots and the superposition to the existing reference. For
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some sub-detectors, a statistical test (e.g. Kolmogorov–Smirnov, χ2)

is performed, but the interpretation and ultimate decision are again

taken by the human shifter.

2.3. Legacy trigger rate monitoring

A further category of online monitoring is trigger rate monitor-

ing. The trigger system is an essential part of the LHC acquisition

process and the start of the physics event selection process. The LHC

operates at the remarkable collision rate of 40MHz and each event

corresponds up to several MBs of data in unprocessed form. Due

to understandable storage constraints and technological limitations,

each experiment is required to reduce the number of recorded data.

At CMS, a hierarchical set of trigger algorithms [7] are designed

to reduce the event rate while preserving the physics reach of the

experiment. The CMS trigger system is structured in two stages using

an increasingly complex information and more refined algorithms.

The Level 1 (L1) Trigger is implemented on custom electronics and

reduces the 40 MHz input to a 100 kHz rate. High-level trigger (HLT)

is a collision reconstruction software running on a computer farm,

which scales the 100 kHz rate output of L1 Trigger down to 1 kHz.

The HLT nodes (or paths) are seeded by the events selected by a set

of L1 Trigger outputs.

The event acceptance rate is affected in the presence of several

issues, e.g. detector malfunctions. Depending on the nature of the

problem, the rate associated with specific paths could change to unac-

ceptable levels. In such cases, the system should alert the shift crew,

calling for problem diagnosis and intervention. Critical cases include

dropping to zero or increasing to extreme values.

The rate of the physics processes determining the trigger rate

decreases with the luminosity and, as a consequence, with pile-up

(PU), a number of proton–proton collisions in the same event. Conse-

quently, the recorded collision rates decrease as well as they primarily

depend on the luminosity of the beams. In practice, trigger monitor-

ing predicts an average rate per bunch-crossing as a function of an

average measurement of the PU for each period. These predictions

are then compared to the recorded rates as data are being collected,
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Fig. 2. Observed trigger rates as a function of average PU (blue dots), compared
to the predicted dependence (red line) and its uncertainty (in the orange band)
generated using the monitoring software. The plots above show an example of a
well (left) and poorly (right) predicting model. From [8].

spotting small and unexpected deviations. In Fig. 2, the red lines cor-

respond to the predictions, while the blue dots are the actual values

readout. The model describing the expectation is derived from a best-

fit approximation (i.e. fitting the rate values as a function of average

PU) limited to linear, quadratic or exponential regression. The pre-

diction models are generated ahead of time using recent, good-quality

data. The final regression model is selected based on least-squares

minimization, with a bias towards more straightforward (i.e. linear)

fits; each trigger node is fitted independently from others. The mod-

els are updated periodically (approximately every other month) to

account for changes, e.g. in the sub-detectors, trigger algorithms or

calibration updates.

2.4. Experiment offline data certification

The data certification step performs routine physics level checks on

physics objects, i.e. hadrons, leptons, photons, and so forth when

experts look for anomalies in the statistical distributions of funda-

mental physics quantities. In CMS collaboration, the monitoring is

based on histograms produced during the offline data reprocessing.

The outcome of this task is the classification of collected datasets

into data usable for physics analysis (good data) and data to be dis-

carded (bad data). A finer granularity is also possible but we will not

enter in the details here.
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The collision data are collected as a series of time blocks. In CMS,

these blocks are called luminosity sections (LS), corresponding to

approximately 23 s of consecutive data. The LS is indivisible and if

something goes wrong in a given LS, the full block is rejected.

Since the offline reconstruction is more accurate than what is

available online, the data certification can be more effective in spot-

ting problems. Now, at the CMS experiment, the procedure is com-

pletely human-based.

2.5. Accelerator monitoring example

with sensor data

Besides relying on physics data, the sensor (non-collision) data is

commonly used for monitoring the complex apparatuses in other

aspects of HEP, e.g. the detector magnets, the detector gas systems,

cryogenics. Apart from monitoring the experiments, the CERN LHC

accelerator complex needs dedicated monitoring of the accelerators

itself [9]. In this subsection, we will overview one such application.

A critical component of the LHC is its superconducting magnets

which store a substantial amount of magnetic energy. Consequently,

the cables responsible for powering the system conduct the current

at the level of 12 kA in the magnetic field of 8.5 T. Those supercon-

ducting cables are not cryostable thus a random and local tempera-

ture change can lead to a sudden transition to a normal conduction

state [10], known as a quench. During operation, the temperature

can locally elevate above a critical value and lead to cable damage.

Quenches may occur in various circumstances but some of the most

common ones take place during a so-called magnet training. At the

first powering during ramping up a current, magnet loses supercon-

ducting state long before reaching the expected critical current. At

the next attempt of powering, the current that could be reached

before quench is higher. The process continues during succeeding

attempts, and the maximum current that could be reached increases

quench after the quench, slowly approaching a plateau.

Since most of the high-current superconducting magnets used in

the LHC are not self-protected the quench protection system (QPS)
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was introduced [11, 12]. This system consists of a quench detection

system (QDS) and actuators which are activated once a quench is

detected. A superconducting magnet has zero resistance and a rela-

tively large inductance. When a constant current flows through the

magnet, the total voltage across it is zero. With quench the resistance

becomes non-zero, hence, a voltage develops over the resistive part.

The QPS uses the measured voltage to detect the quench. However,

during normal operation the inductive voltage may be above the

resistive voltage detection threshold and thus must be compensated

to prevent the QDS from spurious triggering. The most important

part of the quench detector is an electronic module for extracting

the resistive part of the total voltage. The triggers are transmitted

to other protection devices via current loops to initiate a safe shut-

down of the electric circuits supplying the magnets.

A quench candidate is validated as a real quench or noise by a

timing discriminator. The alarm is raised when the voltage resistive

component is higher than a threshold for the time interval longer than

a validation time. A desirable extension to the current implementa-

tion is a system modeling and predicting voltage readouts allowing

for faster detection and prevention of quench events.

3. Machine Learning Anomaly Detection

for HEP DQM

Anomaly detection is one of the oldest problems of statistics. Accord-

ingly, the most principled approach to anomaly detection is density

estimation. However, simple parametric univariate density estima-

tion of the normal behavior is doomed to failure in moderate to

high dimension [13]. ML anomaly detection has become the stan-

dard alternative in this case. In very broad terms, the ML anomaly

detection addresses the dimensionality issue with three approaches

of increasing complexity: learning a decision function, which is much

simpler than full density estimation; learning a representation, which

projects (usually non linearly) the data in a more convenient space,

and finally tackling the dimensionality issues of parametric density

estimation with variational methods.
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These three approaches have been hybridized with neural net-

works exploited for their capacity of universal function approxima-

tors. As a consequence, the ML methods of anomaly detection have

significantly changed in the last years. While a relatively recent gen-

eral survey on anomaly detection like [14] describes a wide variety

of specific methods, the present trend is to adapt general-purpose

neural network based systems, such as the various flavors of deep

neural networks (DNN), autoencoders and generative models [15], to

anomaly detection. This chapter illustrates the benefits of this trend.

Generally speaking, for our case studies, neural network-based solu-

tions provide satisfactory results when compared to pre-deep learning

reference methods.

HEP DQM offers very interesting tests for the applicability of

these new trends to real-world data. In HEP DQM, the data always

exhibit significant dimensionality, making the problems non-trivial.

Also, the operational requirements are high: on computational effi-

ciency, given the vast volume of data to monitor; on performance,

given the fact that the data are generally noisy; finally, but most

importantly, the solution must be usable in a production system,

which implies simplicity, for implementation and debugging purpose,

as well as credibility, supported by some level of interpretability.

An essential question is which type of learning is made possible by

the data. Anomaly detection implies the lack of a complete set of rep-

resentative examples of all possible behaviors. If such representative

examples are available, anomaly detection reduces to binary clas-

sification (supervised learning). Semi-supervised anomaly detection

assumes the availability of both examples of the regular behavior and

unlabeled ones; unsupervised anomaly detection assumes no labels at

all. Unitary (or one-class learning) is the case where only examples

of the regular behavior are exploited at training time.

Fully unsupervised approaches based on the neighborhood (e.g.

distance based outlier analysis), topological density estimation (e.g.

Local Outlier Factor and its variants), or clustering [16] miss at least

one of the listed requirements. These methods have quadratic com-

plexity. Moreover, they poorly perform in high dimensions because

of the curse of dimensionality [17]: in high dimensions, all pairs of
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points become almost equidistant [18, 19]. But the most important

issue is that a simple geometric distance in the feature space does

not define a useful similarity metric in our case.

Learning a decision function through binary classification is a

valid option for DQM when specific anomalous scenarios have been

extensively studied. While training times might be long, the infer-

ence is usually fast. Typically, the experiments keep copious archives

of subdetector-specific quality-related quantities, e.g. the CMS DT

occupancy plots. Convolutional neural networks (CNNs) [20] are

a natural choice for image-like inputs, as they integrate the basic

knowledge of the topological structure of the input dimensions and

learn the optimal filters that minimize the objective error.

However, there are good motivations for the unitary (one-class)

approach. Mainly, the fact that examples and/or labels of anomalies

may not be natively available. In the next sections, we will show

examples where requesting expert labeling makes sense or not. The

pre-deep learning reference methods for this approach are μ-SVM [21]

and isolation forest [22, 23].

Deep architectures have become increasingly popular in semi-

supervised anomaly detection [15]. They cope with the issues of con-

ventional methods discussed in the previous paragraphs. The need for

agnostically learning a representation from the data can be addressed

indirectly by DNNs in a classification or regression context [24], and

can be exploited for semi-supervised anomaly detection [25]. However,

the information related to anomaly can be lost if it is not relevant

for the specific task they address. The better alternative is learning

a direct encoding, with an autoencoder. DNN-based autoencoders

[26] are parametric maps from inputs to their representations and are

trained to perform an approximate identity mapping between their

input and output layers. The network maps an input to a usually

low-dimensional representation. Autoencoders are particularly suit-

able to anomaly detection: when trained on the good-quality samples,

unseen faulty samples tend to yield sub-optimal latent representations

and, as a consequence, decoder outputs, indicating that a sample is

likely generated by a different process. Furthermore, the encoded rep-

resentation space may distinguish the anomalous regions alone.
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Until relatively recently, the autoencoding approach was

restricted to learning a deterministic map of the inputs to the rep-

resentation, because the inference step with probabilistic representa-

tions would suffer from high computational cost [27]. A considerable

body of work has been devoted to regularize the deterministic archi-

tectures, implicitly learning a density model [28].

The dissemination of the generative models, and specifically the

Variational Autoencoder (VAE) [29, 30], offers a more general and

proper pathwhere the learned representation is the variational approx-

imation to the posterior distribution of the latent variables given an

observed input. A straightforward approach for VAE-based anomaly

detection [31] considers a simple VAE and the Monte-Carlo estimate

of the expected reconstruction error. However, [32] discusses two pos-

sible intrinsic limitations. Firstly, because the model is trained only on

inliers, the representation will not be discriminative, and will essen-

tially overfit the normal distribution; besides, the representationmight

even be useless, falling back to the prior [33, 34]. On other grounds,

the general ability of deep generative architectures to point anomalies

using the model likelihood has been questioned [35, 36].

Reference [37] address the former issues with specific hypothe-

ses on the distributions of inliers and anomalies. A more general

approach [32, 38] exposes the model to out-of-distribution examples,

without knowledge of the actual anomaly distribution, with adver-

sarial architectures and ad-hoc regularizations. Overall, neither of

these approaches would meet the robustness and simplicity speci-

fications of our motivating application. In Sec. 6, we show that a

VAE exploiting the natural conditional structure of the problem and

trained with a regular loss function is effective for anomaly detection

in the context of the trigger system monitoring.

4. Detector Components Anomaly Detection with

Convolutional Neural Networks and Autoencoders

In this section, we highlight the results presented in [1]. The goal

of the study is to detect anomalies in the CMS muon spectrometer

based on occupancy plots (see Sec. 2.2). CNNs and convolutional
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autoencoders were used. The approach consists of three complemen-

tary strategies, as summarized in the following table:

Name Motivation Input Type Method

local replace layers supervised CNN

regional extend chambers one-class Autoencoder

global extend chambers unsupervised Autoencoder

4.1. Supervised anomaly detection

The problem was first approached as a supervised image classifi-

cation task, as the plots from Fig. 1 can be interpreted as such.

Moreover, the imbalance between good and bad data is not extreme.

The anomalies are then frequent enough for a sizable set of them to

be used for binary classification. The local method exploits the geo-

graphical information of the detector assessing the misbehavior with

the highest reasonable granularity and then combining the results to

probe different detector components.

The problem falls into a list of known and frequent issues with

the readout electronics. To solve it, the data was labeled by detec-

tor experts. The ground truth was established on a random subset

of the dataset, by visually inspecting the input sample before any

preprocessing: 5668 layers were labeled as good and 612 as bad. Sub-

sequently, the input was preprocessed by fixing the input dimension,

smoothing and normalization. The 9.75% fault rate is a faithful rep-

resentation of the real problem at hand. Out of this set 1134 good

and 123 bad examples were reserved for composing the test set corre-

sponding to 20% of the labeled layers. The input dimension (i.e. the

number of features) was low, allowing for comparison between various

algorithms, including the ones sensitive to the number of features, as

discussed in Sec. 3. The following methods were compared:

• unsupervised learning with a simple statistical indicator, the

variance within the layer, and an image processing technique,

namely the maximum value of the vector obtained by applying

a variant of an edge detection Sobel filter;

• one-class learning, with isolation forest, and μ-SVM;
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• supervised learning, with a fully connected shallow neural net-

work, and a CNNs.

CNN was chosen because the problem at hand is naturally linked

to image processing. In contrast to other traditional algorithms that

may overlook spatial information between pixels, CNN effectively

uses adjacent pixel information to extract relevant variability in data

using learned filters and use a classification layer at the end. The

shallow neural network model matched the number of parameters in

the CNN to obtain a term of comparison for the CNN.

The architecture of the CNN model with one-dimensional convo-

lution layers used in this study is shown in Fig. 3. As the number of

training samples was low, the architecture had to leverage this with a

small number of trainable parameters to limit over-fitting. Rectified

linear units were chosen as activation functions for inner-layer nodes,

while the softmax function is used for the output nodes.

The performance of the various models on a held-out test data

set is shown in Fig. 4. The supervised deep learning outperforms

Outputs

8 hidden units

90 hidden units

10@9x1 feature maps

10@45x1 feature 
maps

47x1 input

3x1 convolutions

5x1 max pooling

Flatten

Fully connected

Fully connected

Fig. 3. Architecture of the CNN model used to target the CMS DT occupancy
monitoring. From [1].
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Fig. 4. ROC curves for different models used in the local approach. From [1].

the other methods. Thanks to the limited number of parameters

of the model, the training converges to a satisfactory result, even

though the number of training samples was small. Although the area

under the curve (AUC) of the fully-connected SNN is comparable to

the one of CNN, the initial edge detection filter provides marginal

improvement. The edge detection filters to learn were not simple

contrasts, as shown by the poor results of the Sobel filter method.

The limited performance of the isolation forest is likely to come from

the violation of its fundamental assumptions: the anomalies should

be rare, and isolated in the native feature space. The faults were

not rare (fault rate approaching 10%) and homogeneous. The inferior

performance of the typical one-class method μ-SVM illustrates the

well-known smoothness vs. locality argument for deep learning: the

difficulty in modeling the highly varying decision surfaces produced

by complex dependencies involving many factors. For μ-SVM, the

implicit prior of kernel-based classification is that the function to be

learned is smooth such that generalization can be achieved by local

interpolation between neighboring training examples. As argued at

length by [27], this assumption is questionable for high data dimen-

sionality. Moreover, all baseline methods lose a piece of critical infor-

mation: the local geometric relationship in the data related to the

underlying apparatus.

The legacy strategy produces a chamber-wise goodness assess-

ment without being capable of identifying a specific problematic layer
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in the chamber. For this reason, a direct comparison with the CNN

model is impossible. The loose estimate (based on returned problem

severity) estimated the specificity of the legacy strategy to 91%, with

a sensitivity of only 26%.

As discussed in Sec. 3, the interpretability of the results is one

of the requirements in the HEP domain. Unfortunately, the CNN

filter visualization did not provide vital information for the human

experts as the nature of the data is much different than the real-world

data sets. However, the CNNs decision can be understood through

saliency maps [39]. Example of such visualization generated for DT

occupancy plots is shown in Fig. 5. The channels with high values

match the anomalous regions. These plots were proven fundamental

to point the detector experts to the root of the CNN decision allowing

them to carry on further investigations on the detector aspects. In

(a)

(b)

(c)

Fig. 5. Example of visualization of saliency maps for three CMS DT chambers
corresponding to input occupancy plots from Fig. 1. The scale is proportional to
the channel influence over classifier decision to flag problems. From [8].
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the future, in case of incorrect classification, the saliency maps could

be used to understand the decision of the algorithms in detail and to

take corrective measures.

The CNN model has been integrated into the CMS DQM infras-

tructure at the beginning of the 2018 LHC Run and kept running

in parallel with the legacy strategy. That allowed to commission it

using the newly acquired collision data. After initial tuning of the

working points to meet the requirements of the DT detector experts,

the algorithm has been performing reliably, and it is considered for

deployment in the next LHC Run.

4.2. One-class anomaly detection

In normal conditions, the healthy DT chambers show similar occu-

pancy levels in adjacent layers with the four inner layers having a

different behavior due to their different spatial orientation. The con-

volutional autoencoder used in [1] exploited the patterns of relative

occupancy of the layers within a chamber. This approach extended

and complemented the one presented Sec. 4.1, allowing to identify

less frequent intra-chamber problems which require the comparison

of the information about all layers within one chamber to be spotted.

Typical examples of these kinds of failures are problems related to

the high-voltage bias. The voltage distribution system is organized

by layers and a lower value with respect to the nominal operation

point would result in lower detector efficiency and, as a consequence,

lower absolute occupancy in the affected region.

In this study, the dataset was cleaned from the common anomalies

using the CNN model from Sec. 4.1 to save time on manual label-

ing and acquire sizeable dataset. Then the autoencoder-based model

was trained to properly reconstruct healthy behavior. Finally, the

autoencoder-based model was tested on a set of occupancy plots

where chambers showed problems in a particular layer (layer 9).

Figure 6 shows that the mean squared reconstruction error (MSE)

integrated over healthy regions (even from anomalous chambers) is

lower than the one from anomalous ones. Of course, the severity of

the problem matters and layers operating in 3450 V are more difficult

to be detected than the ones operating in 3200 V. To summarize, the
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Fig. 6. MSE between reconstructed and input samples for layer 3 (left) and layer
9 (right) for three categories of data. Despite a problem in layer 9, all MSEs for
layer 3 are comparable for all chambers. The nominal voltage falls between 3550
and 3600 V. From [1].

Fig. 7. Compressed representations of chamber level data for all chambers in the
dataset. The representations are clustering (right) according to their positions in
the detector, i.e. station number. The DT numbering schema is shown on the left.
From [1].

detector experts can design custom metrics, integrating the MSE over

the areas of interest to further extend the monitoring infrastructure.

4.3. Unsupervised anomaly detection

Finally, Pol et al. [1] showed that a byproduct of the undercom-

plete autoencoders, i.e the lower dimensional latent representation,

can be further plotted to visually track novel behavior patterns and

emerging problems. For instance the DT chambers three-dimensional

latent representation clusters according to the chamber position in

the CMS detector, shown in Fig. 7. When the chamber behavior



December 14, 2021 16:14 Artificial Intelligence for High Energy Physics 9in x 6in b4322-ch05 page 134

134 A. A. Pol et al.

changes, so will the manifold. Higher dimension manifolds can be

used as well, e.g. to perform classification.

5. Data Certification Novelty Detection

with Deep Autoencoders

This section presents an approach of applying autoencoders to auto-

mate the DQM scrutiny, with the example of the CMS data cer-

tification process (Sec. 2.4) and results from [2]. With a tolerance

for false negatives, the autoencoders will reduce the manual work

as discussed in [40]. Pol et al. [2] used data for the physics certifica-

tion process (see Sec. 2.4). The dataset used in this work consisted of

163 684 LSs recorded from June to October 2016. In total, 401 physics

variables were used (e.g. transverse momentum, energy, multiplicity,

direction for the different physics objects). The binary quality labels

determined by the manual certification procedure performed by the

detector experts were used for evaluating model’s performance.

The human experts make decisions regarding the data quality

based on the shape of the statistical distributions of key quantities

represented in the form of histograms. In the case of an anomaly, the

corresponding histograms should show a considerable deviation from

the nominal shape (for visual interpretation see Fig. 8). To mimic

Fig. 8. Two examples of histograms related to the CMS pixel detector status
for a normal (left) and anomalous (right) LS. The reference shape is the Landau
distribution. The bad LS manifests anomaly in low charge, which is caused by
the pixel detector not being properly synchronized with the bunch crossing. Such
distributions, obtained for each LS, are preprocessed into a summary statistics
vector of seven variables: five quantiles, mean and standard deviation. From [8].
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this logic, the distribution Di = {x0, . . . , xk} of each one of the 401

used variables was represented by its summary statistics using five

quantiles, mean and standard deviation. The final vector has 2807

features. Each data-point represents the data acquired during one

LS to aim for high time granularity of the classification results. The

high dimensionality and nonlinear dependencies between variables

preclude the use of traditional anomaly detection techniques. Instead,

different autoencoder regularization techniques were examined. The

final receiver operating characteristic (ROC) curves of autoencoders

and their corresponding AUC are shown in Fig. 9.

Beyond performance, a valuable model for the certification task

needs to provide easily interpretable results allowing the experts to

pinpoint the root of a problem. In this respect, the autoencoder

approach provides a clear advantage allowing to evaluate the con-

tribution to the MSE metric of each input variable. Misbehaving

variables can be easily singled out based on their high contribution

to the overall error. Figure 10 illustrates one example of how this can

be exploited on the CMS data. The features are grouped according

to their sensitivity to a particular physics property. The plot of the

absolute error allows the expert to identify the problematic area at

a glance judging on the absolute size of the error for the variable or

group of variables.

Fig. 9. ROC and AUC of the autoencoder models using different regularization
techniques. The bands correspond to variance computed after running the exper-
iment five times using random weight initialization. From [2].
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Fig. 10. Reconstruction error of each feature for two samples. Different colors
represent features linked to different physics objects. For a negative sample (left)
similar autoencoder reconstruction errors are expected across all objects with
small absolute scale. Anomalous samples (right) have visible peaks for problematic
features (muons). From [2].

6. Trigger Rate Anomaly Detection with Conditional

Variational Autoencoders

Reference [41] targets improving anomaly detection for the trigger

system (Sec. 2.3) with VAEs. To avoid the pitfalls described in

Sec. 3, the key is to exploit the hierarchical structure of the trig-

ger system to input all available observation into the VAE, to con-

strain the representation, by separating the known factors from the

other unknown sources or variability. The model, called AD-CVAE,

includes the architecture, as a specific realization of conditional vari-

ational autoencoders (CVAE) [42–44], as well as the correspond-

ing loss function and a detection metrics. Overall, the contribution

shows that a regular CVAE architecture can be exploited for general

anomaly detection tasks in HEP context. More details and experi-

ments are available in [41].

6.1. Problem statement

The current CMS trigger monitoring system is based on the compar-

ison between the observed per-node rate and its reference value for

the measured PU value. While the current implementation is quite

effective in spotting erratic changes for a single node, it is less sensi-

tive to collective changes on several nodes that could equally affect
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Fig. 11. Correlations between 458 HLT rates of fill 6291 of LHC Run 2. From [8].

the overall acceptance rate. In particular, about 600 nodes of the

HLT can be grouped in several configuration groups, showing strong

correlations in their acceptance rate variations, see Fig. 11.

The dominant cause of correlation is structural, known and mea-

surable: the direct, pre-configured link from a set of L1 nodes to

an HLT node through a specific configuration (Fig. 12). However,

more subtle and un-reported causes can create correlations: physics

processes when different nodes select the same physics objects with

different requirements (e.g. different requests on its energy); or uti-

lization of the same sub-detector component or software component

across different nodes. The corresponding graphical structure must

include these unknowns.

To correctly model the trigger system, the algorithm has to suc-

cessfully disentangle the dependence of HLT rates on L1 rates from
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HLT HLT HLT HLT HLT HLT HLT HLT HLT HLT HLT

L1 L1 L1 L1 L1 L1 L1 L1 L1 L1

Fig. 12. Simplified, schematic graph inspired by the trigger system configuration.
Blue nodes represent HLT while yellow L1. Each link is unidirectional starting
from yellow nodes. For each LHC fill, the graph has a few hundred nodes. The
connection between L1 and HLT nodes can be seen as a hierarchical directed
graph from the L1 to the HLT system. From [41].

all other unknown processes. In light of the results of [45], the dis-

entanglement objective in generative models cannot be met by fully

unsupervised VAE architectures. The alternative is to enforce disen-

tanglement through a structured conditional architecture.

The second issue is: what are the anomalies, and the normal

behavior? We are interested in highlighting instances where we

observe:

• big change on a single feature called Type A anomaly (to repro-

duce the functionality of the current monitoring), or

• small but systematic change in a structural configuration group,

called Type B anomaly (novel strategy).

On the contrary, an instance x with a problem of small severity and

on a group of uncorrelated features should be considered as an inlier,

corresponding to expected statistical fluctuations.

While dealing with Type A anomalies is relatively well managed,

the CMS experiment currently does not provide any tools to track

problems falling into the Type B category.

6.2. The architecture

The goal of the architecture is to address the disentanglement issue,

in other words to build a representation within the VAE framework

where the known and unknown factors are identified. This includes

both the structure of the representation, and a loss function that

takes into account the conditioning on the known factors. The formal
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ku

xφ

θ

Fig. 13. An example of CVAE as a directed graph. Solid lines denote the gen-
erative model pθ(x|u, k)pθ(u). Dashed lines denote variational approximation
qφ(u|x, k). Both variational parameters θ and generative parameters φ are learned
jointly. From [41].

model is a follows: the observable x is a function of k (known) and u

(unknown) latent vectors, i.e. x = f(k;u). k and u are assumed to be

marginally independent. In the trigger context, x is the feature vector

of observed HLT rates [x1, x2, . . . , xn], k is the vector of observed L1

rates, and u stands for the unknown factors. Conceptually, features

associated with the same subset of the k vector correspond to a

structural configuration group. The variable u allows for modeling

multiple modes in the conditional distribution p(x|k) making the

model sufficient for modelling one-to-many mapping.

This defines the conditional directed graphical model of Fig. 13,

where the input observations modulate the prior on latent variables

to model the distribution of high-dimensional output space as a gen-

erative model conditioned on the input observation. The conditional

likelihood function pθ(x|u, k) is formed by a nonlinear transforma-

tion, with parameters θ. φ is another nonlinear function that approx-

imates inference posterior qφ(u|k, x) = N(μ, σI).

The φ and θ functions are implemented as deep neural networks

with nonlinear activation functions. Figure 14 shows the autoencoder

architecture corresponding to Fig. 13 as a block diagram.

This model, called AD-CVAE, is trained efficiently in the frame-

work of stochastic gradient variational Bayes. The usual loss function

of VAE is the so-called evidence lower bound, which is a tractable

proxy for optimizing the log-likelihood of the data. With the condi-

tioning on k taken into account, the modified objective lower bound is

log pθ(x) ≥ Eqφ(z|k,x)[log pθ(x|z)pθ(x|k)] −DKL(qφ(z|x, k)||p(z)),
(1)
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Fig. 14. Architecture of CVAE targeting trigger system anomaly detection.
Observable data x depends on z (capturing non-observable factors of variation u)
and k vectors. From [8].

where z (Gaussian latent variable) intends to capture non-observable

factors of variation u.

6.3. The loss function

The original works on VAEs by [29, 30] proposed a full (diagonal)

Gaussian observation model, that is

Pθ(x|z) = N (μ, σI),

where both the multidimensional mean vector and the multidimen-

sional variance vector are to be learnt. However, in most practical

applications the VAE evaluates the reconstruction loss with a simple

mean squared error (MSE) between the data x and the output of

the decoder. Such an approach suffers from a very serious issue. It

is equivalent to setting the observation model pθ(x|z) as a normal

distribution of fixed variance σ = 1.

Fixing the variance, this way can be detrimental to learning as it

puts a limit on the accessible resolution for the decoder. Instead, the

model can learn the variance of the output of the decoder feature-

wise (i running as the dimensionality of the data vectors x):

− log pθ(x|z) =
∑
i

(xi − μi)2
2σ2i

+ log
(√

2πσi

)
. (2)

Learning the reconstruction variance allows the model to find the

optimal reconstruction resolution for each feature of the data, sepa-

rating the intrinsic noise from the actual data structure. Although it

has been argued that this approach can challenge the optimization
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process [33, 46], there were no reported challenges when training the

AD-CVAE.

After inserting Eq. (2) as the reconstruction objective to the gen-

eral loss defined in Eq. (1), the final objective of AD-CVAE is

LAD-CVAE(x, k, θ, φ)

=
∑
i

(xi − μi)2
2σ2i

+ log
(√

2πσi

)
+ DKL(qφ(z|x, k)||p(z)). (3)

6.4. Anomaly metrics

Once the model parameters are learned, one can detect anomalies:

• of type A with average infinity norm of the reconstruction loss

mA = || 1σ (x− x̂)2||∞, where x̂ is the reconstructed mean and σ is

the reconstructed variance of decoder output;

• of type B with KL divergence mB = DKL(qφ(z|x, k)||p(z)), known
as information gain.

In the first case, an anomaly is identified on a single feature. For a

given data point (x, k), the evaluation of the loss of the VAE at this

data point L(x, k) is an upper-bound approximation of − log pθ(x|k),
measuring how unlikely the observation x is to the model given k.

AD-CVAE thus provides here a model that naturally estimates how

anomalous x is given k, rather than how anomalous the couple (x, k)

is. It means that a rare value of k associated with a proper value for

x should be treated as non-anomalous, which is the goal. The binary

indicator is obtained by thresholding the value, a typical strategy for

anomaly detection. With thresholding, the choice of the infinity norm

of the reconstruction error instead of the mean is required. A mean

of the reconstruction error would be uninformative when most of the

features do not manifest abnormalities and, as a consequence, lower

overall anomaly score.

As argued in [47], the DKL measures the amount of additional

information needed to represent the posterior distribution given the

prior over the latent variable being explored to explain the cur-

rent observation. The lower the absolute value of DKL, the more
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predictable state is observed. The DKL was then used as a surprise

quantifier, e.g. in [47, 48] when the model was exposed to held-out

images. Nalisnick et al. [35] and Snoek et al. [36] explored DKL as

an indicator of out of distribution samples. For type B outliers, the

expected anomaly systematically reinforces patterns in data. It is

then expected that not calibrated model allocates such information

using the latent bits, allowing for a successful reconstruction. On

the other hand, changes in uncorrelated features will be removed

in the encoding process, resulting in low-reconstruction likelihood.

Hence anomalous input yields higher values of mB and likelihood at

the same time. Thus, mB must be detached from the reconstruction

part of the loss function as combining metrics is detrimental to the

detection results.

Because of two separate failure scenarios, the metrics are not com-

bined in one overall score but rather use logical OR to determine

anomalous instances.

6.5. Experimental results

CVAE model was evaluated on two datasets: a synthetic one and on

the real trigger dataset. The synthetic data set is a version of the

Gaussian mixture model and was implemented as an initial bench-

mark that proxies the trigger data set. For testing, the samples are

generated according to the following table:

Test set Description

Type A Inlier Generated in the same process as training data

Type A Anomaly 5σ change on ε for a random feature

Type B Inlier 3σ change on ε for a random set of correlated

features

Type B Anomaly 3σ change on ε for a random feature cluster

The choice of 5σ and 3σ comes from the legacy requirements of our

target application. The real HLT rates are treated as x and L1 Trig-

ger rates as k. The proposed prototype used four L1 trigger paths
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Fig. 15. The ROC curves for two anomaly detection problems using synthetic
(left) and CMS trigger rates test dataset (right). The bands correspond to σ
computed after running the experiment five times. From [41].

that seeded six unique HLT paths each. The dataset totaled 102895

samples from which 2800 samples were used for testing. Again the

hypothetical situations that are likely to happen in the production

environment were considered. Four synthetic test datasets were gen-

erated manipulating the test set similarly to the synthetic dataset

(based on the table above).

The results are reported in Fig. 15. Given the high order of the

deviation on Type A anomalies, the model easily spots them. Also,

Type B detection results show that CVAE is outperforming VAE

baseline and confirming it is suitable for a task in question. The

performance of the algorithm on CMS dataset is matching the per-

formance we reported for the synthetic one.

7. LHC Monitoring with LSTMs

Recurrent models can be applied to temporal or sequential data,

where the order of data is important. Recurrent neural networks

(RNNs) [49] can process sequential data element-by-element. In this

way, they can model sequential and time dependencies on multiple

scales. However, the influence of a given input on hidden and output

layers during the training often results in gradient either decaying

or exponentially grow as it moves across recurrent connections. This

effect is described as the vanishing or exploding gradient problem.
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A successful attempt to prevent this phenomenon is the long–short-

term memory (LSTM) network [50], through the introduction of

internal state node and forget gate.

In this section, we summarize the results of the experiments

from [51]. The authors validated the performance of the LSTM net-

work in a voltage time series modeling task, see the description of

the problem in Sec. 2.5.

The data used in the experiments consisted of many years of mag-

net activity. A group of 600 A magnets, that generated the highest

number of quench events, were used. The anomalous events were

not only sparse but also challenging to find, as the logging database

does not enable automated quench periods extraction. The authors

developed an extraction application, automating the dataset genera-

tion. In the experiments, different lengths of time window frame were

considered. Finally, the 24 h window ahead of a quench event were

chosen, totaling 425 from the period of 2008 and 2016.

The LSTM model yielding the best results is shown in Fig. 16.

The tests considered the ability of a model to anticipate forward

Fig. 16. The LSTM-based neural network used for the experiments in [51].
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Fig. 17. The LSTM-based neural network voltage predictions for one step ahead
(left) and two steps ahead (right). From [51].

Fig. 18. The value of RMSE as a function of prediction steps for different batch
size B and the number of previous time steps L values with 32 neurons in the
middle LSTM layer. From [51]

voltage values. Figure 17 shows the predicted voltage readings. The

authors used root mean square error (RMSE) and mean percentage

error (MPE) to assess the algorithm performance. The RMSE results

are presented in Fig. 18, where L corresponds to the number of pre-

vious time steps as input and B corresponds to a training batch size.

The best results were obtained with L = 16 and B = 2048. After ver-

ifying that the model can predict forward voltage readings, the ulti-

mate challenge was to select a threshold of RMSE value determining

which readings should be considered anomalous. Unfortunately, this

value has not been chosen and requires further investigation.

The resulting model promises to speed up the quench detection

and prevention process. Besides the model, the authors developed
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a visualization framework and tested the model on FPGAs, as the

system reaction time is critical.

8. Conclusion

In this chapter, we discussed novel approaches to improve the accu-

racy of data quality applications for high-energy physics experiments.

Taking as an example the CMS experiment at the CERN LHC, we

showed how anomaly detection techniques based on machine learning

algorithms could detect unforeseen detector malfunctioning. We also

showed how the flexibility of deep learning architecture allows one

to enforce known causal relation between data, through constraints

built by connections in the network architecture. The results demon-

strate that the techniques based on DNNs provide a breakthrough

for complex and high-dimensional problems in infrastructure moni-

toring. The results show remarkable efficiency on currently tracked

failure modes, extend current monitoring coverage and provide ways

to interpret the results. These aspects are of paramount importance

in a system which will need to be operated for years by field experts.

While the discussion was limited to specific datasets related to

the CMS experiment, the applications are of general interest for

high-energy physics experiments. Some of the proposed methods have

already been integrated and deployed in the CMS DQM infrastruc-

ture. A generalization of these strategies could pave the way to full

automation of the quality assessment for HEP experiments and accel-

erator complexes.
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Generative models are a class of machine learning methods that map ran-
dom numbers into structured data. One potentially powerful application
of generative models to high energy physics is as surrogate models for
slow detector simulations. Interactions of particles with detector mate-
rial is often the slowest component of the full simulation stack and so
mimicking this component with a neural network may significantly accel-
erate the entire simulation. This chapter introduces various approaches
to deep generative modeling and then provides examples of applications
to high energy physics detector simulations.

1. Generative Models for the Simulation of Particle

Showering in Calorimeters

Computational modeling of scientific phenomena, in particle physics

as in other domains, represents a cornerstone of the knowledge-

building process of hypothesis formulation and testing. Through
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model building and probing, scientists can generate expected out-

comes and compare them with experimental results. Theoretical

models of natural phenomena, in order to stand the test of time,

ought to make testable predictions that match the observed mani-

festations of the laws they propose.

Of peculiar interest to particle physicists is the continued probing

of the Standard Model (SM) of Particle Physics for possible dis-

crepancies and inconsistencies with observations, and the testing of

Beyond the Standard Model (BSM) theories that expand this model

to include new symmetries, interactions, and particles. Event gen-

erators describe and simulate new and known fundamental physics

interactions, and allow to produce and study virtual particle colli-

sions and decays.

In real laboratory settings, particle detectors are constructed to

measure particle properties through means of controlled interactions

with the detectors’ material. In the context of this book, this section

will focus on the specific use-case of modeling and simulating the

low- and high-energy interactions of particles with matter — a phe-

nomenon that underpins the processes of detection and identification

of these particles with detectors.

A detailed geometric and physical description of particle detectors

is traditionally used to simulate the response of these instruments to

their interaction with particles that propagate within their volumes

to guide their design process, optimize their layout and readout prop-

erties, and quantify their expected effect on downstream data anal-

ysis tasks. The physics processes of interest to be targeted with the

construction or upgrade of an existing detector dictate the objec-

tives and constraints on the properties of the apparatus. To study

the suitability of a hardware solution towards the measurement of

a physics signal, as well as the ability to extract that signal from

the noise of background processes with similar signatures, physicists

resort to simulating these events within virtual representations of the

instrument. Furthermore, simulation of particle interactions within

existing detectors, and their comparisons with the observed readouts

captured by the corresponding, real hardware detectors, can be used
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to measure and account for effects of physical degradation in the

instrument and improve the likeness of simulators.

Given the large dynamical range of particles of interest that tra-

verse the detector volumes at particle experiment sites, and given

the prodigious physical scale of these machines, high-fidelity simu-

lation of all interactions, which are testimony of the occurrence of

physical processes governed by fundamental physical laws of nature,

requires immense computational power for the stochastic description

of these events, with up to minutes spent on each event in simula-

tions at the large hadron collider (LHC) [1]. Among the main drivers

for optimization and modernization of the simulation software is the

increased luminosity expected in the next runs and phases of the

LHC, during which the demand for the number of simulated events

necessary to support the goals of the physics program is expected to

grow to beyond the current reach of the full simulation infrastructure.

Surveys of the computational costs of the various simulation

stages in the pipeline of typical LHC experiments have identified the

accurate generation of particle showers in calorimeters as one of the

most compute-intensive phases, and, therefore, as an ideal candidate

for the development of fast simulation techniques to approximate

it [2]. In the ATLAS experiment, for example, calorimeter full sim-

ulation accounts for approximately 90% of total simulation time [3].

Simulated sample storage concerns have also been raised and pre-

sented as arguments for the development of novel fast simulation

techniques that can be evaluated on the fly.

Traditional multi-purpose simulation packages, such as the

GEANT4 toolkit [4], are used to accurately model, to a meticulous

extent, detector responses and energy depositions in calorimeters,

produced by the interactions of particles with the material in the

detectors. Despite themselves being subject to continued improve-

ment, these methods, often referred to as full simulation approaches,

are considered as the ground truth for the interactions they model,

as they encode current physics knowledge with maximal fidelity.

In opposition, fast simulation techniques (see Sec. 1.2) attempt to

approximate the data distribution generated by full simulators with
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various degrees of fidelity, depending on the nature of the speed vs.

precision trade-offs they make.

The following will serve as an introduction to generative modeling

with machine learning, and provide concrete examples of how deep

generative modeling can be employed towards the goal of speeding

up physics simulation. Section 1.1 provides and overview of current

techniques in deep generative modeling. Then, Sec. 1.2 introduces

fast calorimeter simulations. Deep generative models for such simu-

lations are introduced for one-layer detectors in Sec. 1.3 and multi-

layer detectors in Sec. 1.4. A brief discussion of biases in generative

models is presented in Sec. 1.5 and the chapter ends in Sec. 2.

1.1. Generative models

Generative modeling aims to learn and emulate the process by which

data are generated according to some true, unknown generating dis-

tribution pdata(x) for features x ∈ X , or pdata(x, y), if labels y are

known, i.e., to approximate the distribution pmodel(θ) ≈ pdata.
Unlike discriminative models, that only learn the conditional dis-

tribution p(y|x) through a direct input-to-label mapping, genera-

tive models are assigned the more complex task of modeling the

full data-generating distribution. If the labels are known, and once

an approximation to pdata(x, y) has been obtained, Bayes theorem

allows to repurpose the generative model and transform it into a

classifier. Generative models can also be used to ascertain distribu-

tional parameters of interest and corresponding confidence intervals,

in the case in which they admit a closed form likelihood.

In practice, the true data distribution is usually opaque: it is not

available in analytical form, but only as an empirical distribution,

through a finite amount of observations distributed according to it.

Sampling new examples from the true data distribution is either inac-

cessible or expensive. The objective of generative modeling, then, is

to approximate said distribution, to enable infinite sampling from it

for practical applications.

Depending on whether they define an explicit (tractable or

approximate) or implicit density, generative modeling techniques can
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be subdivided into categories of methods that share commonalities

in their approach.

A first framework to analyze the learning procedure of a genera-

tive model is maximum likelihood estimation (MLE), which aims, as

the name suggests, to maximize the likelihood of the observed data

under a model assumption. Formally, when it is possible to construct

a parametric model pmodel(x; θ), parameterized by θ, MLE aims to

maximize L(X; θ) defined as follows:

L(X = {xi}ni=1; θ) =

n∏
i=1

pmodel(xi; θ). (1)

In practice, direct optimization of the likelihood can happen,

for example, via MCMC, and, for numerical stability pur-

poses, it is preferable to minimize the negative log likelihood:

θ∗ = argminθ{− lnL(X; θ)} = argminθ{−
∑n

i=1 ln pmodel(xi; θ)}, as
opposed to maximizing a product of likelihoods.

Hand-crafted parametric models, although tractable and inter-

pretable, often lack in capacity and expressivity. On the other hand,

deep generative models offer increased flexibility through a wide and

diverse range of approaches, but may do so by removing the advan-

tage of a tractable density.

Auto-regressive models (such as PixelRNN and PixelCNN [5],

WaveNet [6], GPT [7], and XLNet [8]) are a powerful family of gen-

erative models that still admits a tractable joint likelihood, which is

explicitly factorized into the product of successive conditional like-

lihoods of each input feature: p(x) = p(x1)
∏d

i=2 p(xi|xi−1, . . . , x1),

for x ∈ R
d. Concretely, this corresponds to generating the example

one feature at a time, conditioned on previously produced features.

To model complex, long-range correlations, expressive RNN-based

and CNN-based sequence models are often employed for this task.

They have shown remarkable performance on benchmark applica-

tions in industry, especially on discrete output spaces, where com-

peting techniques fail. The fundamentally sequential nature of their

generation process, however, makes them hard to parallelize for

efficient generation in inference mode. Other generative modeling

techniques that admit tractable formulations and make use of the
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auto-regressive approach include neural auto-regressive distribution

estimation (NADE) [9] and masked auto-encoders for distribution

estimation (MADE) [10].

In contrast with fully visible models, the family of generative mod-

els that assumes the presence of unobserved variables z governing the

distribution of occurrences takes the name of latent variable mod-

els. The goal of a latent variable model is to learn a map between

the lower-dimensional representation in latent space and the high-

dimensional representation in observable space. Modelers hypoth-

esize that the complexity of observed high-dimensional data can

be reduced into low-dimensional, sufficient embeddings. This com-

pression, or encoding, step yields more fundamental, efficient rep-

resentations of the data that live in a lower-dimensional manifold.

Traversing this manifold allows to explore the full range of diversity

in the data. Enforcing semantically meaningful latent representations

can enable the traversal of the latent manifold along intelligible and

interpretable directions, thus providing explicit handles to control

the generation process. Obtaining disentangled factors of variation

is the focus of much of the ongoing research in the machine learning

literature.

Invertible flow models [11, 12] also take an explicit density estima-

tion approach, but make use of normalizing flows [13, 14] to render

the problem tractable, while retaining the ability to model complex

distributions. In practice, through a series of invertible transforma-

tions, flow-based models allow to move from input to output repre-

sentation in a bidirectional way, by directly modeling x̂ = f−1(f(x)),

where f is compositional in nature. Their main practical disadvan-

tage is said to reside in the inefficient computational cost at training

time, with additional concerns around the suitability and expressiv-

ity of normalizing flows in approximating desirable probability func-

tions [15]. Many models are interrelated — the initial features x in

invertible flow models can be viewed as a useful (albeit not lower-

dimensional) latent space.

In fact, many commonly used deep generative models (e.g. vari-

ational auto-encoders (VAEs) [16] and generative adversarial net-

works (GANs) [17]) are not directly optimized via MLE, but do
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have interpretations which cast them as consistent with MLE.

When the likelihood is not accessible, distribution comparison met-

rics d can be used to reformulate the learning problem as θ∗ =

argminθ{d (pdata(x, y), pmodel(x, y; θ))}.
Popular formulations have phrased the generative optimization

problem in terms of maximum mean discrepancy [18–20], or score

matching [21].

In the field of artificial intelligence (AI) research, recent inno-

vations in generative modeling have brought this topic to the fore-

front of the academic discourse, both from the theoretical and the

empirical perspective. Qualitative achievements of generative mod-

els, brought upon by new algorithmic developments, have been

accompanied by a wealth of theoretically grounded propositions,

geared towards explaining the properties and improving the stabil-

ity, efficiency, performance, and scale of these models. Among the

AI applications of generative modeling, we find, for example, image

in-painting, anomaly detection, missing data imputation, data aug-

mentation, image-to-image translation, domain adaptation, latent

representation learning, planning, up-sampling, and super-resolution.

Though a criticism of the current research trends around genera-

tive modeling in the AI field is that authors may have lost sight of

the goals of generative modeling, physics and other scientific domains

may yet come to the rescue, by providing a fertile soil for the appli-

cation of these models. In fact, generative models’ achievements have

allowed to them to make the jump to applied and fundamental sci-

entific domains, with successful application to science problems from

high-energy physics (GANs [22–58], AEs [37, 59–61], physics-inspired

[62–64], normalizing flows [65–73], mixture models [74], phase space

[68–70, 75–80]), climate science, cosmology, material science, and

more [81–84]. In these application domains, generative models hold

promise as tools for emulating, with high fidelity, the performance

of computationally intensive scientific simulators. Their utility has

primarily been that of providing a lifeline for many statistically and

computationally bound problems that would benefit from increased

data availability.
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1.1.1. Generative adversarial networks

Generative adversarial networks (GANs) [17] are implicit density

models that do away with directly modeling or approximating a prob-

ability density function, and instead offer ways to indirectly interact

with it, for example, though sampling. While this may limit their

applicability, it renders them particularly well suited for problems

requiring efficient querying of the data distribution for new examples.

As shown in Fig. 1, the idea behind GANs is to pair a genera-

tor, that transforms a latent code into an observable representation,

with a competing network, that automatically scrutinizes the quality

of the generator-fabricated samples by learning to distinguish them

from real samples from the target distribution. The presence of the

discriminator is merely a training artifice, with the scope of automat-

ing quality assurance. Intuitively, the generator’s objective is to pro-

duce realistic-looking samples that even a well-trained discriminator

may confuse for real. Ideally, in a figurative sense, the two players

would engage in an adaptive process of iterative refinement of the

generated samples, with the discriminator adapting to new features

and patterns explored by the generator, and providing signal to the

generator for further improvement.

Fig. 1. Schematic of a generative adversarial network (GAN). A latent space
random variable Z is sampled to produce examples z that are then mapped
through a generator function G(z) to produce examples x′ that are supposed to
statistically match examples x drawn from the random variable X. A classifier D
is trained to distinguish sets of x′ and x to provide feedback to the generator.
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Formally, GANs define a setting in which a pair of deep neural

networks participate in a non-cooperative minimax game in order

to implicitly learn to approximate a true, unknown data distribution

X ∼ pdata that generates training examples x. The generator network

maps a latent prior Z ∼ pZ , Z ∈ Z to the observable space (such as

the pixel space for image generation) of the distribution, X ; usually
Z ∼ N (0, I) or Z ∼ U([0, 1]n) (uniform distribution on a hypercube).

A second network, the discriminator, attempts to learn a mapping

from X to a probability of a given sample x ∈ X being real, i.e.

having originated from pdata and not having been fabricated by the

generator. The generator G parameterized by parameters θG provides

a map G(·; θG) : Z −→ X , while a discriminator D parameterized by

parameters θD provide a map D(·; θD) : X −→ [0, 1].

pdata is implicitly learned via a procedure in which G and D are

trained concomitantly in a zero-sum minimax game with the total

objective defined as:

min
θG

max
θD

EX∼pdata
[logD(X ; θD)]︸ ︷︷ ︸

log probability of the discriminator
perceiving real samples as real

+EZ∼pZ [log(1 −D(G(Z; θG); θD))]︸ ︷︷ ︸
log probability of the discriminator
perceiving generated samples as fake

(2)

From a distribution comparison standpoint, the choice of using a

log value function in Eq. (2) corresponds to minimizing the Jensen–

Shannon divergence between pmodel and pdata [17].

In practice, GAN training may proceed by simultaneous weight

update or by successive, alternating gradient descent and ascent steps

(similar to block coordinate descent) to iteratively update the dis-

criminator and generator networks. The amount of emphasis placed

on each step and, consequently, the ratio of training iterations spent

on each network, have both practical and theoretical implications

for convergence [85, 86]. Nonetheless, convergence guarantees in the

unmodified GAN game in Eq. (2) are only local and valid under

mild to strict assumptions of solution existence and proximity [87].

By studying the game’s vector field, one sees that the dynamics of

GAN training often exhibit orbiting patterns around locally sta-

ble stationary points along the way to a saddle point in the loss

function [88–90].
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In general, in fact, the formulation defined in Eq. (2) exhibits

well-documented issues with respect to stability, saturation, and

divergence [17, 89], leading to practical and theoretical improve-

ments [91] involving neural network architecture design [92, 93],

auxiliary tasks [94], improved objective functions and distributional

divergence measures such as Wasserstein distances [95–100], and

modifications to the gradient descent algorithm [88, 101]. Recent

salient improvements, most of which are highly empirical in nature,

achieve near-photo-realistic quality when applied to the image

domain (Fig. 2), by leveraging practical enhancements, such as staged

generation at increasing resolution [93] and larger scale training and

architectures [102].

In practice, training GANs requires a number of tricks and

empirical modifications to induce stability and better-posed learning

dynamics. To avoid gradient saturation and improve training dynam-

ics, label flipping and label smoothing, especially when applied in

early iterations of training, help ensure that the discriminator does

not converge too early causing no gradient to carry to the genera-

tor [97]. Label flipping, with some small probability, flips the 0 and 1

Fig. 2. 512× 512 generated samples from BigGAN [102].



December 14, 2021 16:14 Artificial Intelligence for High Energy Physics 9in x 6in b4322-ch06 page 163

Generative Models for Fast Simulation 163

(fake and real) labels, while label smoothing replaces positive labels 1

with a smoothed value α, usually either sampled or set to a fixed value

like 0.9. Adding instance noise represents yet another regularization

technique to empirically stabilize GAN training by augmenting the

support of the true and generated distributions by convolving them

with a tunable noise distribution [103].

A commonly documented failure mode in GANs is so-called mode

collapse, where the generator learns to produce samples with little

variety from a small, finite region in the support, thus only mod-

eling a limited number of modes in the true multimodal distribu-

tion. Intuitively, this is a form of short-term exploitation of each

player’s weaknesses, by which the generator resorts to producing lim-

ited kinds of samples that maximally fool only the current version

of the discriminator, and the discriminator learns to be optimal only

with respect to the current version of the generator, resulting in an

undesired loop. To discourage this behavior, one way of addressing

the problem is to allow the discriminator to make use of batch-level

statistics to build a more robust understanding of the global proba-

bility distribution and sample diversity, in a process called minibatch

discrimination [97]. Other fixes suggest, for example, providing the

networks with a replay buffer to prevent the forgetting of previously

explored modes [104], introducing spectral regularization to prevent

the correlated spectral collapse [105], or adding a further autoencod-

ing network and loss term, as suggested in VEEGAN [106].

In degenerate cases (which are common in early training itera-

tions) where the implicit distribution from the model and the data

distribution are disjoint, even the original non-saturating heuristic

modification of the value function [17], which addresses the problem

of lack of gradient feedback for highly improbably fabricated samples,

still suffers from vanishing and exploding gradients. A more princi-

pled approach is provided by Wasserstein GAN [95] (WGANs), which

defines a distributional distance measure that is well suited to cases

of disjoint support between the generator and the data distribution.

WGAN recasts the discriminator D as a critic, and designs the inner

loop of the critic training to learn to approximate the Wasserstein-1
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distance, or Earth-Movers distance, between pdata and pmodel:

W (pdata, pmodel) = inf
ξ∈∏(pdata, pmodel)

EX,X̂∼ξ||X − X̂ || (3)

= sup
‖D(·;θD)‖L≤1

EX∼pdata [D(X; θD)]

− EZ∼pZ [D(G(Z; θG); θD)]. (4)

The critic update step in WGAN amounts to simply maximizing the

right-hand side of Eq. (4), while the generator seeks to minimize this

value after a critic update. The critic is the analog of the discrimina-

tor in the standard GAN described earlier, only that the critic does

not classify examples as real or fake. Instead, the critic approximates

a distance between densities. Note that the Kantorovich–Rubenstein

duality [107] is used to go from the intractable computation in Eq. (3)

to the tractable one in Eq. (4), and this introduces the constraint on

the discriminator to have Lipschitz constant less than or equal to

one. To enforce a bounded Lipschitz constant in a neural network,

the original WGAN formulation suggests clamping the weights of

the neural network to be within some compact range [−c, c]. Later
work, which introduces the Gradient Penalty WGAN [96] (WGAN-

GP), proposes the addition of a regularization term to the learning,

encouraging the magnitude of the gradient of D(·; θD) to be close to

1 in the neighborhood of samples. Spectral Normalization [108] takes

this one step further, utilizing partial power iterations during train-

ing to normalize all weights in the network, and causing the entire

network itself to have Lipschitz constant equal to 1.

Despite their many practical difficulties (mode collapse and

more) and subsequent re-formulations (WGAN and other variations),

the popularity of GANs stems primarily from their unique game-

theoretical formulation, their pragmatism and readiness for deploy-

ment in data augmentation systems, the high quality and superior

realism of their samples, and their inexpensive inference mode com-

putation. Empirically, their demonstrated competitiveness in fitting

complex, high-dimensional, continuous distributions have made them

a preferred tool in many application domains. Their primary draw-

backs include instability, mode-collapse, and other optimization and
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trainability issues, in addition to the difficulty of quantitatively eval-

uating the performance of these models in unequivocal ways.

As discussed, empirically observed challenges include GANs’

inability to reach solutions that approximate distributions with full

support [109]. However, thanks to the parameterized nature of the

true data distributions often available in scientific applications, along

with semantically meaningful marginal distributions, physics may

represent a promising domain for algorithmic improvement in gener-

ative modeling, aimed at addressing this flaw. The exceptional con-

trol over training dataset synthesis that the sciences enjoy positions

these fields as likely catalysts for innovation and creative algorith-

mic thinking, beyond what is possible with traditional, natural AI

datasets collected in the wild.

Adversarial training has further been considered, within the scope

of generative models, as a powerful ingredient in hybrid models, such

as Boltzmann encoded adversarial machines [110] and adversarial

auto-encoders [111].

1.1.2. Variational auto-encoders

Auto-encoders are explicitly tasked with encoding the high-

dimensional observable data x ∈ X into a convenient low-dimensional

latent representation, or code, z ∈ Z, and then, in a second stage,

decoding it back into the high-dimensional space to faithfully recon-

struct the input as x̂ ∈ X . Intuitively, the transition from high to low

dimensionality, and back, forces the network to efficiently compress

the essential information through the information bottleneck, while

simultaneously learning the precise mapping that transforms latent

codes into the data representations from the dataset. The dimension-

ality of the latent space plays a crucial role in turning what could be

a trivial task of identity mapping into a potentially impossible task,

when the bottleneck is too narrow.

Auto-encoder architectures, as seen in Fig. 3(a), can be split into

two halves: an encoder f : X → Z, that maps the input to the latent

code, and a decoder g : Z → X , that maps the latent code to a

reconstructed version of the input, x̂.
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Traditionally, auto-encoders are trained via back-propagation

with a squared reconstruction loss L(x, x′) = (x − x′)2 between the

input x and the reconstruction output x′.
Variational auto-encoders (VAEs) [16], which share the underly-

ing architecture of auto-encoders, take an approximate, variational

approach to the intractable task of generation via maximum likeli-

hood. These probabilistic models approximate posterior distributions

in a differentiable way through neural networks, by maximizing the

variational lower bound, or evidence lower bound (ELBO), of the

likelihood [112]. In other words, instead of imposing a bottleneck

with a restricted latent space dimension/encoder expresivity, a VAE

creates an information bottleneck by imposing a particular form for

the latent space probability density.

Unlike classical auto-encoders, VAEs have the ability to sample

from the latent space, prior to decoding, as is shown in Fig. 3. In the

encoder phase, the encoder network, parameterized by weights θE,

learns an approximate posterior distribution qθE (z|x), over which we

have a prior p(z). In the decoder phase, the decoder network, param-

eterized by weights θD, learns a likelihood pθD(x|z). To enable sam-

pling in latent space, it is convenient to impose a particular functional

form (and to be able to compute the KL divergence analytically) to

the prior p(z) over the latent variables. This can oftentimes be a

(a) Schematic of a traditional
autoencoder.

(b) Schematic of a variational
autoencoder.

Fig. 3. Pictorial representations of traditional (left) and variational (right) auto-
encoder architectures.
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Gaussian prior, for example. The loss used to train the system,

EZ∼qθE , X∼pdata [L(X, gθD (Z)] + KL (qθE(Z|X) || p(Z)) , (5)

is then comprised of two terms: a reconstruction loss and divergence

loss (Fig. 3(b)). The former ensure proximity between the input x

and the reconstructed output x̂ = gθD(z). The latter provides a reg-

ularization constraint on the learned, approximate posterior distri-

bution of latents, to ensure proximity with a distribution of desirable

functional form from which it is possible to sample efficiently.

To allow for back-propagation through non-differentiable expec-

tations introduced by the stochastic sampling of the latent code,

the code z can be further reparameterized in terms of auxiliary ran-

dom noise ε ∼ N (0, I), for example, for a Gaussian prior, such that

Z = μ+ σ · ε for Z ∼ N (μ, σ2).

1.2. Fast simulation of particle showering

in calorimeters

To counter the growing compute requirements to run state-of-the-

art detector simulation with GEANT4 [4], fast simulation techniques

have been devised to produce adequate, simplified approximations of

the data distribution produced by portions of the simulation pipeline.

These methods target applications and studies that require large

simulated datasets but do not demand a detailed description of the

detector volume and response. Viable use-cases for fast simulation

include, for example, large BSM parameter scans and certain detector

upgrade studies [2].

Different speed-accuracy trade-off levels are required in different

scenarios, leaving room for multiple fast simulation solutions that tar-

get specific parts of that spectrum. The Delphes package, for exam-

ple, popular for phenomenological studies, applies simple smearings

to generator-level particle four-vectors, and affords several orders of

magnitude speed-ups [113].

In experiments like ATLAS and CMS, common fast simulation

techniques for particle showers in the calorimeters make use of pre-

computed frozen showers, parameterized showers, and lookup tables
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for low-energy interactions [114, 115]. Several approximations are

usually introduced in fast calorimeter simulation, including geometric

simplifications, analytical descriptions of material interactions, and

separate parameterizations of the longitudinal and transverse energy

depositions and shower shapes [116–118]. In ATLAS, for example,

parameterizations are derived from electron and photon showers, in

the electromagnetic case, and charged pion showers, for the hadronic

case, that are fully simulated with GEANT4. For improved rep-

resentation, ATLAS’s FastCaloSimV2 utilizes principal component

analysis to model the correlations of the energy depositions in each

calorimeter layer [119]. Further corrections are applied to account for

the artifacts introduced by the coarsification of the detector structure

into cuboids [119]. While electromagnetic shower modeling reaches

adequate levels of fidelity in shower shape description, the more

complex simulation of hadronic showers has pushed researchers to

develop techniques to model and correct for the discrepancy, using,

for example, among others, VAE-based approaches [116]. In the spe-

cific case of the ATLAS experiment, a dedicated program for fast

simulation of the tracker (FATRAS [120]) has been developed in

parallel to the calorimeter-focused effort (FastCaloSim [121]). The

CMS experiment has created its own fast simulation package, knows

as CMS FastSim [118]. The inclusion of these fast simulation rou-

tines has been shown to decrease the total simulation time by 1 or 2

orders of magnitude for a variety of physics processes, compared to

full simulation [3, 117]. An advantage of customized fast simulation

software is its seamless integration with other portions of an exper-

iment’s simulation pipeline, such as digitization and reconstruction,

along with the compatibility of formats and interfaces [122]. Fast

simulation of specific detector portions are usually accompanied by

full simulation of other detector components in hybrid simulation

workflows.

Though faster than detailed Monte Carlo simulation, such

approaches may suffer from a lack of realism and detail, especially

in certain portions of the detector or of the particle’s phase space.

In addition, fast simulation still encounters difficulties in modeling

the sub-structure of energy depositions. This directly impacts the
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downstream ability to apply findings from simulation to data, or to

use fast simulated datasets to build reliable expectations of observed

phenomena, especially for tasks and analyses that require a high

fidelity description of, e.g. jet sub-structure [122].

If the simulation of particle interactions with detectors is recast

as a sampling problem, where pdata(x) is opaque and very expen-

sive to sample from, generative models, as discussed in Sec. 1.1, lend

themselves towards being able to act as a surrogate in order to draw

new samples in a quick and efficient manner. Traditional fast simu-

lation methods can be viewed through this lens, with lookup tables

functionally acting as a non-parameteric generative model.

1.3. Deep generative modeling for fast simulation

of jets in a 1-layer calorimeter

Although calorimeters often display a great degree of complexity in

their hardware geometry, with multiple stacked layers of different

depth, granularity, material, and orientation, it is useful to begin the

exploration of deep learning-based generative modeling for calorime-

ter simulation from elementary, planar detector configurations.

Reference [123] opens the path towards fast simulation with deep

generative models, by first showing the potential of GANs applied

to the generation of particle energy deposits in a single layer LHC-

like calorimeter. It introduces an architecture called location aware

generative adversarial networks (LAGAN), capable of learning to

generate idealized representations of jets known as jet images [124]

(see Fig. 4), in a class-conditional manner, building on Auxiliary

Classifier GANs [94]. Such a representation is a natural stepping

stone towards more realistic calorimeters, given the discretized grid

structure.

LAGAN makes use of locally-connected layers to learn location-

dependent filters for dedicated processing of jet core and periphery,

thus capturing key substructure information for the characterization

of different particle jet types. Unlike popular GAN architectures in

AI research, LAGAN chooses rectified linear activations to induce

the desired level of sparsity in the output representation.
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Fig. 4. An example of a typical jet image. Note the discretization of η−φ space
with per-pixel energy deposits. Figure reproduced from [123].

Though modeled under idealized conditions, the simplified setting

of this early work demonstrates the following:

• deep generative models, and GANs in particular, are capable of

handling the high-dynamic range of energy depositions from par-

ticle showers (see Fig. 6(a));

• such models are capable of handling high levels of sparsity, even

in idealized sensor readout (see Fig. 4);

• important physics quantities (reconstructed pT , mass, etc.) are

consistent with traditional simulation (see Fig. 6(b)).

Results from this early work show promise in reconstructing the

substructure and kinematic features of hadronic jets. Figure 6(a)

shows the dynamic range and distributional similarity between GAN-

generated and Pythia-generated [125] training images with respect

to pixel intensities, obtained from [123]. Figure 6(b) shows the

class-conditional distributions of calculated jet mass between GAN-

generated and Pythia-generated jet images, showing the ability of the

LAGAN model to provide class-conditional sampling between signal

(W ′ −→WZ) and background (QCD dijets). The code and datasets

used in this work have been made publicly available [126, 127].
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(a) Pixel intensity distributions of GAN-
and Pythia-generated jet images.

(b) Mass distribution of Pythia-and
GAN-generated images for signal
(W ′−→WZ) and background
(QCD dijets) jets.

Fig. 5. GAN-generated cosmic proton event interacting with ground-based
water-Cherenkov detectors. Figure reproduced from [128].

Fig. 6. Pixel intensity distribution and mass distributions of GAN- and Pythia-
generated jet images. Figures reproduced from [123].

Reference [128] opts to use a WGAN and expands scope to show

utility in both particle and astroparticle physics, by simulating a

ground-based array of detectors to observe cosmic ray-induced air

showers (see Fig. 5 for an exemplar of sampled sensor read-out
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from this setup). Similar to [129], [128] explicitly encodes physics

knowledge in the form of domain-specific constraints in the loss

formulation.

1.4. Deep generative modeling for fast simulation

of electromagnetic showers in multi-layer

calorimeters

The peculiar geometry of many calorimetry detectors at particle col-

liders demands the construction of generative shower models that are

able to output representations with commensurate dimensionality to

that of the physical detector hardware. Detectors at the LHC, for

example, possess multiple concentric types of multi-layer calorime-

ters with irregular, heterogeneous volume segmentation into cells of

varying size. Physics considerations, towards the optimization of the

measurement of particle shower properties, drive the design choices

that go into the manufacturing of these apparatuses. Each calorime-

ter layer and configuration is designed to have different depth and

granularity. While a single-layer calorimeter simulator may suffice for

many of the detectors currently found at particle colliders, addressing

the needs of experiments like requires moving beyond the single-layer

assumption and the associated planar image representation, typical

of LAGAN-like model architectures.

To increase realism beyond single-layer calorimetry detectors,

solutions that examine the added complexity of generating real-

istic electromagnetic shower signatures in multi-layer calorimeters

have proposed GAN- and VAE-based approaches capable of handling

the dimensionality increase [130–132]. Many of these still introduce

simplifications to the full detector geometry by focusing on central

regions of detectors and removing edge cases that would require spe-

cial treatment.

A natural tendency in such an application domain is to tailor

models to data formats and corresponding detector representation.

Therefore, the foundational literature in generative modeling for

multi-layer electromagnetic shower simulation can be thought of

as being primarily differentiated among data representation axes.

Most creativity in model design, then, remains directly bound to the
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explicit inductive bias considerations that drive data structure and

representation selection.

Two main approaches to deep generative modeling for this prob-

lem emerge as a result of the piqued interest of the community in fast

simulation using GANs. Inspired by different kinds of calorimeters

found across particle detectors, GAN-based contributions either use

heterogeneous detector geometry [130, 131], and thus require explicit

per-layer modeling, or use uniform detector geometry, and are able

to leverage volume-appropriate architectural components such as 3D

convolutions [132, 133]. Additional work compares the fidelity of

GAN-based vs. VAE-based learning to simulate calorimeter response

to particle propagation in the ATLAS detector at CERN, and evalu-

ates the fidelity of the data produced by these deep generative models

to full GEANT4-based ATLAS simulation [37, 134]. For both com-

putational and phenomenological reasons, all approaches model the

development of a single particle shower at a time, and then exploit

the compositionality property of showers to later assemble full events.

References [130, 131] demonstrate the utility of a GAN-based fast

simulator on electrons, positrons, and charged pions, in an ideal-

ized, ATLAS-like multi-layer calorimeter. The design of CaloGAN

explicitly encodes energy conservation and conditioning into the

training, models the inherently heterogeneous geometry of the three

calorimeter layers through three separate network components, and

incorporates cross-layer energy correlations and conditioning through

the usage of layer-to-layer attention. As is shown in Fig. 7, Calo-

GAN is able to produce highly realistic, yet unseen, calorimeter

showers that add to the diversity of possible shower outcomes in the

irregular geometry. The code and datasets used in this work have

been made publicly available [135, 136].

References [132, 133] propose GANs for calorimetry simulation

of homogeneous detector volumes, using neural architecture compo-

nents such as 3D convolutions. This is best suited for the representa-

tion of regular geometries, and directly builds upon the LCD CLIC

detector design [137], which results in an effective output volume of

dimension 51×51×25. Example transverse slices are shown in Fig. 8.

In addition to displaying good agreement between GEANT4 and the
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Fig. 7. Five randomly selected positron showers per calorimeter layer from the
GEANT4 (top) and the five nearest neighbors generated from CaloGAN. Figure
reproduced from [130].

3D-GAN learned simulation on a qualitative level, the authors rely

on downstream physics observables like cross-sectional energy pro-

files and positions to evaluate the efficacy of their proposed approach.

Thanks to the homogeneous detector structure, the 3D convolutions

prove to be a powerful tool for modeling propagation through this

medium.

In another effort to anticipate the role that efficient AI-driven

simulation (as well as reconstruction) will play at future colliders,

[54] explores the use of energy-conditioned bounded information
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Fig. 8. Slices of GAN-generated electron showers. Figure reproduced from [133].

bottleneck autoencoders (BIB-AE) [138] to emulate the GEANT4

production of electromagnetic showers in the central region of the

high-granularity Silicon-Tungsten calorimeter of the proposed Inter-

national Large Detector [139]. In these experiments, through the

addition of a maximum mean discrepancy (MMD) term to the loss,

previously employed for LHC event generation [140], the BIB-AE

outperforms other modeling choices considered, such as GANs and

WGANs, with important improvements over the modeling of the

energy deposition of minimum ionizing particles. This work further

demonstrates the aptitude of deep generative models to recover phys-

ically meaningful differential distributions with high fidelity in yet

another calorimeter geometry.

References [37, 134, 141–143] compare the utility of a GAN-

based to a VAE-based simulator of showers in the standard ATLAS

calorimeter geometry, directly relying on shower shapes, effects of

calorimeter calibration, reconstruction, and other physics variables



December 14, 2021 16:14 Artificial Intelligence for High Energy Physics 9in x 6in b4322-ch06 page 176

176 M. Paganini et al.

to quantify performance. As opposed to prior work which views

calorimeters as volumetric constructs, this work instead unravels the

visible calorimeter pixel space, allowing both VAEs and GANs to

model interactions using simplified fully-connected layers.

Reference [144] examines the utility of these techniques for an

LHCb-like detector modeled in GEANT4. This work models 3D

calorimeter showers by opting to sum-reduce along the depth axis,

effectively resulting in a single-layer calorimeter. To ensure physical

consistency, an auxiliary task is added to the training, requiring a

secondary network to reconstruct the momenta and positions px, py,

pz, x, y, and E0. In Fig. 9, the GAN emulator is shown to accu-

rately obey the conditioning that directly controls observations in

the simulation.

Reference [145] utilizes the CMS HGCAL [146] as a test bed

for WGANs when applied to multi-layer calorimeter simulation. In

addition to the generator and the critic, [145] utilizes two constrain-

ing networks — one for impact position, and one for energy condi-

tioning. As opposed to [132, 133], [145] views the depth dimension

as a “channel”, in the strictly computer vision sense, thus utilizing

2D convolutions in lieu of 3D convolutions.

(a) (b) (c) (d)

Fig. 9. Showers generated with GEANT4 (top row), and showers simulated by
the GAN model (bottom row) for four different sets of initial conditions. Figure
reproduced from [144].
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As novel representations of irregular detector geometries and par-

ticle hits within their volumes are explored, new avenues of research

at the intersection of physics and machine learning are likely to bring

upon further improvements and increase flexibility in the generative

systems designed for fast calorimeter simulation [147].

A common thread across all work building towards generative

models as a solution to fast simulation is an emphasis on the fidelity

and preservation of physics observables, or shower shapes, in order

to verify that domain-specific quantities of interest, such as energy

deposition fractions, are well modeled. As a result, many empirical

solutions that explicitly encode physical requirements are incorpo-

rated in the architecture and objective design; these include energy

reconstruction and conditioning requirements [131, 138, 141, 142],

sparsity requirements [129], and incident angle consistency [129].

The usage of GANs as a tool for fast simulation within the field

has been further validated on new domains, such as the generation

of QCD dijet events at the 4-vector level [148] and the generation

and subsequent conditioning of Lund jet images [149–152], among

others [22–80] (see also [153] for an up-to-date list).

Training a deep generative model directly on data, as opposed to

taking GEANT4 simulation as ground truth, is also possible, wher-

ever desirable. The advantage lies in the ability to remove any trace

of simulation artifacts and mismodeling that the generative model

would inherit from GEANT4. A potential downside is the lack of

ground truth conditioning. This option is explored in the GAN-based

simulation of the LHCb Ring-Imaging Cherenkov (RICH) detector,

which is used for particle identification [154]. This work bypasses the

simulation of the high-dimensional low-level detector representation

in favor of the direct modeling of a low-dimensional set of high-level

reconstructed observables of interest.

As is evident, there exist a myriad of approaches and significant

excitement toward the possibility of generative model-based fast sim-

ulation of particle showers, replacing, or speeding up, large portions

of the traditional simulation pipeline. As a test bed for generative

models, and GANs in particular, this problem space offers observable

physics quantities, often in the form of shower shapes, that allow
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researchers to gauge performance along dimensions of experimental

interest and importance. Deep generative models for fast simulation

have the potential to model complex, non-parameteric shower dis-

tributions and fluctuations, and correlated energy depositions across

detector layers — features of electromagnetic and hadronic showers

that competing fast simulation techniques do not capture naturally.

Though significant progress has been made towards this ultimate

end goal, fundamental questions remain. Each of the works described

in this section builds model architectures towards particular geo-

metric assumptions of the target calorimeter. Both geometry- and

material-independent generation represent fundamental next steps

towards a generative model-powered simulation for the next genera-

tion of experiments.

1.5. Biases in generative modeling

The evaluation of generative models is plagued by the absence of

incontestable quantitative metrics that also meet the necessary con-

dition of appealing to qualitative evaluation standards [155]. The like-

lihood is not always tractable and feasible to compute. When tasked

with the indirect production of natural images, human perception

and structural consistency scores have been employed as proxies for

success. Examples of common evaluation metrics include the incep-

tion score (IS) [97] and the Frechet inception distance (FID) [85]. In

scientific applications, researchers often resort to domain-specific loss

functions or post-facto evaluation metrics that encode the physical

properties of the generated objects that ought to be correctly mod-

elled. High-energy physics is no different, as the work described in

Sec. 1.4 usually considers shower shapes or other observables to test

modeling fidelity.

Although marginal distributions, divergences, and other quantita-

tive metrics may be available for generative model evaluation, much

of the assessment of a method’s potential is still performed via man-

ual (or visual, in the case of computer vision) inspection of the gener-

ated samples. This method tends to incur in strong confirmation bias,

whenever the observer subconsciously looks for desirable features
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and patterns. Furthermore, un-monitored phase space regions of the

sample might eventually be used in downstream analysis.

Dataset bias also plays an important role in selective and mis-

leading performance reporting of generative models, in the best case,

and in creation of untrustworthy, biased systems, in the worst case.

The practice of prototyping generative systems on limited and sim-

plified datasets, with little diversity or unrealistic number of classes

or factors of variation, may lead to overestimating the performance

of these models in complex, realistic use-cases. While it is natural to

begin model development by tackling simpler generative tasks, it is

important to avoid premature optimization and over-fitting to these

scenarios, and to address the ways in which findings in this regime

may not generalize to real world applications. In addition, of partic-

ular concern for applications to the physical sciences, any statistical

fluctuations in the training set can result systematic biases for the

generative model.

Intrinsic inductive biases in a model may also be cause for concern

when not carefully evaluated and understood in realistic contexts.

There are other considerations as well, such as the statistical

power of a dataset generated with a generative model. In particu-

lar, if a generative model is trained with N events and then used to

produce M � N events, is there any statistical advantage of the M

events over the original N? This topic was explored in [57], where

it was demonstrated that when additional information is encoded

in the generative model, it is possible to achieve a higher statistical

precision than the original dataset. The additional information could

simply be in assuming smoothness in a local probability density (as

in [57]) or in symmetries of the data themselves.

2. Conclusions and Outlook

Deep generative models are powerful tools that may help to solve a

variety of computational challenges in high-energy physics. A vari-

ety of studies have shown that such models can capture the salient

features of various datasets and therefore may be able to replace or

augment existing simulations. Furthermore, some of these tools can
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be used directly for inference if they provide a tractable likelihood.

Training generative models is significantly harder than training dis-

criminative models because monitoring an entire density is challeng-

ing. Achieving the next level of precision for generative models will

require innovations on model selection and this is an area that fun-

damental physics applications may be able to provide unique insight

given our detailed first principles simulation models.
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LHC physics crucially relies on our ability to simulate events efficiently
from first principles. Modern machine learning, specifically generative
networks, will help us tackle simulation challenges for the coming LHC
runs. Such networks can be employed within established simulation tools
or as part of a new framework. Since some neural network architectures
can be inverted, they also open new avenues in LHC analyses.

1. Introduction

Machine learning in particle physics has a set of defining features,

as compared to many other applications of similar techniques. First,

LHC produces proper big data, which means that for instance in

QCD we typically work with many millions of jets as analysis objects.

Second, LHC events in all their complexity are described by simple

laws of fundamental physics, formulated in terms of perturbative

quantum field theory. Third, these predictions are available through

first-principles simulations for the hard scattering process and the

non-perturbative QCD effects, all the way to detector simulations

[1–4]. Finally, these simulation tools are publicly available and can

be combined with public datasets to develop meaningful new analysis

ideas even from outside the experimental collaborations.

191

https://doi.org/10.1142/9789811234026_0007


December 14, 2021 17:23 Artificial Intelligence for High Energy Physics 9in x 6in b4322-ch07 page 192

192 A. Butter & T. Plehn

1.1. Machine learning opportunities

In this review, we focus on machine learning approaches to improving

LHC event simulations. Currently, all these simulations are based on

Monte Carlo methods. Specific advantages of generative networks

over Monte Carlo simulations include (i) the fact that they are

extremely fast once trained, (ii) that they can be trained on any

combination of simulated and actual data, and (iii) that they can be

constructed in an easily invertible manner.

Simulations are not only an obvious machine learning applica-

tion at the LHC, they are also the basis of many other envisioned

machine learning improvements. Following a straightforward big-

data approach we can, for instance, attempt to simulate a full Run 3

or HL-LHC dataset, and then compare simulated and observed data

at an event-to-event level. This is the idea behind the planned

simulation-based or likelihood-free, so-called legacy analyses intro-

duced in Chapter 16. It is important to recognize that this implicitly

assumes that we can simulate such a dataset from first principles

with sufficient precision. More than anything these new inference

methods rely on conceptual progress in fast precision simulations.

For our typical statistical approaches such analyses also assume a

set of established signal hypotheses, while in practice we constantly

modify theory frameworks and adapt them to detector and back-

ground challenges or hints of new physics. For our first-principles

simulations this means that we have to provide not only precise and

fast, but also flexible signal simulations.

The development and validation of fast precision simulations

requires a close collaboration between theory and experiment. This

is why we view the comparison of simulated and measured LHC

events as a dynamic system, where theory and experiment develop

their respective tools in a constant exchange. Here it is helpful to

understand simulations as a chain of independent steps. They start

with the hard scattering described by perturbative quantum field

theory in the form of a Lagrangian. Jet radiation and parton show-

ers are described by resummed perturbative quantum field theory.

Next comes hadronization and fragmentation, and finally a detector
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simulation which allows us to compare the result to the 4-momenta of

identified particles in the detectors. Each of these modules requires a

continuous improvement in our understanding of the data, the preci-

sion of the theoretical calculations, and often the tuning of a minimal

number of physically plausible tuning parameters.

With these specific machine learning applications in mind, we split

this review into four physics sections. In Sec. 2, we briefly review the

kind of neural networks which are used in LHC simulations. Our

focus will be on generative networks, but we will mention some other

applications in passing. Next, we discuss different ways deep net-

works are used for specific event generation tasks in in Sec. 3. These

tasks reflect the modular nature of LHC simulations, and the network

architecture as well as the training data format are adapted to the

respective physics task. As an alternative, we discuss generative net-

works trained on full events in Sec. 4. The output of these networks

can be parton-level events or events after a fast detector simulation,

and we will omit a detailed discussion of detector simulation because

this is discussed in Chapter 6. Finally, we introduce conceptual and

practical opportunities from inverting the LHC simulation chain in

Sec. 5.

1.2. LHC motivation

The upcoming LHC runs pose a serious challenge to theory predic-

tions and simulations [5]. By the end of the HL-LHC run we hope to

analyze of the order of 25 times the number of relevant events as we

have available after Run 2. This estimate follows directly from the

increase in energy and luminosity, and for the bulk of phase space it

also translates into a factor five smaller statistical uncertainties on

cross-section measurements. This means that typical current statisti-

cal, systematic, and theory uncertainties in the range of 5–10% have

to be reduced to the per-cent level. First of all, this includes the sta-

tistical limitation through the number of simulated events, where the

size of the simulated sample should grow with the expected dataset.

In general, an improvement in simulation speed is equivalent to

an improvement in precision, assuming that the required theory
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predictions are available in an appropriate form. From a perturba-

tive QCD or electroweak point of view, reducing the theory uncer-

tainty by a factor five means going to the next order. For typical

LHC simulations this implies a shift from standard LO-NLO level

to NLO-NNLO, including kinematic distributions. Such an increase

in perturbative order includes one loop order more for virtual cor-

rections and one more final-state particle for real corrections, both

aspects corresponding to an increase in complexity by at least an

order of magnitude. Closely related to the perturbative expansion,

more detailed kinematic analyses require more precise simulations

especially in exotic, high-multiplicity phase space regions. An exam-

ple is the jet recoil associated with any kind of hard process, again

leading to a significant increase in simulation complexity.

Standard LHC analyses do not simulate all possible signal and

background channels, but focus on those which are expected to con-

tribute after a set of basic kinematic cuts and given the available

luminosity. With higher luminosities and higher precision, we will

become sensitive to additional backgrounds. Such background chan-

nels are often estimated using Monte Carlo simulations and typically

include high-multiplicity final states and tails of kinematic distribu-

tions, challenging the simulation framework.

Finally, the experimental uncertainties on rate measurements in

the bulk of phase space are becoming very small already at Run 2.

At the HL-LHC level it is not clear how we can include the cor-

responding high-loop predictions in the standard simulation chain,

even for key processes. While serious effort has been going into trans-

lating fiducial measurements into a predicted total cross-section, it is

not clear how this approach can be generalized to simple kinematic

distributions for the hard scattering process. On the experimental

side, it is not always clear what kind of signal hypothesis should

be used to report a measurement, for instance in the case of topo-

logically defined searches for physics beyond the Standard Model.

In addition to extracting the best possible limits for certain models

we would like to unfold kinematic structures or the detector simu-

lation. From a simulation perspective the last two tasks are linked

to a simple question, namely how to invert the event simulation.
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A third application of this technical task is likelihood-based infer-

ence through the so-called matrix element method.

This leads to a short, likely incomplete list of goals for theory sim-

ulations for the future LHC runs, specifically the HL-LHC, namely

• simulated event numbers scaling with the expected events;

• general move to NLO/NNLO as standard precision;

• higher relevant final-state multiplicities;

• additional low-rate high-multiplicity backgrounds;

• specific precision predictions not available in standard generators;

• interpretation of measurements without a signal hypothesis;

To illustrate the available computing resources, Fig. 1 estimates the

annual CPU computing needs by ATLAS until 2034 [6]. The baseline

R&D scenario lies far outside the available resources assuming com-

puting power increases by 10% to 20% per year. With a well-defined

aggressive R&D effort, it should be possible to meet the comput-

ing needs of future LHC runs. In the right panel of Fig. 1, we see

that event generation is not the only CPU-intensive aspect of LHC

physics, but it is expected to contribute close to 20% to the budget.

All tasks combined define the CPU usage in the left panel. If any of

them leads to a significant increase in simulation time, this task will

become a limiting factor in Run 3 or HL-LHC analyses. There exist

Fig. 1. Left: estimated CPU resources needed per year. The solid lines indicate
annual improvements of 10% and 20% in new hardware. The blue symbols rep-
resent three scenarios following the current LHC schedule. Right: projected CPU
usage in 2030 for the aggressive R&D scenario. Figures taken from [6].
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already Run-2 analyses for which theory simulations are the limiting

factor in extracting, for instance, Higgs properties. Unless we can

significantly improve first-principle precision simulations, this will

become a standard problem for HL-LHC analyses. This defines the

main task of the LHC theory and simulation community, and on the

simulation side machine learning should help us meet our precision

goals.

2. Generative Networks

Generative networks are machine learning tools which generate new

samples following a learned distribution. The generated data can

have the same form as the training data, in which case the generative

network will produce statistically independent samples reproducing

the implicit underlying structures of the training data. While there

are several types of generative networks available, we will focus on

models that have been applied successfully to LHC event generation:

generative adversarial neural networks (GANs), variational autoen-

coders (VAEs), and normalizing flows (NFs). The input of a gener-

ative network may in principle depend on conditional parameters,

however we start by considering unconditional generative networks

and keep in mind that they can always be extended to include con-

ditional information.

2.1. Generative adversarial networks

The standard generative adversarial network consists of two net-

works, a generator G and a discriminator D acting as adversaries.

The discriminator is trained to distinguish samples of the generated

distribution PG from samples of the true data distribution PT . The

last layer of the discriminator maps its output to the range D ∈ [0, 1].

Minimizing the loss function

LD = 〈− logD(x)〉x∼PT
+ 〈− log(1−D(x))〉x∼PG

(1)

tags true events with the label D = 1 and generated events with the

label D = 0. The brackets 〈·〉x∼P indicate the expectation value with

respect to the distribution P . In the next step, the generator adjusts
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the generated samples by minimizing its loss function

LG = 〈− logD(x)〉x∼PG
. (2)

It pushes the discriminator label of the generated events closer to

D = 1, marking true events. The combined training alternates the

minimization of both loss functions and yields generated event sam-

ples following the distribution of the data. An important advantage of

the GAN setup is the ability to generate particular realistic samples.

However, GANs have a tendency to suffer from unstable training,

preventing the convergence to a well-performing minimum. These

stability issues can be addressed by adjusting the loss function or

adding regularization terms.

Instabilities of the training are often linked to problems in fol-

lowing the gradient of the loss function. Diverging gradients for the

discriminator lead to strong oscillations in the loss function, prevent-

ing a stable convergence. This can be avoided by adding a regular-

ization term to the discriminator loss that punishes large gradient

values [7]. Vanishing gradients, on the other hand, lead to infinitesi-

mal updates of the weights and hence very inefficient training. This

problem typically arises when the discriminator is too powerful and

easily distinguishes between true and generated events. The loga-

rithmic loss function then leads to zero gradients. The Least Square

GAN (LSGAN) solves this problem by replacing the loss function

with a squared term [8].

A popular approach to improving GAN training are Wasserstein

GANs [9]. While the vanilla GAN minimizes the Jensen–Shannon

divergence, the WGAN minimizes the Wasserstein or Earth Mover

(EM) distance between the distributions PT and PG. TheWasserstein

distance is given by

W (PT , PG) = inf
γ∈Π(PT ,PG)

〈‖x− y‖〉
(x,y)∼γ

, (3)

where Π is the set of all joint distributions γ(x, y), with marginals

PT and PG. The joint distribution can be understood as the “earth”

that needs to be transported from x to y in order to transform PT

into PG. The Wasserstein distance indicates the minimal cost of such
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a transport. The distance of two non-intersecting distributions grows

roughly linearly with their relative distance, leading to a stable gradi-

ent. Using the Kantorovich–Rubinstein duality [10], the Wasserstein

distance can be reformulated as

W (PT , PG) = max
D∈D

〈
D(x)

〉
x∼PT

− 〈D(x̃)
〉
x̃∼PG

. (4)

The usual discriminator network is now replaced by a so-called crit-

ics network D. Its output is a 1-Lipschitz function which is trained

to maximize W (PT , PG). Since the definition of the EM distance

depends on the maximization with respect to the critics network, the

critics network is trained multiple times for each update of the gen-

erator. The Lipschitz condition can be met by clipping the weights

of the critics if they exceed a maximum value. An improved ver-

sion of the WGAN loosens the Lipschitz condition and replaces the

weight clipping by the gradient penalty already mentioned for regular

GANs [11, 12]. Wasserstein GANs are used in many particle physics

applications [8, 13, 14].

An interesting GAN extension is cycle consistent GANs [15] which

link two datasets, even though no direct correspondence of samples is

given. Besides the standard one-directional mapping, the CycleGAN

includes a second mapping in the inverse direction. Each mapping

is trained with a corresponding discriminator, such that the mapped

samples are indistinguishable from the respective target dataset. The

second training objective is to achieve consistency, which means that

the combination of both mappings results in the original input. If we

have actual pairs of samples, we can directly use an invertible network

which achieves the consistency automatically. We will explain this in

more detail when discussing normalizing flows.

2.2. Variational autoencoder

An alternative approach to generating samples is variational autoen-

coders, consisting of an encoder network E and a decoder network D.

In a simple autoencoder, the encoder maps the input to a latent rep-

resentation, typically of reduced dimension, which the decoder maps

back to the original sample. The training objective is to minimize



December 14, 2021 17:23 Artificial Intelligence for High Energy Physics 9in x 6in b4322-ch07 page 199

Generative Networks for LHC Events 199

the reconstruction loss

LAE = ‖x−D(E(x))‖2, (5)

so that decoded samples become similar to true events. The decoder

is trained to generate realistic samples from the latent space and

could serve as a generator. Unfortunately, the standard autoencoder

does not control the latent space, which means that realistic sam-

ples live in an arbitrary sub-space of the latent space. A variational

autoencoder [16] organizes the latent space, for instance by enforcing

Gaussian distributions. Instead of directly generating the latent rep-

resentation, the encoder maps a data point to a multi-dimensional

Gaussian characterized by vectors of mean values μj(x) and stan-

dard deviations σj(x). In the limit of vanishing standard deviations,

this gives us back the simple autoencoder. The VAE decoder is then

applied to a sample drawn from this Gaussian distribution.

The corresponding extension of the loss function is motivated by

variational inference. It can be derived minimizing the Kullback–

Leibler (KL) divergence between the encoded distribution qx(z) =

N (μ, σ) and the posterior p(z|x). Under the assumption of a Gaus-

sian prior, this loss simplifies to

LVAE = LAE + β ·KL(qx(z)|N (0, 1))

= ‖x−D(z)‖2z∼N (μ(x),σ(x)) +
β

2

∑
j

1 + log(σ2j )− μ2j − σ2j .

(6)

The free parameter β balances the relative importance of the

reconstruction loss with respect to the enforcement of the prior. The

authors of [17] choose small values of β to emphasize realistic samples.

In this case, the encoded latent space no longer follows a Gaussian.

Instead, they use a density information buffer to obtain a suitable

prior distribution, from which they can sample new events.

Finally, one can combine concepts of GAN and VAE into adver-

sarial autoencoders [18] or VAE-GANs [19]. The adversarial autoen-

coder replaces the KL term in the VAE loss with a discriminator
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that distinguishes samples of the encoded distribution from a prior

distribution. This allows us to choose arbitrary prior functions. The

VAE-GAN replaces the reconstruction loss of the VAE by a dis-

criminator that distinguishes reconstructed samples from the origi-

nal data. This setup can generate sharper images when the MSE loss

tends to have a blurring effect. While the optimal network architec-

ture usually depends on the specific task and dataset, VAEs seem to

be preferable when we require the additional control from the reduced

latent space, while GANs tend to generate more realistic samples.

2.3. Normalizing flows and invertible networks

A third class of generative networks are normalizing flows [20–22],

which use a bijective function f to transform a distribution of vector-

valued random variables x ∈ RD into a distribution of variables

y ∈ RD of the same dimension following a desired shape. The invert-

ibility of each intermediate step makes the transformation traceable.

This allows us to compute the probability density function (pdf) of

the target variable y from the pdf of the input variable x. The access

to the pdf of y is a prerequisite for the use of the network within

Monte Carlo generators to improve integration and importance

sampling [23–26].

We start with a random variable x following a probability distri-

bution p(x). The bijective function f in form of a network transforms

the variable x to y = f(x) and is parameterized with weights θ. The

corresponding probability density function q(y) is given by the sub-

stitution rule

q(y) = p(x)

∣∣∣∣det ∂f∂x
∣∣∣∣
−1

. (7)

For practical purposes, the computation of the Jacobian determinant

has to be efficient, while the transformation should be as expres-

sive as possible. Initially proposed simple flows like planar and radial

transformations [20] were soon replaced by more complex autoregres-

sive flows like Real Non-Volume Preserving flows [27] (RealNVP). As

proposed by the NICE framework [21] RealNVP rely on a triangular

shape of the Jacobian to keep the determinant easily computable.
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This is realized via so-called coupling layers, which split the input

vector into two blocks x = (xA, xB) using the partitions {A,B} of

the input dimension D. The output of the layer y = (yA, yB), split

into the same partitions, is given by

yAi = xAi ,
(8)

yBj = Cj(x
B
j ;m(xA)),

where the indices i, j run from 1 to |A|, |B| respectively and the

coupling transformation C is invertible. The Jacobian then takes a

triangular form since C is separable, meaning the jth component of

yB depends only on the jth component of xB

∂f(x)

∂xT
=

⎛
⎜⎝

1A 0

∂Cj(x
B
j ;m(xA))

∂xAi

∂Cj(x
B
j ;m(xA))

∂xBj

⎞
⎟⎠. (9)

The determinant is reduced to a simple product which can be com-

puted within one forward pass. The exact form of C varies between

implementations. Popular choices include affine and quadratic cou-

pling layers. Since the Jacobian determinant of two consecutive map-

pings is simply given by the product of the individual Jacobians, one

can combine multiple coupling layers to achieve a sufficient model

capacity. The concept of autoregressive flows has since been further

generalized in [28–30].

Once the normalizing flow is implemented, there is a multitude

of different loss functions that can be used to train the network, for

instance via the maximum likelihood approach [22]. Case studies to

improve the Sherpa framework are trained by comparing the pdf of

a sampled variable y with the true pdf at the same point obtained

from the matrix element. They found a preference for the Pearson

χ2 divergence [26] and the exponential divergence [25] when training

their networks.

The efficient calculation of the Jacobian is a necessary require-

ment to include normalizing flows into an integration routine, but

the coupling layer offers the additional possibility to invert the full

network. So far the described approach makes use of the invertibility,
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but it never explicitly computes the inverse mapping of the network.

While the computation is in principle possible for the general case

described in Eq. (8), it can be computationally expensive, since the

inversion of C can be arbitrarily complex. A suitable structure of C

is given by invertible networks or INNs [31], a special type of normal-

izing flows for which the inversion of C is simple and the evaluation

of the INN becomes very efficient in both directions. For instance, we

can combine linear and exponential transformations to the invertible

layer [27, 31]

yB = xB � exp(m1(x
A)) +m2(x

A)

⇔ xB = (yB −m2(x
A))� exp(−m1(x

A)), (10)

where � indicates an element-wise multiplication.

We keep in mind that the sub-networks m1 and m2, represented

by a neural network, are evaluated only in the forward direction

and remain unconstrained. Since the inversion does not require us to

invert the sub-networks, we can condition them on an independent

input without impact on the invertibility. This extension is called the

conditional INN or cINN [32]. Its stability and its statistical proper-

ties make it particularly attractive to solve problems like unfolding

detector effects and QCD jet radiation [33].

For such purposes, the cINN parameterizes again an invertible

mapping between sampled variables y, which correspond to unfolded

phase space points, and random numbers x. In addition, we now

include conditional information c (corresponding to detector level

information) via the subnetsmi. The cINN loss function is motivated

by the simple argument that the final network parameters θ should

maximize the (posterior) probability p(θ|y, c) or minimize

L = −〈log p(θ|y, c)〉y∼Py,c∼Pc

= −〈log p(y|θ, c)〉y∼Py,c∼Pc
− log p(θ) + const.

= −
〈
log p(f−1(y, c)) + log

∣∣∣∣∂f−1(y, c)

∂y

∣∣∣∣
〉

y∼Py,c∼Pc

− log p(θ) + const. (11)
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The second line uses Bayes’ theorem and summarizes all terms

independent of the minimization as constant. The third line simply

applies the change of variables formula Eq. (7). When sampling over

x the trained network finally yields correctly calibrated distributions

over y under the condition c.

2.4. Amplification

An interesting question for neural networks in general, and genera-

tive networks in particular, is how much physics information the net-

works include in addition to the information in a statistically limited

training sample. While a naive answer might be that all the physics a

neural network can extract has to be encoded in the training data, the

network setup adds information. For instance, it represents smooth

functions up to a certain resolution. The question then becomes how

much this very basic assumption accounts for in terms of events we

can generate.

A simple, but instructive toy example is a one-dimensional camel

back function [34], two Gaussians defined by two means, two widths,

and a relative normalization, shown in the left panel of Fig. 2. The

x-axis is divided into quantiles. For each of them we compute the

Fig. 2. Left: 1D camel back function, we show the true distribution (black),
a histogram with 100 sample points (blue), a fit to the samples data (green), and
a high-statistics GAN sample (orange). Right: quantile error for sampling (blue),
5-parameter fit (green), and GAN (orange), shown for 20 quantiles. Figures taken
from [34].
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statistical error in analogy to a χ2-measure and add those in quadra-

ture. In the right panel, we show the combined error of all quantiles

for the sample and for a 5-parameter fit benchmark. First, we see how

the fit has a much smaller quantile error than the original 100-point

sample. We can specify the additional information when we com-

pare it to the number of sampled events we would need for the same

quantile error. For the 20 quantiles in shown in the right panels of

Fig. 2 the fit is worth around 500 events instead of the 100-event

sample.

Clearly, a simple generative network will not an amplification fac-

tor of order five or even larger. Nevertheless, a GAN can be trained

and then used to generate up to 106 events. We first see that generat-

ing more than 10,000 events does not change the quantile error and

hence does not add more information. Second, we can read off the

amplification factor and find that these 10,000 GANned events are

worth almost 300 sampled events. In [34], the authors show that this

kind of behavior extends to sparsely populated and high-dimensional

phase space, and that the amplification factor increases with sparse-

ness. The amplification factor of the GAN trails the amplification

factor of the fit for the one-dimensional example. While a quantita-

tive result on achievable amplification factors of generative networks

in LHC simulations will depend on many aspects and parameters,

this simple result indicates that using generative networks in LHC

simulations can lead to an increase in precision.

3. Neural Networks in Event Generators

An obvious application of machine learning at the LHC is event gen-

erators. These generators are the simulation tools which put LHC

physics into its unique position when it comes to understanding all

aspects of the data and comparing it to first-principles theory pre-

dictions. Modules inside the generators describe the hard scattering,

jet radiation, and even hadronization essentially from first principles.

This means their input is a set of Lagrangians defined at a few dis-

tinct energy scales. Finally, the output from the event generators is

fed into detector simulations, based on the detailed description of
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the different sub-detectors. The numerical tool behind this genera-

tion chain is Monte Carlo simulations, which means that events are

described by a long chain of random numbers which describe the

individual steps independently from each other. As we will discuss in

detail, modern machine learning offers many ways to improve such

simulations. The practical question is where it can significantly speed

up or increase the precision of the LHC simulation chain.

3.1. Phase space integration

One challenge in event generation at the LHC is the balance between

global phase space coverage and the precise mapping of narrow local

structures. The advantage of the established Monte Carlo methods

is that they guarantee full phase space coverage, including regions

where the matrix elements are very small. For a given algorithm,

this global coverage has to be balanced with the local resolution,

which means that we have to ensure that the event generator also

resolves fine structures like phase space boundaries or intermedi-

ate resonance peaks. Algorithms like Vegas [35] employ importance

sampling, which means they adapt their grid of phase space points

to the structures of the integrand and keep track of the Jacobian in

terms of phase space weights. This method is nothing but a coor-

dinate transformation of the phase space such that the Jacobian

absorbs the main features of the integrand and the actual integra-

tion is now over a flat function. A prime example is the mapping of

a Breit–Wigner propagator via

∫
ds

C

(s −m2)2 +m2Γ2
=

1

mΓ

∫
dz C with tan z =

s−m2

mΓ
.

(12)

The weak spot of Vegas is that the adaptive phase space grid has

a fixed rectangular form in the phase space dimensions. This can be

improved by training a regression network to describe the mapping

s → z such that the Jacobian of this variable transform absorbs

the leading functional behavior of the integrand. In this case, the

new integral will be over a largely constant function. Tools like
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Fig. 3. Comparison of the target function value with the corresponding approx-
imations from the regression and generative models. Figure taken from [37].

TensorFlow [36] provide this Jacobian essentially for free. Ref-

erences [37–39] show how neural network implementations can be

used to integrate simple phase space structures extremely efficiently.

In [37], the author follows a slightly different approach and apply

a generative network to evaluate the phase space integral. This GAN

encodes the relation between a known, simple prior distribution and

the integrand. In Fig. 3, we show how the regression network and the

GAN map out the Breit–Wigner distribution of Eq. (12). For the

example of a multi-dimensional camel function, the GAN integra-

tion outperforms not only Vegas, but also a similar BDT imple-

mentation. A state-of-the-art version of a deep-learning integrator

is i-flow [25, 40]. It uses a normalizing flow network and coupling

layers to optimize the phase space mapping. The limitation of many

of these studies is that they focus on phase space integration and

not on phase space sampling or event generation. This means that

for applications in LHC simulations we have to take the step from

regression networks to generative networks discussed in Sec. 2. We

will follow up this thought in Sec. 3.4.
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3.2. Matrix elements

A main ingredient to event simulation is the form of the matrix ele-

ment. We will discuss the features of matrix element estimation in

more detail in Sec. 4 but mention some regression approaches already

here. An early attempt of using machine learning on matrix elements

targets the partonic process gg → ZZ [41]. Here the leading order is

one loop, which means that the evaluation of the amplitude is sig-

nificantly slower than the usual tree level calculations. At the same

time, the simple 2 → 2 topology without intermediate resonance

leaves us with a low-dimensional phase space and relatively flat dis-

tributions. While for the simple 2→ 2 scattering a BDT is sufficient

to encode the matrix element, more complex processes as those dis-

cussed below require advanced machine learning tools. On the other

hand, for instance NNLO calculations are limited by the calculation

of loop-induced amplitudes, so this approach appears very promising.

A technically more sophisticated analysis targets the process

e+e− → 3 . . . 5 jets (13)

to NLO [42]. For four or five jets in the final state, the precise calcula-

tion of the matrix element becomes computationally expensive. The

question is how it can be encoded in a regression network, mapping

the n-jet phase space onto the real value of the scattering amplitude.

The key parameter is the pair-wise invariant mass of two partons,

which diverges in the soft and collinear limits. The regression net-

work features a MSE loss function and is implemented in Keras [43]

and TensorFlow [36] with the Adam [44] optimizer.

The actual analysis focuses on a detailed study of the network

uncertainties [45], especially in the critical, divergent-phase space

regions. There the best regression networks achieve a precision of

up to 1% in the value of the matrix element squared. As a system-

atic framework for error analyses, Bayesian networks also discussed

in Chapter 18 have been applied to jet regression [46] and jet clas-

sification [47]. These analyses indicate that the framework can be

applied in particle physics with its conservative frequentist approach.
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A detailed comparison to the ensemble approach proposed in [42]

could be a natural next step.

Divergent-phase space regions and their regularization with the

help of subtraction terms are a known numerical challenge in LHC

simulations. They can be treated with a subtraction GAN [48]. The

task is to start with two different event samples and train a GAN

such that its output follows a probability distribution given by the

difference of the two training samples. In one dimension, this could

be a base distribution PB and a subtraction distribution PS

PB(x) =
1

x
+ 0.1 and PS(x) =

1

x
. (14)

such that the GANned events follow the constant target distribution

PB−S = 0.1. (15)

In [48] this toy example is expanded to collinear subtraction with

Catani–Seymour kernels, similar to the FKS subtraction used in [42].

The main difference between these two studies is that the former

trains a generative network.

An alternative use for the subtraction GAN is studies of LHC

signal processes. For instance, the kinematic distributions of Higgs

decays to four fermions reflect the tensor structure of the Higgs

coupling to gauge bosons. In traditional methods, we start from a

combined sample of signal and background events and subtract the

background events using some kind of naive or advanced side band

analysis [49]. A subtraction GAN could be trained on the measured

signal-plus-background sample and an appropriately prepared back-

ground sample and then produce signal events with all correlations.

In Fig. 4, we show results for the simple example

B: pp→ �+�−
(16)

S: pp→ γ → �+�−,

such that B−S gives the Z-induced contribution including the inter-

ference term. The GAN setup follows Ref. [7], discussed in Sec. 4.3.

In passing, it also illustrates how GANs can surpass statistical lim-

itations from the input samples, as we can see in the right panels
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Fig. 4. Comparison of true and GANned pp→ �+�− events for the input samples
and the GAN-subtracted sample. The right panels include the error envelope
propagated from the input statistics. Figure taken from [48].

of Fig. 4. While the error envelope of the binned subtraction are

given by the statistical uncertainty of the two original samples, the

smaller variation of the GANned prediction benefits from the com-

bined subtraction and interpolation.

3.3. Parton shower

The second step in an LHC event simulation is typically the treat-

ment of jet radiation. It is also described by first-principles QCD, if

we account for large soft and collinear logarithms [50]. The problems

in describing it with a generative network are that it includes a very

large number of particles in the final state, that it covers a wide range

of energies, and that the self-similar structure of collinearly enhanced

radiation needs to be accommodated. Eventually, there will be fully

functional GAN showers for LHC analyses [51], but at this stage we
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only discuss some early applications of neural networks in parton

showers.

A standard way of representing jets in machine learning is jet

images, two-dimensional pixelized images of the calorimeter out-

put in the rapidity vs. azimuthal angle plane. Such images can be

GANned using standard machine learning techniques, for instance

loss functions which combine fake vs. truth discrimination with QCD

vs. W -decay discrimination [52], also mentioned in Chapter 6. The

training data for this jet image GAN are large-size Pythia8 [1] jets

from QCD or from hadronic W -decays. They are required to be in

the narrow range pT = 250 . . . 300GeV, to define a homogeneous

sample. In addition, the jet images undergo basic pre-processing such

that the hardest constituent is in the center and the second-hardest

constituent is rotated to point down. The standard GAN setup is

complemented by the additional class information about whether

the jet comes from QCD or from W -decays. Because it operates

on jet images, the network includes a set of convolutional layers,

similar to the usual jet classification networks. It is implemented

with Keras [43] and TensorFlow [36] and uses the Adam [44]

optimizer.

A detailed study of the generated jets shows that they show

promise in reproducing the relevant high-level observables like jet

mass and subjettiness sample-wise. An interesting way of testing if

the GAN has learned the correct patterns is to train a classification

network on truth or on GANned samples and then test this network

on truth or GANned jets. It turns out that the GANned jets work

well as a training sample, apparently too well, suggesting that the

GAN has difficulties generating jets in the gray zone between typical

QCD and typical W -decay jets. In Fig. 5, we show a detailed com-

parison of the 500 most signal-like and 500 most-background like jets

out of 200k truth and GANned jets each. The two-dimensional his-

tograms for the difference have a linear heat map. For these jets, the

network reproduces the QCD and W -decay patterns faithfully, and

some of the apparent differences are explained by bin migration.

Another early application of machine learning to parton show-

ers [40] uses a regression network to apply an a-posteriori reweighting
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Fig. 5. Comparison between the 500 most signal- or W -looking (left) and most
background- or QCD-looking (right) jet images, from the truth set (top) and the
GANned set (bottom). Figure taken from [52].

to a parton shower. Examples are the reference value and the scale

choice of αs(μ
2
R), which enters the parton shower in a non-trivial way.

Varying these two parameters allows us to include theory uncertain-

ties in an analysis of parton showers. The study finds that even a

relatively simple network predicts the re-weighting factors for differ-

ent observables with a precision of better than 2% with a promising

gain in speed.

Our last example for using neural networks on parton showers

generates Lund plane images using a GAN [8]. The starting points
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Fig. 6. Comparison of true and generated jets in terms of the number of activated
pixels per image, the reconstructed soft-drop multiplicity, and the jet mass from
the modified Mass Drop Tagger. Figure taken from [8].

are large jets with pT > 500 GeV generated with Pythia8 [1] and

then passed through the fast detector simulation Delphes [53]. Each

jet is then encoded through its clustering history in a sparsely pop-

ulated two-dimensional image of the geometric, or R-separation and

the relative transverse momentum. This two-dimensional represen-

tation, called Lund plane [54], is different from the usual jet images,

which are defined as sparsely scattered pixels encoding the energy

measured in calorimeter cells. The usual jet images encoding the

calorimeter or even particle flow output define a starting point when-

ever we want to use machine learning on low-level observables. In

contrast, Lund plane images represent the high-level output of a jet

algorithm. The images are grouped into batches of 32 and used as

training input to a least-square GAN, a gradient-penalty WGAN,

and a VAE. The GANs employ a set of two-dimensional kernels. In

Fig. 6, we compare the generated showers with the truth information

in terms of different observables. While the two GANs lead to compa-

rable results, the VAE performs visibly worse. Of the two GANs the

LS version performs better when generating individual sparse Lund

images rather than distributions over batches. At this stage, it is still

too early to speculate what the optimal architecture for Lund plan

images will be.

3.4. Sherpa and normalizing flows

The authors of the event generator Sherpa [3] have published two

studies on how the phase space sampling could be improved using
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deep learning. Both of them use normalizing flows with their invert-

ible coupling layers. The authors of [24] start from the architecture

of the i-flow integrator [25], implement it in Sherpa, and study the

LHC process

pp→W/Z + n jets. (17)

The neural network replaces the Vegas-like importance sampling.

Its task is to re-write an x-integration of a function f(x) into a new

variable x′ such that the combination of the original integrand with

the Jacobian, w = f(x′)/J , is as close to a constant value over phase

space as possible. All other parts of the Sherpa integration, including

the multi-channel structure, remain the same. This implies that the

sampling is still guaranteed to cover the full phase space. We recall

that a standard generative network evaluates phase space following

the training events, without any guaranteed coverage. Any improve-

ment in constructing a phase space mapping by multi-dimensional

interpolation should be visible in the unweighting efficiency of the

phase space points. Motivated by the unweighting algorithms, the

standard efficiency measure is the ratio of the average to the maxi-

mum event weights 〈w〉/wmax, where the size of the denominator can

be limited by evaluating it in batches.

In Table 1, we show the comparison of unweighting efficiencies

with the standard Sherpa integrator and the i-flow network. It uses

Table 1. Unweighting efficiencies for the standard Sherpa integration and the
normalizing flow network. Table slightly modified from [24].

LO QCD NLO QCD (RS)
Unweighting efficiency

〈w〉/wmax n = 0 n = 1 n = 2 n = 3 n = 4 n = 0 n = 1

W+ + n jets Sherpa 3 · 10−1 4 · 10−2 8 · 10−3 2 · 10−3 8 · 10−4 1 · 10−1 5 · 10−3

NN + NF 6 · 10−1 1 · 10−1 1 · 10−3 2 · 10−3 9 · 10−4 1 · 10−1 4 · 10−3

Gain 2.2 3.3 1.4 1.2 1.1 1.6 0.91

W− + n jets Sherpa 3 · 10−1 4 · 10−2 8 · 10−3 2 · 10−3 1 · 10−3 1 · 10−1 5 · 10−3

NN + NF 7 · 10−1 2 · 10−1 1 · 10−2 2 · 10−3 8 · 10−4 2 · 10−1 4 · 10−3

Gain 2.4 3.3 1.4 1.1 0.82 1.5 0.91

Z + n jets Sherpa 3 · 10−1 4 · 10−2 2 · 10−2 5 · 10−3 1 · 10−1 5 · 10−3

NN + NF 4 · 10−1 1 · 10−1 1 · 10−2 2 · 10−3 2 · 10−3 6 · 10−3

Gain 1.2 2.9 0.91 0.51 1.5 1.1
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narrow jets with pT > 20 GeV and |η| < 6, so a relatively large

number of jets is expected in a typical LHC event, challenging the

event generation. The gain in unweighting efficiency is clearly vis-

ible for the first two jets. Beyond this the flow network gains lit-

tle, which contradicts the naive expectation based on an improved

neural network interpretation for high-dimensional phase spaces.

Instead, there seems to be a limiting factor to the performance of

the flow network, which might have to do with the fact that all

other parts of the generator, including the multi-channeling, are kept

the same.

A second Sherpa study [26] also uses a normalizing flow net-

work to replace the importance sampling module, but with a slightly

different setup of the coupling layers. It studies the reference process

pp→ n gluons, (18)

also with small jets and pT > 30 GeV. Here we know that the QCD

(antenna) radiation pattern defines up to 120 Feynman diagram

topologies or channels, which can be mapped onto three indepen-

dent channels for n = 4. The analysis of the unweighting efficiencies

confirms the bottom line of [24], namely that there is an improve-

ment visible for n = 3, but not anymore for n = 4. This apparent

breakdown is unexpected and needs more detailed studies.

In Fig. 7, we show a physics result from this study, namely the

spectra of the three leading jets for n = 4. In the top panels, we

see that the two importance sampling approaches, Vegas and flow

networks, both produce consistent results. Below, we see that also the

MC uncertainty for the two approaches are consistent and remain

below 2% as long as we stay away from the tails. Finally, in the

bottom panes we show the mean weights w = f/J introduced above.

The perfect importance sampling would lead to a flat w-distribution

over phase space, in this case unity everywhere. For the two leading

jets both methods sample the tail too often, filling the histogram

with many events of smaller weight. For the third jet,Vegas starts to

under-populate the tail while the flow network maintains the pattern

from the leading two jets.
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Fig. 7. Comparison of events from classic and flow network importance sampling
in terms of pT of the leading three jets (for up to four jets). The middle panes
compare the Monte Carlo errors, the lower panes show the mean event weights
per bin. Figure taken from [26].

An interesting aspect of this application of normalizing flows is

that it does not use the invertible nature of the coupling layers.

Instead, it benefits from the easy calculation of the derivative of

the Jacobian. The integrator networks are similar to other genera-

tive networks in the sense that they map a random number input

to phase space events. They do, however, produce weighted events,

which by unfolding can be turned into unweighted events the same

way they are produced by other generative networks. At this point,

we only mention that event unweighting is a known weak spot of

standard event generation, and using neural networks to generate

unweighted events from a known phase space density might well be

the most promising machine learning application within the standard

simulation framework [55, 56].

4. GANs and VAEs as Event Generators

In simulating LHC events increased precision comes at a high price

in computing. Leading order calculations are typically cheap, but

can really only be considered order-of-magnitude estimates; NLO-

QCD predictions have meaningful theory errors anywhere in the
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20% to 50% range and are available through automated tools [3, 57];

precision analyses require NNLO or even N3LO in QCD and often

require a wealth of numerical tricks to be used in LHC analyses,

some of them involving machine learning, as discussed in Sec. 3.2. An

alternative application of machine learning beyond improving genera-

tors is to train generative networks on any combination of simulated

and actual events and then use their ability to learn and interpo-

late phase space structures to simulate large reference samples. We

describe recent developments in this direction for three benchmark

processes: the Drell–Yan process, multi-jet production, and top pair

production at the LHC.

4.1. Z → �� production

Arguably, the best-studied standard candle at the LHC is the Drell–

Yan process

pp→ �+�− + jets, (19)

where � symbolizes visible leptons as well as invisible neutrinos, the

latter being the leading background to dark matter searches.

In [58], the authors design a GAN to generate these events,

described by the 4-vectors of two muons and up to five jets. In

Sec. 3, we saw that for a sufficiently large number of jets this pro-

cess is indeed a challenge and standard benchmark for Monte Carlo

generators. The network is trained on Pythia8 [1] events including

the fast detector simulation Delphes [53] and a pile-up rate of 20

collisions on average. This simulation defines additional observable

features which are evaluated for the network training, namely the

number of primary vertices, the detector-induced missing transverse

momentum vector, and the muon isolation.

The GAN employed for this paper includes a regression loss

involving one process-specific feature, namely the position and the

width of the Z-peak, in addition to the binary cross entropy

L = LBCE + λm (mZ −m��)
2 + λσ (σZ − σ��)2 , (20)

with λm = λσ = 10−4. The width σZ = 7.7 GeV is given by the

detector simulation. The network is implemented in Keras [43] with
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Fig. 8. Comparison of true and GANned pp→ �+�− events in terms of standard
kinematic distributions. Figure taken from [58].

a TensorFlow [36] back-end, with a LeakyReLU activation. The

comparison of the Z-mass and width goes beyond individual events

and uses an event batch produced by the generator.

The quality of the GANned events can be tested with a list of

kinematic observables, including the invariant mass of the two lep-

tons and the number of jets with pT > 15 GeV. The corresponding

distributions are shown in Fig. 8. Removing the two Z-related terms

from Eq. (20) has a negligible effect on the muon momenta and on

their central invariant mass, but leads to an over-estimate of the

detector-level Z-width by almost a factor of two. We will come back

to on-shell mass peaks in Sec. 4.3. A problematic class of observables

are the transverse jet momenta, because of the combination of the

actual spectra and the peak from zero-padding events with fewer jets.

Nevertheless, in the lower center panel of Fig. 8 we see that the num-

ber of jets above threshold is reproduced reasonably well at least up

to three jets. Concerning the poorly learned azimuthal angle of the

missing momentum direction, we speculate that the true distribution

is essentially flat, but it is well known that generative networks often



December 14, 2021 17:23 Artificial Intelligence for High Energy Physics 9in x 6in b4322-ch07 page 218

218 A. Butter & T. Plehn

Fig. 9. Comparison of the Emiss
T distribution for true and GANned pp → �+�−

events in the low-pileup and high-pileup regime. Figure taken from [58].

fail to learn constant distributions over phase space [7]. The reason

is that the combination of generator and discriminator updates will

constantly force the two networks to move within a typical phase

space distance and generate a noisy distribution.

An especially interesting aspect of [58] is the effect of pile-up, also

studied in [59]. In Fig. 9, we show the missing transverse energy for

two subsets of events, with low and high number of pile-up vertices.

This application is an example for networks not enforcing energy–

momentum conservation, which increases the dimensionality of phase

space but allows for detector smearing. As we can see, the GAN

reproduces the correlation between the number of pile-up vertices

and the smearing of the detector-induced missing energy very well.

A similar physics process, but at an electron–positron collider

e+e− → Z → �+�− (21)

is the starting point of [17]. The authors train on combined

MG5aMCNLO samples [57] for � = e, μ, where depending on

the lepton flavor one set of 4-momenta is always set to zero. This

setup increases the dimensionality of the final state from eight to 16.

Because the simulation does not include detector effects, the m�� dis-

tribution now has a Breit–Wigner shape with the physics Z-width.

This simulation also does not include any explicit information on the

intermediate particle in the loss function.
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Fig. 10. Comparison of e+e− → �+�− events for the truth, a VAE with a stan-
dard Gaussian prior (blue) and the B-VAE (red). Figure taken from [17].

The generative network employed here is a modification of a VAE

based on a combination of MSE and KL-divergence, as mentioned

in Sec. 2. The so-called B-VAE developed for this purpose buffers

density information in the latent space and is implemented with

Keras [43], TensorFlow [36] and cuDNN [60].

In Fig. 10, we show the corresponding kinematic distributions

and confirm that unlike a naive VAE the B-VAE reproduces all of

them. The last panel shows the invariant masses of the leptons, which

should be zero and is now spread because the network learns the

components of the external 4-vectors without the mass constraint.

This observed smearing again reflects the above-mentioned problem

of generative networks learning constants over phase space.

4.2. Multi-jets

Multi-jet production is the most frequent process at the LHC and

affects a huge number of analyses. Depending on the kinematic cuts,

the hard process includes at least two hard partons

pp→ qq̄, gg, qg, q̄g, (22)
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where these hard partons then generate at least two hard jets.

Additional jets can be produced through hard scattering, initial

state radiation, or final state radiation. Because of the logarithmic

enhancement of collinear splittings and the relatively large strong

coupling, most jet events at the LHC have many more than two

jets [50]. Simple analyses study, for instance, the relative rate of n

and n+1 jets, which can be predicted from QCD [50]. The challenges

in simulating multi-jet events are, on the one hand, the variable num-

ber of jets in the final and, on the other hand, the required precision

of a given analysis. The former comes from the fact that we cannot

rely on counting powers of the strong coupling in perturbation theory,

but have to re-sum large logarithms of jet radiation. The latter means

that we have to combine fixed-order calculations with resummed cal-

culation to high precision [50]. An alternative approach to simulating

jet backgrounds could be generative networks describing this process

based on data rather than theory simulations.

The authors of [61] train a GAN to simulated LHC events

with at least two hard jets. The training data is simulated with

MG5aMCNLO [57] and Pythia8 [1]. It relies on Delphes [53]

for fast detector simulation and FastJet [62] for jet reconstruction.

The large jet size of R = 1.0 ensures that there are not too many jets

in the final state, for example from final state splittings. To enforce

hard jets, all events are required to have a scalar sum of all transverse

momenta HT > 500GeV.

The GAN is implemented in Keras [43] and TensorFlow [36]

with the Adam [44] optimizer. All layers except for the last have a

LeakyReLU activation function. In the input format the azimuthal

angle of the leading jets is set to zero, exploiting a symmetry of the

physical system. Another, symmetry is exploited through doubling

the training data by reversing the rapidity.

In Fig. 11, we show a set of kinematic distributions for the train-

ing events and the generated events. The quoted χ2 value quantifies

the agreement between the respective true and GAN distributions.

A typical feature of the multi-jet process is that most of the kine-

matic distributions are flat compared to processes with intermediate

mass peaks. The only critical feature, already discussed in Sec. 3,
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Fig. 11. Comparison of true (gray) and GANned (black) multi-jet events includ-
ing detector effects. Figure taken from [61].

is the sharp phase space boundary for pmin
T , in this case enforced

through a cut on HT and not fully aligned with the shown pT . We

know that a slight misalignment between a sharp boundary and the

input parametrization helps the GAN to model the feature, because

it softens the sharp edge. Nevertheless, there remains a slight devia-

tion for instance around the pT -threshold of the second-hardest jet.

The last row of plots in Fig. 11 shows the kinematic recoil to the lead-

ing two jets. This recoil is generated by radiating a variable number

of additional jets, so the results illustrate that the multi-jet GAN

learns this variable number of jets.
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Fig. 12. Comparison of true (gray) and GANned (black) multi-jet events without
detector effects. The red line shows a 4-parameter function fitted to the training
data, including the high-mjj tail. Figure taken from [61].

An interesting question lingering in all applications of generative

networks is if networks can learn structures not only interpolating

between phase space points, but extrapolating into poorly populated

regions. For the dijet GAN [61] the authors train their model on a

sub-set of the training data with mjj > 1.5GeV, this means they

focus on the high-mass tail of the distribution and we can ignore

issues in the low-mass range. In Fig. 12, we first show the training

data, including a 4-parameter fit to the mjj distribution as the base-

line description. In addition, we show that the GANned events agree

with the training data in the same mjj distribution. The main differ-

ence appears for mjj � 8.5TeV, where the number of training events

becomes small, the fit function exhibits a sharp drop, and the GAN

still provides a small number of events.

Finally, the B-VAE strategy of [17] illustrates for multi-jet pro-

duction how an event sample can be generated from real data as

opposed to simulated samples, in this case CMS data from a 7 TeV

supersymmetry search [63]. In the original CMS paper, this jet sam-

ple has been shown to agree with a Pythia8 [1] multi-jet simulation,

based on the hard di-jet process. The jet triggers effectively prefer

leading jets with pT � 100 GeV and a sizeable di-jet mass. Missing

transverse energy only appears through detector effects.
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Fig. 13. Comparison between experimentally measured truth (gray) and B-VAE
results (colored) for the CMS MultiJet primary dataset [63]. Figure taken
from [17].

The employed B-VAE uses 4-momenta (E, pT , η, φ) as input and

operates on a 10-dimensional latent space for a variable number of

standard jets. In Fig. 13, we show the agreement of the generated

events with the original data. In contrast to typical simulated event

samples, the CMS data does not have sharp phase space boundaries
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or cliffs in a kinematic distribution. This allows the generative net-

work to, for instance, describe the mjj distribution over essentially

the full range.

4.3. Top pairs

Top pair production at the LHC,

pp→ tt̄ (23)

is an especially challenging process because it includes six particles

in the final state, out of which we have to construct two intermediate

W -propagators and two intermediate t-propagators.

In [17], the authors use their B-VAE to describe top pair produc-

tion with one leptonic top decay. In that case the final state consists

of exactly four jets and two leptons. The training data is produced

with MG5aMCNLO [57] and supplemented with a fast detector

simulation using Delphes3 [53]. The 4-vectors are represented as

(E, pT , η, φ), defining a 26-dimensional phase space including the

two parton-momentum fractions x. Hyper-parameters which need to

be optimized for the B-VAE include the B-parameter weighting the

MSE and KL-divergence in the loss function and the dimensionality

of the latent space. It is interesting to note that the best-performing

models for a set of one- and two-dimensional kinematic distributions

in [17] have an approximately 20-dimensional latent space.

In Fig. 14, we show some of the kinematic distributions, describing

the final state particle in the upper row and correlating the final state

particles in the lower row. In general, the B-VAE learns the features of

the production process. The challenge in the transverse momentum

distribution, as compared to the rapidity, is the sharp drop-off for

small pT,j. Such sharp features or even phase space boundaries are

a known and obvious challenge for any generative network [7, 64].

The reason is that the end of such a distribution is described by

a very small number of events, so the network will be limited by

the training statistics. Good examples for smooth distributions are

ηJ,1, Δφ(�,MET), or ΔR(j1, j2) where the precision of the B-VAE is

shown to be around 10% at least.
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Fig. 14. Comparison of true (gray) and VAE (red) events for tt̄ production.
We show a subset of distributions from [17].

The tt̄ study in [7] focuses on an open question from the results

shown in [17] and an obvious problem found in [58], namely inter-

mediate on-shell resonances. These narrow phase space features are

also a known problem for standard matrix element integrators, which

typically employ dedicated coordinate transformations or (multi-

channel) phase space mappings. In this case, the training data are

top pair events simulated with MG5aMCNLO [57], now decaying

into an all-hadronic final state. As a simplification, events with addi-

tional jets are not considered. A detector simulation would lead to

broader intermediate mass peaks, so it is omitted in reference to the

main challenge of the analysis.

The input to the network are the six 4-vectors (E, px, py, pz),

but with an explicit on-shell condition for each final state parti-

cle. They are fed into a GAN with a gradient penalty, implemented

in Keras [43] and TensorFlow [36]. The gradient penalty stabi-

lizes the training to a level comparable with a Wasserstein GAN.
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Fig. 15. Comparison of true and GANned events. The additional panels give the
bin-wise ratio. The third panels show the statistic uncertainty on the number of
training events in the tails. Figure taken from [7].

Some kinematic distributions are shown in Fig. 15, again indicating

an agreement with the training data at the 10% level.

Coming back to the main challenge, invariant masses, like many

other narrow phase space features, can be cast into well-defined one-

dimensional distributions. In the loss function such a distribution

can, for instance, be enforced through a maximum mean discrepancy

(MMD) [65], a kernel-based method to compare two samples drawn

from different distributions. Using one batch of true data points fol-

lowing a distribution PT and one batch of generated data points

following PG, it computes a distance between the distributions

MMD2 =
〈
k(x, x′)

〉
x,x′∼PT

+
〈
k(y, y′)

〉
y,y′∼PG

− 2
〈
k(x, y)

〉
x∼PT ,y∼PG

,

(24)
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Fig. 16. Comparison of different kernel functions for the W -boson and top mass
peaks in the top-pair GAN. Figure taken from [7].

where k(x, y) can be for instance Gaussian or Breit–Wigner kernels.

In both cases, the kernel width is a hyperparameter of the network.

We show the effect of the different kernels in Fig. 16.

Finally, to show that astronomy is not the only field producing

nice-looking pictures, we also compare a two-dimensional correlation

between the true data and the GAN output in Fig. 17. The correla-

tion between the two transverse momenta includes a Jacobian peak

as well as a sharp phase space boundary. The slice in the lower-right

panel indicates that the GAN learns the Jacobian peak as well as the

sharp boundary with high precision.

5. Inverting the Simulation Chain

While the LHC simulation chain discussed in Sec. 3 is statistically

invertible, it is only ever applied in one direction: we define a physics

hypothesis for instance at the hard matrix element level, derive pre-

dictions for a dataset, and compare with measured data. This pro-

cedure turns around our actual physics question, which for instance

asks how a kinematic distribution, assuming a hard process, looks for

a measured dataset. For the interaction between theory and experi-

ment it would therefore be extremely useful, if we could move up and

down the simulation chain and compare measurement and theory at

any level of data processing.
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Fig. 17. Correlation between pT,t and pT,b for truth (upper left), GAN (upper
right), and their relative difference (lower left). We also show pT,b sliced at pT,t =
100 ± 1 GeV. Figure taken from [7].

A simple case would be inverting detector effects, starting from

detector-level events and showing parton-level kinematic features.

This special case is called unfolding detector effects, and it is an

established procedure for one are two-phase space dimensions. Simi-

larly, analyses based on estimating parton-level matrix elements are

known as using the matrix element method [66–68]. The hope is that

inverting the LHC simulation chain with machine learning will open

new ways to analyze LHC data and compare it to theory predictions

without always implementing them into event generators.

5.1. Parton shower from CycleGANs

When we model an, in principle, invertible simulation like event gen-

eration with a neural network, we actually have to decide in which

direction we want to apply the network. An intuitive way out is to
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define a network which maps the incoming dataset to the outgoing

dataset and back. An example is given in [8], where a CycleGAN

turns QCD jets and W -decay jets into each other. Alternatively, the

same CycleGAN can apply and invert detector effects on a set of jets.

Specifically, the training data are QCD jets and W -decay jets

from Pythia8 [1], which are passed through Delphes [53]. Each jet

is represented by a Lund plane image, introduced in Sec. 3.3. The

mapping of a sample of QCD jets onto a sample of W -jets (and vice

versa) could help in providing a realistic and large set of fat jets at

low simulation cost, similar to the generative networks discussed in

Sec. 4. The difference to the other generator models is that it works

on a sample of QCD jets, not from scratch. This relieves the network

from having to learn the basic structure of a jet and should speed

up the generation. On the other hand, a pre-defined structure always

bears the danger of introducing a bias into the network.

The, arguably, more interesting application is the unfolding of

non-perturbative QCD effects and detector effects from a set of

observed jets. We show an illustration of this task in the upper pan-

els of Fig. 18. Because Lund images are defined as superpositions of

jet batches we sample individual jets from the images at parton level

and at detector level. We show individual jets generated from the

Lund images in the lower panels of Fig. 18.

A similar approach to unfolding detector effects starting from a

good first estimate and then iterating improvement steps has been

developed for full LHC events. This Omnifold [69] approach starts

with pairs of simulated events at parton level and at detector level,

constructs a mapping between simulated and measured detector-level

events, and applies this mapping to the parton-level simulations. The

output are parton-level events corresponding to measured events,

and the procedure is improved through an iteration. This iteration

removes a possible bias from the original paired events.

5.2. Detector unfolding with FCGANs

Using generative networks to directly unfold detector effects from

LHC events was first proposed in [70]. A first, properly generative
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Fig. 18. Top: jet translation from parton-level to detector-level and back. Bot-
tom: corresponding sampled event. Figure taken from [8].

approach was then established for the process [71]

pp→WZ → (qq̄′) (�+�−), (25)

trained on Standard Model events generated with MG5aMCNLO

[57] and Pythia8 [1]. These parton-level events are then fed through

Delphes [53] and FastJet [62] for the jet reconstruction. The anal-

ysis does not allow for additional jet radiation, postponing this issue

to the analysis discussed in Sec. 5.3. The task is to train a gener-

ative network on a sample of paired parton-level and detector-level

events such that the network generates statistically correct parton-

level events from a detector-level event. The detector-level event is

represented by 4-vectors of high-level analysis objects, like leptons

and jets. This detector unfolding has two shortcomings: first, it is only

defined statistically in the sense that it does not produce a probabil-

ity distribution in parton-level phase space for a given detector-level

event. Second, it always assumes an underlying physics hypothesis,
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in our case the Standard Model describing the hard scattering in the

training data.

As long as the network is applied to detector-level events which

are essentially identical to the training data, the naive GAN approach

following [70] will work fine. Its architecture follows the event gen-

eration GAN in Sec. 4.3. A problem appears if the test and training

datasets are not quite identical. Because the unfolding GAN does not

have a notion of similarity in terms of event kinematics, for instance

in terms of a latent space metric, it will fail [71]. A way out is to

replace the GAN with a fully conditional FCGAN, trained to repro-

duce a parton-level event only from random noise under the condition

of the matching detector-level event with all its physics information.

We show the results form this FCGAN in Fig. 19, applied to test

Fig. 19. Comparison of parton-level truth and FCGANned distributions for the
process pp → WZ → qq̄ ��. The network is trained on the Standard Model and
used to unfold events with an injection of 10% W ′ events with mW ′ = 1.3 TeV.
Figure taken from [71].
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data including an irreducible resonance contribution

pp→ W ′ →WZ → (qq̄′) (�+�−). (26)

While the network does not reproduce the W ′-width correctly, it

clearly shows the mass peak which did not exist in the training data.

This serves as an indication that it is possible to unfold detector-level

events with a controllable model dependence and hence to apply this

technique to new physics searches.

5.3. Hard process from cINNs

An alternative approach to inverting detector effects is based on

invertible networks, using the setup described in Sec. 2. The INN

can be trained in the well-defined Delphes [53] direction, mapping

parton to detector-level events, and evaluated in the inverse direc-

tion to unfold the detector-level distribution [33]. If parton-level and

detector-level events live in phase spaces with different dimensions,

the smaller representation is extended with noise parameters. Since

our task is to construct a non-deterministic mapping, we can try to

include more random numbers into the network input and output.

Finally, we will use a generative network that includes the foundation

of statistical sampling already in the loss function.

The system is benchmarked on the same detector unfolding prob-

lem as in Sec. 5.2 and focus on the statistical interpretation. In the

left panel of Fig. 20 we show the distribution in the unfolded parton-

level phase space, specifically pT,q1 for 3200 independent unfoldings

of the same pair of parton-level and detector-level events. First, the

FCGAN approach does not allow for a statistical interpretation of

the results. While the FCGANned events reproduce the correct kine-

matic distributions at the parton level, it is not possible to invert a

single detector-level event and obtain something like a posterior prob-

ability distribution. After padding the standard INN input vectors

with a sufficiently large number of random numbers, the so-defined

noise-extended eINN does produce a reasonably distribution in

parton-level phase space. We can test the width of this distribution

through a calibration test: for the right panel of Fig. 20 1500 pairs

of parton-level and detector-level events are unfolded 60 times each.
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Fig. 20. Left: illustration of the statistical interpretation of unfolded events for
one event. Right: calibration curves for pT,q1 extracted from a conditional GAN,
a noise-extended eINN, and a conditional cINN. Figure taken from [33].

For each of them we can look at the position of the parton-level truth

in the unfolded distribution, expecting 10% of the 1500 event to lie

within the 10% quantile from the left, 20% in the 20% quantile, etc.

In the left panel of Fig. 20 we see, however, that the eINN distribu-

tion is too narrow to cover the truth. In the right panel, we confirm

this shortcoming in that the eINN output need re-calibration.

We already know that for a statistically sound approach we can

try a conditional (invertible) network. As for the FCGAN the direct

mapping between parton level and detector level is replaced by a

conditioned mapping between parton-level observables and a ran-

dom variable of the same dimension. Also in Fig. 20 we show the

results from this cINN and find that it provides posterior proba-

bility distributions with an almost perfect calibration. Modulo an

unavoidable model dependence, these studies show that it is possible

to compute probability distributions over parton-level phase space

for single detector-level events.

An additional benefit of the cINN is that the detector-level input

can be of arbitrary dimension. Technically, this makes it possible to

unfold events with any number of additional jets [33],

pp→ WZ + jets→ (qq̄′) (�+�−) + jets. (27)
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Fig. 21. Comparison of parton-level truth and cINNed distributions for the pro-
cess pp →→ (qq̄′) (�+�−)+jets. The network is trained on detector-level events
with two to four jets. The parton-level events are stacked by number of jets at
detector level. Figure taken from [33].

The number of jets in the hard process has to be defined as part of

the unfolding model. This flexibility is crucial to include perturbative

QCD corrections in the parton-level theory prediction. The stacked

pT,q1 distribution in Fig. 21 shows how the network unfolds 2-jet,

3-jet, and 4-jet events with similar precision. In the right panel, we

see that at all unfolded events respect transverse momentum conser-

vation at the level of the hard 2→ 2 process. Going back to the topic

of the review, this last example shows that we cannot just generate

events using neural networks, but that we can also invert the gen-

eration chain for the LHC. This is a very significant advantage over

the usual simulation methods as it allows for completely new ways to

compare theory predictions and measured data for future LHC runs.

6. Outlook

We have discussed the application of generative neural networks to

event generation for example at the LHC. In the standard approach,

this is done with Monte Carlo simulations which use Lagrangians as

inputs and provide simulated LHC events based on first principles.

This approach guarantees full phase space coverage, but it is becom-

ing speed-limited and cannot be inverted in practice. This implies

that analyses can only be done at the end of the simulation chain.
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We have discussed many ideas to improve and complement this

simulation chain using neural networks. In Sec. 3, we have shown

how neural networks can be used as modules in contemporary event

generators, from phase space simulation to matrix elements and par-

ton showers. Next, we discussed in Sec. 4 how this event generation

chain might be replaced by generative networks. We note that this

does not imply that neural networks will replace first-principle gen-

erators, because only first-principle generators allow us to compare

LHC data to complete theory predictions. Instead, event generation

networks could be used to increase the number of simulated events

or to cover statistical weaknesses of standard simulators for instance

in the bulk of high-precision simulations.

Finally, we have discussed how neural networks can invert the

simulation chain for the LHC. Such an inversion is at the heart of

approaches like the matrix element method. Moreover, a systematic

unfolding would enable analyses at any level of the LHC simulation

chain and give the experiments access to many more precision pre-

dictions. These applications of machine learning to LHC simulations

are still at the very beginning, and many conceptual problems are

unsolved. For instance, it is not clear how many events a trained

network can generate before it is limited by the limited size of the

training data, and we do not know how to assign error bars to event

samples generated by neural networks. On the other hand, the exist-

ing studies clearly indicate the potential of neural networks as part

of simulation tools, and there is no doubt that LHC simulations and

simulation-based analyses during the upcoming runs will significantly

benefit from generative networks.
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V. Lemâıtre, A. Mertens and M. Selvaggi, DELPHES 3, A modular frame-
work for fast simulation of a generic collider experiment, J. High Energy
Phys. 02 (2014) 057; arXiv:1307.6346 [hep-ex].

[54] F. A. Dreyer, G. P. Salam and G. Soyez, The lund jet plane, J. High Energy
Phys. 12 (2018) 064; arXiv:1807.04758 [hep-ph].

[55] R. Verheyen and B. Stienen, Phase space sampling and inference from
weighted events with autoregressive flows (2020); arXiv:2011.13445 [hep-ph].

[56] M. Backes, A. Butter, T. Plehn and R. Winterhalder, How to GAN event
unweighting (2020); arXiv:2012.07873 [hep-ph].

[57] J. Alwall et al., The automated computation of tree-level and next-to-leading
order differential cross sections, and their matching to parton shower simu-
lations, J. High Energy Phys. 07 (2014) 079; arXiv:1405.0301 [hep-ph].

[58] B. Hashemi, N. Amin, K. Datta, D. Olivito and M. Pierini, LHC analysis-
specific datasets with Generative Adversarial Networks, arXiv:1901.05282
[hep-ex].

[59] J. Arjona Martinez, T. Q. Nguyen, M. Pierini, M. Spiropulu and J.-R.
Vlimant, Particle Generative Adversarial Networks for full-event simulation
at the LHC and their application to pileup description, arXiv:1912.02748
[hep-ex].

[60] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catan-
zaro and E. Shelhamer, cudnn: Efficient primitives for deep learning,
arXiv:1410.0759 [cs.NE].

[61] R. Di Sipio, M. Faucci Giannelli, S. Ketabchi Haghighat and S. Palazzo,
DijetGAN: A generative-adversarial network approach for the simulation
of QCD dijet events at the LHC, J. High Energy Phys. 08 (2020) 110;
arXiv:1903.02433 [hep-ex].

[62] M. Cacciari, G. P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J.
C72 (2012) 1896; arXiv:1111.6097 [hep-ph].

[63] CMS, S. Chatrchyan et al., Search for supersymmetry with razor vari-
ables in pp collisions at

√
s = 7 TeV, Phys. Rev. D 90(11) (2014) 112001;

arXiv:1405.3961 [hep-ex].
[64] Y. Alanazi, N. Sato, T. Liu, W. Melnitchouk, M. P. Kuchera, E. Pritchard,

M. Robertson, R. Strauss, L. Velasco and Y. Li, Simulation of electron–
proton scattering events by a feature-augmented and transformed generative
adversarial network (FAT-GAN) (2020); arXiv:2001.11103 [hep-ph].

[65] A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf and A. J.
Smola, A kernel method for the two-sample problem (2018); arXiv:0805.2368
[cs.LG].

http://dx.doi.org/10.1007/978-3-319-05942-6
http://arxiv.org/abs/0910.4182
https://www.physi.uni-heidelberg.de//Publications/msc-thesis.csauer.pdf
http://dx.doi.org/10.1007/s41781-017-0004-6
http://arxiv.org/abs/1701.05927
http://dx.doi.org/10.1007/JHEP02(2014)057
http://arxiv.org/abs/1307.6346
http://dx.doi.org/10.1007/JHEP12(2018)064
http://arxiv.org/abs/1807.04758
http://arxiv.org/abs/2011.13445
http://arxiv.org/abs/2011.13445
http://arxiv.org/abs/2012.07873
http://dx.doi.org/10.1007/JHEP07(2014)079
http://arxiv.org/abs/1405.0301
http://arxiv.org/abs/1901.05282
http://arxiv.org/abs/1901.05282
http://arxiv.org/abs/1912.02748
http://arxiv.org/abs/1912.02748
http://arxiv.org/abs/1410.0759
http://dx.doi.org/10.1007/JHEP08(2019)110
http://arxiv.org/abs/1903.02433
http://dx.doi.org/10.1140/epjc/s10052-012-1896-2
http://arxiv.org/abs/1111.6097
http://dx.doi.org/10.1103/PhysRevD.90.112001
http://arxiv.org/abs/1405.3961
http://arxiv.org/abs/2001.11103
http://arxiv.org/abs/2001.11103
http://arxiv.org/abs/0805.2368


December 14, 2021 17:23 Artificial Intelligence for High Energy Physics 9in x 6in b4322-ch07 page 240

240 A. Butter & T. Plehn

[66] K. Kondo, Dynamical likelihood method for reconstruction of events with
missing momentum. 1: Method and toy models, J. Phys. Soc. Jap. 57 (1988)
4126.

[67] T. Martini and P. Uwer, Extending the matrix element method beyond
the born approximation: Calculating event weights at next-to-leading order
accuracy, J. High Energy Phys. 09 (2015) 083; arXiv:1506.08798 [hep-ph].

[68] M. Kraus, T. Martini and P. Uwer, Matrix element method at NLO for
(anti-)kt-jet algorithms, Phys. Rev. D 100(7) (2019) 076010; arXiv:1901.
08008 [hep-ph].

[69] A. Andreassen, P. T. Komiske, E. M. Metodiev, B. Nachman and J. Thaler,
OmniFold: A method to simultaneously unfold all observables, Phys. Rev.
Lett. 124(18) (2020) 182001; arXiv:1911.09107 [hep-ph].

[70] K. Datta, D. Kar and D. Roy, Unfolding with generative adversarial networks
(2018); arXiv:1806.00433 [physics.data-an].

[71] M. Bellagente, A. Butter, G. Kasieczka, T. Plehn and R. Winterhalder,
How to GAN away detector effects, SciPost Phys. 8(4) (2020) 070;
arXiv:1912.00477 [hep-ph].

http://dx.doi.org/10.1143/JPSJ.57.4126
http://dx.doi.org/10.1007/JHEP09(2015)083
http://arxiv.org/abs/1506.08798
http://dx.doi.org/10.1103/PhysRevD.100.076010
http://arxiv.org/abs/1901.08008
http://arxiv.org/abs/1901.08008
http://dx.doi.org/10.1103/PhysRevLett.124.182001
http://arxiv.org/abs/1911.09107
http://arxiv.org/abs/1806.00433
http://dx.doi.org/10.21468/SciPostPhys.8.4.070
http://arxiv.org/abs/1912.00477


December 14, 2021 16:14 Artificial Intelligence for High Energy Physics 9in x 6in b4322-ch08 page 241

Part IV

Machine Learning Platforms

241



B1948  Governing Asia

B1948_1-Aoki.indd   6B1948_1-Aoki.indd   6 9/22/2014   4:24:57 PM9/22/2014   4:24:57 PM

This page intentionally left blankThis page intentionally left blankThis page intentionally left blankThis page intentionally left blank



January 27, 2022 16:41 Artificial Intelligence for High Energy Physics 9in x 6in b4322-ch08 page 243

c© 2022 World Scientific Publishing Company

https://doi.org/10.1142/9789811234033 0008

Chapter 8

Distributed Training and Optimization
of Neural Networks

Jean-Roch Vlimant∗ and Junqi Yin†

∗California Institute of Technology, Pasadena, CA 91125, USA
jvlimant@caltech.edu

†Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

yinj@ornl.gov

Deep learning models are yielding increasingly better performances
thanks to multiple factors. To be successful, model may have large num-
ber of parameters or complex architectures and be trained on large
dataset. This leads to large requirements on computing resource and
turn around time, even more so when hyperparameter optimization is
done (e.g. search over model architectures). While this is a challenge that
goes beyond particle physics, we review the various ways to do the nec-
essary computations in parallel, and put it in the context of high-energy
physics.

1. Introduction

The main aspects of distributed training have been recently well

reviewed in [1] and we refer to it for a more in depth discussion on

technical details. There exists a rich literature on distributed training

of neural networks and notably [1–4], recommended as supplemen-

tary reading.

It is commonly agreed that deep learning has shown great suc-

cess over the last decade, thanks to the creation of large labeled

datasets, advancement in model architectures, and increase in com-

putation power — in part due to general purpose graphical pro-

cessing units (GPU). With ever growing complexity of datasets and

models, and despite the acceleration provided by GPU, training can
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still last for days and weeks on single device. Besides the training

of a single model, it is often necessary to perform an optimization

over some parameters, that are otherwise not learnable with gradient

descent.

With the acceleration of the adoption of deep learning in high-

energy physics [5–8], it becomes necessary to look at ways to reduce

the effective training time. While most simple neural network mod-

els and other classical machine learning methods can be trained in

reasonable time, more advanced models like graph neural network

(Chapter 12) and generative adversarial network (Chapters 6 and

7) can be hard to train [9]. Complex architectures that exhibit large

training time per epoch are often just discarded solely due to the time

it would take to bring them to converge — let alone doing hyperpa-

rameter tuning. Improvement of the time to solution is required to

make the development of such models more amenable. Distributed

training may reduce weeks of training down to days.

It should be noted that the challenge of accelerating the time

to convergence is not specific to high-energy physics (HEP). How-

ever, the specific computing and software environment of HEP might

limit the possibilities otherwise available. For example, due to bud-

get constraints, it is not given that GPUs are available for training.

Furthermore, the software options are limited by the requirement of

affordable long-term support.

We provide in this chapter a description of the key aspects of

distributed training and optimization as a practical guide to devel-

oping large models with large amount of data. This chapter is orga-

nized as follows. After introducing the formalism of training and

optimizing neural network models in Sec. 2, highlighting the possi-

ble strategies to parallelize computation, we start in Sec. 3 with the

parameter distribution strategy, which was the first to be adopted

as a way to speed up the training of models. We then describe in

Sec. 4 the data distributed strategy that seems to be widely adopted

currently, thanks to its ease of use. We go over model parallelism in

Sec. 5 and recent development in generic deployment of this otherwise

complicated method to implement. In Sec. 6, we get into the details

of model search and optimization, key to the success of developing
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high-performance deep learning applications. We conclude in Sec. 7

with an overview of advancements of software and outlooks on dis-

tributed training.

2. Neural Network Optimization Formalism

Neural network models can generally be represented as a function

fθ,h(X) predicting some quantity Y . Here X is some input, θ and h

are parameter vectors. A loss function Lθ,h := F (f(X))|θ,h is defined

to characterize the fitness of the model to a specific task — for exam-

ple, the binary cross entropy can be used in a binary classification

supervised task. In the general setup, one is searching for the two

sets of parameters θ∗ and h∗, which provide an optimal value over

some data. We distinguish the parameters h from θ by the fact that

L is differentiable with respect to θ, but not with respect to h — h

are the so-called hyperparameters.

By definition, θ∗ can be approximated by using the gradient

descent method-based gradient of the loss function L with respect

to the model parameters θ, noted:

∇θLθ,h = ∇F |fθ,h · ∇θfθ,h (1)

starting from an initial set of parameters θh,0 that may depend on

h. We note that some models and loss definitions involve gradient

ascent instead of gradient descent and the methods described in this

chapter are all applicable in this situation. In practice, stochastic

gradient descent (SGD) is found to be more stable than using indi-

vidual gradients to update the model parameters. In this algorithm,

the gradient is averaged over subsets {Xib} indexed by b — referred

to as batch therein, but also called mini-batch in the literature —

of the whole training dataset. In such case, the gradient for each

individual input can be computed in parallel before calculating the

average over a batch as

∇θL|b := E{Xib
} [∇θLθ,h] . (2)

This is the key ingredient that makes the computation of SGD effi-

cient on GPU as it is under single program multiple data (SPMD)
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programming style. During the optimization procedure, the param-

eter θ is updated with the rule

θ ← θ − η∇θL|b, (3)

where η is either fixed or dynamic and referred to as the learning

rate. Equation (3) can be written more generically

θ ← θ −Ψ(h,∇θL|b), (4)

where Ψ(., x) = ηx in its simplest form of Eq. (3). An epoch is the

cycle of the algorithm during which the whole training dataset — all

batches — is used once to update the model parameters. It typically

requires numerous epochs to train a model properly. It should be

noted that the typical neural network loss function is non-convex

and therefore optimization with gradient descent can be subject to

being stuck in local minima, preventing the procedure to reach the

absolute global minimum — which might actually be degenerate.

Obviously, one may compute the effective gradient over a given batch

by splitting the computation over multiple parts — or shards — of

a batch. This is the key aspect of data distribution to which we

come back in Sec. 4. Additionally, one may compute the effective

gradient of several batches in parallel, with the caveat that applying

the update rule (Eq. (3)) is not exactly possible (see Sec. 3).

The case of generative adversarial networks (GAN) brings in some

additional complication because of the presence of two models and a

training procedure that alternates between updating the parameters

of the discriminator/critic and the generator. We come back to these

points in Sec. 3.

In the case where the model is composed of multiple layers Ll

indexed by l, i.e. fθ,h := LNL
(· · ·L1 (L0(X)) · · · ) := [◦NL

l=0Ll](X), the

derivation chain rule applies and we obtain

∇θmi
f =

⎧⎨
⎩

m+1∏
l=NL

∇Ll|Al−1(X)

⎫⎬
⎭ ∇θmi

Lm

∣∣
Am−1(X)

, (5)

where θmi is a parameter of layer Lm. We introduced the notation

Am(X) = [◦ml=0Ll] (X) for the activation of layer m. The forward pass
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is the computation of the value of successive layers using activation

values for preceding layers. Back propagation is the computation of

the gradients for layer Lm using gradients already computed for any

layers l > m.

In multiple occasions, the computation required for a single layer

Ll and its Jacobian ∇Ll
involve tensor products that allow for some

level of parallelism. Convolutional layers for example can have the

computation of each filter on each patch of the input image be pro-

cessed on separate devices. We consider this as model parallelism and

come back to this point in Sec. 5.

Assuming an arbitrary layer separation S such that m ≤ S < NL,

the right-hand side term of Eq. (5) factorizes as⎡
⎣
⎧⎨
⎩

S+1∏
l=NL

∇Ll|[◦l−1
k=S+1Lk](AS(X))

⎫⎬
⎭
⎤
⎦

×
[{

m+1∏
l=S

∇Ll|Al−1(X)

}
∇θmi

Lm

∣∣
Am−1(X)

]
. (6)

The first bracketed product (referred to as BS) requires only one

input involving the layers m ≤ S: the term AS(X). Furthermore,

BS appears in the calculation of the gradients for all layers m ≤ S.

Therefore, the calculations of the gradients for the set of layers Lm>S

and the set of layers lm≤S only require knowledge of the two disjoint

sets of layers, respectively, once AS (during the forward pass) and

BS (during back propagation) have been computed. Hence S can

be chosen to balance memory utilization for example. This is a key

aspect of model parallelism that we expand on in Sec. 5.

The optimal value h∗ needs to be found with other optimization

methods — notably Bayesian optimization and evolutionary algo-

rithms. We note that if all values of h are continuous, h∗ can still be

found with gradient descent, using numerical evaluation of the gra-

dient — with a finite difference method for example. The discussion

on hyperparameter optimization (HPO) in this chapter is unchanged

if one decides to use any other non-differentiable function as figure of

merit : Fθ,h({Xi}), instead of using L. By extension, we include in the
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hyperparameter set, all parameters used towards obtaining the opti-

mal set of parameters for the model — such as learning rate, model

initialization parameters, batch size. The optimal model parameters

obtained at the optimal value of the hyperparameters h∗ is noted θ∗.
The full dataset is often divided into three independent subsets:

training, validation and testing sets. The search for θ∗ (training pro-

cedure) is done on the training set, the validation set is used to

estimate the generalization performance, and the testing set is used

solely to report a final performance of the optimal model. The search

for h∗ (HPO procedure) is done by optimizing Fθ,h over the valida-

tion set, and provides further ways in which the computation may

be done in parallel. The K-folding procedure is recommended when

comparing model performance as it provides a better estimation of

the mean and variance of the performance. We come back to the

process of hyperparameter optimization using K-folding in Sec. 6.

3. Parameter Distribution

As explained in Sec. 2, the calculation of the gradient averaged over a

batch can be done for multiple batches in parallel. The caveat is that

the gradients are calculated from a given set of model parameters

and not necessarily applied to update the same model parameters.

To be more precise, given two batches b1 and b2, in the gradient

update done sequentially, we have

θ1 ← θ0 − η∇θL|b1,θ0 ,
θ2 ← θ1 − η∇θL|b2,θ1 ,

(7)

while we obtain

θ1 ← θ0 − η∇θL|b1,θ0 ,
θ2 ← θ1 − η∇θL|b2,θ0

(8)

in the case of computing the gradients concurrently and applying

them sequentially. On the second update in Eq. (8), the gradients

are computed on b2, from θ0, but applied on θ1 — different than θ0.

This results in staleness of gradients and a slowdown in convergence

of the models [10, 11]. The benefit is that the time to run a full
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epoch linearly decreases with the number of batches processed in

parallel. The cost is that the decrease of the loss after a fixed number

of epochs is not necessarily better when increasing the number of

batches processed in parallel.

Multiple proposals have been made to mitigate the effect of out-

dated gradients, mostly resulting in changing the value of η. Having

η be a matrix in an element-wise multiplication as in the adagrad

algorithm [12] provides improvements in convergence [2]. Alterna-

tively, inspired from a physics concept, the gradient energy matching

algorithm [13] offers a provable way of stabilizing convergence of the

distributed training.

It should be noted that the mode in which the gradients — that

are computed in parallel — are used to update a the model param-

eters is subject to contention. Indeed a bottleneck occurs when the

effective time for gradients to be computed is smaller than the update

time of the model parameters, if there are many parallel processes for

instance. This underlines the fact that the parameter strategy can-

not scale to an infinite number of parallel processes. One solution to

this problem is to create a multi-level [11] (as opposed to binary level

so far) hierarchy of processes that reports updates up one level at a

time, effectively reducing the single-updating-process bottleneck, at

the cost of increasing the staleness of gradients.

As mentioned in Sec. 2 and Chapters 6 and 7, GAN are composed

of two models that are trained in an alternate manner, and possi-

bly with different number of parameter updates at each cycle. The

parameters can be synchronized either after both models were trained

on a full batch, or after each parameter update, or each model. The

former is the strategy adopted in [9, 14, 15]. The latter would be

impacted even more strongly by the bottleneck created in updating

the parameters centrally.

Take Home Message. The method to parallelize training using

the parameter distribution strategy is intrinsically limited in scala-

bility due to a combination of the centrality of the parameter update

and staleness of the gradients. Training GAN under such strategy

is furthermore complicated by the presence of two models with



December 14, 2021 16:14 Artificial Intelligence for High Energy Physics 9in x 6in b4322-ch08 page 250

250 J.-R. Vlimant & J. Yin

different training dynamics. The mild acceleration obtained with

parameter distribution can be complemented with other means of

parallelization — as we will see the next sections of this chapter.

4. Data Distributed Training

The data distributed training follows the SPMD paradigm and is

the most widely adopted approach to the distributed deep learning

due to several advantages that it can offer: straightforward to imple-

ment, model agnostic to apply and generally efficient to scale up.

In a typical data parallel paradigm flow chart as shown in Fig. 1, a

model is replicated on each device and the forward pass on different

shards of a batch are calculated independently following Eq. (2). The

gradients of all processes are synchronized after the back propaga-

tion, via the allreduce collective communication. As the parallelism

increases, the effective batch size hence is linearly proportional to

the total number of processes (model replicas). The forward model,

backward model, and gradients calculations can often be performed

in half precision operations (fp16), and are marked in mixed colors

in the flow chart of a typical mixed precision training. The allreduce

is usually performed in single precision to avoid gradient overflow,

Fig. 1. Typical processing flow chart in a data distributed training, where the
potential half precision operations (fp16) are marked with mixed colors. The
communication is invoked after gradients are estimated from backward model,
and the parameters of the model are then updated (Eq. (4)) with synchronized
gradients. The scale factor is needed to avoid the numerical overflow during the
fp16← fp32 conversion.
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Table 1. Framework built-in data parallel support. MirroredStrategy and
MultiWorkerMirroredStrategy are equivalent to DataParallel and Distributed
DataParallel, respectively.

Framework\Distribution Single node Multi-node

TensorFlow MirroredStrategy MultiWorkerMirroredStrategy
PyTorch DataParallel DistributedDataParallel

but fp16 is also supported by most up-to-date libraries. With neu-

ral network like ResNet50, where the message size per model replica

is about 100MB, the allreduce communication can soon become a

bottleneck when training at scale. Based on the novel ring-allreduce

algorithm, Horovod [16] is a high performance communication library

for data distributed training. The algorithm is network bandwidth

optimized, and each process sends and receives gradient messages

2(n−1)/n times, where n is the number of processes. It can therefore

scale efficiently for large n since the total message size communicated

per process becomes a constant when n → ∞. Given the success of

ever-larger neural network models and datasets, popular deep learn-

ing frameworks also provide built-in support for data parallel train-

ing. The commonly used data-parallel methods in TensorFlow and

PyTorch are listed in Table 1. The advantages of using these methods

for distributed training are compatibility (integrated with the frame-

work), user-friendlyness and performance (give the support for high

performing communication fabrics). The usage mode (API) is how-

ever not flexible enough to support novel communication patterns

and mostly limited to data parallelism only.

One common pitfall for data parallel training is that model accu-

racy deteriorates at large batch sizes. It is argued [17] that the esti-

mation of the gradient at each step is more accurate with larger

batches and hence the optimization becomes smoother — i.e. with

less stochasticity —, resulting in a higher probability to be trapped

in a local minima. There are strategies to mediate this effect such as

layer-wise adaptive rate scaling (LARS) [18], but in general the upper

bound for batch size is still limited around 64K for most applications
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based on first-order optimization (e.g. SGD). Natural gradient meth-

ods can push the boundary of the large-batch training further [19]

at the cost of expensive evaluations of second-order derivatives.

Another pitfall is that batch normalization layers [20] are not

effective when the shard size is too small, since there are not enough

samples to obtain sufficiently accurate mean and variance of the layer

activation values. The synchronization of such layer is not commonly

implemented in data parallel libraries (e.g. Horovod, PyTorch Data-

Parallel, etc.). The models with batch normalization layer (widely

used after a convolution layer to improve regularization and accu-

racy), trained with small shard size — i.e. many processes — perform

significantly worse in both convergence and accuracy, than that of a

model trained without data parallelism. Therefore, the optimal batch

for data-parallel training is not simply the optimal batch size for sin-

gle replica divided by total number of processes; it depends on both

the data and the model.

With high-performance communication fabric (e.g. InfiniBand)

and software (e.g. NCCL enabled GPU Direct RDMA), data par-

allelism can achieve excellent scaling efficiency on HPC platforms.

Figure 2 shows an Exascale data-parallel deep learning applica-

tion [21] on the Summit supercomputer, which tackles a long-

standing inverse problem in atomic imaging (a.k.a phase problem)

by deep learning reconstruction of the electron densities from micro-

scopic images. About 93% scaling efficiency has been achieved up

to 27, 000 GPUs with a peak performance of 2.1 EFLOPS in half

precision.

Take Home Message. Data-parallel training is the most popu-

lar distributed training methods thanks to it being model agnostic

(CNN, RNN, or GAN) and simple to implement (framework built-

ins, see Table 1, or third party library plugins, e.g. Horovod). On the

other hand, for applications with very a large model, a model may

not be able to fit into a single device. For application with very large

input data, model accuracy is likely to suffer at large batch size. For

those use cases, parallelism beyond data parallel paradigm needs to

be explored, which will be discussed in the next section.
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Fig. 2. An example [21] of Exascale data-parallel deep learning on the Summit
supercomputer, which consists of both a simulation component that generates
electron microscopic data, and a learning component that trains to reconstruct
the local electron density.

5. Model Parallelism

As illustrated in Sec. 2, another level of parallelism that can be

explored is at the model level. This is useful when a model is too

big to fit into the GPU memory such as state-of-the-art NLP models

with billions of parameters [25], or when the input data is of very

high dimension such as medical [27], geospatial imaging or particle

tracking [28]. As shown in Table 2, the size of popular models has

grown from millions to billions of parameters in just over 5 years.

Given the execution dependency between layers of a neural net-

work, simple device placement of different layers will not execute

at the same time. There are two common implementations for model

parallelism. First, pipelining, e.g. GPipe [29], where a batch is divided

into micro-batches and then different micro-batches at different lay-

ers can execute in parallel albeit at a reduced efficiency. Second,

tensor contraction, e.g. Mesh-TensorFlow [30], where other dimen-

sions of a typical input batch can be parallelized in addition to the

batch dimension.
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Table 2. Evolution of model size and parallel framework, from data parallel
training on computer vision models (typically of millions of parameters) to
hybrid parallel training on large language models (up to billions of parameters).

Number of Parallel
Model Year parameters (billion) framework

ResNet50 [22] 2015 0.025 PyTorch data parallelism
BERT-Large [23] 2018 0.34 TensorFlow data parallelism
GPT-2 [24] 2019 1.5 N/A
Megatron-LM [25] 2019 8.3 PyTorch hybrid parallelism
T-NLG [26] 2020 17 PyTorch hybrid parallelism

In comparison, the GPipe approach is more generic for sequential

models but it suffers from low-scaling efficiencies due to the so-called

bubble [29], namely the idle time caused by the sequential dependency

of the execution of a micro-batch among model layers, and the same

large batch training issue as in data parallelism. On the other hand,

the Mesh-TensorFlow method can be more efficient but it relies on

customizing each operation in the model.

In addition to augmenting parallel capabilities on top of exist-

ing popular frameworks such as TensorFlow and PyTorch, several

notable efforts tackle the same issue from the traditional HPC per-

spective, including the Livermore big artificial neural network toolkit

(LBANN [31]), which provides model parallel acceleration via domain

decomposition, and a Legion [32] based framework that uses task

graph parallel strategy [33]. Both domain decomposition and task

graph are generic parallel computing techniques that go beyond dis-

tributed training and the scope of this chapter. These developments

have seen adoptions typically in the HPC community.

In practice, the model parallelism alone usually will not scale due

to the cross-node communication latency. Therefore, a hybrid scheme

(see Fig. 3 and Table 2) with data parallelism on the batch dimension

and model parallelism on other dimensions strikes a better balance

between scaling efficiency and model capabilities (larger model, faster

convergence, etc) than that of data or model parallelism alone.
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Fig. 3. Hybrid parallel training scheme: data parallelism applied on the batch
dimension and model parallelism on others. For data parallelism, depending on
how often models are synchronized, it can be every step (synchronized), every few
steps (stale), or asynchronized. For model parallelism, there are different imple-
mentations including pipelining [29], tensor contraction [27], domain decomposi-
tion [31], and task graph [33].

Take Home Message. Model parallelism is becoming more

important as the model size and the input dimension grow. It further

improves the distributed training efficiency at the cost of software

complexity. So far, there is no common framework for model paral-

lelism in the community and most developments are model specific.

Model parallelism can be combined with the other means of paral-

lelism presented so far and is also fully orthogonal to hyperparameter

optimization discussed in the next section.

6. Hyperparameter Optimization

As introduced in Sec. 2, the training procedure of a model, to obtain

an optimal set of parameters θ∗ may depend on a set of hyperpa-

rameters h. The optimal value h∗ that yields the best of the optimal

model parameters can be found by optimization of a figure of merit

F — usually the loss L (see Sec. 2).
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When comparing the performance of two models obtained from

two different sets h1 and h2, it is important to control whether the

difference observed is relevant and significant. If the training is done

once on a training set from a unique set of initial parameters, and the

model performance is evaluated on a fixed testing set, then there is an

uncertainty related to these choices. The cross validation procedure

provides a way to address this uncertainty and in particular to obtain

a better estimator of the model performance. The training set is split

in K parts — or folds — {Fk}. K train/test pair can therefore be

formed (
{Xi}i/∈Fk

, {Xi}i∈Fk

)
k
, k = 1, . . . ,K. (9)

Running K trainings one obtains a set of K estimations of the figure

or merit: {Fk}. The performance estimator F = Ek[Fk] provides a

better way to compare models trained under different settings. The

variance of the performance is an indicator of the instability of the

model training when changing random seeds and training partition.

This might be considered also as a selection criterion for the model.

It should be noted that training over the K folds can be done fully

in parallel, and therefore offer an almost perfect scaling. Residual

inefficiency can arise if the training over one fold requires significantly

larger amount of resources than the others.

In most search strategies of the optimal hyperparameters, the

trainings with different parameter sets hi are done independently

of each other and therefore offer another level of parallelism. How-

ever, large fluctuation of resource needs can be expected for differ-

ent parameter sets and some scaling bottlenecks may arise. Other

strategies [34] involve cross-talk between hyperparameter sets, intro-

ducing some level of interlocking of processes, with the benefit of an

improved search mechanism.

Strategies have been proposed for the optimization of hyperpa-

rameters that do not involve the architectural aspect of the model

(number of layers, neurons, etc.). In [34], the model parameters and

hyperparameters are evolved at the same time over a population

of models, effectively learning a scheduling of changes of hyperpa-

rameters that favors the convergence of the model. Conversely, some
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strategies concentrate only on the hyperparameters driving the archi-

tecture of the model. In [35], the architecture search starts with a

simple model, and new layers are added in steps, on top of the best

performing previous layer setup. This reduces the navigation of the

large phase space of model architectures in which both the number

of layers and number of neurons per layer are varied simultaneously,

to a subset where only the size of the last layer is modified at once.

Strategies that aim at optimizing a generic set of hyperparameters

most commonly use a Bayesian optimization [36] or an evolutionary

algorithm approach [37, 38] as an efficient alternative to a simple grid

search over the large space of hyperparameters. Bayesian optimiza-

tion with a Gaussian process (GP) assumption on the prior of the

hyperparameters is adequate if the prior is sufficiently regular to be

modeled with a GP. The optimization process is rather sequential —

the choice of a new set to evaluate is conditional to evaluation of all

previous choices — but some level of parallelism can be introduced

to favor exploration. The GP approximation can become computa-

tionally prohibitive if the number of steps is too large — when the

size of the hyperparameters space is large for example. The Bayesian

approach is favorable when the user is limited in the number of usable

parallel processes — such as when making use of a small-scale institu-

tional cluster, or personal computer. Evolutionary algorithms, on the

other hand, proceed with evaluating the performance (or fitness) of

hyperparameters sets in parallel — as individuals of a population —

and synchronize all computing processes during population muta-

tion and breeding. This approach can offer a better exploration of

hyperparameters, at the cost of more parallel resources — available

as such on high performance computing (HPC) centers and large-

scale clusters.

Take Home Message. Hyperparameter search is an optimization

problem on top of the model parameter optimization. A simple grid

search algorithm becomes quickly prohibitive with the number of

hyperparameters. Bayesian optimization may be recommended for

an intermediate number of hyperparameter, on intermediate scale

computing cluster. Evolutionary algorithms are adapted for large
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hyperparameter space, and large-scale computing clusters, such as

HPC facility.

7. Summary and Discussion

We have succinctly introduced the possible ways of running the com-

putation for model training and optimization in parallel. We reviewed

the latest developments of each strategy, their strengths and weak-

nesses. The otherwise highly nested loop involved in model training,

K-folding, and hyperparameter optimization, can be largely unfolded

in parallel computations. In the following, we provide remarks on key

aspects of distributed training, and prospects in the field of particle

physics.

Communication bottleneck. Similar to performance optimiza-

tion of HPC applications, improving the scaling of distributed train-

ing is about finding the balance point between compute, I/O, and

communication. Regardless of whether one uses data, model, or

hybrid parallelism, most deep neural network applications can ben-

efit from performance boost of the underlying communication pro-

tocol, since many such applications become network-bound at large

scale (e.g. the message size is 100MB and 1.44GB for ResNet50

and BERT-large, respectively). It is reported [39] that model accu-

racy can be maintained while the message size for gradients is

being reduced by up to 2 order of magnitude via a combination of

compression techniques (e.g. clipping, sparsification, accumulation,

quantization).

Trading memory for computation. Since neural network train-

ing is usually performed on GPU devices and GPU memory is still a

scarce resource, trading memory for computation is sometimes a nec-

essary workaround. It however requires significant engineering effort,

similarly to implementing model parallelism. One strategy is memory

check-pointing [40], where only selected forward nodes in the compu-

tation graph are check-pointed while others are re-computed during

the backward propagation for the gradient evaluation. This results

into a O(
√
n) memory usage of a neural network model with n nodes.
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Another strategy is via GPU memory management [41], where inac-

tive tensors are automatically transferred from GPUs to the host and

vice versa. This is transparent to users and the added performance

penalty is often tolerable. As reported in [42], a specific random sam-

pling of the computation graph during the back-propagation phase

allows for a reduced memory burden in computing the gradients.

Locality of resources. Depending on the resources, the opti-

mal distributed training strategy may vary. Computing nodes in

HPC resources are often homogeneous and equipped with high-

performance interconnects, where the ring allreduce communication

usually works the best but only half of the theoretical network band-

width is achievable (see Sec. 4). Cloud resources, on the other hand,

can be provisioned and are more suitable for a parameter-server dis-

tribution strategy. BytePS [43] is one such example to take advantage

of cloud resources, and is reported to perform better than the col-

lective communication approach in a specific hardware setup, where

total bandwidth of server nodes is no less than that of worker nodes.

How to efficiently apply a similar parameter distribution approach

to node-homogeneous HPC resources is not yet clear.

In most of the discussion in this review, the input dataset is

assumed to be located in local storage. No consideration of data

caching on the node or on the edge was done. However, in particle

physics, the available data may be distributed over multiple regions,

and hence a specific data management protocol may be required.

The training computation could be done where the data is — with

implications on the software framework — or the data would need

to be moved and cached on the edge of the computing resource —

with implications on the data management system.

Running the models. The software used in particle physics to

run model in production is actually not dictated by machine learning

considerations, and restrictions might arise in how the models are

encoded. This requirement for compatibility of software might impose

constraints on the framework used for distributed training, unless

cross-framework conversion tools are kept extremely efficient.
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Even in situations where the model is ran on remote plat-

form [44, 45], therefore loosening some of the software compatibility

constraints, the model components might have to be post-processed

in particular ways to fit on the remote hardware — in particular

on FPGAs. As a consequence, some of these inference-oriented post-

processing steps (pruning, quantization, etc.) might need to be taken

into account during the distributed training phase to ensure a max-

imally efficient algorithm in the end.

Framework consideration. In terms of software availability for

distributed training, parameter and data parallelism are well sup-

ported both by frameworks (see Table 1) and third-party plugins,

e.g. Horovod [16] for data parallelism, BytePS [43] for parameter dis-

tribution, etc. For model parallelism, on the other hand, libraries are

still in early stages, e.g. Mesh-TensorFlow [30], PyTorch-GPipe [46],

etc. There are also several hyperparameter optimization libraries, like

Ray Tune [47]. What is lacking is a unified open software framework

that can effectively explore all the parallelism in distributed training,

and hence allow for an efficient use of computing resource and person

power.

A particular aspect in particle physics is that budget constraints

often lead research groups to develop their own software so that the

support model stays within the community. Although the problem

of distributed training is not specific to high-energy physics, some

of the features could be specific, as explained above, and need sus-

tainable support. It is therefore of the utmost importance to have

good feature support and maintenance in the framework-to-be-used

in particle physics.

Final Remarks. As the high-performance computing machines

are entering the exascale era, distributed training and optimiza-

tion of neural networks is one of the major areas that can har-

ness this tremendous computing power. While there are many efforts

exploring parallelisms from parameter distribution, data and model

parallelism, to hyperparameter optimization, the community is still

in need of an overarching solution. One noteworthy work in this

direction is a framework [33] based on the task graph, a parallel
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programming paradigm that is suitable for exascale. It can natu-

rally combine the aforementioned distributed training strategies and

hence enable an efficient end-to-end training workflow, although fea-

ture developments are lagging behind mainstream frameworks.
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With ever increasing data rates. The challenge of processing data at ever
higher throughputs with more complex algorithms is daunting. How-
ever, new computing technology, and optimized algorithm design show a
path towards resolving these large throughput issues. In this chapter, we
present recent ideas on algorithm compression, quantization, and paral-
lelization that allow for ultra low latency high throughput algorithms.
Additionally, we present methods for longer latency algorithms that can
be sped up through deep learning acceleration, leading to enhanced com-
putational throughput.

1. Introduction

Many of the most significant advancements of deep learning have

revolved around the development of specialized processors where

parallelized computations can be performed natively and efficiently.

This has been most directly evident from the prominence of graph-

ics processing units (GPUs) for deep learning [1–3]. GPUs consist of

many smaller cores that have a limited set of operations and slower

clock frequencies than CPUs. Despite the limited available instruc-

tion sets, individual GPU cores can perform the typical addition and

multiplication operations that enable large matrix multiplications.

Additionally, GPUs have a large on-chip memory that allows for

many iterative computations without the need to go off the processor
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core. While GPUs have been shown to be excellent for the design,

development, and training of deep learning algorithms, for real-time

applications their functionality can be limited. Despite that, they

represent a new avenue of specialized processor design that is quickly

being populated by a number of different technologies. Following the

first successful large scale deep learning implementations on GPUs,

exploration of alternative processing technology using application-

specific integrated circuits (ASICs), field programmable gate arrays

(FPGAs), and GPUs, have illustrated other ways to parallelize com-

putations and allow for deep learning algorithms to be run ever faster

and more efficiently. These advancements are enabling new, unfore-

seen, possibilities in neural network design. In this chapter, we inves-

tigate how these new technologies are opening up a new strategy

to process data enabling the potential for deep learning within all

tiers of data acquisition from real-time detector read out to detailed

processing of the raw information.

In the late 2000s, the ability to distribute power to an ever-

increasing number of transistors stalled, while the transistor density

continued to increase. This ability had been driven by the fact that

the required power to an individual section of the processor is driven

by the local capacitance, which scales with the area. Consequently, as

the size of a fixed number of transistors shrinks, so does the needed

power, proportionately; thus, the transistor density can continue to

grow. As transistors got progressively smaller, this scaling, known

as Dennard scaling [4], started to break down because of the pres-

ence of leakage currents and threshold voltage [5]. Consequently, the

frequency of a single processor became fixed, and the ability to per-

form processor operations was limited to a fixed processor size. This

breakdown lead to the rise of multi-core processing technology, which

has dominated CPU design from 2010 to 2020. However, as multi-

core processors become increasingly large, the limitations to power

such a processor have become clear. In particular, for processors with

64 cores or more [6], the scaling of processing power per core starts

to break down. In parallel to this approach, alternative processor

designs such as GPUs have continued to improve, and, as of 2020, do

not suffer from the same Dennard scaling limitations and can deliver

a much larger number of computations per watt. With the rise of
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artificial intelligence (AI) and machine learning (ML) techniques and

the success of these processing technologies, specialized processors

are starting to emerge as a critical element of future computing cen-

ter design. Their high amount of parallelism, and different computa-

tional strategy have emerged as an approach to continually advance

computation [7]. In low latency high throughput systems, such as

those needed by high-energy physics (HEP) experiments, computa-

tional strategies are already unique. The addition of these new pro-

cessing technologies, the advancement of deep learning algorithms

compounded with the demands of high throughput have introduced

a new, unexplored, computing challenge.

In addition to GPUs, other specialized processors are capable of

highly parallelized computations. In particular FPGAs allow one to

reconfigure the processor so that a specific set of instructions can

be run in a highly parallelized optimal matter. Application-specific

integrated circuits (ASICs) go a step further by explicitly restricting

the set of instructions that can be programmed so that processing

per watt can be further optimized. Various ASICs are emerging that

target a broad range of processing strategies. These include tensor

processing units (TPUs), intelligence processing units (IPUs), and

the Cerebras processor, amongst many others.

Very recently, a new type of processor has emerged, the optical

neuromorphic chip. In this scenario, laser light is sent through a pro-

cessor, and optical waveguides with switching are used to perform

multiplication and addition functions on the laser light. The time

to complete the operations is roughly equal to the distance of the

processor over the speed of light, or picosecond timescales. This well

exceeds the abilities of existing electronic devices, and, as a conse-

quence, limitations arise when coupling this to existing electronic

devices [8].

1.1. LHC dataflow

In HEP, demands for low latency can arise in various scenarios and at

varying timescales. To understand these demands, let us first consider

the data flow process at the CERN large hadron collider (LHC)

shown in Fig. 1. Dataflow at the LHC starts first with a detector
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Fig. 1. The CMS processing chain as an example of the varied real-time process-
ing challenges facing HEP experiments.

readout of a single collision. Collisions occur at a rate of 40MHz.

Consequently, the data readout of the detectors operates at a rate

that is larger or at 40 MHz, a 25 ns interval between collisions. Due to

the high radiation environment, data is readout with ASICs specifi-

cally equipped with additional redundancy to ensure robust readout

in the high radiation collision environment. A compressed version of

the data from the ASICs is then sent to a tiered set of processing

boards consisting of FPGAs. This system performs reconstruction

on a restricted set of detector elements and uses the resulting recon-

structed output to determine whether it is sufficiently interesting

to analyze further. The system is built of all FPGAs to allow for

the large data rates to be transferred throughout the system. The

total data rate of this system is approximately 50Tb/s and will be

upgraded to an amount approaching 1Pb/s for the high-luminosity

LHC (HL-LHC) upgrade. FPGAs with additional fiber links con-

nected to the system can run at data rates of 25Gb/s per fiber or

2.8 Tb/s between FPGAs. The high reconfigurability of FPGAs fur-

ther allows the system to be progressively improved as algorithms
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developed and collider configurations change. The first system at the

LHC is responsible for reconstructing data at 40MHz and identifying

the most exciting events sent to later tiers of reconstruction. Within

ATLAS and CMS, this tier is referred to as the L1 trigger [9–12]. At

LHCb, this is referred to as the L0 trigger [13]. Event rates out of

the first tier of reconstruction at CMS and ATLAS are reduced to

a rate of 100 kHz. At LHCb, the output of the L0 trigger is used as

a seed for full reconstruction. The output data rates from this first

tier of reconstruction are on the order of several terabits per second.

Data rates on the order of a few terabits per second can be man-

aged with a large computing cluster with optimized networking. Such

data rates are comparable to the maximum capacity of other large

scale computing systems [14, 15]. The second tier of LHC comput-

ing, called the high-level trigger (HLT) [16–18], like other computing

systems, is constructed out of conventional computing hardware con-

sisting of high speed networking, CPU cores, and, potentially, GPU

cores [19]. Neutrino experiments, such as the deep underground neu-

trino experiment (DUNE), have data acquisition rates that are typ-

ically less than 100 kHz. These systems consist of a hardware based

preprocessing system that goes straight to a computing cluster with

comparable data rates and processing power to that of the second

tier of LHC computing. The data rate that goes into this tier of

computing is still quite large, and as a consequence, the data rate is

reduced by another factor of one hundred. This is most often done

by selecting one event in every hundred. However, “data scouting”

or “selective persistence” approaches, whereby raw detector infor-

mation is discarded and only reconstructed information is saved,

have also been utilized to reduce the overall data throughput of this

system [20–23].

The last stage of computing at the LHC and other big experi-

ments, referred to as “offline”, processes data at a rate of roughly

1 kHz. This system consists of a large global distributed computing

cluster. Despite many computing resources available, optimization in

algorithm design is still a critical component of the reconstruction

process at the LHC. As such, efficient use of deep learning algorithms

is an essential element of the design of the system. The design and
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implementation of deep learning systems in this scenario are similar

to the design flow of the HLT.

Both at the L1 trigger, the HLT, and offline, Deep learning appli-

cations for LHC triggering and longer latency systems are quickly

becoming a mainstay of detector design. Because deep learning is

so highly parallelizable and relatively easy to develop, its applica-

tion within online systems is natural, provided programmable tools

exist to ensure the porting of algorithms to the appropriate high

throughput system. The regular design of deep learning algorithms

allows for flexible reprogramming, enabling the system to adapt to

changing detector conditions by updating the weights. Despite these

algorithms just starting to be developed within the triggering sys-

tems of the LHC, their adoption has been rapid.

At later stages of reconstruction, deep learning algorithms have

been widely used [24–26]. However, there has been limited use on

GPUs or other accelerators due to the relatively small size of the

algorithms. With the development of large deep learning models

within computer vision [27], natural language processing [28, 29], and

physics [30–33], demand for large deep learning models will quickly

grow. At that stage, the use of specialized processors becomes a

necessity.

Within industry, focus on deep learning acceleration has centered

on longer latencies. Applications within industry often operate at

human timescales, and so they require overall latencies that are on

the order of several milliseconds. For this reason, processor technol-

ogy has usually focused on GPUs to process data. However, recently

several use cases for faster deep learning algorithms have emerged.

With Microsoft, the Brainwave system was constructed to deal with

fast search for Microsoft Bing [34–36]. Bing search is driven by a

tiered set of long short-term memory units (LSTMs) [37] that parse

the search query through an iterative procedure of LSTM evalua-

tions. Search algorithms are quite complicated and require a single

query to be evaluated with very low latency; we refer to this as a

batch size of one (batch-1) query. Low latency batch-1 queries need

very fast inference calls that follow a paradigm that is quite different
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from training a network. Optimized hardware, such as an ASIC or

an FPGA, with a dedicated implementation of the network archi-

tecture is typically needed for this type of inference. For example,

Bing search is currently FPGA-based. The use of FPGAs for Bing

has been transformative and has elucidated an approach towards

fast low batch inference engines. This approach is readily applicable

to particle physics, where events are often processed on an event-by-

event basis, which means large, event-level networks often require low

batch. Dedicated ASIC and FPGA design for ML has also emerged

for low power applications. This field, often referred to as “tiny-ML”,

aims to develop optimized hardware for low power use, such that the

AI algorithms can be run efficiently on remote devices where power

is limited.

Given the varying data rates, and specialized architecture, the use

and type of algorithms used within an L1 Trigger, and a HLT system

are quite different. In Sec. 2, we present deep learning applications

and design optimizations that are performed within the L1 Trigger.

In Sec. 3, we present deep learning applications within the HLT.

Finally, we summarize in Sec. 4 and present this work in the context

of future developments.

2. Fast ML for Real-Time Readout and

Near-Detector Triggering

Many HEP experiments produce data at extreme rates that cannot

be stored and processed offline. In order to reduce the data volume

to manageable sizes, real-time online data compression, zero sup-

pression, and filtering is required. This online data processing begins

at the sensor readout and continues all the way until data is stored

for offline analysis. Many modern experiments require processing in

custom hardware systems in addition to more traditional “edge” pro-

cessing on local data center CPU-based servers. The deployment of

ML algorithms in those custom electronics systems are the focus of

this section while Sec. 3 will describe how to accelerate ML algo-

rithms with heterogeneous computing paradigms.
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2.1. Hardware implementations of ML in real-time

systems

The online, real-time data processing chains for the highest rate HEP

experiments require different types of hardware choices based on the

latency, bandwidth, and environmental challenges of a given exper-

iment. In Fig. 2, we give a very rough guide in latency for where

off-the-shelf solutions are not sufficient (coprocessors) and custom

hardware solutions are required such as FPGAs and ASICs. The

most common system challenges in physics are low power constraints,

cryogenic requirements, and high-radiation environments where spe-

cialized circuits (ASICs) are desired.

FPGAs can be conceptualized as reprogrammable circuits while

ASICs are fixed circuits that are less flexible, but more optimized

to specific tasks. For the purposes of deploying ML algorithms in

such hardware systems, we can imagine these devices as resource-

constrained non-von Neumann computing architectures that require

a concurrent (as opposed to sequential) programming paradigm.

Algorithm logic at its fundamental level is implemented in a hard-

ware description language (HDL) that describes the behavior of elec-

tronic circuits. This HDL can be used to describe circuits in FPGAs

or ASICs. The concurrent programming paradigm is very important

for describing ML algorithms in hardware as the concurrency can

be tuned to the needs of a given system to satisfy the resource and

latency constraints as well as the system requirements such as power,

area, and bandwidth.

Fig. 2. The latency timeline for online processing.
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Powerful AI instrumentation relies on codesign — the idea that

system constraints, algorithm development, and hardware implemen-

tation inform and guide each other in complementary ways. One of

the key features of neural networks (NNs) is their modularity. This

allows development of programming paradigms that enable the devel-

oper to separate and recombine these specific modules to build larger

NN architectures. The basic module-level description of the AI cir-

cuit implementation, for example, could be in a register-transfer level

(RTL) language, but each module may be configurable based on

resource, latency, and bandwidth constraints. One important recent

development in hardware programming is the use of higher-level pro-

gramming paradigms based on low-level hardware representations –

the most popular of which is high-level synthesis (HLS) [38, 39].

2.2. Parallel processing ML algorithms

in constrained systems

At a high level, FPGA and ASIC algorithm designs are distinct from

programming a CPU in that independent operations may run fully

in parallel, allowing FPGAs and ASICs to achieve trillions of opera-

tions per second at a relatively low power cost with respect to CPUs

and GPUs. Local memory in registers or block random access mem-

ory units (BRAMs) allow fast memory access at very high speeds.

However, such operations consume dedicated resources on the FPGA

and cannot be dynamically remapped while running. The challenge

in creating an optimal hardware implementation is to balance system

resource usage against the latency and throughput goals of the target

algorithm. Key metrics for a hardware implementation include:

(1) latency, the total time (typically expressed in units of “clock

cycles”) required for a single iteration of the algorithm to com-

plete.

(2) initiation interval (II), the number of clock cycles required

before the algorithm may accept a new input. The II is inversely

proportional to the inference rate, or throughput; an II of two

achieves half the throughput as an II of one. Consequently, data
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can be pipelined into the algorithm at the rate of the initiation

interval.

(3) resource usage, expressed as a fraction of the available FPGA

resources in each category: onboard FPGA memory (BRAM or

URAM), digital signal processing (arithmetic) blocks (DSPs),

and registers and programmable logic (flip-flops, or FFs, and

lookup tables, or LUTs). For ASICs, in addition to the amount

of logic, we also consider area and power consumed by the ML

circuit and how it will fit into the rest of the chip design.

Pipelining is an important concept for achieving very high

throughput for hardware systems. For example, at the LHC, inputs

may be received every 25 ns (40MHz) but the algorithm itself can

take longer to run — from hundreds of nanoseconds up to microsec-

onds. This is possible because the algorithm circuit is designed in

the spirit of an assembly line of various modular tasks where new

inputs can be received as soon as a given module is completed. This

concept is very important as it is intrinsically tied to the paralleliz-

ability of an algorithm. Let us imagine a simple two-to-two dense

layer as illustrated in Fig. 3. The right side shows that a given mul-

tiplier circuit can be used once, twice, or four times to perform the

computation of this given dense layer. In the case of multiple uses

of the multiplier units, new weights are sent to that multiplier unit

from onboard FPGA memory. The more parallelized the algorithm

becomes the more multiplier resources are required. However, if a

single multiplier circuit is used to perform four multiplication for a

given layer, then that layer’s II is four clock cycles — in other words,

it cannot start the computation on new inputs for that layer until

the previous computation is finished. The weight storage does not

change with the reuse of multiplier units.

ML refers to the process by which we adjust the randomly initial-

ized parameters of generic function approximators, termed “models”,

so as to minimize an appropriately chosen loss function, or con-

versely to maximize a reward function. ML model architectures spec-

ify arrangements of “nodes”, usually co-evaluated in layers, where

each node calculates the weighted sum of the inputs and a bias term,
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Fig. 3. Illustration of multiplier resource usage for different configurations of how
often a multiplier circuit is used. The left drawing shows the case of two neuron
pairs being connected by four connections, implying four multiplications to be
performed. The right drawing shows how to perform these multiplications, from
fully serial (top) to fully parallelized (bottom).

and outputs the value of a nonlinear “activation function”. The out-

puts of one layer typically provide the inputs to the next layer; in the

simple multilayer perceptron (MLP) architecture, all nodes in each

layer send copies of their output values to all nodes in the next layer.

Layers not at the input or output are termed “hidden” layers. There

are useful variations on this simple layer stack architecture such as

recurrent NNs (RNNs), wherein some outputs from a previous for-

ward inference are taken as inputs.

Most NN inferences can be characterized by the number of mul-

tiplication operations and parameters. Specifically the weighted sum

computation within each layer translates to matrix multiply, which

comprises a series of multiply-accumulate (MAC) steps on a proces-

sor. This can be translated conceptually into the number of allowed

multipliers available in a given system, the latency and pipeline inter-

val required, and the on-chip memory. The demands of the MAC

step, and the desired parallelization, through II, and latency, pro-

vide basic constraints on how big or complex NNs can become for a

given hardware system.
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2.3. Network design under hardware constraints

With the knowledge of a given NN implementation into multiplica-

tions (operations) and number of parameters, we now have the inputs

to map an ML algorithm into a rough hardware resource estimation.

This is valuable in algorithm-hardware codesign as it helps us to

iterate between the training process and algorithm performance and

hardware optimization.

An important consideration in NN design is the type of archi-

tecture that is appropriate for your input data representation. For

example, the type of architecture has implications for the hard-

ware implementation. Once an architecture is chosen, hyperparam-

eter tuning is no longer considering the network performance in

terms of accuracy, AUC, etc., but also the latency and resource

constraints of the system. However, hyperparameter optimization is

not the only tool at one’s disposal to create an efficient network in

hardware.

NN inference can be made efficient with the following techniques:

compression, quantization, and parallelization. We summarize these

ideas briefly:

• compression: NN synapses and neurons can be redundant; com-

pression attempts to reduce the number of synapses or neurons

thereby effectively reducing the number of multipliers while main-

taining performance;

• quantization: often 32-bit floating point calculations are not

needed in the inference of a network to achieve optimal perfor-

mance; quantization can reduce the precision of the calculations

(weights, biases, etc.) in the NN with negligible loss in perfor-

mance;

• parallelization: one can tune how much to parallelize the multi-

plications required for a given layer computation; in one extreme,

all multiplications can be performed simultaneously using a maxi-

mal number of multipliers, while alternatively in the other extreme,

one can use only one multiplier and perform the multiplications

sequentially; between these extremes the user can optimize algo-

rithm throughput vs. resource usage.
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Considerable amount of work has been performed along all

of these lines of development. Network compression [40, 41] is a

widespread technique to reduce the size, energy consumption, and

overtraining of deep NNs [42]. Several approaches have been success-

fully deployed to compress networks, including [40]:

• parameter pruning: selective removal of weights based on a par-

ticular ranking [42–44],

• low-rank factorization: using matrix/tensor decomposition to

estimate informative parameters [45–49],

• transferred/compact convolutional filters: special structural

convolutional filters to save parameters [50],

• knowledge distillation: training a compact network with dis-

tilled knowledge of a large network [51],

• iterative unstructured pruning and retraining: this uses L1

regularization, where the loss function L is augmented with an

additional penalty term, is known to produce sparse models, pro-

vide built-in feature selection [52], and is a readily available option

in many ML workflows. The procedure is iterative and removes

small weights from the network and is retrained,

• lottery ticket methods: these methods are similar to other types

of parameter pruning, but involve “rewinding” weights and learn-

ing rates back to their initial conditions to discover sparse effective

subnetworks present early in the training [53–55].

With quantization, algorithms started with post-training quan-

tization, whereby the bit precision is reduced directly on the

weights after the algorithm has been trained. Recently, a number

of approaches to quantize algorithms have been reconsidered. Post-

training quantization is a simple way to reduce the precision NN com-

putations without loss in performance. In recent studies, the power

of quantization-aware training (QAT) has been demonstrated [56].

With the prevalence and accessibility of new tools like QKeras [56, 57]

and Brevitas [58, 59], QAT frameworks allow users to more easily

train and deploy quantized networks. In certain cases, binary and

ternary weights have shown very good performance as well. In Fig. 4,

we show an example of the power of quantization at the training
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Fig. 4. Gains in perform through the application of quantiziation-aware training.
The left plot shows the model accuracy compared to the ultimate accuracy as
a function of bitwidth. The right plot shows the resource usage listed as look-
up-tables (LUTs), logical flip-flops (FFs), and digitial signal processors (DSPs)
multiplier units [56, 57].

stage as compared to post-training quantization. The performance

degrades at much lower bit precisions and the effect on multiplier

resources is greatly reduced.

Lastly, parallelization of algorithm on hardware is a result of

the constructed algorithm and its implementation. A broad range

of possibilities exist from those that use dedicated matrix-multiply

hardware blocks (systolic arrays) to approaches that define hardware

specific algorithm design. In all cases, implementations are defined by

the pipeline interval, and have largely followed a design flow whereby

explicit resources are reused by their level of parallelizability (Fig. 3),

2.4. Examples of applications and outlook

In the previous sections, we described the basic concepts in the

types of hardware for real-time data processing and filtering in parti-

cle physics experiments, algorithm/hardware codesign and resource

constraints in hardware systems, and ML algorithm optimization
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to enable efficient implementation in hardware. The convergence

of these ideas in real hardware systems in science is only recently

explored and we have just scratched the surface of real-world imple-

mentations and novel applications. The ability to detect, measure,

and process sensor data at extreme rates and in extreme environ-

ments within complex systems has long been a unique necessity and

strength of particle physics experiments.

We list here a number of tools for applications in particle physics:

• Boosted decision trees (BDTs) in the CMS L1 endcap muon trig-

ger [60]: This is the first implementation of an ML algorithm in

an LHC L1 Trigger. The algorithm used a large lookup table with

external memory (1.2 GB) to combine 25 different variables in a

BDT and demonstrated reduced rate of muon triggers in the CMS

endcap muon trigger.

• NNs for signal processing in ATLAS tile calorimeter (TileCal) [61]:

In this study, an NN is implemented to process pulse shape infor-

mation in the TileCal. The performance is an improvement over

classic algorithms, and the training and implementation is done

using MATLAB tools.

• hls4ml [62]: This tool was introduced in [62] as a generic toolflow

for translating NNs into FPGA implementations using high-level

synthesis. The use of high-level programming paradigms enables

fast algorithm/hardware codesign. It is demonstrated for jet sub-

structure classifiers at the LHC. It has been used recently in

many sub-microsecond L1 trigger applications [11] and has been

extended with new features for binary/ternary networks [63], graph

NNs (GNNs) [64–66], BDTs [67], and QAT [56]. The hls4ml

toolflow has also been extended to ASICs for data compression

and processing in high radiation environments [68].

• DL2HDL [69]: This tool translates models from deep learning

frameworks into low level HDL and can be used for generic hard-

ware codesign. It was used to employ RNNs to detect supercon-

ducting magnet anomalies (quenches) on the millisecond timescale.

The algorithm uses MyHDL [70], a python-based HDL, for model

translation.
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The interest and potential of ML algorithms in real-time data

processing is continuing to grow. There are many other potential

use-cases which could continue to revolutionize experimentation in

particle physics. While many of the first applications used tra-

ditional supervised classification and regression machine learning

algorithms within reconstruction algorithms, there are many other

potential use-cases. As deep learning techniques improve, NNs are

beginning to replace entire algorithms. Additionally, unsupervised

or weakly-supervised techniques [71–81] can be used to generically

detect anomalies in the data, either for detector monitoring or search-

ing for new physics. In most LHC applications, the ML algorithms

are used for real-time filtering, but in other areas of physics, real-

time intelligent processing can be used to provide feedback to the

design and operation of experiments. Examples include the opera-

tion of detectors and control of accelerators. In detectors, real-time

monitoring can be used to detect evolving experimental conditions

and adapt algorithms to the changing environment. In accelerators,

constant parameter tuning is vital for producing optimal beam con-

ditions and those parameter adjustments can happen at timescales

greater than 1 kHz [82–84]. These types of operational ML algorithms

may require system-level design with both algorithm training and

inference performed online. These algorithms are typically examples

of reinforcement learning [85].

3. Fast ML for Data Processing

Many applications in HEP require deep learning algorithms that exe-

cute at timescales that are on the order of a few milliseconds or

longer. These timescales are comparable to the demands of indus-

try based systems, such as the application of a web-query algorithm

or the processing of information for a self-driving car decision. The

longer latency constraint of milliseconds, compared to the nanosec-

ond timescales discussed in the previous section, allows for larger,

more complex algorithms to be adopted. Additionally, it provides for

the use of other processing techniques that do not give an immedi-

ate result for each sample, but can process a large amount of data
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very efficiently; this is particularly true when considering GPUs.

The use of GPUs and other alternative processing technology has

remained limited within HEP. However, there is growing interest in

developing tools to integrate GPUs and other parallelized proces-

sors into HEP computing workflows as heterogeneous coprocessors.

In this context, deep learning may play a critical role in its design

and implementation.

ML algorithms have been used in the trigger systems of collid-

ers since the 1980s [86–92]. A wide range of algorithms are already

present within existing LHC systems and are becoming increasingly

popular. GPUs and other processing techniques have opened the

door to potential redesigns of these systems that can lead to larger

throughput systems and significantly more effective designs. The

demands of millisecond latency neural-network inference are suffi-

ciently slow that conventional tools within industry can be adapted

for use within high energy physics.

3.1. Previous use of ML in HLT systems

Typical input event rates for an LHC HLT system are roughly

100 kHz. At modern neutrino detectors, input event rates are sim-

ilar, ranging up to the several tens of kilohertz. At the Tevatron,

a deep NN identifier was used to select hadronic decays of tau lep-

tons [93]. At the LHC, within the HLT, many ML approaches have

been used.

Early, large scale use of ML within the HLT was performed within

the LHCb collaboration to identify bottom quarks [94, 95]. In this

algorithm, a regularized BDT was utilized (Bonsai BDT). For the

trigger, the ideal strategy is to keep the algorithm computationally

efficient and robust against changes in detector conditions. Since

BDTs consist of a weighted set of binary selections to classify the

event, the strategy to build an efficient algorithm was to minimize

the number of possible branchings and the number of input variables.

The final algorithm was constructed from seven high-level features

and iteratively trained with a progressively coarser discretization of

the input variables to limit the number of possible options and keep

the computation of the BDT fast.
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Both ATLAS and CMS have deployed ML algorithms for various

aspects of the reconstruction in the trigger system. For calorimeter

reconstruction, ATLAS developed a one-hidden-layer MLP that con-

siders energy deposits from concentric calorimetric rings [96, 97]. The

number of inputs was optimized to ensure fast CPU-based inference

time, and concentric square rings ensured fast computation. The full

algorithm with feature computation and inference takes 1.1ms for

all 17,000 regions of interest. This algorithm led to a reduction in

background rates by a factor of two and was used as a seed for elec-

tron reconstruction to reduce the number of seeds for dedicated track

reconstruction. This approach avoids computations of more complex

features instead using more easily computed ring-based variables.

More recent developments along these lines consist of sending raw

detector information directly to an ML algorithm, and letting the

algorithm “construct” features through the network architecture [98].

In both ATLAS and CMS, higher level physics objects within the

HLT also extensively use ML, including hadronic τ lepton identifica-

tion in ATLAS [99], bottom quark tagging in CMS [24], and electron

identification in CMS [100].

The prevalence of ML algorithm development has mostly paral-

leled the advancement of GPUs. GPUs and other processor technolo-

gies can perform highly parallelized computations allowing for the

possibility of many calculations performed in parallel. While there

are limitations for the use of GPUs in the L1 trigger because of

restrictions in their data ingestion rates, and restricted design flexi-

bility, these limitations are not present for the HLT. Thus, they have

been considered in several instances over the past 10 years.

Although no deep learning algorithm has been deployed on a GPU

within a triggering system in HEP, GPUs have been used for tra-

ditional algorithms. GPUs were first integrated into the 180 com-

pute nodes of the HLT workflow of the ALICE experiment at the

LHC to perform charged particle reconstruction. They were part of

the ALICE operations during 2010–2013 and 2015–2018 [101]. More

recently, GPUs are being considered for the HLT of the LHCb exper-

iment [102, 103]. This HLT system relies entirely on charged parti-

cle tracking algorithms. Additionally, within the CMS experiment,
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GPUs have been explored for charged particle reconstruction through

the use of cellular automata [104], an accelerated pattern recogni-

tion algorithm [105], and ported conventional tracking and vertexing

algorithms [19]. Additionally, ATLAS deployed a GPU demonstra-

tor that could perform inner tracker reconstruction, and topocluster

reconstruction at a rate slightly worse than a CPU at the time [106].

To date, neither CMS nor ATLAS have used GPUs in HLT operation.

Beyond charged particle tracking, algorithms for GPUs and FPGAs

have been developed (but not implemented) for real-time processing

of ring imaging Cherenkov detectors for the LHCb HLT [107, 108].

Beyond the LHC experiments, GPU algorithms have been developed

for the trigger readout of the Mu3e experiment [109], and the dark

matter experiment NA62 [110]. These algorithms are planned to run

in the next round of data taking for each experiment, starting in

2021. In all instances, the GPUs have been directly connected to the

CPUs via PCI Express (PCIe).

3.2. Millisecond latencies with deep learning

algorithms

The scope of processors is shown in Fig. 5. Processors are divided

into four main categories of processor CPU: a processor that can

perform single complex operations at a high rate, however with par-

allelism limited to vectorized operations, GPU: a processor capable

Fig. 5. Range of processor technologies for deep learning applications. On the
left side, we have conventional processors, which are capable of performing a large
range of computations quickly on the fly. On the right side, we have FPGAs, and
ASICs, which require a significant amount of programming.
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of running many simplified operations in parallel, FPGA: a proces-

sor with individual multiplier and logic units that can run in parallel

and that can be reprogrammed to perform a specific task, andASIC:

a processor that is hardwired to perform a particular task, and has a

limited ability to be reprogrammed. Ranging from CPUs to ASICs,

the processor technology is increasingly more parallel and optimized

for specific operations. However, this leads to reduced flexibility in

the scope of operations and reprogramming that the processor can

undertake. As a consequence, specialized processors have had lim-

ited adoption. Deep learning has altered this landscape because of

the enormous potential for parallelism. Very recently, a new class

of ASIC processor has emerged that is explicitly designed for large-

scale computation of neural network operations often through sys-

tolic arrays. This class of processors includes the newly developed

tensor processing unit (TPU) and the Intel Habana processor among

others.

Alternative processors like GPUs, FPGAs, and ASICs have the

ability to run significantly larger algorithms at the HLT. These algo-

rithms can avoid significant computation from the determination of

high-level features to be fed into the algorithm. In place of these

high-level features, raw detector inputs can be fed directly into the

network, and the network can perform the bulk of the processing. The

use of raw inputs potentially allows for reduced overall complexity at

the expense of expert engineered features within the algorithm. To

understand where gains are possible in this approach, we consider

two fundamental features: processing power and throughput.

Processing power dictates how the algorithms should be dis-

tributed. Extensive algorithms, with a large number of weights that

require many operations, are best used on processors where there

is a large available memory so that weights and intermediate com-

putations can be stored on the processor as it works through the

computation. The throughput on these processors tends to reflect

the complexity of the algorithm, and they are often not designed

for low latency computation. Smaller processors with less on-chip

memory are often better for low latency and, sometimes, low power
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computation, assuming a relatively small number of computations

on a single processor.

3.3. Processing power

NN computations can be reduced to multiplications and additions,

often referred to as multiply-accumulate operations (MACs). The

number of MACs depends on the network size. For dense networks,

this equals the total number of weights in the model. For RNNs,

this is equal to the number of weights multiplied by the number of

recursions. For convolutional NNs (CNNs), GNNs, and other net-

works that rely on regionized calculations, calculating the number of

operations is more complicated and can be considerably larger than

the number of weights. The approximate throughput of any NN algo-

rithm on a processor can be determined by considering the number

of operations per second (OPS). Large processors such as TPUs and

large GPUs can currently run at about 100 TOPS [111]. CPUs, on the

other hand, can achieve roughly 12 computations per core per clock

cycle at 4 GHz for a total of 48 GOPS per core [111]. This means

that a single GPU can perform the same number of computations as

approximately 5000 CPU cores, albeit with a limited instruction set.

Large CPUs consist of as many as 64 or 128 cores, which leads to

an imbalance in computing power per processor of nearly two orders

of magnitude. Such an asymmetry means that when designing algo-

rithms to be used on heterogeneous processing systems, they either

have to serve many compute nodes, or they need to comprise a large

portion of the total amount of computing required.

A second important consideration is that a large number of oper-

ations usually implies a large number of computational results are

produced. To store these results efficiently, processors utilize mem-

ory. Significant on-chip memory helps store intermediate computa-

tional steps so that large computations, such as NNs with millions

of weights, can be performed quickly and over a large set of input

objects. Memory directly located on the processor can be accessed on

nanosecond timescales. Consequently, the full throughput available
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internally on the processor can be exploited to yield the computa-

tional result.

Power utilization of the processor is driven by the number of oper-

ations and the total amount of memory used. GPUs, and ASICs

designed for large batching tend to use a large amount of power

to contend with the many operations, and large number of mem-

ory transfers. FPGAs, and specialized ASICs use considerably less

power due to their ability to be programmed efficiently for the spe-

cific network architecture desired. CPUs tend to be worse than all

others. Power rates are quoted in terms of TOps/watt with a typical

processor achieving 1TOps/watt [112].

3.4. Throughput

Within computing clusters, GPUs, FPGAs, and ASICs are typically

connected to other processing elements through a PCIe connection.

Communication through the PCIe connection can be a bottleneck

with a limit of roughly 10–64Gb/s [113]. Additionally, the transfers

are limited by the packet size and compression. Consequently, addi-

tional time is lost because of preprocessing and data transfer. The

time lost translates to 0.1–0.5 ms; this bound limits the use of copro-

cessors to algorithms that take more than 1ms for a single batch.

Batch processing consists of performing the same NN inference on a

“batch” of inputs. Processors, such as GPUs, are designed for large

batched operations. While they are relatively slow when considering

the inference of a single input, they can perform many inferences

in parallel leading to high throughput under large batches. There

have been a variety of ideas to avoid the bottleneck of PCIe com-

munication [114]. Most of these involve direct communication to the

processor through a network connection that goes straight to the

coprocessor [113, 115]; this is currently being done through several

protocols including NVLink, UDP, TCP/IP, and PCIe.

3.5. Algorithm optimization for processors

When designing algorithms for high throughput on specific proces-

sors, several considerations need to be taken into account. The most
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critical elements are the network size and the typical batch size. To

illustrate the importance, we consider two implementations of the

industry standard ResNet-50 algorithm [27], which has also been

adapted to perform top quark identification [116].

ResNet-50 is an image recognition algorithm capable of outper-

forming humans. It consists of 50 CNN layers and classifies images

into 1000 different categories. Several FPGA implementations exist

of ResNet-50. Each of these implementations processes a single image

at a time (batch-1 processing); the results shown in Fig. 6 include

the ResNet-50 FPGA implementation available on Microsoft Azure

in which a single image can be processed within 1.5 ms. To ensure

optimized performance, the FPGA exploits layers with dynamic bit

precision to minimize the computation without degrading the overall

image recognition. For comparison, batch-1 inference on an equiva-

lent GPU takes 7ms. However, when batch size of 50 is utilized,

the throughput on the GPU is the same as the FPGA, despite a

long overall latency for any particular image (50 × 1.5ms). Lastly,

if this were to be performed on a CPU, the batch-1 processing time

Fig. 6. (Black dashed line) Comparison of an FPGA implementation (Artix) of
ResNet-50 (batch-1) with a GPU (Nvidia 1080Ti) implementation of ResNet-50
where the batch size is varied (TF ResNet-50). The exact FPGA-based imple-
mentation (Azure ResNet-50) is also run on a GPU for comparison. The trianing
labeled algorithms shows the processing speed on the same GPU when algorithm
training is performed in place of inference.
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would be approximately 500ms for a single CPU core. The much

larger latency compared to either an FPGA or GPU demonstrates

the significant advantages possible with a coprocessor.

GPU performance suffers as the batch is decreased because the

parallelized computation is underutilized. The full use of the GPU is

only realized with a large batch. The FPGA, on the other hand, aims

at the optimized performance of each layer of the network. Thus, the

full processor is utilized in performing the network inference even

for a batch size of 1. More recent ResNet-50 implementations on

GPUs and FPGAs exist that have larger throughput. However, this

illustrates the impact of processor design on how it impacts model

acceleration.

3.6. Inference as a service with heterogeneous

computing

Accessing the high computational capacity of alternative processors

connected to a host CPU, known as coprocessors, requires careful

consideration of the communication between the CPU and the copro-

cessor in order to optimize the processing of the data. To enable the

use of multiple processors, several options have been investigated:

• Communication with a coprocessor through a direct connection

(PCIe slot).

• Communication with a coprocessor server through the network to

a CPU serving coprocessors.

• Direct communication with a coprocessor over a network.

• Coprocessor to coprocessor communication.

In the first approach, a single CPU directly sends instructions to the

coprocessor connected through a PCIe slot. In the second approach,

a CPU connected to one or multiple coprocessors acts as a server and

takes instructions from many other CPUs through network calls. This

approach is called “as-a-service” computing. In the third approach,

the CPU intermediary is eliminated, and the processor communicates

directly with other CPUs over the network. This approach is referred

to as “bump-in-the-wire” and has had successful, but limited use.
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The final approach is only used in dedicated systems, such as for the

L1 trigger discussed earlier in this section. While bump-in-the-wire

technology is quickly gaining headway for industry applications. The

only documented use case of direct network to coprocessor connection

for high-energy physics was performed on the FPGAs in the Azure

ML cluster using ResNet-50. Given the limited use of bump-in-the

wire, and direct processor to processor technology, we consider the

first two approaches in the context of future accelerated computing

models.

Deploying coprocessors (FPGA, GPUs, or ASICs) as a service is a

widely utilized approach to incorporate alternative coprocessors, and

we find that it has several advantages over a direct-connect approach.

Deploying coprocessors as a service:

(1) increases hardware cost-effectiveness by reducing the number of

coprocessors required to achieve the same throughput. This is

possible since each coprocessor can service many more CPUs

than a direct-connect paradigm would allow,

(2) augments our existing computing model only through offloading

the specific algorithms with large speedups with minimal client-

side re-configuration,

(3) facilitates easy integration and scalability of heterogeneous

coprocessors (such as GPUs and FPGAs), as suited for optimal

algorithmic performance, and

(4) exploits existing open source frameworks that have been opti-

mized for fast coprocessor inference and are widely used.

These advantages help to balance the resource load, but they come at

the cost of added networking, and the requirement to have optimized

schedulers.

To provide deep learning inference as a service, an algorithm is

chosen with a significant speedup when using a coprocessor. Existing

server toolkits exist to perform the integration of GPU, and FPGAs

as a service [62, 117–121]. These tools are capable of load balanc-

ing both within a single coprocessor and among many coprocessors.

Calls can be made to these servers using standard network protocols.
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The most common currently used protocol is the Google Remote Pro-

cedural Call (gRPC) [122]. This protocol builds on a TCP/IP back

end to deliver optimized high throughput delivery to the server. A

significant amount of work both in industry and within high-energy

physics is underway to harmonize the protocols so that standard-

ized integration of coprocessor servers can be done efficiently with

minimal overhead [118].

A modified reconstruction workflow depicted in Fig. 7 shows how

deep learning inference as a service can be deployed for parallel tasks

without limiting the overall throughput of the system. Since the

coprocessor is running disjoint from the actual reconstruction work-

flow, both can be run in parallel with some time lost to package the

request to the coprocessor, and, potentially, time lost waiting for the

final results of the coprocessor.
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Fig. 7. Diagram comparing the traditional LHC production model on CPU with
the GPU or FPGA as-a-service approach. Each block represents a module within
the reconstruction framework. For the GPU or FPGA as-a-service approach, algo-
rithm 2 is run on the GPU or FPGA, which allows the processing of the second
event (outlined in purple) to run concurrently with the first event (outlined in
red) [118].



December 14, 2021 16:14 Artificial Intelligence for High Energy Physics 9in x 6in b4322-ch09 page 291

Machine Learning for Triggering and Data Acquisition 291

Software frameworks in HEP have parallelized much of the

scheduling of reconstruction workflow through task-based multi-

threading available on multi-core processor frameworks [123]. This

facilitates asynchronous, non-blocking calls to external resources

[124], which is the most efficient way to utilize coprocessors as a

service because of the CPU running the experiment software can do

other work while the service call finishes.

A final additional feature present through the as-a-service

paradigm is the possibility of dynamic batching [125]. Dynamic

batching, shown in Fig. 8, is a feature that serves to increase both

the throughput and hardware efficiency. Dynamic batching creates

a server-side queue of requests from the many clients being served

and continuously aggregates events until an optimal batch size is

reached. The aggregation is limited to within a chosen time window

(e.g. less than 200μs). This yields an optimization problem between

the dynamic batch size and model concurrency. The use of dynamic

Fig. 8. Diagram illustrating how dynamic batching can be used to send optimized
calls to the GPU by allocating calls to the server over a specified time window.
Signals from many CPUs are aggregated into a single batch that limits the calls
to the GPUs. The aggregation is performed within a chosen time window so as
not to delay the overall computation.
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batching is particularly interesting because it circumvents the HEP

computing paradigm of splitting computations on an event-by-event

basis. Here, multiple events can be processed simultaneously within

a single computation, without redesigning the computing model. We

stress that this type of scheduling is only beneficial when GPUs are

servicing a large number of parallel processes.

3.7. Metrics for optimization

To describe important elements of the as-a-service computing model,

we first define some concepts and variables.

• tCPU is the total time for CPU-only inference.

• p is the fraction of tCPU that can be accelerated, and conversely

1−p is the fraction of the processing that is not being accelerated.

• tXPU is the time explicitly spent doing inference on a generic het-

erogeneous processor XPU.

• tpreprocess is the time spent on the CPU for preprocessing to prepare

the input data to be transmitted to the server in the correct format.

• ttransmit is the latency incurred from transmitting the neural net-

work input data.

• ttravel is the travel latency to go from the CPU to the XPU server.

• tlatency = tpreprocess + ttransmit + ttravel summarizes the additional

latency distinct from the actual XPU processing.

• tideal is the total processing time assuming the XPU is always avail-

able.

• NCPU and NXPU are the numbers of simultaneously running CPU

and XPU processors, respectively.

With each element of the system latency now defined, we can

model the performance of utilizing as-a-service computing. Initially,

we assume blocking modules and zero communication latency. The

total time of a CPU-only job can be written as

tCPU = (1− p)tCPU + ptCPU. (1)

We replace the time for the accelerated module with the XPU latency

terms

tideal = (1− p)tCPU + tXPU + tlatency. (2)
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This reflects the ideal scenario when the XPU is always available

for the CPU job. We also include tlatency, which accounts for the

preprocessing, bandwidth, and travel time to the XPU. The value

of tXPU is fixed, unless the XPU is saturated with requests. The

average number of requests a given XPU is receiving is NCPU/NXPU.

The maximum number of requests a given XPU can receive, which

does not delay the process is tideal/t
ideal
XPU. Above this the cumulative

time spend per XPU exceeds the total time. The saturation condition

is therefore defined as

NCPU

NXPU
>
tideal

tidealXPU

. (3)

Here, tideal is defined in Eq. (2), and tidealXPU are the respective process-

ing times assuming there is no saturated XPU. When the accelerated

process is not saturated, there is no increase in the overall latency

of the system since the processor is always available. However, once

the processor is saturated with calls from many parallel processes,

the latency is then driven by the number of parallel processes. To

explain this, we define

Nexcess proc =
NCPU

NXPU
− tideal

tidealXPU

, (4)

which represents the number of addition CPU cores relative to XPU

cores above the saturation condition.

Consequently, there are two conditions, unsaturated and satu-

rated XPU, which correspond to NCPU/NXPU < tideal/tXPU and

NCPU/NXPU > tideal/tXPU, respectively. The time taken on the XPU

when the system is saturated tXPU �= tidealXPU is thus written by the

saturation condition on the XPU, which we can write as

tsaturatedXPU = tidealXPU

NCPU

NXPU
(5)

= tidealXPU

(
tideal

tidealXPU

+Nexcess proc

)
(6)

tunsaturatedXPU = tidealXPU. (7)

Combining the saturation condition and the unsaturated condi-

tion, we can compute the total latency (ttotal) to account for both
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cases:

ttotal = (1− p)tCPU + tidealXPU [1 + max (0, Nexcess proc)] + tlatency (8)

= (1− p)tCPU + tidealXPU

[
1 +max

(
0,
NCPU

NXPU
− tideal

tidealXPU

)]

+ tlatency. (9)

Therefore, the total latency is constant when the processors are not

saturated and increases linearly in the saturated case proportional to

tidealXPU. Substituting Eq. (2) for tideal, the saturated case asymptotes,

in the large NCPU limit, to:

ttotal = tidealXPU

NCPU

NXPU
. (10)

Consequently, for an optimized system, we can consider an opti-

mal use of the coprocessor when we balance the right amount of

processors to reflect the relative latency of each algorithm. This ratio

further defines a rate at which an XPU can replace an alternative pro-

cessor that can be used when designing an extensive system. Finally,

when the use of the coprocessor is fully asynchronous and non-

blocking, we find that impact of the throughput from the coprocessor

can be removed since the asynchronous scheduler can run reconstruc-

tion of other components that do not require the coprocessor. As a

consequence, we obtain an average latency per process of

tideal−async = (1− p)tCPU + tpreprocess. (11)

This is only true provided the saturation condition is not met and

the system is not completely saturated. Finally, for a 32-core CPU

attached to an XPU through PCIe, we find that it is better to use

as-a-service computing when ttotal/tXPU > 32.

3.8. Applications

Deep learning inference for sub-second timescales has a broad range

of applications in physics. As with the LHC, where nanosecond

timescales are sometimes needed, the timescales are largely dictated

by the detector technology and the underlying physics process. Given
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the availability of many different processor technologies, the latency

and throughput demands are crucial to optimizing the deep learning

throughput with the existing processor technology. Below, we pro-

vide an incomplete list of various applications within physics that

demand low latency deep learning inference.

LHC HLT: The HLTs of the ATLAS, CMS, and LHCb exper-

iments run at a rate of 100 kHz on a cluster consisting of several

10,000s of cores. This equates to an individual event processing time

that is on the order of 0.5 s, lending itself well to the possibility of

running deep learning inferencing with all possible coprocessors pro-

vided results are available on the 10–100ms timescale.

Triggering neutrino events from supernovae: To monitor

the possibility of Supernovae events, neutrino experiments aim to

continuously readout and process data at a rate of 100 kHz, driven

by the readout time of typical neutrino detectors. This rate and the

event size are of similar scale to the LHC high level triggers and

would benefit from deep learning inference on a similar timescale.

Transient event identification: Astrophysical transient events

can occur on timescales less than 10ms. Processing these events

involves a significant amount of data, which need to be processed

in near real time to allow for the possibility of cross correlation with

other experiments capable of observing similar astrophysical phe-

nomena.

Gravitational wave reconstruction: Like other astrophysical

transients, gravitational wave signals occur on timescales ranging

from 50ms to several minutes. Fast, near real-time reconstruction of

the event waveforms is essential to ensure the possibility of cross

correlation of events with other experiments. The field of cross-

correlation is known as multi-messenger astronomy.

3.9. ProtoDUNE and LHC applications

As an illustration of the effectiveness of deep learning based accel-

eration as a means to speed up real-time processing of events, we

consider two examples. These two examples, paired with the pre-

viously presented results with ResNet-50 in Fig. 6, are intended to
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illustrate the effectiveness of deep learning on coprocessors at reduc-

ing the overall reconstruction time and increasing the throughput.

The goal of this section is to be illustrative as it is likely that more

sophisticated algorithms will supersede these algorithms and many

other newer algorithms will be introduced.

With the LHC, we consider an ML algorithm that replaces the

current hadron calorimeter (HCAL) reconstruction of a single chan-

nel within the high level trigger. Within ProtoDUNE, we consider

an algorithm that performs Michel electron identification on a small

patch of the detector. Both algorithms need to be applied on many

elements of their respective detectors when analyzing a single event.

The LHC algorithm is a very small dense NN consisting of a few

thousand weights, whereas the ProtoDUNE algorithm is a moder-

ately sized CNN.

3.9.1. Hadron calorimeter reconstruction (FACILE)

A benchmark deep learning example is the fast calorimeter learning

(FACILE) algorithm, a small deep neural network composed of 2000

parameters and five fully-connected NN layers. This algorithm was

trained on simulated collisions to reconstruct the energy deposited

by particles in the HCAL subdetector of the CMS experiment at the

LHC. Particles that interact in the HCAL consist of any particle with

quarks (a hadron); this is the large majority of all particles in the

collision. We can expect as many as 1000 separate hadrons in an LHC

collision. The HCAL is a core component of LHC experiments and

a prototypical subdetector for implementing ML as-a-service recon-

struction. FACILE is run separately on all 16,000 HCAL channels in

CMS or, in other words, with a batch size of 16,000.

To ensure robust performance, we find that local and global

objects reconstructed with FACILE have as good or better resolution

compared to the nominal algorithm that does not use machine learn-

ing. Second, the nominal HCAL reconstruction algorithm at CMS

consumes about 60 ms of CPU time in online reconstruction, account-

ing for approximately 15% of the online computing budget [126].

FACILE offers a significant improvement in computing performance
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Fig. 9. (Left) Performance of the total HLT time for a 1 or 4 GPU server with the
FACILE algorithm deployed as a function of the number of simultaneous processes
being run. (Right) Performance of the total HLT time as a function of number of
simultaneous HLT processes being run when FACILE is deployed on an FPGA
server with a 25 Gb/s connection. The saturation point occurs at the maximum
network bandwidth and not at the ultimate limit from the processor [118].

when operated as a service by reducing the CPU time to less than

7ms and the GPU throughput to 2ms, resulting in a GPU replace-

ment ratio of tCPU/tGPU = 27. For an FPGA, the throughput time

per 16,000 channel inference is found to be 100μs or an FPGA

replacement ratio of tCPU/tFPGA = 540.

Figure 9 shows the performance of FACILE integrated into the

CMS HLT compared to before [127–129]. A drop in the per-event

latency is observed of more than 10%. The drop is consistent with

the maximum reduction expected given the observed speed-up of the

algorithm on either an FPGA or GPU. When running the algorithm

with a GPU, we find a single GPU can serve more than 300 individual

HLT processes. With an FPGA this number saturates at nearly 1600

parallel HLT processes. The saturation at 1600 is a direct result of

Networking limitations of the FPGA server. On site tests show that

the full FPGA number would potentially be able to serve 3000–4000

separate HLT nodes, or in other words 10 FPGAs would be able to

reduce a 40,000 core system by more than 10%.

FACILE is particularly well suited for an FPGA, the simple design

and small size of the network make it easy to implement on an FPGA.

To convert this algorithm, we utilize our FPGA compiler hls4ml.

The output of hls4ml in this case is an FPGA kernel that accepts
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all inputs simultaneously and produces the output in 17 clock cycles,

with a target clock frequency of 250 MHz. This means that the infer-

ence result is available in 68 ns.

3.9.2. ProtoDUNE reconstruction algorithm

Neutrino experiments typically consist of a large volume detector

that allows for the possibility of neutrinos to interact anywhere

within the volume. Neutrino interactions in the volume consist of

a series of energy deposits in tracks emanating from a single source.

The algorithm used in this study is the identification of Michel elec-

trons [130] with the ProtoDUNE detector. Michel electrons are elec-

trons from muon decays. The low energy signature occurs at similar

energy to neutrino events from supernovae. However, the signature

is distinct from neutrinos and thus they are an excellent calibra-

tion tool. The ProtoDUNE algorithm consists of a CNN of about

11 million trainable parameters. The CNN is applied to 48×48 pixel

sub-images within the ProtoDUNE detector. There are a total of

55,000 subimages in the whole detector. Processing of the data is

performed in small or large batches of 235 or 1693 depending on the

detector geometry.

Due to the large number of sub-images, and the complexity of the

model, when run on a CPU, this algorithm takes approximately 2/3

(220 of 330 seconds per event) of the total ProtoDUNE reconstruc-

tion time. Originally, this algorithm was run on a CPU. Now, due

to the integration of GPU-as-a-service into liquid argon time projec-

tion chamber (LArTPC) reconstruction software, it is now possible to

offload the Michel electron identification algorithm onto a GPU [120].

Figure 10 shows the performance of the algorithm as a function of

the separate compute nodes interacting with the four-GPU server.

When run on a CPU, the algorithm takes 220 s, while on a GPU the

total time is about 7 s. The actual time on the GPU is found to 1.9 s

or a speed of more than a factor of 100. Additionally, it is found

that four GPUs can server nearly 280CPUs running ProtoDUNE

reconstruction.

The ProtoDUNE algorithm is an example where GPUs are

expected to perform best. The relatively large complexity of the CNN



December 14, 2021 16:14 Artificial Intelligence for High Energy Physics 9in x 6in b4322-ch09 page 299

Machine Learning for Triggering and Data Acquisition 299

Fig. 10. Processing time for the Michel electron identification algorithm as a
function of simultaneous CPU processes, using a 4-GPU server. The orange line
shows the nominal algorithm latency. In both plots, the dotted lines indicate the
predictions of the latency model, specifically Eq. (9) [120]

algorithm, the ability to use large batch sizes, and, in this case, the

limited demand for low latency makes it conducive to use GPUs

for the processing of this operation, an FPGA implementation, if it

existed, would likely perform better at low batch, but worse at high

batch. Lower batch size or a significantly smaller model size would

have led to different conclusions. Lastly, in Fig.10, a comparison is

placed against the model presented in Eq. (9). Direct comparison

shows similar trends and indicates that the guiding principles of the

heuristic model are confirmed by observation.

The examples in ProtoDUNE and CMS represent two examples

of deep learning inference acceleration as a test of the reconstruc-

tion workflows in neutrino and collider physics, respectively. Future

developments have the potential to explore larger models, or further

optimized throughput. The choice of these examples is to illustrate

where clear algorithmic speedups appear as a result of the parallelism

present in ML algorithms.
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4. Concluding Remarks

In this chapter, we have presented fast machine learning for real-time

readout of LHC collisions at sub-microsecond fixed latency, and in the

context of high-throughput offline processing and millisecond-level

real-time systems. We divide these two topics into fast systems, where

specialized FPGAs and ASICs must be used to process the data, and

slower systems, where more conventional processing approaches using

GPUs, and industry based solutions can be applied.

For low latency systems, we have focused on strategies to shrink

networks so that their resource usage and latencies are optimized.

In this way, we have shown that compression, quantization, and par-

allelization are key elements to optimize network design. Further-

more, we have shown that, when considering an algorithm design,

processor resources are critical. These ideas are the foundation of

hardware-algorithm codesign.

With longer latency systems, we have presented approaches that

can use GPUs, FPGAs, and many industry tools. In this scenario,

we have presented common strategies including as-a-service com-

puting and directly connected coprocessors. Critical aspects of this

design include optimizing scheduling, dynamic batching, and the

same hardware-algorithm codesign elements necessary for low latency

processing.

Whether at ultra low latencies with specialized processors or

longer latencies with existing CPU or GPU configurations, proces-

sor technology is a core component of the design and operation of

deep learning algorithms. The large speed ups in execution time,

despite the complexity of the algorithms, are promising for enhanc-

ing computational throughput. The use of regular, repeated matrix

multiplication, present in deep learning computation, and reduced bit

precision have helped to further improve the computational acceler-

ation. Finally, the continued advancement of processor technology

in the coming years opens up the possibility of applying even more

sophisticated deep learning algorithms in high energy physics trigger

and data acquisition systems.
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End-to-end analyses of data from high-energy physics experiments using
machine and deep learning techniques have emerged in recent years.
These analyses use deep learning algorithms to go directly from low-
level detector information directly to high-level quantities that classify
the interactions. The most popular class of algorithms for these anal-
yses are convolutional neural networks that operate on experimental
data formatted as images. End-to-end analyses skip stages of the tra-
ditional workflow that includes the reconstruction of particles produced
in the interactions, and as such are not limited by efficiency losses and
sources of inaccuracy throughout the event reconstruction process. In
many cases, deep learning end-to-end analyses have been shown to have
significantly increased performance compared to previous state-of-the-
art methods.

1. Introduction

End-to-end analyses take their name from the fact that they use a

single algorithm that takes raw or low-level detector data as input

and outputs high-level physics information for each event. By defi-

nition, these analyses skip most, or all, of the traditional workflow

for particle physics analyses. Deep learning approaches are a natural

choice for these algorithms that can extract features from the input

313
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data to perform powerful classifications. Inspired by developments in

computer vision and image recognition, a popular choice of algorithm

is the two-dimensional (2D) convolutional neural network (CNN) [1].

CNNs operate on image-like, lattice-structured inputs produced from

raw or low-level detector data to generate predictions of physics-level

outputs to classify and describe interactions, such as identified par-

ticles and overall event-type classifications.

Section 2 outlines a typical example of the traditional reconstruc-

tion and analysis workflow, and Sec. 3 discusses the two primary

end-to-end analysis algorithms, CNNs and graph neural networks

(GNNs). Use cases for CNNs are presented for lattice-structured

experiments in Sec. 4, for non-lattice-structured experiments in

Sec. 5, and for time-series data in Sec. 6. Section 7 describes a use

case for end-to-end analysis using GNNs. Section 8 details methods

for probing the behavior of deep neural networks, and Sec. 9 provides

some concluding remarks.

2. Traditional Workflow

The specifics of each analysis workflow can vary widely between dif-

ferent experiments and sub-disciplines within high-energy physics,

but they can typically be broken down into four main steps: low-

level reconstruction, particle clustering, particle identification, and

event classification. It should be noted that some, or all, of these

stages could include machine (and deep) learning aspects, such as

boosted decision trees (BDT), neural networks and CNNs in order

to make important decisions at key points in the workflow. These

stages are discussed briefly below.

Low-level reconstruction: In this context, low-level reconstruc-

tion refers to the finding of signals from the active detector elements,

for example the electronic readout channels from a silicon vertex loca-

tor in a collider detector, or the readout wires in a liquid argon time

projection chamber (LArTPC). These raw signals are processed and

converted in some way to produce hit objects that form the basis of

further event reconstruction. Each hit represents an energy deposit

at a given location in space at a specific time.
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Particle clustering: The reconstructed hit objects form the basis

of the main particle reconstruction. A set of clustering algorithms

are applied to group hits together based on spatial and temporal

distance. These clusters are then associated together to build up

objects representing each of the individual particles that interacted

inside the detector. These objects generally fall into two categories

with track- or shower-like topologies. Particles such as muons that

lose energy primarily by ionization leave track-like energy deposits

in the detectors, whereas particles such as electrons and photons

tend to initiate electromagnetic (EM) cascades of particles forming

shower-like topologies. The aim is to have a list of fully reconstructed

particles at the end of this reconstruction step.

Particle identification: Once the individual particles have been

reconstructed, they can be classified as a specific type of particle.

The identification of track-like particles typically includes the use

of the energy loss per unit length, dE
dx , and the track curvature in a

magnetic field for determination of its momentum and the sign of the

electromagnetic charge. Topological information in particle cascades,

often referred to as jets or showers, is used to identify particles that

produce non-track-like energy deposits.

Event classification: At this stage the reconstructed interaction

contains all of the reconstructed particles with an attached mea-

sured particle type. Full events are built from the individual parti-

cles and associations are made between the different particles to give

the flow of the interaction. Finally, an overall classification of the

full physics interaction is given along with important variables that

describe the interaction as a whole, for example the energies of the

colliding particles.

3. Deep Learning Approaches

Image-like data has been common in particle physics since its earliest

days. In particular, the bubble chamber, invented around 1952 by

Donald Glaser, was a key detector technology for decades [2]. These

detectors dominated the field because they were reliable, fully active,
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Fig. 1. An example of tracks captured by a bubble chamber. These images were
typically manually reconstructed by trained human scanners. Illustration courtesy
of Fermilab.

and had high spatial resolution. All of these properties were key in

developing our understanding of hadron properties and electroweak

unification.

Figure 1 shows a typical image of tracks recorded by a bub-

ble chamber. These chambers would be exposed to charged particle

beams, and the resulting tracks would be recorded on photographic

film. Trained human scanners reconstructed the decays of particles

in the beam manually by visually recognizing and isolating mean-

ingful features like vertices or tracks which the scanners would then

physically measure.

The focus on studying rare interactions required larger detectors

with a higher data rate making hand-scanning increasingly imprac-

tical. This eventually led to the development of technologies that

relied on electronic readout which was automatically reconstructed

using techniques described in Sec. 2. While the traditional workflow

has proven very successful, current and next-generation high-energy
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physics experiments can provide very fine details of interactions in

comparison to previous experiments. To give an example from neu-

trino physics, charged-current (CC) νμ interactions consist of a muon

with accompanying hadronic activity (nucleons and any number of

charged and neutral pions). In the MINOS detectors [3], which are

relatively coarse-grained due to the use of thick steel plates between

scintillator planes, CC νμ events looked like a long muon track along

with a collection of energy deposits from the hadronic activity at

the interaction vertex. NOvA [4], which contains little dead mate-

rial and is in many ways the successor to the MINOS experiment,

provides more detail of the hadronic system and can resolve some of

the particles. A next-generation experiment such as DUNE [5], which

uses liquid argon time projection technology (LArTPC) [6], begins

to approach resolutions similar to bubble chambers. Thus the DUNE

detectors will be able to image all of the particles in the hadronic sys-

tem in fine detail. Figure 2 shows example CC νe interactions in each

detector and demonstrates graphically the ever-increasing require-

ments of event reconstruction algorithms to accurately reconstruct

the interactions with improving experimental detector resolution. All

of the stages of event reconstruction in the traditional workflow are

imperfect in terms of both reconstruction efficiency and accuracy.

Any mistakes made by the reconstruction algorithms tend to com-

pound through the reconstruction chain and will result in inefficien-

cies and backgrounds in physics analyses. In addition, each stage

of the traditional reconstruction workflow is designed to summa-

rize information about reconstructed features, leading to information

Fig. 2. Example CC νe interactions in progressively higher resolution detectors.
Left: event display from MINOS from [7]. Center: event display from NOvA
from [8]. Right: event display from DUNE, adapted from [9].
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loss as summary information from low-level reconstructed objects is

combined to form high-level reconstruction objects. Therefore, it is

natural to turn to the field of computer vision to find automated

approaches to approximate the tasks human scanners performed in

previous decades to efficiently use all information collected by the

detector.

The inputs to end-to-end deep learning analyses are typically

only dependent on the low-level reconstruction and can hence pro-

vide powerful analysis-level information without potential errors

from the full event reconstruction algorithm chain. However, careful

consideration is required for the selection of the training samples for

these algorithms to ensure that are not biased due to overfitting or

fine-tuning on the training sample. This is particularly important

when training on Monte Carlo (MC) simulations based on physics

models with associated uncertainties. Two broad categories of deep

learning techniques are discussed and demonstrated with examples

from various high-energy physics experiments: CNNs and GNNs in

Secs. 3.1 and 3.2, respectively.

3.1. Convolutional neural networks

The artificial neural network [10], also known as a multilayer per-

ceptron (MLP), is a machine learning algorithm characterized by

layers of nodes with defined connections between them. Each node

represents a nonlinear function of the sum of all input connections,

and each connection is associated with a weight parameter which

scales the output of one node to become the input of another. With

a suitable selection of weights, usually chosen through a training pro-

cedure, an MLP can approximate a wide variety of functions.

Traditional, or fully connected, MLPs consist of nodes arranged in

layers where each node in layer n−1 is connected to each node in layer

n. They have been widely used in high-energy physics as selection

functions to learn whether or not a given event is signal or back-

ground based on a series of input reconstructed quantities. However,

this technique, which sits at the end of the traditional reconstruction

workflow, is subject to all potential compounding errors in the event

reconstruction, described in Sec. 2.
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The CNN [11] is similar to a fully connected MLP except the

pattern of connections between nodes on different layers is tightly

constrained. This structure was inspired by studies of the visual cor-

tex of cats and monkeys which determined that cells within the visual

cortex were activated by specific illumination patterns on regions of

the retina known as receptive fields [12–14]. The characteristics of the

receptive field were observed to vary for different cells within the cor-

tex, leading to the cells being classified as simple, complex, or hyper-

complex. Simple cells are those which are most strongly activated

by a static illumination pattern of a specific location, orientation,

and shape either on one eye or on corresponding locations on both

eyes. Complex cells respond to orientation and shape, but instead of

responding to a specific location, they respond to movement of the

illumination pattern through a receptive field. Hypercomplex cells

additionally respond to the length of an illumination pattern. Hubel

and Wiesel hypothesized that complex cells received signals from

simple cells, and hypercomplex cells received signals from complex

cells. This implies that the mammalian visual cortex analyzes images

by using a hierarchical network of cells which have local connections

from one layer to the next. In this way, the brain extracts edge fea-

tures at the lowest layers, it determines directionality in the middle

layers, and it finds extents in the highest layers.

CNNs were first used in the 1980s to identify handwritten dig-

its [1], but they did not become widespread until 2012 with the

success of AlexNet [15] in identifying images in the ImageNet chal-

lenge [16]. The dramatic success of AlexNet has since produced a

proliferation of CNN architectures that have improved image clas-

sification to super-human levels; however, despite the diversity in

architectures, all CNNs share some common structures, which we

will detail below.

The structure of CNNs begins from the insight that images can

be interpreted as an array of numbers of size h×w× c, where h and

w are the height and width of the image, respectively, in pixels, and

c is the number of channels (also known as the depth). For grayscale

images, c = 1, while for color images, c = 3. The value of each array

element represents the intensity of the light at the corresponding

location and channel.
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This array is then passed through a series of layers which per-

form local operations under the assumption that pixels close to each

other are likely to be semantically related. Each layer produces a

series of h× w × c outputs known as feature maps, with potentially

changed sizes of h, w, and c. As feature maps are passed through lay-

ers, features represent increasingly more global information as local

information from larger regions is combined. The full column of lay-

ers learns to automatically extract high-level features which replace

the use of hand-crafted features that are typically used in traditional

MLPs. The features produced by the final layer are fed into a single

layer of a traditional MLP to produce the outputs which approximate

the function the network was trained to learn.

Many types of layers have been developed for use in CNNs, but

the most important types are convolutional layers and pooling lay-

ers. All CNNs contain convolutional layers which directly mimic the

concept behind the simple cell in the visual cortex. A simple cell

receives inputs from a local region of the retina and weights each

input according to a particular excitatory or inhibitory pattern. Con-

volutional operators mimic this by taking the dot product of the

values in a local region of a feature map with a matrix of learnable

weights known as a convolutional kernel. This operation is repeated

across the entire feature map to produce an output feature map. This

operation is closely related to the discrete convolution.

The choice to use the same convolutional kernel to extract fea-

tures across the full input produces two properties that are responsi-

ble for much of the power of CNNs. First, learning a single kernel per

output feature map dramatically reduces the number of free param-

eters learned by the network compared to fully connected layers in a

traditional MLP. This makes CNNs easier to train and less suscep-

tible to overtraining. Second, applying the same operation at every

local region makes the layer equivariant to translation. That is, if an

object is translated in an image, the same features will be produced,

just translated within the output feature map. If this property is

maintained throughout the network, the efficiency for detecting if

a particular object is present in an image will not depend on the

exact location of the object in the image. However, scale, rotation,
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and the relative positions of objects within the image can still be

important.

Pooling layers are optional in CNNs, but they extremely com-

mon. They apply a pooling operator which combines features from a

local patch in an irreversible way. The most commonly used pooling

operator is max pooling, which outputs the maximum value of the

features in a local patch. For example, a 2 × 2 max pooling layer

downsamples 2 × 2 input pixels to a single pixel with the value of

the highest-valued input pixel. This has the effect of removing low

significance information and imposing an invariance to small transla-

tions. The invariance property reduces the sensitivity of the network

to exact positions, including relative positions.

3.2. Graph neural networks

There are many situations where representing experimental data as

an image is not a natural or convenient method. For example, experi-

ments with complex geometries may require numerous projections of

the data to produce 2D images. Even in experiments where images

provide a good data representation, there are cases where only a

small fraction of the detector elements are activated for a given event,

resulting in images with many empty pixels (see many of the images

discussed in Sec. 3.1). This does not necessarily present a problem,

but a lot of time can be spent performing convolutions on pixels with

zero values, which always gives a zero result regardless of the filter

applied.

In the case of complex geometries, a more natural representation

may involve considering each detector element as a point in 3D space.

Furthermore, considering only those detector elements with a mea-

sured signal on an event-by-event basis will provide a more efficient

approach for sparse data. A data structure that copes well with these

requirements is a graph

G = (V,E), (1)

where V are a set of vertices, also known, and henceforth referred to,

as nodes, and E are a set of edges. Edges are defined as connections
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between nodes such that edge eji links node vj to node vi. This is an

example of a directional edge since it points from node vj to node

vi. Edges can also be undirected, in which case eji = eij and the link

is reciprocated. Each node has a number of features associated to it

that describe its properties.

To form graphs from high-energy physics data, each detector ele-

ment with a measured energy deposit is added as a graph node. Each

node has a number of features, which could include information such

as the position of the detector element and the amount of deposited

energy. The ability to associate multiple features with each node

provides an easy way to incorporate more information into a GNN

beyond just position and charge. The edges that link the nodes can

be defined in a number of ways, for example using the adjacency of

nodes to their neighbors. Each interaction is therefore represented as

a connected graph containing all of the recorded energy deposits in

the detector.

Graph neural networks [17–21] (GNNs) are neural networks that

operate on graphs. Depending on the specific classification task, the

GNN can classify nodes, edges or the entire graph. There is a large

variety of GNN architectures [22], but they typically use graph-based

convolutions to aggregate the features of a node and its neighbors.

3.3. Network optimization

Convolutional and graph neural networks, like all machine learning

algorithms, need to undergo a training procedure, and the perfor-

mance of the final algorithm is highly dependent on the quality of

the training. The choice of training samples, typically from simula-

tion, is a key consideration to ensure that the algorithm generalizes

well, meaning that it performs similarly on data not included in the

training sample. There are many other important factors, including

the choice of optimizer used to find the minimum of the loss function,

and the network hyperparameters.

Training samples: The choice of training sample is very impor-

tant for CNNs and GNNs. These networks typically have of the order
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of millions of parameters and therefore need large training samples

to be successfully trained and optimized. The vast majority of net-

works used in end-to-end analysis are trained using simulated data

events and the associated truth information is used to provide the

target labels. It is very important to ensure that the training sample

covers the entire range of possible interactions that could be seen in

the samples that the network will be used to classify.

Optimizers: In machine learning, the training process minimizes

a loss function that describes how close the prediction is to the true

value(s). The loss function exists in a very high-dimensional space

and varies as a function of the trainable parameters that form the

network model. Gradient descent is the general method for find-

ing the (local) minimum of the loss function, whereby gradients

are calculated with respect to each parameter and then parame-

ter values are updated using the negative of the gradients multi-

plied by a factor called the learning rate. Many optimizers are vari-

ants of stochastic gradient descent [23] (SGD), a method where the

parameter values are updated after each training example (or more

commonly, mini-batch of examples). There are a number of differ-

ent optimizers that are extensions to the standard SGD algorithm

that aim to improve performance and ensure robustness, such as

ADADELTA [24], RMSProp [25], Adam [26], etc. For a more detailed

discussion of optimizers, see, for example, [27].

Hyperparameters: Parameters that cannot be optimized during

training are known as hyperparameters. These are usually either

parameters controlling the structure of the network itself, like the

number and type of layers, or controlling the behavior of the opti-

mizer. One of the most important hyperparameters of the latter type

is the learning rate. If it is too large, then the optimizer can fail to

find a minimum in the loss function, but if it is too small, then the

optimizer can get stuck in a local (and possibly shallow) minimum.

More complex approaches involve decaying the learning rate as a

function of the training time in order to avoid local minima and fall

into the bottom of a deep (or hopefully global) minimum.
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4. Convolutional Neural Networks

in Lattice-Structured Experiments

Due to the low interaction rate of neutrinos, neutrino detectors are

typically large, and since neutrinos are equally likely to interact any-

where within the volume of the detector, neutrino detectors are typi-

cally homogeneous. Therefore, many neutrino detectors produce data

which can be easily reinterpreted as images. As such, the first uses

of CNNs to perform end-to-end analyses in particle physics occurred

at neutrino experiments.

In addition, similar detector technologies are used in neutrino-

less double beta decay and nuclear physics experiments. The lattice-

structured geometries in these experiments lead to commonalities in

the approaches used.

Event classification in the NOvA experiment: The NOvA

experiment [4] is a long-baseline neutrino experiment designed to

measure νμ disappearance and νe appearance in a beam originally

composed of mostly νμ. NOvA measures the flavor content and

energy spectrum of the neutrino beam at a near and far location

using two functionally identical detectors located on the surface

and composed of layers of alternating vertical and horizontal liquid-

scintillator-filled PVC cells. The alternating structure provides two

orthogonal views of the 3D pattern of energy deposits produced by

charged particles traversing the detector projected on the x–z and

y–z planes.

To perform oscillation analyses, it is critical to be able to sepa-

rate events into charged- and neutral-current (NC) interactions, and

in the CC case, events must further be separated according to flavor.

Since NOvA is on the surface, the cosmic ray flux is large, so it is

also necessary to distinguish between cosmic ray and neutrino events.

A CNN algorithm was developed to achieve this separation [8]. The

input to the CNN consists one image of 100 planes × 80 cells for

both views. These smaller images are extracted from the much larger

images representing the full detector by performing a clustering of
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Fig. 3. Example of a pair of input pixel maps for a neutral current interaction
containing an electromagnetic shower produced by a π0. Each view corresponds
to either a projection on the x–z plane (left) or the y–z plane (right). Figures
reproduced from [8].

energy deposits in space and time. This clustering is the only recon-

struction performed on NOvA data prior to feeding it into the CNN.

An example of these inputs for an NC event is shown in Fig. 3.

The NOvA network is based on a modified GoogLeNet archi-

tecture [28]. The hallmark of this network is a network-in-network

design [29] where miniature CNNs consisting of several convolu-

tional layers operating in parallel with a variety of kernel sizes form

a repeatable “Inception module”. Feature maps from each parallel

branch in the module are merged together and resampled using a

1× 1 convolutional layer.

Since the input NOvA pixel maps consist of two views of the

same data sharing one common axis and one different axis, there

is no guarantee that the same pixel location on the two views are

physically correlated. Therefore, each view is processed separately by

two branches of the CNN containing three inception modules. After

this stage, the resulting feature maps are sufficiently abstract that

they can be concatenated and passed through one final inception

module. Separate outputs of the network predict if an event is a

cosmic ray, or if it is a neutrino, its flavor and interaction type.

Figure 4 shows the performance of the CC νe and CC νμ classification

outputs. The network produces a 40% increase in CC νe selection
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Fig. 4. Classifier efficiency (red), purity (blue), and their product (green) for CC
νe (left) and CC νµ (right) interactions. Figures reproduced from [8].

efficiency over previously used traditional selection techniques with

no loss in purity.

This network is the first use of a CNN in a published particle

physics analysis [30, 31]. Due to its versatility, the network presented

here, as well as subsequent improved networks, has formed the basis

of all NOvA oscillation analyses.

Event localization and classification in the MicroBooNE

experiment: The MicroBooNE detector [32] is a LArTPC located

on the surface on the Fermilab campus with three wire readout planes

that collect ionization charge liberated by charged particles travers-

ing the detector medium, and a photon detection system to measure

scintillation light. CNN-based algorithms were used, for the first time

in a LArTPC experiment, to perform classification of cosmic ray and

neutrino interactions [33]. A number of studies were performed, two

of which are discussed below.

The first CNN algorithm using the charge information from a sin-

gle readout plane was developed to perform the event classification

and find the bounding box containing the neutrino interaction. The

network uses a hybrid architecture based on AlexNet [15] and Faster

R-CNN [34]. An example of a correctly classified CC νμ interaction

is shown in Fig. 5 with a large overlap of the true (yellow) and pre-

dicted (red) bounding boxes, and the distribution of the neutrino

classification score is shown on the right.
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Fig. 5. Left: identified neutrino interaction with a bounding box compared
between prediction (red) and truth (yellow). The true bounding box is defined
as the smallest region containing all true charge depositions from the simulation,
and the prediction is the output of the CNN. Right: the neutrino classification
score for cosmic and neutrino interactions. Figures reproduced from [33].

The second CNN algorithm used all three readout views plus

the photon detector system. The input for the network consists of

a 768 × 768 pixel depth-12 image, formed from three depth four

images (one for each of the three readout views). The components

of the depth four images are the following features for a given wire

and time: the deposited charge; a binary map of charge deposits con-

sistent with minimum ionizing particles, such as muons and pions; a

binary map of charge deposits consistent with heavily ionising par-

ticles, such as protons; and a deposited charge map weighted by the

distance of the charge detection point from the averaged light col-

lection point from the photon detectors. The last of these images is

used to help the CNN find the most important region of the detec-

tor where the neutrino interaction is most likely to have occurred.

The network architecture was based on the ResNet [35], using three

convolutional layers followed by nine ResNet modules, with two final

outputs that give scores for the interaction to be a cosmic ray or

neutrino event. Figure 6 shows the performance of the classifier for

simulated neutrino interactions overlaid with cosmic rays from data.

A comparison with the distribution on the right-hand side of Fig. 5

shows that including of all the detector information gives a significant

improvement in the classification, as expected.

Event and particle content classification in the DUNE exper-

iment: The Deep Underground Neutrino Experiment (DUNE) [5]
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Fig. 6. The neutrino classifier distribution for cosmic and neutrino interactions
using all detector information. Figure reproduced from [33].

Fig. 7. An example of a simulated CC νe interaction in the DUNE far detector,
shown in each of the three independent readout views. Figure adapted from [9].

is a next-generation long-baseline neutrino oscillation experiment.

The detectors will use LArTPC technology with three wire readout

planes. The data from each of these three readout planes can be visu-

alized as a 2D image with coordinates of wire number and time, as

shown for a CC νe interaction in Fig. 7, where the time coordinate

is common between the three images. The 500×500 pixel images are

cropped around the neutrino interactions. The pixel values repre-

sent the reconstructed charge measured on a given wire at a given

time. The DUNE CNN algorithm [9], also known as the CVN, has

an architecture based on the SE-ResNet-34 [35–37]. The initial layers

of the network are divided into three branches, one for each of the

input images, and seven convolutional layers are applied before the
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branches are merged together. The final fully connected layer has a

number of different outputs but the primary one is designed to iden-

tify the type of neutrino interaction. A number of the other outputs

from the CVN provide numbers of different final-state particles visi-

ble in the neutrino interactions, including protons, charged pions and

neutral pions.

The neutrino flavor output of the CVN contains four nodes and

returns a score for the event to originate from one of four broad

categories: CC νμ, CC νe, CC ντ or NC. These output scores provide

very powerful neutrino event classification, as shown by the CC νe
score and CC νμ score distributions on the left and right of Fig. 8,

respectively. These scores are used to produce event selections for

the neutrino oscillation sensitivities described in detail in [38]. CC νe
(ν̄e) interactions are selected with over 90% (95%) efficiency.

Going beyond neutrino flavor classification, the particle counting

outputs of the DUNE CVN aim to select interactions with specific

final state particles. The output scores for each output are in the

range zero to one meaning that a compound score for a given topology

can be formed by multiplying the component scores. For example, a

score for an event to be a CC νμ interaction with a single proton in
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Fig. 8. The output score distributions from the DUNE CVN for the CC νe
(left) and CC νµ (right) hypotheses, shown for the various neutrino flux com-
ponents. The red arrows correspond to the cut values used in the DUNE event
selections [38]. Figure reproduced from [9].
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Fig. 9. The score for CC νµ interactions with a single final-state proton from the
DUNE CVN. Figure adapted from [9].

the hadronic final-state system can be written as follows:

S(CC νμ1 proton) = S(CC νμ)S(1 proton)S(0π
±)S(0π0).

Figure 9 shows the distribution of S(CC νμ 1 proton) for signal and

all background interactions, providing a proof-of-principle for the

selection of specific interaction topologies in the DUNE detectors.

The ability to sub-divide the neutrino event selections can improve

the analysis sensitivity as some events have better energy resolution

and lower systematic uncertainties than others.

Event energy and position reconstruction in EXO-200:

EXO-200 is an experiment searching for neutrino-less double beta

decay [39]. The detector is a liquid xenon TPC, similar to LArTPC

technology, consisting of two drift regions, and each drift volume

has two wire readout planes (one induction and one collection) each

consisting of 38 wires. Each drift volume also has an array of 37

large-area avalanche photodiodes (APDs) that collect scintillation

light. Two different CNN-based algorithms [40] have been developed

to find the energy and position of candidate events, respectively.
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The first of these CNNs uses information from the charge readout

wires, and the second uses the signals from the APDs.

In the charge-based algorithm, an image is constructed from the

charge detected on each of the 76 collection wires in 1024 time sam-

ples, resulting in a (1024 × 76) pixel image. The CNN architecture

contains six convolutional layers, each followed by a max pooling

layer. A series of three fully connected layers culminates in a sin-

gle output node that predicts the energy of the interaction. A small

improvement, typically a few percent, is seen in the energy resolu-

tion at a number of different energies compared to the traditional

reconstruction methods.

The second algorithm aims to reconstruct the position of an event

using the distribution of scintillation light detected in the APDs.

The (350 × 74) pixel images are produced from waveforms with 350

time samples for each of the 74 APDs. The CNN architecture chosen

consisted of four convolutional layers interspersed with max pooling

layers that feed into a three layer MLP, with the final layer return-

ing the (x, y, z) position of the interaction. A novel approach is used

to generate the training sample using data labeled with the recon-

structed position from the wire readout system, since the charge and

light readout systems are independent. This approach will therefore

minimize the dependence of CNN performance on different physics

models. The data were recorded in a number of calibration runs with

different radioactive isotopes. Figure 10 shows that the algorithm

works well when applied to the calibration data samples.

Improving generalization with data from the AT-TPC: The

active-target time projection chamber (AT-TPC) [41] is a detector

at the National Superconducting Cyclotron Laboratory at Michigan

State University. It is similar to other TPCs discussed here, such as

MicroBooNE, DUNE, and EXO-200, but with a few notable differ-

ences. Instead of being filled with a liquid noble gas, the AT-TPC is

filled with a gas which serves as both the target for the experiment

and the drift medium. The apparatus is placed in a magnetic field so

that tracks travel in curved trajectories based on their momentum,

and the readout system consists of pads, rather than wires, so that
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(a)

(b)

Fig. 10. The position residual and resolution for two calibration data samples.
The small bias seen in the top left and bottom middle distributions can be
attributed to geometric effects. The calibration source for the data shown in
(a) is located near to the edge of the detector in x, and the source used for (b) is
near the edge of the detector in y. Figure reproduced from [40].

the readout is inherently three dimensional. The AT-TPC is designed

to hold a variety of gases to allow for the study of low-energy nuclear

reactions with low rates.

Since many experiments run at the AT-TPC, each for a short time

and generating large volumes of data, it is particularly important that

experiments are able to quickly develop methods for separating signal

and background. Using the 46Ar(p, p) experiment, which directed a

beam of 46Ar ions into the AT-TPC filled with isobutane, a study

was performed to determine if CNNs could improve the selection of

resonant proton scattering events [42].

In neutrino and collider experiments previously mentioned, the

typically technique is to train a CNN based on a leading architecture

using a training sample composed of high-quality simulated data.
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Since the available simulations capture many of the important fea-

tures expected in data, it is typically assumed that this selector will

generalize well to experimental data. This is not a good assump-

tion for the experiments which are conducted at the AT-TPC. For

instance, in the 46Ar(p, p) experiment, the signal (proton) and one

common background (carbon atoms) can be accurately simulated;

however, all other backgrounds cannot be. Therefore, CNNs trained

with either simulated data, or a small amount of hand-labeled exper-

imental data were studied. Figure 11 shows examples of simulated

and real data for proton, carbon, and other categories.

In total, 28,000 simulated training images were produced for each

category. Since manually classifying data is time consuming, only 663

proton, 340 carbon, and 1686 other real training images were pro-

duced. These training sets are too small to be successful using deep

CNNs, so they explored the use of transfer learning. This technique

uses the fact that the feature extractor portion of the network is

Fig. 11. Examples of simulated and real training images for the 46Ar(p, p) exper-
iment, where the real training images were extracted through manual classifica-
tion. The images represent projections of the three-dimensional event data onto
the xy-plane. Figure reproduced from [42].
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designed to extract low-level features that are properties of images

themselves rather than the particular dataset they were trained on

while the classifier portion of the network is more tightly tied to the

detail of the problem being solved [43].

Therefore, a network trained on one dataset may be usable for

another dataset after applying a fine tuning procedure. In this pro-

cedure, the classifier portion of the network is removed and replaced

with a new one with the correct number of inputs, and the network

is retrained using a low learning rate. In the simplest version of this

training, only the weights in the classifier portion are allowed to

change. If the new problem is sufficiently different, it may be neces-

sary to also allow the weights in the feature extractor to change as

well.

To test transfer learning with 46Ar(p, p) data, a VGG network [44]

previously trained using ImageNet data [45] was fine tuned using

either simulated or real data. The success of the training was judged

using the F1 metric which can be written as

F1 = 2
precision · recall
precision + recall

, (2)

where precision is the fraction of true positives out of all positive

selected events and recall is the fraction of true positives out of all

true events. In particle physics contexts, precision is often referred to

as purity and recall is referred to as efficiency. When a network that

was fine tuned using simulated data was tested on simulated data,

the F1 score was 1.0, signifying perfect classification. However, when

the same network was tested with real data, the F1 score dropped

to 0.67. This large drop in classification ability is directly related to

the low fidelity of the simulated sample. When a network fine tuned

on real data was tested on real data, the F1 score recovered to 0.93.

This result has a number of interesting implications. First, the

VGG network that was used had been trained on ImageNet data

which consists of natural images found on the internet. Natural

images are very different from physics data in that they tend to be

information dense while physics data is usually very sparse. There-

fore, it is surprising that transfer learning works at all. Second, using
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an exceptionally small sample of manually classified real data (only

663 proton signal examples), it was possible to obtain a selector of

similar quality when tested with real data as one trained on sim-

ulated data and tested on simulated data. While neutrino and col-

lider experiments have higher quality simulations than those available

for the 46Ar(p, p) experiment, there are still concerns about CNNs

trained on simulated data increasing the systematic uncertainties of

an experiment due to being the network learning the details of the

model used in the simulation. These transfer learning results show

that it may be possible to insulate a CNN from such model biases

using small quantities of manually classified data.

5. Convolutional Neural Networks in Heterogeneous

Collider Detectors

Unlike neutrino experiments and other experiments using TPC tech-

nology, detectors placed around the collision points of accelerators

typically have a cylindrical geometry which the axis of the cylin-

der aligned with the colliding beams. Detectors like CMS [46] and

ATLAS [47], located at the Large Hadron Collider are composed of

many heterogeneous detector systems organized in concentric layers

around the beam axis. The innermost detectors are usually track-

ing chambers, consisting of either drift chambers or silicon detec-

tors, designed to measure the trajectory and momentum of charged

particles. Placed at larger radii are the electromagnetic calorime-

ter (ECAL) and hadronic calorimeter (HCAL) systems designed to

measure the energy deposited by a variety of particle types. The out-

ermost layer is designed to identify muons which tend to penetrate

much farther than other charged particles. Furthermore, while these

detectors are azimutally symmetric, they have a projective geometry

such that detector components are smallest transverse to the beam

(at low pseudorapidity) and are largest in very forward regions (at

high pseudorapidity).

Due to these characteristic features, it is more challenging to inter-

pret nearly raw collider data as images. For any given concentric

layer, a popular choice is to unroll the layer at a chosen value of the
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azimuthal angle so that individual pixels represent bins of pseudora-

pidity η and azimuthal angle φ.

Quark and gluon jet discrimination: A study of quark and

gluon jet discrimination using CMS Open Data was presented in [48].

Figure 12 shows how the three images for each event (pT weighted

positions on the front face of the ECAL, and the energy deposits

in the ECAL and HCAL, respectively) are produced from the CMS

detector geometry. Each of the images are produced using the (η,φ)

coordinate system, with the same binning scheme used for the two

ECAL images, and the HCAL has five times coarser images. In order

to distinguish between jets initiated by quarks or gluons, an algo-

rithm based on ResNet-15 [35, 36] was developed that operates on

the three images. The results were compared to more traditional

techniques using summary information of the reconstructed jets and

the CNN approach outperformed them all, achieving an ROC AUC

value of 0.8077± 0.0003 compared to 0.8017± 0.0003 for the best of

the other algorithms.

Tracks, pT weighted, at ECAL surface ECAL HCAL

Fig. 12. An illustration of the CMS geometry and how to summarize information
from the tracking system and the electromagnetic and hadronic calorimeters. Each
system has a barrel-shaped geometry which must be recast to form 2D images.
Figure reproduced from [48].
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Electromagnetic shower particle identification: Derived vari-

ables based on charge and position that describe the shape of energy

deposits in collider experiment calorimeters (also known as show-

ers) have traditionally been used to classify showers initiated by dif-

ferent types of particles. In order to distinguish between electron,

photon and charged pion showers, the algorithms described in [49]

aim to go beyond these variables and use raw data images from the

calorimeters.

A six-layer MLP neural network operating on 20 shower shape

variables provides the baseline algorithm. These 20 variables sum-

marize the information encoded in the raw detector data. Four other

networks are considered, the first of which uses the same architecture

operating on the 504 calorimeter pixels instead of the 20 variables.

Three other networks that operate on three images, one from each

layer of the calorimeter, have CNN-based architectures: the locally

connected network (LCN) [50], a similar network with the LCN lay-

ers replaced by standard 2D convolutions, and a network based on

DenseNet [51].

Figure 13 shows a comparison of the performance of the five

networks for the task of electron–photon separation (left) and

Fig. 13. A comparison of five different algorithms in the task of electron-
photon (left) and electron-pion (right) shower discrimination. Figure reproduced
from [49].
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electron–pion separation (right). The three CNN-based algorithms

outperform the MLP-based ones for both tasks, and the DenseNet-

based algorithm demonstrates the best performance overall. It clearly

shows that a considerable amount of information is lost in the

construction of the shower shape variables and that this extra

information is leveraged by the CNNs to significantly improve the

performance.

6. End-to-End Analysis of Time Series Using

One-Dimensional CNNs

The data produced by a single sensor is generally a continuous wave-

form: a signal that varies as a function of time. In many cases this

one-dimensional (1D) representation of data needs to be processed

without combining data from multiple sensors to form images, for

example, when there is a need for pre-processing of the data from

each individual sensor, or when the number of sensors is small and

each will be processed individually.

A natural way to process these 1D waveforms is to use 1D con-

volutions. The n-element filters are applied to the input waveform

to extract features in an analogous way to the extraction of image

features in the 2D case as previously discussed. For example, a 1D

convolution algorithm could be used to find peaks in a waveform to

find energy deposits recorded by a given sensor. Other neural net-

works, such as recurrent neural networks (RNNs) [52, 53] and their

subclass long short-term memory networks (LSTMs) [54], can be

used on 1D waveforms, but 1D CNNs work very well on fixed length

inputs such as those from detector elements with a fixed-length read-

out window. An example of event classification using a 1D CNN is

given below.

Pulse Shape Discrimination for Scintillation Signals: Pulse

shape discrimination, the ability to identify different signals in raw

waveforms, is a common task in high-energy physics. In this exam-

ple [55], the experimental setup consists of a 6LiF:ZnS(Ag) phosphor

screen coupled to a scintillator cube, technology similar to that used
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in the SoLiD experiment [56]. The light produced inside the scin-

tillator cube was read out using a photomultiplier tube (PMT) and

two silicon photomultipliers (SiPM). The scintillator cube was sen-

sitive to interactions from gamma-rays and electrons that produce

scintillation light signals referred to as electron scintillation (ES).

The phosphor screen was sensitive to nuclear interactions produc-

ing a different light signal, referred to as nuclear scintillation (NS).

The goal of the experiment was to distinguish between the ES and

NS events from the raw SiPM waveforms, where Fig. 14 shows the

average NS (top) and ES (bottom) waveforms. The PMT served two

purposes: to trigger the readout of the SiPM waveforms, and to label

the waveforms, with approximately 99% accuracy, as either an ES

Fig. 14. The average waveform for NS (top) and ES (bottom) events where
the shaded regions show the 68% interval of the ensemble used to calculate the
average. Also shown in both panels is an example waveform. Figure reproduced
from [55].
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Fig. 15. ROCs curves for the different PSD algorithms. Figure reproduced
from [55].

or NS event to avoid the need for simulations. Each of the SiPM

waveforms consisted of 1000 samples.

A 1D CNN was developed using just two convolutional layers,

each followed by a max pooling layer. The output of the second

pooling layer fed into a fully connected layer, and finally a single

output node with a softmax activation to provide the probability of

the waveform being of the NS type. The CNN algorithm significantly

outperforms two more traditional approaches, as demonstrated by

the distributions in Fig. 15.

7. Graph Neural Networks for Large

Three-Dimensional Detectors

Graph neural networks are a more recent development than CNNs,

and as such GNNs are currently less commonly used in high-energy

physics than CNNs. However, GNNs are beginning to be used in

event reconstruction [57–59], as described in detail in Chapter 12. It

is likely only a matter of time before many examples of end-to-end
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analysis using GNNs become apparent, but the only current example

is discussed below.

Event classification in the IceCube experiment: IceCube [60]

is an experiment located in Antarctica that aims to measure inter-

actions of atmospheric and astrophysical neutrinos. The detector

consists of a series of photomultiplier tube detector modules (called

DOMs) buried in the ice to measure Cherenkov radiation produced

by charged particles traveling in the ice. There are approximately

6000 DOMs arranged in an irregular 3D hexagonal geometry making

it well-suited to graph representation. Each of the DOMs is repre-

sented as a graph node with six features: the (x, y, z) position, the

sum of the charge in the first detected pulse, the sum of the charges

from all pulses, and the time at which the first pulse went above

threshold. On an event-by-event basis, only those DOMs that record

a signal are added as nodes to the graph. The goal of the GNN is to

classify an event (i.e. the graph as a whole) as either a signal neu-

trino interaction or a background event in an environment where the

signal interactions are very rare compared to the backgrounds. The

network architecture is based on the MoNet model [61].

The local neighborhood of each node, or its adjacency to other

nodes, is defined using the three spatial position features (x, y, z).

The edges between nodes are assigned weights from a Gaussian dis-

tribution that depends on the distance between the two nodes. The

width of this Gaussian distribution is a learned network parameter

that controls how quickly information is spread between spatially dis-

tant nodes. A series of convolutions are applied to the graph followed

by a logistic regression to predict the event type. Figure 16 shows the

true positive rate as a function of the false positive rate and demon-

strates that the GNN significantly outperforms traditional methods

as well as 3D CNN approaches, achieving a signal-to-noise ratio of

2.98 compared to the baseline of 0.987 [62].

8. Opening the Black-Box

In traditional selection techniques, reconstructed features are

designed to quantify a physical property known to differ between
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Fig. 16. Distribution showing the signal efficiency as a function of the false
positive rate. The IceCube GNN algorithm (green) is compared to a 3D CNN
(blue) and a baseline point (yellow) from traditional techniques. Figure repro-
duced from [62].

event types. For instance, the multiple scattering distribution for

muons and charged pions differ because muons only scatter due to

the Coulomb potential of the material they are propagating through

while charged pions also scatter due to the strong nuclear potential.

Therefore, it is reasonable to expect that summary statistics like the

mean and RMS of the scattering angles of a track may be useful when

classifying tracks as having been created by a muon or charged pion.

Since end-to-end approaches use more information than these

summary statistics, they typically perform better, but it is more

difficult to attribute their performance to understandable physical

properties. Moreover, using more information potentially exposes the

algorithm to learning spurious or incorrect details due to imperfec-

tions in the simulated training dataset. Therefore, it is critical to

have tools for interrogating the network to determine on what basis

it is making its decisions. For a final physics analysis, this involves a

black-box input–output analysis where systematically-varied simula-

tion samples are classified by the network to determine how sensitive
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the classification is to plausible variations in the dataset. However,

tools which provide a qualitative understanding the network’s deci-

sions can provide additional assurance of reasonableness. In this sec-

tion, we will discuss examining feature maps at various depths in the

network to identify features frequently associated with certain classi-

fications, low-dimensional visualizations of the features produced by

the final layer of the network to determine how a test sample forms

clusters, and occlusion tests to determine what parts of an image are

more salient for making a decision. In all of the cases given below,

the methods produce figures that are inspected by eye to determine

if the behavior appears reasonable; there is no unique quantitative

figure-of-merit that works for all networks.

8.1. Feature maps

The outputs of the convolutional layers can provide insight as to

what features are being extracted from the input images. Looking

at the output of the first convolutional layer for different types of

events can show what sort of features the network is looking for

in order to classify the event. However, the layer outputs become

increasingly abstract as the depth into the network increases making

visual inspection of the deeper layer outputs difficult.

Figure 17 shows example feature maps from the 1D CNN

described in [55] and Sec. 6, for the first convolutional (left) and

second (right) convolutional layers for the two types of signals. For

example, visual inspection of the distributions on the left shows that

filter six responds most to low amplitude samples and filters 2 and 3

find the main peaks in the waveforms.

As an example from a 2D CNN, Figure 18 shows the response

from the first and final layers of the DUNE CVN [9] for an input CC

ν̄e interaction. The first convolutional layer consists of 64 learned

7 × 7 pixel filters, visualized in the top middle panel. The results of

applying these 64 filters to the input image are shown on in the top

right panel, demonstrating that some filters result in a weak (yellow)

response and some give a strong (red) response for the chosen input

image. Some of the filters can be seen to respond strongly to the
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Fig. 17. Normalized feature outputs of the first (left) and second (right) convolu-
tional layers for the two types of signal waveforms. The input signals on the right
have been downsampled (to mimic the max pooling in the CNN architecture)
to show the correlation with the second convolutional layer. Figure reproduced
from [55].

central part of the shower, others to the sparser halo pixels, and

some have a weak response for the whole image. The 512 feature

maps from the final convolutional layer, shown in the bottom panel,

have a large variety in response but are very abstracted since the

many pooling layers have downsampled the original 500 × 500 pixel

input down to 16× 16 pixels in the feature maps.

8.2. Low-dimensional visualizations

For both CNNs and GNNs discussed in this chapter, the network

consists of a feature-extractor and classification sub-network trained

simultaneously. In the CNN case, the feature extractor consists of

a stack of convolutional layers, with the possibility of pooling or

other types of layers. In the GNN case, the feature extractor typically

involved convolutions generalized to the graph structure and message

passing steps. In either case, the feature extractor produces a high-

dimensional vector encoding of the information contained within the

input data. The classification sub-network usually consists of a single

fully connected layer with as many output nodes as classes and the

outputs recast as class probabilities using the softmax function.
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Fig. 18. The outputs from the first (top right) and last (bottom) convolutional
layers in the DUNE CVN for an input CC ν̄e interaction. The response strength
is shown ranging from yellow for low response values to red for a strong response,
and white is used for no response due to empty input pixels. Figure reproduced
from [9].
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In the simplest case, predicted outputs are merely rescaled linear

combinations of the output of the feature extractor making decision

boundaries in the high-dimensional feature space encoding hyper-

planes. Therefore, in a successfully trained network, examples from

the same class should be separated by a small Euclidean distance,

while examples from different classes should be separated by a large

Euclidean distance.

Examining the shape of clusters within the high-dimensional fea-

ture space could provide insights into why different examples are

classified correctly or incorrectly. For instance, two classes may exist

as two well-separated clusters except at one surface where they touch.

At the point of contact, the proper classification of those examples

would be ambiguous. This makes it possible to isolate only those

examples with a true ambiguity. Unfortunately, the output of the fea-

ture extractor typically has a dimensionality of O(1000), well beyond

the bounds of normal visualization techniques.

The t-distributed stochastic neighbor embedding (t-SNE) tech-

nique [63] provides a method to visualize high-dimensional data by

embedding it in a lower dimensional space. To do this, the similar-

ity representing the probability that two points are neighbors is con-

structed for each pair of points in either the high- or low-dimensional

space as a function of the Euclidean distance between the points.

In the high-dimensional space, the similarity is based on a Gaussian

probability density while it is based on Student’s t-distribution in the

low-dimensional space. The Student’s t-distribution prevents points

from crowding in the low-dimensional space. Finally, the points in

the low-dimensional space are rearranged to minimize the Kullbach–

Leibler divergence between the similarity distributions in both rep-

resentations assuring that points have the same relationship to their

neighbors in low dimensions as in high.

Figure 19 shows the t-SNE algorithm [63] applied to 1024-

dimensional outputs of the NOvA CNN [8]. The structure of the

clusters gives insight into what features the network primarily used

to separate neutrino interactions. Looking at visualizations of a repre-

sentative sample of interactions, it is clear what characteristics define

the axes of the low-dimensional representation. On the horizontal
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Fig. 19. A visualization of the t-SNE algorithm applied to the 1024 dimensional
outputs of the NOvA CNN [8]. Figure courtesy of the NOvA collaboration.

axis, events become dominated by a long track on the right side and

dominated by an electromagnetic shower on the left side. On the

vertical axis, the multiplicity of objects in the interaction increases

while moving from the bottom to the top of the figure.

With this scheme in hand, we can understand how the clusters of

classes are arranged. We see that νμ are well separated from νe with

neutral current interactions in the middle. This makes sense since νμ
interactions are dominated by tracks while νe interactions are domi-

nated by an electromagnetic shower. Neutral current interactions lack

a charged lepton, but they can contain either a charged pion (track-

like) or a neutral pion (shower-like) which naturally causes ambigui-

ties with either νμ or νe. Cosmic rays largely occupy the lower right

side of the figure since they are dominated by single muons. Finally,

ντ interactions are clustered in the top half of the figure since they

only occur at higher energies, and they are poorly separated from

the three other neutrino channels since the τ -lepton can decay either

hadronically or leptonically. In broad terms, this figure suggests that

the network is relying on similar topological features to what a hand
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scanner might use. Furthermore, it suggests potential improvements

to the network. For instance, since cosmic rays consisting of sin-

gle muons are easy to separate, and the selector may be improved

by constructing a biased sample of cosmic rays emphasizing more

complicated topologies which are rarer, but more likely to be mis-

categorized as a neutrino. Similarly, maintaining a single category for

ντ , regardless of the decay mode of the τ -lepton needlessly confuses

the network.

8.3. Occlusion tests

While t-SNE provides general insight into what type of examples are

seen as similar by the network, it can be useful to determine precisely

which portions of an example are salient to the decision made by the

network. A very simple method for determining salience is the occlu-

sion test. In an occlusion test, a small portion of an input example

is withheld from the network. In the CNN case, this would mean

changing a small patch of pixels to zeros. The change in the network

output is placed into a separate map at the pixel corresponding to

the center of the occluded region in the input image. Repeating this

across the image produces a salience map showing which regions were

most important in making a particular decision.

Figure 20 shows the salience map for a deep inelastic scattering

νe interaction using the NOvA CNN [8]. In this case, the occluded

region consisted of a movable 5× 5 square of pixels. Since the image

shown corresponds to a deep inelastic scatter, the interaction con-

sists of an electron produced by the charged current interaction

and an array of charged and neutral pions produced by the struck

nucleus. Despite the high multiplicity of this interaction, the only

region which reduces the νe score of this interactions is near the

start of the electron shower. This is consistent with how a hand scan-

ner would classify this event since electrons produce a single track

before they initiate a shower while photons are invisible until they

initiate their first pair production. Furthermore, the lack of depen-

dence on the details of the particles produced by the struck nucleus
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Fig. 20. An occlusion test demonstrating the most salient parts of an input image
to the decision made by the NOvA CNN [8]. (Left) A single view of a true νe-CC
interaction. This interaction consists of a single electromagnetic shower from a
primary electron along with several track-like objects from the hadrons produced
by the nucleus. (Right) The change in the νe-CC score as a function of the location
of a 5× 5 occluded region. Figures courtesy of the NOvA collaboration.

is reassuring since that portion of the simulation is typically less

realistic.

9. Conclusions

End-to-end analyses using deep learning are becoming widespread

in high-energy physics, taking raw detector data as input and pro-

viding physics-level outputs such as event classification. The major-

ity of algorithms to date are based on 2D convolutional neural

networks applied to images of the experimental detector data, but

other approaches such as graph neural networks are gaining popular-

ity. The examples presented here demonstrate that end-to-end deep

learning analyses are very powerful because they have access to all of

the detector information and they can significantly outperform more

traditional analysis techniques.

As with any type of analysis, it is important to ensure robustness

and to understand how the event classification is being performed.

The techniques outlined in Sec. 8 help to elucidate how the deep

neural networks extract features from the input data and use the
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features to perform separation of the different categories within some

high-dimensional space.
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Chapter 11

Clustering
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Clustering methods are in the core of data reconstruction in particle
physics. Recent advancements in machine learning and computer vision
offer a number of new, powerful techniques to be explored including
image segmentation techniques with convolutional neural networks and
a generalization of clustering tasks using graph neural networks. Appli-
cations of modern machine learning techniques for clustering tasks in
pipelines of physics data reconstruction are discussed.

1. Introduction

Clustering in data analysis refers to partitioning of data using com-

mon features. In this manuscript, applications of clustering meth-

ods for physics reconstruction in particle physics data, that utilize

machine learning (ML) techniques, are described. Reconstruction is

a process of inferring physics phenomena that took place in an exper-

iment’s detector and recorded in the data produced by the detector.

Particle physics detectors consist of many sensors, even up to mil-

lions, in order to capture the full details of a particle interaction.

Signals are correlated across many sensors and may be interpreted

as sets, for example, photo-electrons detected across photo-multiplier

tubes (PMTs) in the Super-Kamiokande detector collectively repre-

sent a Cherenkov ring for a charged particle, and charge collected

in the pixels of liquid argon time projection chambers (LArTPCs)

represent individual particle trajectories.
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Clustering methods are at the core of reconstruction process and

are required for identifying individual particle instances in particle

imaging detectors. Similarly, they are used for the identification of

a subset of particles that originate from the same high-energy colli-

sion, which helps to disentangle an individual interaction of interest

from the many simultaneous, low-energy pile-up interactions that are

overlaid. Much progress has been made in clustering techniques using

deep neural networks (DNNs) in the field of computer vision [1–4],

and the development of scientific applications in particle physics has

been explored in depth within the community of large particle imag-

ing detectors. This review chapter summarizes these recent develop-

ments to provide a summary knowledge.

1.1. Traditional clustering techniques

While this section is not intended to be a comprehensive review of

clustering techniques in data analysis, it is worth noting a few popu-

lar methods that are used in combination with ML techniques, to be

introduced later, including DBSCAN and k-means. For a comprehen-

sive review, readers are referred to introductory reviews and popular

scientific software libraries such as scikit-learn [5] for insights and

hands-on practice

It is important to note that, whether a method is supervised or

unsupervised, the quality of the output of clustering algorithms is

subjective as it requires some domain-specific knowledge or assump-

tions such as the measure of distance, density, or an underlying struc-

ture of hierarchy. While the output of clustering algorithms is useful

for high-level interpretation and for finding the underlying nature of

the data, it is not an objective piece of evidence for discovery.

1.1.1. DBSCAN

Density-based spatial clustering application with noise (DBSCAN)

[6] is one of the most well known and frequently used clustering

methods [7, 8]. Given a set of data points, the algorithm identifies

core points and outliers, or noise, and forms clusters from the former.

A point is a core point if there exist at least K points within a
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distance ε where K specifies the minimum desired size of a cluster.

The core points that are within the radius ε of each other as well as

the other points that may lie within the distance ε are considered

to belong to the same cluster. Intuitively, DBSCAN clusters points

that are densely connected with a distance metric that may depend

on the application.

One of drawbacks of using DBSCAN is the fact that ε can take

only one value where, in general, one may expect different kinds of

clusters with different density profiles. OPTICS [9] was introduced

as an extension to DBSCAN where ε can take a form of a range

rather than a particular value, and more recently HDBSCAN [10]

was introduced as a density-based hierarchical clustering method.

HDBSCAN does not require the ε hyperparameter. Instead, K is the

only hyperparameter. Another drawback is its scalability to high-

dimensional data, which ultimately depends on the distance defini-

tion. One typical distance metric is to use the Euclidean distance

between points. However, as the dimension of space (i.e. number

of features to describe each data instance) increases, the distance

between two instances also becomes larger whether they belong to

the same true underlying cluster or not. This is a challenge known

as a “curse of dimensionality”. The same applies to any clustering

method that utilizes the Euclidean distance.

1.1.2. k-means clustering

The k-means [11] predicts partitions given the number of clusters, k,

as a hyperparameter. It first assigns all data points randomly over k

clusters, and then computes the cluster centroids, which are the mean

values of all points that belong to a given cluster. The calculation of

this mean value is application specific (e.g. a geometrical mean posi-

tion, the mean of values carried by each data point). Then points are

reassigned to a cluster that has its mean value closest to a subject

point. These steps are repeated until no more reassignment takes

place. The k-means can also be considered as a particular implemen-

tation of the expectation maximization algorithm [12] for Gaussian

mixture models.
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There are two major drawbacks of k-means clustering. The first is

that the performance is known to heavily depend on random cluster

assignments at the initialization. Possible mitigations include sam-

pling multiple initialization positions by simply running the algo-

rithm multiple times, or a smarter initialization. As an example for

the latter it may be preferable to have cluster centroids to be well

spread and avoid having centroids that are close to each other at

the initialization stage. Such an extension is implemented in the

k-means++ algorithm [13].

The second is the necessity of knowing the number of clusters, k.

A typical mitigation method is to scan different k values and compute

the maximum cluster spread, which is a measure of the deviation of

the data points within a cluster from the centroid. The spread may

be large for a smaller k value than the optimal one, and the spread

may suddenly drop when increasing k value to the correct number of

clusters, which can be used as an estimation method for k. This is

only an approximation that depends on the inter-cluster separation

(e.g. the distance between centroids of true underlying clusters) and

the intrinsic spread within each cluster.

1.2. ML for clustering in data reconstruction

Shallow neural networks (NNs) such as multi-layer-perceptrons

(MLPs) have been used for supporting the clustering tasks in particle

tracking reconstruction in experiments. For reconstructing particle

tracks from detector hits in the ATLAS experiment [14], NNs have

been used to identify merged clusters (i.e. trajectories) so that they

can be recovered in an iterative process [15, 16]. In the LHCb exper-

iment [17], NNs are used for checking the validity of a reconstructed

track, which yields factor of two lower false-positive (i.e. background)

trajectories compared to chi-square-based approach [18]. Tradition-

ally, a major use of ML for clustering in the particle physics data

reconstruction pipeline has been these shallow NNs to support the

existing particle tracking algorithms.

More recently, deep-learning-based approaches [19–25] have been

introduced for reconstructing particle trajectories and higher-level
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reconstruction objects for large-scale LArTPC detectors in Micro-

BooNE [26], ICARUS [27], and the Deep Underground Neutrino

Experiment (DUNE) [28]. These methods are categorized by dif-

ferent objectives and techniques employed in the following review.

While the characteristics vary quite a bit, all methods belong to a

loose definition of clustering for identifying data partitions, and also

originate from the area of geometric deep learning and computer

vision, in particular the subfield called image segmentation.

2. Fixed Number of Partitions

Semantic segmentation is an image segmentation technique used to

identify the type of an object that individual pixel represents. It casts

a challenge of object classification down to the pixel level. Figure 1,

taken from the PILArNet public data repository [29], shows an exam-

ple of a semantic segmentation task. A semantic segmentation par-

titions data, image pixels, among the predefined set of categories

(i.e. semantics). Two pioneering DNNs are the fully convolutional

network (FCN) [30] and the U-Net [31]. Both of these belong to a

family of convolutional neural networks (CNNs) [32–34], which have

Fig. 1. Example of a semantic segmentation task. The left shows the input image
with particle trajectories where the continuous color scale corresponds to the
amount of energy deposited by a particle in each pixel. The right shows different
semantics (i.e. particle types) in a discrete set of colors. This figure is taken
from [29].
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been extremely successful in the field of computer vision and estab-

lished as the de-facto algorithm for image analysis.

2.1. Deep neural networks for semantic

segmentation

CNNs were first applied to and found to be successful [34–37] for an

image classification tasks, namely assigning an image to one of pre-

defined set of categories (e.g. a cat vs. dog). A typical CNN for image

classification consists of repeating blocks of convolution layers and

pooling layers or strided convolution layers to downsample an input

image in order to extract translationally invariant features at differ-

ent spatial resolutions. This process gradually reduces the spatial size

of an input data tensor and expands in the feature dimension, referred

to as channels in image data. We refer to this as an encoder architec-

ture, or simply an encoder, as what it does is to extract image features

and encode into the feature dimension. At the end of an encoder is

a block of fully-connected layers, which discards spatial information

from the input data, to classify the whole image into one of several

categories. Prior to this final block, a downsampled intermediate data

tensor preserves information related to feature locations.

The FCN [30] explors the idea of reusing the spatial informa-

tion in the output of a CNN encoder by replacing the last block

of fully-connected layers with a 1 × 1 convolution layer. Intuitively

this 1× 1 convolution performs a semantic type classification at the

downsampled, coarse pixel level. The goal of semantic segmentation

is, however, to perform this classification at the spatial resolution of

an input image. In order to do this, The FCN adds blocks of upsam-

pling and convolutional layers. These blocks are essentially learnable

interpolation algorithms. This process of transforming the encoded

feature information back to a tensor of a high-spatial resolution is

referred to as a decoding architecture, or simply a decoder. The very

last layer consists of N+1 filters whereN is the number of categories,

or partitions, and one additional category represents the pixels that

do not belong to any semantic type as background.

The U-Net [31] extends the idea of the FCN, which, despite being

a successful application of CNNs for semantic segmentation task,
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Fig. 2. Example implementation of a U-Net architecture for LArTPC neutrino
detectors. The skip connections are shown in dashed arrows. This figure is taken
from [23].

had limited spatial precision. The challenging aspect of FCN is that

a full recovery of the spatial precision by an upsampling operation

alone is impossible because the spatial information is evidently lost

at the previous downsampling operations. In other words, the lost

spatial information is present prior to each downsampling operation

within the encoding blocks. U-Net exploited this fact by introduc-

ing skip connections, which is an operation to take a data tensor of

corresponding size from the encoder and concatenate to the same,

upsampled data tensor in the decoder. An example architecture dia-

gram is shown in Fig. 2, taken from a U-Net implementation for

a 3D imaging LArTPC detector [23]. With the skip connections,

the lost spatial information is available to the convolution layers in

the decoder, and results in a dramatic improvement in predicting the

boundary of objects at the pixel level [31].

2.2. Semantic segmentation in neutrino detectors

One of the first applications of semantic segmentation in particle

physics was applied by the MicroBooNE experiment [22] using U-Net

architecture with residual connections [37], called U-ResNet, similar

to the architecture shown in Fig. 2. The goal of their application was

to partition image pixels into two types: pixels that belong to a track,
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a trajectory with a line-like topology, and the others that belong to

a shower, a trajectory with many branches and scatterings. Due to

the distinct topological shapes, the two types of trajectories require

very different algorithms in the next stage of data reconstruction

chain where pixels are clustered into individual particle trajectories.

Prior to U-ResNet, mixing of two topological types was a major

bottleneck. Distinction of two types prior to this reconstruction stage

was enabled for the first time using U-ResNet, and is now utilized

for the downstream reconstruction chain in the experiment [21].

U-ResNet in MicroBooNE is a supervised model that is trained

using simulated image of particles. An assumption of this algorithm

is that image features learned to perform the segmentation task are

shared between data and simulation. A validation study is performed

achieving percent-level statistical uncertainty [22]. As noted earlier,

a study to confirm whether an implicit assumption of an algorithm

holds or not is an important step for deploying a clustering algorithm.

Beyond such a study, one may consider a strategy to actively mit-

igate discrepancies between the data and simulation domains. This

challenge is called domain adaptation and is an active area of research

in science including particle physics [38–40].

2.3. Scalable sparse segmentation for big data

The scalability of an algorithm to bigger data is an important aspect

of ML methods in particle physics. Despite its successful applica-

tion, because of both its encoder and decoder blocks, U-Net requires

more computation time and memory resources compared to widely

used CNNs for image classification. The MicroBooNE study reported

that they cropped a whole detector image that consists of more than

13 million pixels into a smaller frame, 512×512 pixels, in order to run

U-ResNet. This means a factor of 50 reduction in size, and requires

an extra processing stage to stick back the image to the original size

before running the downstream reconstruction tasks. This is clearly

not ideal. Moreover, the majority of pixels shown in example image

data are backgrounds and do not contain information about a particle

trajectory (e.g. see Fig. 3), suggesting the majority of computation
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Fig. 3. Semantic segmentation applied in the MicroBooNE experiment to parti-
tion pixels into a track (yellow) and shower (cyan) categories. This figure is taken
from [22].

performed may be wasted. U-Net with standard convolutional layers

is not scalable to bigger image data such as DUNE far detector

(DUNE-FD), which will have a much larger volume, corresponding

to 40 kiloton of LAr, 450 times more than that of the MicroBooNE

detector.

Recently, there have been two solutions proposed. The first is a

class of sparse CNNs such as sparse submanifold convolutional net-

works [41, 42] and Minkowski CNNs [43]. These frameworks provide

implementation of fast linear algebra for sparse tensors while keep-

ing the nature of CNNs, which is to extract translation invariant

features from an image using small kernels. A successful applica-

tion of U-ResNet with a sparse CNN framework has been pioneered

for 2D and 3D LArTPC image data [23] where orders of magnitude

improvement is reported in both wall-time and memory required for

computation. It is worth noting that those computational resources

required for sparse CNNs scale almost linearly with the number of

active pixels in an image [23] (i.e. those pixels that carry values and

are not null), and does not depend on the spatial size of the image.

This makes segmentation algorithms like U-Net scalable to data from

larger imaging detectors and also to higher-dimensional data as it is

already shown to work on 3D images.
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Fig. 4. The dynamic graph CNN applied to simulated particle trajectory in a
LArTPC detector. Particle trajectories with energy depositions in a continuous
color scale are shown on the left. The network output is shown on the right with
two distinct colors, green and red for shower and track pixels respectively.

The second class of solutions consists of a graph neural network

(GNN) [44]. In the case of semantic segmentation, an individual pixel

could be interpreted as a graph node, and connected with neighbor-

ing nodes (i.e. neighboring pixels) through edges. This is analogous

to a convolution operation in a CNN where a small kernel extracts

translation invariant features. Figure 4 shows an output of a seman-

tic segmentation task using the dynamic graph CNN (DGCNN) [45],

implemented by the author [46]. The performance for semantic seg-

mentation is comparable to that of sparse CNNs in terms of both

computational resource and task accuracy.

The choice between sparse CNN and GNN depends on the appli-

cation, and it is important to note key differences. First, GNNs can

be considered as generalization of CNNs in a sense that they do

not require data points to be arranged in a fixed-size grid format

(i.e. a matrix), and also there is flexibility to define arbitrary edges

between nodes. The latter is important as it defines neighboring

nodes to be involved in a convolution operation. On the contrary,
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CNNs act on matrix data and have much less flexibility in the con-

volutional kernels, which are typically a small rectangular matrix.

It is also important to note that GNNs can effectively communicate

information between nodes that are far apart in space by simply cre-

ating an edge between them. In contrast, in a CNN, an exchange of

information between distant pixels is typically done through many

downsampling operations, which also lacks fine spatial information

as discussed earlier. While these facts appear advantageous for the

use GNNs, the increased flexibility means more (potentially irrele-

vant) phase space to be explored during training. In other words, if

applied for appropriate tasks, limitations for CNNs can be consid-

ered constraints motivated by domain knowledge or inductive bias.

Furthermore, while similar constraints can be applied to GNNs by

defining edges that only connect local neighbors, this step of graph

preparation is not required for CNNs. Few systematic comparison

studies have been performed, and none has been published to the

knowledge of the author at the time of this writing.

2.4. Application to Michel electron clustering

For some particles, running DBSCAN on a semantic segmentation

mask is sufficient to cluster pixels and reconstruct a trajectory.

A Michel electron from a muon decay [47] in neutrino LArTPC detec-

tors falls in this category as it is rare for two Michel electron trajec-

tories to come in contact. As such, if a Michel electron is one of

the semantic types, running DBSCAN on pixels labeled as Michel

electrons by a semantic segmentation network would be sufficient to

identify individual Michel electron trajectory. This is demonstrated

by the authors of sparse U-ResNet paper [19] using 3D particle

simulation images in LAr where the Michel electron identification

purity and efficiency are reported as 97% and 93%, respectively. The

pixel clustering purity and efficiency are both 96%. Figure 5 from

their paper shows a good agreement in pixel counts between recon-

structed and true Michel electron clusters, where the two classes of

clusters are matched using a criteria of maximum overlap in shared

pixels.
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Fig. 5. Comparison of the pixel count between the true Michel electron clusters
and the reconstructed ones. A reconstructed cluster is matched to a true clus-
ter based on the maximum overlap of pixels between them. This figure is taken
from [23].

2.5. Application to track clustering

Clustering of pixels into particle tracks, or trajectories, seems to be

a simple task after those pixels are separated from shower parti-

cles that exhibit more complicated shapes. Since the trajectory of a

track particle is simply a continuous line, DBSCAN seems to be a

reasonable choice of algorithm to cluster its pixels. When two track

particles originate from the same point (e.g. at an interaction ver-

tex, or a decay point), it may need to be broken at the connection

point. This is implemented in the work of the Point Proposal Network

(PPN) [19, 20], which consists of a few sparse convolutional layers

that work in conjunction with U-ResNet. The objective of PPN is the

detection of endpoints of particle trajectories and positions regres-

sion of those points. Using the Region CNN (R-CNN) architecture,

which has been known as one of the most successful architectures for

detecting objects in an image, PPN can detect an arbitrary number

of trajectory endpoints accurately. A proposed clustering algorithm

is extremely simple. First, U-ResNet and PPN are run so that pixels

are classified into track semantic types and endpoints are detected.

Secondly, all pixels that are within seven pixels from all endpoints
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are masked out, and DBSCAN is run to cluster individual parti-

cle tracks. Thirdly, masked pixels are put back, and assigned to the

closest track cluster near the masking boundary. Figure 6 is taken

from the PPN work [20] and visualizes these steps. This is a simple

Fig. 6. Application of semantic segmentation for track clustering using DBSCAN
and PPN. The segmentation output with the endpoints of particle trajectories,
found by PPN, are shown on top-left. Then several pixels around those endpoints
are masked out and DBSCAN is run for track pixels on the top right as an
intermediate step. Distinct colors indicate distinct clusters in this and the bottom
two images. Finally, the masked pixels are put back and assigned to the closest
track cluster in the bottom right. The bottom left image shows the true underlying
clusters. The coloring scheme is not meant to be identical between the bottom
two images.
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extension to an algorithm with a fixed partitions, like U-ResNet, to

allow clustering of an arbitrary number of particle trajectories.

A shortcoming of DBSCAN is the assumption of a single-valued

point density, which remains a concern in such a clustering algorithm.

For LArTPC images, the thickness of a particle trajectory is known

to depend on multiple factors including the diffusion of ionization

electrons during drift and the angle of the trajectory with respect

to the charge readout plane. Moreover, at the interaction vertex,

where multiple particles may originate and is of the most interest for

neutrino physics analysis, the density depends on the multiplicity and

type of particles produced. When considering these factors, the point

density near the particle endpoints is definitely not single-valued, and

is more likely continuous. Aside from particle tracks, DBSCAN would

not be a solution for particle showers whose tracks consist of widely

varying sizes because of the 15–30 cm radiation length in LAr. ML

algorithms that are capable of learning complex underlying image

features are needed to address the challenge of pixel clustering in

these LArTPC image data, and they are discussed in the following

sections.

3. Convolutional Neural Networks for Pixel

Clustering

Clustering of image pixels in order to identify an individual instance

of an object in an image is a task called instance segmentation

and has been an active area of research in the field of computer

vision. Instance segmentation is a more advanced task than seman-

tic segmentation with an additional step of partitioning pixels of

the same class into separate instances. There are two well-known

approaches to this task. The first is based on an object detector, such

as R-CNN. This class of solution works in two steps: the first step

detects individual objects’ locations and sizes in the form of bounding

boxes (see Fig. 7 for example), then the second step identifies pixels

that belong to a target object within a bounding box. This class of

solution is referred to as a proposal-based approach. The second class

of solution is to use CNNs to learn a function that can transform
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Fig. 7. Faster R-CNN object detection network applied in the MicroBooNE
experiment. The location and size of a boundary box shown in red are produced
by the algorithm while the true reference is shown in yellow. This figure is taken
from [48, 49].

image pixels into a representation in an embedding space where the

clustering task may be simplified. For instance, a loss function for

a CNN may be conditioned with objectives similar to k-means by

enforcing pixels that belong to the same particle trajectory gather

close to each other in the embedding space, and ultimately to the

same embedding coordinate. If successful, a simple algorithm such

as DBSCAN may be employed in the embedding space to cluster

pixels more easily.

3.1. Region-proposal approach

The region-proposal method consists of three components. The first

is an encoder architecture for extracting image features. The second

is a region proposal network (RPN) that detects an arbitrary num-

ber of object locations and proposes a bounding box, or region of

interest (ROI), per instance. The third is a semantic segmentation

network, such as FCN, which generates an instance mask by classi-

fying all pixels within each ROI into the foreground (i.e. instance)
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Fig. 8. Mask R-CNN applied in the MicroBooNE experiment to identify indi-
vidual cosmic ray trajectories. A rectangular box indicates an identified particle.
Partially transparent masks are generated by a masking network. This figure is
taken from [50].

or the background. One of the most successful algorithms in this

class is called mask R-CNN [3] which uses a faster R-CNN for an

object detection with an FCN for instance masking. Mask R-CNN

is widely used in computer vision and neutrino experiments includ-

ing NOvA and MicroBooNE for identifying particle instances in an

image. Figure 8 shows an implementation in the MicroBooNE exper-

iment for identifying individual cosmic-ray trajectories [50], which

are important backgrounds to be removed in their neutrino analysis.

Despite the success of Mask R-CNN in many applications, how-

ever, the approach using region-proposal mechanism is prone to a

few challenges. First, as this technique restricts the segmentation

challenge to the proposed region of interest, a misplaced bounding

box has a direct consequence of a loss in clustering performance. If

pixels that are part of the target object are not within its bounding

box, they are simply lost. Second is an object occlusion issue: two
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instances of the same type with bounding boxes of a similar posi-

tion and size become inherently indistinguishable. Furthermore, as

a domain-specific challenge, a rectangular bounding box is far from

ideal to represent the region of a particle’s trajectory and results in

a large number of background pixels. It currently remains an active

area of research to overcome these challenges and implement mask

R-CNN and other region-proposal algorithms for clustering pixels in

data reconstruction.

3.2. Proposal-free approach

Proposal-free approaches avoid restricting the segmentation chal-

lenge to proposed ROIs. One of the most successful solutions in this

class is a pixel coordinate transformation, which maps pixel to an

n-dimensional embedding space. Scalable proposal-free instance clus-

tering in embedding (SPICE) has been introduced for analyzing 3D

LArTPC image data [24]. It is based on sparse CNN with an archi-

tecture similar to U-ResNet, and is specifically for clustering densely

connected pixels for which CNNs are well suited. SPICE transforms

pixels from the 3D image space, I ∈ Z
3 × R, represented by three

integer coordinate values and one floating point pixel value, into the

3D embedding space R
3. Figure 9 shows the coordinates of pixels in

both the image and the embedding space.

3.2.1. Embedding loss

The original work [2], from which SPICE is derived, employed the

embedding loss, Lemb = Lvar + Lint + Lreg, in order to condition the

transformation process. Lvar represents the variance of pixel coor-

dinates with respect to the centroid of the cluster to which they

belong. Lint concerns the distance between the centroids of clusters,

and rewards the algorithm for keeping a certain intercluster distance.

Finally, Lreg is a linear sum of the distances to the centroid from the

origin of the embedding space, which acts as a L1 regularization loss

to place clusters near the origin. The effects of Lvar and Lint are visu-
alized in Fig. 10 from the original work [2]. These essentially work as
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Fig. 9. Transformation of pixels from the 3D image space (left) into the 3D
embedding space (right) by SPICE. Pixel colors are discrete, and those pixels
that belong to the same particle trajectory (cluster) share the same color.

Fig. 10. Lvar and Lint act as a force to pull pixels to the cluster centroid and to
repel centroids of different clusters, respectively. This figure is taken from [2].

an attractive force to gather pixels to the centroid of their clusters

and a repulsive force between the centroids of different clusters.

While these are intuitive conditions for defining the transforma-

tion, there still needs to be an actual pixel clustering step in the

embedding space. In the original work, mean-shift [51] was employed,

which is not a learnable algorithm. The shortcoming of this approach
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is that the actual clustering step in the post-processing is not a part

of the algorithm optimization, and hence the embedding space may

become suboptimal.

3.2.2. Joint optimization of embedding and clustering

More recent work [4] incorporates the pixel clustering step and its

loss function so that the whole pipeline of pixel clustering can be

optimized end-to-end. In this work, in addition to the coordinates

in the embedding space, two additional parameters are estimated

by the algorithm for every pixel: a cluster margin and the seedi-

ness of a pixel. The seediness is a measure of how likely it is that a

pixel may represent the centroid of the cluster to which it belongs

in the embedding space. The margin loss function is the spread of

pixels with respect to the centroid of the cluster to which a pixel may

belong. The margin loss is conditioned to minimize the spread of mar-

gin values across pixels that belong to the same cluster. However, a

margin value is allowed to vary among clusters to accommodate the

fact that there are variations in the size and confidence of the clus-

ter (i.e. “difficult” clusters may have a larger margin). Finally, the

embedding loss function is conditioned such that the pixels follow a

normalized Gaussian distribution around the centroid of a cluster. In

the inference, pixels are ordered from high to low seediness scores.

Given a candidate seed pixel, a score that indicates whether or not

another pixel belongs to a candidate cluster represented by this seed

pixel can be calculated using the seed pixel’s embedding coordinate

and margin as the Gaussian mean and standard deviation, respec-

tively. This allows the algorithm to assign pixels to the highest score

cluster.

SPICE combines this preceding research [2, 4] with the U-ResNet

architecture as a backbone as shown in Fig. 11. The decoder is split

into two branches where one branch is responsible for learning a

transformation function into the embedding space and the margin

value, and the other branch estimates the seediness score. An exam-

ple output from their study [24] is shown in Fig. 12. The adjusted

Rand index [52], a standard metric for pixel clustering in image anal-

ysis, is above 0.98 for this image, which indicates nearly perfect
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Fig. 11. The SPICE network architecture, shown on the left, follows the
U-ResNet design, using residual connections and sparse convolutional layers, with
one shared encoder and multiple decoder branches. The coordinates and seedi-
ness scores of pixels in the embedding space are shown on the right. This figure
is taken from [24].

Fig. 12. Comparison of true underlying clusters (left) and the clusters recon-
structed (right) by SPICE. Discrete colors are assigned to the pixels that belong
to the same cluster. This figure is taken from [24].
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clustering. SPICE is the first purely 3D pixel clustering algorithm

proposed for LArTPC experiments where the interaction vertex is

unknown and can be anywhere in the detector. It is expected to

be used for analyzing 3D image data from the DUNE near detector

(DUNE-ND), a pixel-based 3D imaging LArTPC.

Despite the successful introduction of SPICE, which is meant to

overcome the challenge of object occlusions faced by proposal-based

approaches, it should be noted that SPICE is subject to its own lim-

itations because it uses CNNs. For example, consider a muon with

a very long trajectory. For an algorithm like SPICE to transfer all

pixels from the image space to the centroid of a cluster in the embed-

ding space, the pixels somehow need to communicate a common tar-

get location. Yet, the distance in the image space across which pixels

can communicate, called the size of the receptive field, depends on

the CNN architecture as it requires convolution or downsampling

operations. The limitation ultimately comes from the fact that CNN

kernels only connect, or combine features from, neighboring pixels.

This could be overcome by using GNNs, in which edges can be defined

between distant nodes to enable long-distance information propaga-

tion without extra operations, while keeping the same objectives and

loss function definitions employed by SPICE. We shall focus on par-

ticle clustering in the next section. This advantage becomes more

apparent and the choice of GNN as an underlying architecture is

more natural.

4. Clustering Particles Using Graph Neural Networks

Clustering in particle physics data reconstruction is naturally a hier-

archical task. For example, pixels may be clustered into particle tra-

jectories, and then some particles may be clustered as originating

from a single interaction. An intermediate particle representation

may also be useful, such as an electromagnetic shower that consists

of many trajectories of individual electromagnetic particles, or a neu-

tral pion represented by two decay photons. While CNNs provide a

natural representation for matrix-formatted image data, a generaliza-

tion is needed for a higher-level data representations such as clusters.
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A graph representation, in which constituents and their connections

are represented as nodes and edges, respectively, provides general-

ized input and output data capable of specifying clustering tasks at

different levels.

With GNNs, a clustering task can be solved in the form of binary

edge classifications. Simply put, nodes connected by valid edges

belong to the same cluster, while disconnected nodes, or those con-

nected by invalid edges, do not. While this sounds simple, imple-

mentations vary wildly due to the flexibility in designing the GNNs.

Important considerations include the initial graph construction, oper-

ations to extract node and edge features from input data, static vs.

dynamic graph (i.e. a dynamic graph may generate or erase new

or existing nodes or edges), operations for updating node and edge

features (known as message passing : a mechanism to propagate infor-

mation throughout the graph), and lastly a post-processing or inter-

pretation of the graph nodes and edges in the final state. This section

focuses on a comprehensive survey of GNN architectures for LArTPC

particle and interaction clustering applications [25]. Other notable

examples include clustering of hits for tracking and calorimeters in

the ATLAS and CMS experiments respectively [53], and they are

covered by other authors in Chapter 12.

4.1. Clustering electromagnetic shower fragments

An electromagnetic shower may contain many small fragments of

electron and positron trajectories that need to be clustered together.

The radiation length is large (15–30 cm) as compared to the mil-

limeter per pixel image resolution, which causes a gap between frag-

ments of varying size, from a few to hundreds of pixels. Following the

success of highly accurate semantic segmentation techniques [19], a

GNN solution [25] has been proposed and has demonstrated promis-

ing performance. First, DBSCAN is run only on the shower pixels

identified by U-ResNet, a semantic segmentation model. This pro-

duces many small fragments of electromagnetic showers as shown in

Fig. 13, taken from the original paper. A graph is constructed by

taking each fragment as a node and a connection between fragments

as an edge.
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Fig. 13. Shower fragments produced by running DBSCAN on shower pixels. The
color scale is discrete and pixels that belong to the same fragment cluster share
the same color. This figure is taken from [25].

In addition to the edge classification, a GNN in this study is

trained jointly for a node classification in order to identify a primary

node, or the root fragment of the shower. This is important as the

primary fragment is the most informative in terms of the starting

position and the initial direction of the shower. The authors of this

work explored a variety of options at all stages of problem solving

including:

• input graph construction methods including a complete graph,

edges in Delaunay triangulation, minimum spanning tree (MST),

and five nearest neighbors;

• encoding methods for the initial node and edge features includ-

ing geometrical features, addition of shower starting position from

PPN, a sparse CNN encoder as a learnable feature extractor from

the pixel level;
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• message passing mechanisms including a full graph network [54],

neural message passing [55], DGCNN [56], and a graph attention

network [57];

• the number of iterations of a message passing operation;

• two target graph definitions including a cluster graph, a disjoint

union of a complete graph, and a “forest”, a collection of trees

where each tree represents a particle flow within each shower.

Skipping the discussion details, which can be found in their paper, the

recommended choices for this clustering task are a complete graph

as an input, geometrical features with the shower starting position

from PPN to define the initial node and edge features, a full graph

neural network for message passing, three rounds of message pass-

ing, and a cluster graph as an optimization target. Figure 14 shows

an example inference output under this configuration. Overall, the

reported clustering purity and efficiency are both 99.5%, and the

GNN achieves 97.7% for the adjusted Rand index [52] (ARI) cluster-

ing performance metric. The node classification accuracy to identify

the primary fragment of a shower is reported as 99.77%.

Fig. 14. Left: the true underlying clusters (color) of electromagnetic shower frag-
ments with true edges defined based on the flow of particles. Right: the inferred
clusters and edges using a GNN. This figure is taken from [25].
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4.2. Loss function

Two observations in the study of electromagnetic shower cluster-

ing [25] are worth noting. The first is a comparison of two target

cluster types: a cluster graph and a forest. A derivation of the latter

is a more challenging task as the edges in a correct tree are a subset

of the edges in a cluster graph, hence requiring more discrimination

power. In turn, a forest prediction provides not only a cluster, but

also a particle flow within a shower. As a pleasant surprise, the final

clustering performance between two target graphs are nearly iden-

tical as shown in Fig. 15. This seems promising to extend the same

approach for a generic particle flow reconstruction using a GNN with

directed edges.

The second point is an obvious, yet an important remark that

is often missed. Quoting exactly from the paper, “The network pre-

dicts an edge score matrix, Se, which tries to replicate the predefined

ground-truth adjacency matrix, A. In a graph partition problem, A

should be designed such that, if aij = 1, then nodes i and j belong

to the same group. The converse statement does not have to hold,
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Fig. 15. Comparison of different target graphs, a cluster graph vs. a forest, using
the ARI metric for clustering of electromagnetic showers. This figure is taken
from [25].
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as nodes i and j may not be connected directly as long as they are

linked through an indirect path.” In other words, running an inference

simply by selecting graph edges based on individual scores may not

result in the most optimal graph, or equivalently, that may result in

a larger loss function value. In the paper, the authors give a further

clarification using two cluster graphs connected by two edges with

score values 0.1 and 0.6. If one naively interprets the edge with a

score of 0.6 as a valid edge, this results in merging the two clusters,

which is equivalent to selecting the other edge despite the lower score

of 0.1. As a result, the overall loss may become larger than two dis-

joint cluster graphs. Without this consideration, the approach using

a cluster target is much more prone to incorrectly merging two clus-

ters because of the presence of any edge between them with a score

above 0.5.

4.3. Clustering interactions

GNNs can provide a generalized clustering framework as noted above,

and this is demonstrated by applying the same architecture at the

next stage of the reconstruction chain: the clustering of particles

that share the same origin interaction. At this stage, a graph node

is a particle of any type, including both track and shower particles.

A graph pooling operation may be used to aggregate features from

clustered fragments for shower particles. This is, however, not done in

the paper, and instead the node and edge features are derived using

similar methods employed at the shower clustering stage, namely geo-

metrical features computed from analytical functions, PPN output,

and a particle’s semantic type from U-ResNet. An example output

image is shown in Fig. 16.

Due to the high-intensity neutrino beam for the DUNE program,

DUNE-ND is expected to observe a pile-up of more than 20 neutrino

interactions per image for the first time in the history of experi-

mental neutrino physics. It is one of the hardest data reconstruction

challenges yet to be addressed. The GNN-based particle clustering

technique shows a strong promise to address this challenge. In [25],

the mean values of a purity, efficiency, and ARI of particle clustering
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Fig. 16. Left: the true underlying clusters (color) of particles with true edges
defined based on the particle flow. Right: the inferred clusters and edges using
GNN. The ARI for this randomly selected event is 100% (perfect). This figure is
taken from [25].

are all above 99% for images in which particle density per unit vol-

ume is comparable to DUNE-ND.

5. Summary

Clustering is a critical part of data reconstruction tasks in parti-

cle physics, and its R&D is an active area at the interface of ML

and many domain sciences. While traditional, unsupervised cluster-

ing techniques have utilized for a long time, learnable methods based

on CNNs and GNNs have been developed with promising results

recently. We have covered semantic segmentation as a method to

partition image pixels into a set of predefined categories. Pioneering

algorithms, including U-Net and FCN, have been utilized in identify-

ing different types of particle trajectories. However, many techniques

in computer vision have been developed for natural images, and

applying them for data from particle physics detectors would need to

address domain specific challenges. For instance, sparse CNNs and

GNNs have been used to adopt semantic segmentation methods for

LArTPC images that are globally sparse, yet contain densely sam-

pled particle tracks.
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Instance segmentation takes another task of identifying individual

instances within each semantic type. We discussed two approaches:

proposal-based and proposal-free methods. Mask R-CNN is an exam-

ple of the former and works in two steps including identification of

a bounding box per instance and generation of a pixel-level mask

inside each box. SPICE is a proposal-free based method and per-

forms a transformation of pixels from input image space into the

embedding space where clustering can be more easily performed in

the post processing. GNNs can be an effective solution for clustering

many objects that are separated by arbitrary distances. In [25], the

same GNN is used to reconstruct individual electromagnetic showers

and to cluster particles in the same neutrino interaction.

Advancements from the computer vision community and interdis-

ciplinary collaboration with domain sciences are expected to continue

pushing the boundaries. GNNs are a versatile solution to many, if not

all, clustering tasks in data reconstruction. The high degree of flexi-

bility in designing the graph structure and communication methods

between nodes and edges may be exploited to introduce more physics

domain knowledge. Extraction of features from multi-modal particle

detector data can be a unique challenge. Implementing deep knowl-

edge of physics models into ML algorithms may be a complicated task

that requires new developments. However, these challenges make the

field of experimental particle physics an exciting domain to pursue

the development of ML techniques for clustering.
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Machine learning methods have a long history of applications in high-
energy physics (HEP). Recently, there is a growing interest in exploiting
these methods to reconstruct particle signatures from raw detector data.
In order to benefit from modern deep learning algorithms that were ini-
tially designed for computer vision or natural language processing tasks,
it is common practice to transform HEP data into images or sequences.
Conversely, graph neural networks (GNNs), which operate on graph data
composed of elements with a set of features and their pairwise connec-
tions, provide an alternative way of incorporating weight sharing, local
connectivity, and specialized domain knowledge. Particle physics data,
such as the hits in a tracking detector, can generally be represented as
graphs, making the use of GNNs natural. In this chapter, we recapitulate
the mathematical formalism of GNNs and highlight aspects to consider
when designing these networks for HEP data, including graph construc-
tion, model architectures, learning objectives, and graph pooling. We
also review promising applications of GNNs for particle tracking and
reconstruction in HEP and summarize the outlook for their deployment
in current and future experiments.

1. Introduction

Since the 1980s, machine learning (ML) techniques, including

boosted decision trees, support vector machines, cellular automata,

and multilayer perceptrons, have helped shape experimental particle

387
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physics [1, 2]. As deep neural networks have achieved human-level

performance for various tasks such as object recognition in images,

they have been adopted in the physical sciences [3] including particle

physics. Unlike traditional approaches, deep learning techniques

operate on lower-level information to extract higher-level patterns

directly from the data. Applications of ML in high-energy physics

(HEP) have skyrocketed in recent years [2, 4–7]. However, until

recently it was necessary to completely transform HEP data into

images or sequences in order to use modern deep learning algorithms

that were initially designed for computer vision or natural language

processing tasks.

Geometric deep learning (GDL) [8–14] is a growing subfield of

artificial intelligence (AI) that studies techniques generalizing struc-

tured deep neural network models to non-Euclidean domains such as

sets, graphs, and manifolds. This includes the study of graph neural

networks (GNNs) that operate on graph data composed of elements

with a set of features, and their pairwise connections. Extensive

reviews of GNNs are available in [11, 14–19] that provide in-depth

technical details of current models.

As the data from particle physics experiments are generally sparse

samplings of physics processes in time and space, they are not easily

represented as regular-grid images or as ordered sequences. More-

over, to reconstruct the input measurements into target particles,

there is not always a clean, one-to-one mapping between the set of

measurements and the set of particles because one particle can leave

multiple traces in different subdetectors (many-to-one) and multiple

particles can contribute to the same signal readout (one-to-many).

GDL algorithms, including GNNs, are well-suited for this type of

data and event reconstruction tasks. Unlike fully-connected (FC)

models, convolutional neural networks (CNNs), and recurrent neu-

ral networks (RNNs), GNNs fully exploit the relational structure of

the data. Recent work has applied set- and graph-based architec-

tures in the domain of particle physics to charged particle tracking

[20–25], jet classification [26–33] and building [34, 35], event classi-

fication [36–38], clustering [21, 39], vertexing [40, 41], particle find-

ing [42, 43], and pileup mitigation [44, 45]. Many of these applications

are reviewed in [46].



December 14, 2021 16:14 Artificial Intelligence for High Energy Physics 9in x 6in b4322-ch12 page 389

Graph Neural Networks for Particle Tracking and Reconstruction 389

Analyses in particle physics are usually performed on high-level

features, abstracted from the low-level detector signals. The distilla-

tion of the raw detector data into a physics-centric representation is

called reconstruction, and is traditionally done in multiple stages —

often at different levels of abstraction that physicists can naturally

comprehend. A classic reconstruction algorithm, by design, may be

limited in how much detail and information is used from the data,

often to simplify its commissioning and validation. Conversely, an

algorithm based on ML can learn directly from the full complexity of

the data and thus may potentially perform better. This effect is well

illustrated in the sector of jet tagging (see Chapter 13), where ML

has brought significant improvements [6]. GNNs, because of the rela-

tional inductive bias they carry, have a great deal of expressive power

when it comes to processing graph-like objects. However, there is a

delicate balance between the increased expressivity and the incurred

computational cost.

A significant motivation for studying novel ML algorithms for

reconstruction, especially charged particle tracking, is their large

computational burden for big data HEP experiments. Figure 1 shows

the large increase of expected computational resources needed for all

activities in the CMS experiment after the planned major upgrade

of the LHC. The largest fraction (60%) of CPU time is consumed

by reconstruction-related tasks and of this, the largest component

belongs to tracking. The complexity of the current reconstruction

algorithms with respect to increasing event density is such that we

foresee future shortcomings in computing resources. Several factors

contribute to the slowdown in the evolution of single-core CPU per-

formance [47, 48], and highly parallel architectures like graphics pro-

cessing units (GPUs) now provide more of the computing power

in modern high-performance computing centers. While some recon-

struction algorithms already take advantage of multithreaded opti-

mizations [49–52], it is a major endeavor to fully migrate the software

to highly parallel architectures [53]. Deep learning models offer a

natural way to take advantage of GPUs in production. By leverag-

ing greater parallelism, an ML-based algorithm might execute faster

with a smaller computational footprint than a traditional counterpart

even though it may require more floating point operations (FLOPs).
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(a)

(b)

Fig. 1. CPU time annual requirements (in kHEPS06-years) estimated for CMS
processing and analysis needs (a) [54, 55]. kHS06-years stands for 103 HEP-
SPEC06 per year, a standard CPU performance metric for HEP. Two scenarios
are considered: one that assumes reaching 275 fb−1 per year during Run 4 with
7.5 kHz of data saved and a second that assumes reaching 500 fb−1 per year
during Run 4 with 10 kHz of data saved (dashled line). The blue curves (and
points) show the annual projected CPU need, summed across Tier-0, Tier-1 and
Tier-2 resource needs in each of these scenarios. The black curve shows the pro-
jected resource availability extrapolating the current CMS processing resources
assuming an annual increase of 10–20%. Approximate breakdown of CPU time
requirements into primary processing and analysis activities for the first scenario
(b) [54, 55].
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In this way, the complexity of ML-based algorithms — including the

preprocessing and postprocessing steps — may be better than that

of existing counterparts.

This chapter is structured as follows. Section 2 provides an

overview of the different ways that particle physics data may be

encoded as graphs. In Sec. 3, we recapitulate the formalism behind

commonly used GNNs. In Sec. 4, we highlight several design consider-

ations, including computational performance, for various approaches

to building GNNs for HEP reconstruction. In Sec. 5, we review

the suite of GNN applications to tracking and reconstruction tasks.

Finally, we summarize the chapter in Sec. 6.

2. Point Cloud and Graph Data

Modern detectors are an assembly of several different technologies

with a wide range of spatial granularities (down to O(1) mm) and

a total size of O(10) m. Therefore, the signals from the detector

are extremely heterogeneous. In many cases, the measurements are

inherently sparse because of the event configurations of the physics

processes. At the same time, the local density of the measurements

can be extremely high because of the fine granularity of the active

material, for example in the tracker. The signal is also sampled in

time, although for most detectors, it is effectively discretized in units

of one beam crossing period, which is 25 ns for the LHC.

Locally, a fraction of the data, especially from the calorime-

ters, can be interpreted as images. In particular, jet images [56]

are a now-common representation of localized hadron showers in

calorimeters. This has led to proliferation of image-based deep

learning techniques, such as CNNs, skip connections, or capsules,

for calorimeter- or jet-related tasks with substantial performance

improvements over traditional methods [57–62]. However, the image-

based representations face some stringent limitations due to the

irregular geometry of detectors and the sparsity of the input data.

Alternatively, a subset of detector measurements and reconstructed

objects can be interpreted as ordered sequences. Methods developed

for natural language processing, including RNNs, long–short-term
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Fig. 2. A directed graph with directed edges (left). If the graph is undirected, it
can be transformed into a directed one to obtain a viable input for graph learning
methods (right). In particular, each undirected edge is replaced by two directed,
opposite edges with identical edge features [19].

memory (LSTM) cells, or gated recurrent units (GRUs), may there-

fore be applied [63, 64]. While the ordering can usually be justified

experimentally or learned [65], it is often arbitrary and constrains

how the data is presented to models.

Fundamentally, the raw data is an unordered set of Nv items.

However, by additionally considering N e geometric or physical rela-

tionships between items (encoded by an adjacency matrix ), the set

can be augmented into a graph. These relationships may be consid-

ered directed or undirected as shown in Fig 2. An adjacency matrix

is a (typically sparse) binary Nv ×Nv matrix, whose elements indi-

cate whether a given vertex is adjacent to another vertex. Another,

equivalent representation is through an Nv × N e incidence matrix,

whose elements indicate whether a given vertex is connected to a

given edge. A third alternative encoding of an adjacency matrix is

in coordinate list (COO) format, i.e. a 2 × N e matrix where each

column contains the node indices of each edge. This compact rep-

resentation is beneficial in terms of incremental matrix construction

and reduced size in memory, but for arithmetic operations or slicing

a conversion to a compressed sparse row (CSR), compressed sparse

column (CSC), or dense format is often necessary.

A graph representation is more flexible and general than images or

sequences. In particular, one may recover an image or sequence rep-

resentation by appropriate choice of the adjacency matrix. Moreover,
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there may be less preprocessing required to apply deep learning to

this representation of the data. For example, for an image represen-

tation of calorimeter hit data, it may be necessary to first cluster the

hits, form the two-dimensional energy-weighted image, and center,

normalize, rescale, or rotate the image [56, 66]. These manipulations

of the data may have undesirable consequences, including loss of

particle-level information, distortions of physically meaningful infor-

mation like jet substructure, modifying Lorentz-invariant properties

of the data (e.g. particle mass), and imposing translational invari-

ance in η-φ space, which does not respect this symmetry [67]. In

contrast, a GNN, may be able to operate on the unclustered hit data,

with appropriately chosen connections, directly. Two example HEP

detector datasets and their possible graph encoding are illustrated

in Fig. 3.

2.1. Graph Construction

In particle physics applications, the specific relationships between

set elements to present to an algorithm depends on the context and

objective. Subjective choices must be made to construct a graph from

the set of inputs. Formally, a graph is represented by a triplet G =

(u, V,E), consisting of a graph-level, or global, feature vector u, a set

of Nv nodes V , and a set of N e edges E. The nodes are given by V =

{vi}i=1:Nv , where vi represents the ith node’s attributes. The edges

connect pairs of nodes, E = {(ek, sk, rk)}k=1:Ne , where ek represents

the kth edge’s attributes, and sk and rk are the vectors of indices

of the “sender” and “receiver” nodes, respectively, connected by the

kth edge (from the sender to the receiver node). The receiver and

sender index vectors are an alternative way of encoding the directed

adjacency matrix, as discussed above. The graph and its attributes

are represented pictorially in Fig. 4. Edges in the graph serve three

different functions:

(1) the edges are communication channels among the nodes,

(2) input edge features can encode a relationship between objects,

and

(3) latent edges store relational information learned by the GNN

that are relevant for the task.
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(a)

(b)

Fig. 3. HEP data lend themselves to graph representations for many applications:
segments of hits in a tracking detector hits (a), and neighboring energy deposits
in calorimeter cells (b). Figures reproduced from [46].

Depending on the task, creating pairwise relationships between nodes

may even be entirely avoided, as in the deep sets [27, 68] architecture

with only node and global properties.

For small input sets, with Nv < 100, a simple choice is to form a

fully-connected graph, allowing the network to learn about all possi-

ble object relationships. As the number of edges in a fully-connected

graph increases as N e ∝ (Nv)2, the computational cost of applying

a neural network to all of the edges becomes prohibitive. A work-

around is to precompute a fixed edge feature, such as the geometric

distance between nodes, that can be focus on certain neighboring

nodes.
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Attributes

vi
ek u

vsk
vrk

u

vi

ek

Fig. 4. A directed, attributed multi-graph G with a global attribute [14]. A node
is denoted as vi, an edge as ek, and the global attributes as u. The indices sk and
rk correspond the sender and receiver nodes, respectively, for the one-way edge k
(from the sender node to the receiver node).

Fig. 5. Different methods for constructing the graph: connecting all pairs of nodes
(upper left), connecting neighboring nodes in a predefined feature space (upper
right), and connecting neighboring nodes in a latent feature space (lower).

If edge-level computations is required, it may be necessary to

restrict the considered edges. Edges can be formed based on the

input features (e.g. the ΔR =
√

Δφ2 +Δη2 between particles) or a

learned representation, such as that used by the EdgeConv [13, 30]

and GravNet [39] architectures. Given a distance metric between

nodes and a criterion for connecting them, such as k-nearest neigh-

bors (kNN) or a fixed maximum distance, the edges can be created.

These three different graph construction methods are illustrated in

Fig. 5.
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3. Graph Neural Networks

GNNs are a class of models for reasoning about explicitly struc-

tured data, in particular graphs [8, 11, 12, 69–72]. These approaches

all share a capacity for performing computation over discrete enti-

ties and the relations between them. Crucially, these methods carry

strong relational inductive biases, in the form of specific architectural

assumptions, which guide these approaches towards learning about

entities and relations [73].

Here, we recapitulate the “graph network” (GN) formalism [14],

which synthesizes various GNN methods. Fundamentally, GNs are

graph-to-graph mappings, whose output graphs have the same struc-

ture as the input graphs. Formally, a GN block contains three

“update” functions, φ, and three “aggregation” functions, ρ. The

stages of processing in a single GN block are:

(Aggregation) (Update)

e′k = φe (ek,vrk ,vsk ,u) (Edge block), (1)

ē′i = ρe→v
(
E′

i

)
v′
i = φv

(
ē′i,vi,u

)
(Node block), (2)

ē′ = ρe→u
(
E′)

v̄′ = ρv→u
(
V ′) u′ = φu

(
ē′, v̄′,u

)
(Global block). (3)

where E′
i = {(e′k, rk, sk)}rk=i, k=1:Ne contains the updated edge fea-

tures for edges whose receiver node is the ith node, E′ =
⋃

iE
′
i =

{(e′k, rk, sk)}k=1:Ne is the set of updated edges, and V ′ = {v′
i}i=1:Nv

is the set of updated nodes. We describe each block below.

The edge block computes an output for each edge e′k, known as the

updated edge feature or “message”. These are subsequently aggre-

gated according to the corresponding receiver nodes ē′i = ρe→v(E′
i)

in the first part of the node block. These two steps are sometimes

known as the graph or edge convolution or message-passing opera-

tion. In some ways, this operation generalizes the type of convolution

done in CNNs, and the sequential, recurrent processing of RNNs, as

shown in Fig. 6. In a 2D convolution, each pixel in an image is pro-

cessed together with a fixed number of neighboring pixels determined
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Fig. 6. Input structure for 1D CNNs and RNNs (top left) and 2D CNNs (bottom
left) compared to GNNs (right). In a 2D convolution, each pixel in an image
can be considered a node with a fixed number of neighbors determined by their
proximity and the filter size. RNNs compute sequentially along the input data,
generating a sequence of hidden states, as a function of the previous hidden state
and the input. A graph convolution operation applies a pair-wise neural network
to a variable-size and unordered set of neighboring nodes, and then aggregates
the results.

by their spatial proximity and the filter size. RNNs compute sequen-

tially along the input data, generating a sequence of hidden states
�ht, as a function of the previous hidden state �ht−1 and the input for

position t. In contrast, a graph convolution operation applies a pair-

wise neural network to all neighboring nodes, and then aggregates

the results to compute a new hidden representation for each node v′
i.

As opposed to image and sequence data, the neighbors of a node in

a graph are unordered and variable in number.

As described above, the aggregation function ρe→v maps edge-

specific information to node-specific outputs by compiling informa-

tion based on the receiver node indices. To apply generically to

unordered graph-structured data, the ρ functions must be invari-

ant to permutations of their inputs, and should take variable num-

bers of arguments. Examples include an element-wise summation,

mean, maximum, and minimum. This construction ensures permu-

tation invariance of the GNN as a whole. In [74], it was shown that

this invariance suggests a minimum size for the latent dimension:

for scalar inputs the dimensionality of φ has to be at least equal

to the number of inputs (i.e. nodes or edges) in order to be able

to approximate any permutation-invariant function. Other authors

have also considered permutation- and group-equivariant construc-

tions [75–82], which are not covered here.
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The rest of the node block computes an output for each node

v′
i = φv (ē′i,vi,u). This can be thought of as an update of the node

features, which takes into account the previous node features, the

global features, and one round of message passing among neighboring

nodes. That is, relational information from nearest neighbors in the

graph are used to update the node features.

Finally, the edge- and node-level outputs are each aggregated with

ρe→u and ρv→u, respectively, in order to compute graph-level infor-

mation in the global block. The output of the GN is the triplet of

updated edge, node, and global features, G′ = (u′, V ′, E′) as shown

in Fig. 7.

The GN formalism is generic for graph-to-graph mappings. GNs

also generalize to graphs not seen during training, because the learn-

ing is focused at the edge- and node-level, although such generaliza-

tion may require conditions to be satisfied between the training and

test graph domains [83–85]. Except for the global block, the GN never

considers the full graph in a computation. Nonetheless, when multi-

ple GN blocks are stacked in deep or recurrent configurations, infor-

mation can propagate across the graph’s structure, allowing more

complex, long-range relationships to be learned.

As an example of the generality of the GN framework, it can be

used to express the dynamic edge convolution (EdgeConv) operation

of the dynamic graph CNN (DGCNN) [13], which is commonly used

Fig. 7. A GN block from [14] that processes an input graph G = (u, V, E) and
returns a graph with the same structure but updated attributes G′ = (u′, V ′, E′).
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in HEP. This layer operates on a graph selected using the k-nearest

neighbors of the nodes, including self-loops. Edge features are com-

puted as

e′k = φe(vrk ,vrk − vsk). (4)

The choice of φe adopted in [13] is an asymmetric edge function

that explicitly combines the global shape structure, captured by the

coordinates vrk , with local neighborhood information, captured by

vrk−vsk . The EdgeConv operation also uses a permutation-invariant

aggregation operation ρe→v (e.g.
∑

or max) on the edge features

associated with all the edges emanating from each node. The output

of the EdgeConv operation at the ith node is thus given by

v′
i = φv(ē′i) = ē′i, (5)

that is the φv function is trivial. A crucial difference with the GN

framework is that after each EdgeConv layer, the connectivity of

the graph is recomputed using the k-nearest neighbors in the latent

space. This dynamic graph update is the reason for the name of the

architecture. Similarly, GravNet and GarNet [39] are two other GNN

architectures that use the distance in a latent space when aggregating

to predict a new set of node features.

Other GNN models are also expressible within this framework or

with minor modifications. For instance, interaction networks [9] use a

full GN block except for the absence of the global features to update

the edge properties. Deep sets [68] bypass the edge update completely

and predict the global output from pooled node information directly.

PointNet [10] use similar update rule, with a max-aggregation for

ρv→u and a two-step node update.

Another class of models closely related to GNNs that perform pre-

dictions on structured data, especially sequences, are transformers,

based on the self-attention mechanism [86]. At a high level, a self-

attention layer is a mapping from an input sequence, represented as a

n×din matrixX (where n is the sequence length and din is the dimen-

sionality of the input features) to a n× dout output matrix through

an attention function, which focuses on certain positions of the input

sequence. A self-attention function takes as input an n × dk query
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matrix Q, and a set of key-value pairs, represented by a n×dk matrix

K and a n× dv matrix V , respectively, all of which are transformed

versions of the input sequence

Q = XWQ,K = XWK , V = XWV , (6)

whereWQ,WK , andWV are learnable din×dk, din×dk, and din×dout
matrices, respectively. The scaled dot-product attention (see Fig. 8)

is computed by taking the dot products of the query with all keys (as

a compatibility test) divided by
√
dk and applying a softmax function

to obtain the weights for the values. In matrix form:

Attention(Q,K, V ) = softmax

(
QK�
√
dk

)
V. (7)

An important variant of this is multi-head attention depicted in

Fig. 8: instead of applying a single attention function, it is bene-

ficial to project the queries, keys, and values h times into subspaces

whose dimensions are h times smaller. On each of these projected ver-

sions of queries, keys, and values, the attention function is computed

yielding h dv-dimensional output values. These are concatenated and

Fig. 8. Scaled dot-product attention (left) and multi-head attention (right), con-
sisting of several attention layers running in parallel, from [86].
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once again projected, resulting in the final values:

MultiHead(X) = concati∈[h][H(i)]WO (8)

where H(i) = Attention(XW
(i)
Q ,XW

(i)
K ,XW

(i)
V ), (9)

and WO is a learnable hdv × dout matrix. In practice, a simplifying

choice of din = hdk = hdv = dout is typically made. Multi-head atten-

tion allows the model to jointly attend to information from different

representation subspaces at different positions.

In the language of GNNs, a transformer computes normalized

edge weights in a fully-connected graph, and passes messages along

the edges that are aggregated in proportion to these weights. For

example, the transformer in the graph attention network [87] uses a

φe function that produces both a vector message and an unnormal-

ized weight. The aggregator ρe→v then normalizes the weights before

computing a weighted sum of the message vectors. This allows the

edge structure among the input nodes to be inferred and used for

message passing. In addition, attention mechanisms are a way to

apply different weights in the aggregation operations ρ.

Another extension of GNNs involves graph pooling, represented

in Fig. 9. Graph pooling layers play the role of “downsampling”,

which coarsens a graph into a sub-structure. Graph pooling is mainly

used for three purposes: to discover important communities in the

graph, to imbue this knowledge in the learned representations, and

to reduce the computational costs of message passing in large scale

Pooling layer

Fig. 9. An example of a graph pooling layer that coarsens the graph by identify-
ing and clustering nodes of the same neighborhood together, so that each group
becomes a node of the coarsened graph [19].
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structures. Pooling mechanisms fall in two broad classes: adaptive

and topological.

Adaptive graph pooling relies on a parametric, trainable pool-

ing mechanism. One example of this approach is differentiable pool-

ing [88], which uses a neural network layer to learn a clustering of the

current nodes based on their embeddings at the previous layer. Top-k

pooling [89] learns node scores and retain only the entries correspond-

ing to the top nodes. Node selection is made differentiable by means

of a gating mechanism built on the projection scores. Self-attention

graph (SAG) pooling [90] extends top-k pooling by using a GNN

to learn attention scores. Another example is edge pooling [91], in

which edge scores are computed and edges are contracted iteratively

according to those scores. In contrast to these adaptive methods,

topological pooling mechanisms are not required to be differentiable

and typically leverage the structure of the graph itself. The graph

clustering software (GRACLUS) [92] implements a widely-used, effi-

cient greedy clustering algorithm that matches vertices based on their

edge weights. Similarly, nonnegative matrix factorization pooling [93]

provides a soft node clustering using a nonnegative factorization of

the adjacency matrix.

4. GNN Design Considerations

The formalism and methods introduced in Sec. 3 expose the numer-

ous dimensions of the space of GNN model architectures. While the

possibilities for combining the ingredients of GNN are limitless, other

considerations and constraints come into play to shape the model for

a given task and environment. In this section, we discuss some of the

salient facets of GNN design for HEP reconstruction tasks. These are

some of the guiding principles that lead to the models used for the

applications we describe further in Sec. 5.

4.1. Model architectures

Many of the choices in the design the GNNmodel architectures reflect

the learning objectives or aspects of the data that are specific to HEP.
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The choice of architecture is an important way to incorporate induc-

tive bias into the learning task. For instance, this choice includes

the size of the networks, the number of stacked GNN blocks, atten-

tion mechanisms, and different types of pooling or aggregation. The

model architecture should reflect a logical combination of the inputs

towards the learning task. In the GN formalism, this means a con-

crete implementation of the block update and aggregation functions

and their sequence. As an example of such a choice, global aggrega-

tion can occur before a node update, or an edge representation can

be created and aggregated to form a node update. The difference

between the two is that one is based on a sum of pairwise represen-

tations, and the other on a global sum of node representations.

Stacks of GN blocks are also useful for two purposes. First, just as

in CNNs, they can construct a higher-level, more abstract representa-

tion of the data. Second, the number of iterations of message passing

defines the nodes that can exchange information. This is illustrated

in Fig. 10. Multiple iterations increase each nodes’ neighborhood of

communication, as the representation of its neighboring nodes was

previously updated with messages from their neighbors.

Attention mechanisms also play an important role in emphasizing

or deemphasizing certain nodes or connections during aggregation.

A popular choice is to use the ΔR distance between measurement

nodes in the input space or Euclidean distance in the latent space (or

subspace) as an edge weight. Others networks [20] use the network’s

predicted edge weight, which acts to reinforce its learned connections.

Finally, the choice of aggregation method is crucial to keep open

the appropriate communication channels and maintain the desired

properties of the output, such as permutation invariance.

4.2. Graph reduction and alternative

loss functions

One difficulty of applying deep learning to HEP data is the “jagged”

or event-dependent nature of the target. In particular, the number of

physics objects, such as tracks, clusters, or final-state particles, to be

reconstructed per event is variable and unknown a priori. For this
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Fig. 10. The red, orange-highlighted, and yellow-highlighted dotted lines repre-
sent the enlarging neighborhood of nodes that may communicate with the red
node after one, two, and three iterations of message passing, respectively [46].
Those nodes outside of the yellow-highlighted dotted boundary do not influence
the red node after three iterations.

reason, methods based on a fixed output size for the output are

challenging to apply.

Two methods [42, 94] aim to specifically address this problem.

In [42], a clustering or “condensation” of the input nodes is derived

through a choice of condensation points and a dual prediction of

a regression target and a condensation weight. The loss function

is inspired by attractive and repulsive electromagnetic potentials,

ensuring that nodes that belong to the same target object are kept

close in the latent space. Similarly, a dynamic reduction network is

proposed in [94] uses a DGCNN [13] and a greedy popularity-based

clustering algorithm [95] to reduce the number of nodes. The model

was developed for reconstructing HEP data from granular calorime-

ters, although currently results are only presented for the MNIST

superpixel dataset [96].



December 14, 2021 16:14 Artificial Intelligence for High Energy Physics 9in x 6in b4322-ch12 page 405

Graph Neural Networks for Particle Tracking and Reconstruction 405

Another aspect to consider is whether the loss function construc-

tion preserves the symmetries of GNN algorithm when predicting

unordered sets. For instance, traditional loss functions like the mean-

squared error (MSE) are not invariant with respect to permutations

of the output and target sets because the outputs must be recon-

structed in the same order as the targets to achieve a small value of

the loss function. To preserve this property, alternative permutation-

invariant loss functions like the Chamfer distance [97–99], Hungarian

loss [100], and differentiable approximations of the Earth mover’s dis-

tance [98, 101, 102] have been proposed.

4.3. Computational performance

One of the most crucial factors in determining the computational per-

formance of a GNN is the graph connectivity. The number of edges in

a graph usually defines the memory and speed bottleneck, because

there are typically more edges than nodes and the φe function is

applied the most times. If the graph is densely connected, the number

of edges is scales quadratically with the number of nodesN e ∝ (Nv)2.

Even without such as severe scaling, if the φe is a large neural network

or if there a multiple stacked blocks, the computational resources

needed can still be large. For instance, the tracking GNN of [21] takes

as input a portion of a collision event containing approximately 2500

nodes and 25,000 edges. Given the size of the networks and the mul-

tiple repeated iterations, one inference requires 52 GFLOPs. As such,

it is imperative to study effective pruning and network compression

techniques [103–108], reduced precision [109–111], and alternative

hybrid network architectures [112–114] designed to be more efficient.

Another consideration for building and efficiently training GNNs

on hardware is whether to use dense or sparse implementations of

the graph’s adjacency matrix. A dense adjacency matrix supports

fast, parallel matrix multiplication to compute E′, which, for exam-

ple, is exploited in GCNs and transformers. However, the adjacency

matrix’s memory footprint is quadratic in the number of nodes:

10,000 fully-connected nodes corresponds to an adjacency matrix

with 100,000,000 entries and thus 400 MB for a 32-bit representation
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or 12.5 MB with a binary representation. Alternatively, using sparse

adjacency matrices implies the memory scales linearly in the number

of edges, which allows much larger graphs to be processed. How-

ever, the sparse indexing operations required to implement sparse

matrix multiplication can incur greater computational costs than

their dense counterparts. Such sparse operations are a bottleneck in

current deep learning hardware, and next-generation hardware may

substantially improve their speed, this would potentially improve the

relative advantage of sparse edge implementations of GNNs.

An important advantage of GNN-based approaches over tradi-

tional methods for HEP reconstruction is the ability to natively

run on highly parallel computing architectures. All of the deep

learning software frameworks for graphs, like PyTorch Geomet-

ric [115], Deep Graph Library [116], DeepMind’s graph nets [117]

and jraph [118] libraries, StellarGraph [119], and Spektral [120, 121],

support GPUs to parallelize the algorithm execution. Work has also

been done to accelerate the inference of deep neural networks with

field-programmable gate arrays (FPGAs) [109–111, 122–127], includ-

ing GNNs [128, 129], and using heterogeneous computing resources as

a service [130–132]. Graph processing on FPGAs, reviewed in [133],

is a potentially promising direction. However, we note that detailed

and fair comparisons of the computational and physics performance

between GNN-based algorithms and traditional HEP algorithms have

not yet been extensively performed. This is a major deliverable of

future work.

5. Applications to Particle Physics Tasks

In this section, we review applications of graph neural networks to

a variety of reconstruction tasks in high-energy physics. The main

graph learning objectives used in HEP reconstruction tasks are

• edge classification: the prediction of edge-level outputs used to

classify edges,

• node classification or regression: the prediction of node-level out-

puts, representing class probabilities or node properties,
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• graph pooling : associating related nodes and edges and possibly

predicting properties of these neighborhoods, and

• global graph classification: prediction of a single vector of probabili-

ties the entire graph; this is common for jet and event identification

at the LHC and neutrino event classification, but not covered here.

5.1. Charged particle tracking

In HEP data analysis, it is crucial to estimate the kinematics of the

particles produced in a collision event, such as the position, direc-

tion, and momentum of the particles at their production points, as

accurately as possible. For this purpose, a set of tracking devices (or

trackers) providing high-precision position measurements is placed

close to the beam collision area. Charged particles created in the col-

lisions ionize the material of these devices as they exit the collision

area, providing several position measurements along the trajectory

of each particle. To prevent the detector elements from disturbing

the trajectory of the particles, the amount of material present in

such tracking detectors is kept to a minimum. The tracker is usually

immersed in a strong magnetic field that bends the trajectory, as a

means to measure the components of the momentum — the curva-

ture is proportional to the momentum component transverse to the

magnetic field.

The task of track reconstruction is traditionally divided into two

subtasks, track finding and track fitting, although modern techniques

may combine them [134, 135]. Track finding is a pattern recognition

or classification problem and aims at dividing the set of measure-

ments in a tracking detector into subsets (or track candidates) con-

taining measurements believed to originate from the same particle.

An illustration of a simple track finding problem is shown in Fig. 11.

It is the task of track finding to associate hits to their respective

tracks.

The track fit takes the set of measurements in a track candidate

and estimates as accurately as possible a set of parameters describing

the state of the particle somewhere in the tracking detector, often at

a reference surface close to the particle beam. The fitted parameters
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Fig. 11. Illustration of the charged particle tracking task [134]. Each colored
curve is the trajectory of a charged particle in a constant magnetic field perpen-
dicular to the viewing plane. The solid circles are hits left by the particle as it
traverses the sensitive layers. Empty circles are spurious noise hits not created by
a reconstructible particle.

of the track, especially the curvature, allow for the measurement

of the momentum and charge of the particle. Ideally, each particle

would leave one and only one hit on each layer of the detector, the

trajectories would be exact helices, and the coordinates would be

exact. In reality, particles may leave multiple hits or no hits in a

layer, inhomogeneities in the magnetic field result in distorted arcs,

particles may undergo multiple scattering, and the measurements

may have anisotropic uncertainties. Given that these complications

are commonplace, a solution that is robust to them is desirable.

Current tracking algorithms include the combinatorial track

finder (CTF) [136, 137] based on the combinatorial Kalman filter

[138–141] that allows pattern recognition and track fitting to occur in

the same framework. Another tracking algorithm uses a Hough trans-

form [142] to identify groups of hits that are roughly consistent with
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a track hypothesis, reducing the combinatorial background in the

downstream steps. This algorithm is optimized for the real-time trig-

ger system. One major computational bottleneck common to many

of these algorithms is the combinatorial explosion of possible track

candidates, or seeds, in high hit density environments. Improved

track seeding, based on global pattern recognition, can dramatically

improve the computational performance [143].

Lately, there has been increased interest in exploring new meth-

ods to address the trade-off between algorithmic quality (good track

reconstruction) and speed, which motivated the TrackML particle

tracking challenge (see Chapter 20) [134]. From the ML point of

view, the problem can be treated as a latent variable problem sim-

ilar to clustering, in which particle trajectory “memberships” must

be inferred, a sequence prediction problem (considering trajectories

as time series), a pattern denoising problem treating the sampled

trajectories as noisy versions of ideal, continuous traces, or an edge

classification problem on graph-encoded hit data.

The authors of [20] propose a GNN approach to charged particle

tracking using edge classification. Each node of the graph represents

one hit with edges constructed between pairs of hits on adjacent

tracker layers that may plausibly belong to the same track. After mul-

tiple updates of the node representation and edge weights and using

the learned edge weight as an attention mechanism, the “segment

classifier” model learns which edges truly connect hits belonging to

the same track. This approach transforms the clustering problem

into an edge classification by targeting the subgraphs of hits belong-

ing to the same trajectories. This method has high accuracy when

applied to a simplified scenario, and is promising for more realistic

ones. In [21] from the same authors, an updated GNN model, based

on stacked, repeated interaction network [9] layers, is presented and

provides improved performance. Figure 12 shows the updated archi-

tecture, in which the same interaction network layer operates on

the initial latent features H0 concatenated with the current features

Hi−1. After eight iterations, the output FC network takes the last

latent features H8 to produce classification scores for every edge.

Figure 13 shows the performance of the GNN in correctly classifying
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Fig. 12. Graph neural network architecture for particle tracking [21]. The initial
latent features of the nodes and edges after the encoder network are named H0.
The graph module is applied repeatedly to the latent features. For the ith iter-
ation, the initial features H0 are concatenated with the current features Hi−1.
After eight iterations, the output network takes the last latent features H8 to
produce classification scores for every edge.

0.0 0.2 0.4 0.6 0.8 1.0
Model output

10− 1

100

101

102

103

104

105
fake

t rue

0.0 0.2 0.4 0.6 0.8 1.0
Cut on model score

0.0

0.2

0.4

0.6

0.8

1.0

purity

efficiency

Fig. 13. The distribution of the segment classifier scores predicted by the GNN
from [21] for true segments (orange) and fake segments (blue), showing clear sep-
aration between the two (left). The track segment purity (blue) and efficiency
(orange) as a function of different cuts on the model score (right). With a thresh-
old of 0.5 on the GNN output, the edge efficiency, defined as the ratio of the
number of true edges passing the threshold over the number of total true edges,
reaches 95.9%, and the purity, defined as the ratio of the number of true edges
passing the threshold over the number of total edges passing the threshold, is
95.7%.

the edges, which reaches 95.9% efficiency and 95.7% purity on the

simulated TrackML dataset [134] consisting of top quark–antiquark

pairs produced with an additional 200 pileup interactions overlaid to

simulate the expected conditions at the HL-LHC.

Reference [22] presents further extensions to this model with

preprocessing and postprocessing steps. In particular, the authors

explore constructing graphs from learned representations that con-

tain a nonlinear metric structure, which allows for efficient clustering
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Fig. 14. A single seed hit (red) and its neighborhood (blue) in the x–y plane in
one event are shown (left). Using the graph embedding method of [22], hits (red)
that fall within radius ε of the seed hit (black) are shown in a 2D projection of the
embedded space (center). Hits in the embedded space neighborhood are shown
projected back into the original space (right).

and neighborhood queries of data points. An FC model ψ, parame-

terized by weights θ and mapping input hits x into a new Euclidean

space ψ(x|θ) ∈ R
d, is trained using a hinge embedding loss, pulling

together points belonging to the same particle and pushing apart

points that do not. Figure 14 shows the process by which neighbor-

ing hits are selected in the embedded space. The embedded graphs

are then fed into doublet, triplet, and end-to-end track classifiers

by clustering in the embedded space. A set of postprocessing meth-

ods is also used to improve the performance with knowledge of the

detector physics. Considering the central barrel region of the detector

(−2 < η < 2), they demonstrate a seed efficiency greater than 93%,

purity greater than 99%, and a track finding TrackML score of 0.932

(given reconstructability constraints), which compare favorably with

traditional methods while allowing for greater parallelizability.

Refernce [23] applies similarity hashing using approximate nearest

neighbors [24, 25] to identify “buckets” of hits, with clustering in a

latent space through a custom loss function to group hits into tracks

within that bucket. This approach treats charged particle tracking as

a clustering problem and attempts to find the ideal feature space in

which clusters (hits belonging to the same track) are isolated enough

for a distance threshold to split them, yet compact enough for the

clusters to not be split themselves. The custom loss function bal-

ances these objectives using three terms: the first is proportional to

the variance within each cluster (attracts hits within the same clus-

ter), the second is inversely proportional to the variance of different
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Fig. 15. Similarity hashing with clustering in a latent space to group hits into
tracks [23]. The model takes a bucket from the approximate nearest neighbors
search as input and maps it into a hidden feature space where the clusters rep-
resenting different particles are well-separated after training with a custom loss
function.

clusters’ centroids (repels hits within different clusters), and the third

rewards more compact clusters. Finally, once the model is trained, a

simple agglomerative clustering procedure can be used in the latent

space to group hits belonging to the same tracks. This approach is

shown in Fig. 15 and connects to approaches discussed in Sec. 5.5.

5.2. Secondary vertex reconstruction

The particles that constitute a jet often originate from various inter-

mediate particles that are important to identify in order to fully

characterize the jet. The decay point of the intermediate particle

can be identified as a secondary vertex (SV), using clustering algo-

rithms on the reconstructed tracks, such as adaptive vertex recon-

struction [144–146], the CMS inclusive vertex finder [147], or the

ATLAS SV finder [148]. A review of classical and adaptive algorithms

for vertex reconstruction can be found in [135].

Based on the association to a SV, the particles within a jet can

be partitioned. Properties of the secondary vertices, such as flight

distance and total associated energy and mass may then be used in

downstream algorithms to identify jets from the decay of bottom or

charm quarks.
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Through the lens of GNNs, SV reconstruction can be recast as

a edge classification and graph partitioning problem. In [40], the

authors develop a general formalism for set-to-graph (Set2Graph)

deep learning and provide mathematical proof that their model for-

mulation is a universal approximator of set-to-graph functions. In

particular, they apply a set-to-edge approximation to the problem of

SV reconstruction (particle association) within a jet. The target is to

classify each edge based on whether the two associated particles orig-

inate from the same vertex. The model composes an embedding, a

fixed broadcasting map, and a graph-to-graph model to produce the

final edge scores. Though built from simple components, the model’s

expressivity stems from the equivariant formulation. Their model

outperforms other ML methods, including a GNN [149], a Siamese

network [150–152], and a simple multilayer perceptron, on the jet

partitioning task by about 10% in multiple metrics.

Reference [41] extends this work and demonstrates the SV recon-

struction performance for bottom, charm, and light quark jets, sep-

arately, in simulated top quark–antiquark pair events. In almost all

cases, the Set2Graph model outperforms the standard adaptive ver-

tex reconstruction (AVR) algorithm [135, 153], and a simpler, less

expressive Set2Graph model called the track pair (TP) classifier.

Figure 16 shows the Set2Graph model architecture. The performance

may be quantified in terms of the adjusted Rand index (ARI) [154],

which measures the fraction of correctly assigned edges normalized to

the expected fraction from random clustering. They observe a large

improvement (33–100%) in mean ARI for bottom and charm quark

jets, and a slight improvement (1%) for light jets over the AVR and

TP classifiers.

5.3. Pileup mitigation

To increase the likelihood of producing rare processes and exotic

events, the transverse size of the colliding beams can be squeezed,

resulting in multiple interactions per beam crossing. The downside

of this increased probability is that, when an interesting interac-

tion occurs, it is accompanied by simultaneous spurious interactions
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Fig. 16. The Set2Graph [40, 41] model architecture (top) consisting of a set-to-set
component φ, which creates a hidden representation of each track, a broadcasting
layer β, which creates a representation for each directed edge (ordered pair of
tracks in the jet), and an edge classifier ψ. Edges whose symmetrized edge score
is over a certain threshold are connected, resulting in the set partition.

(called pileup), considered as noise for the analysis. For instance,

the rate of simultaneous interactions per bunch crossing is projected

to reach an average of 140–200 for the high-luminosity LHC and

1000 for the proposed 100 TeV hadronic Future Circular Collider

(FCC-hh) [155]. Pileup increases the likelihood of error in the recon-

struction of events of interest because of the contamination from par-

ticles produced in different pileup interactions. Mitigation of pileup

is of prime importance to maintain good efficiency and resolution for

the physics objects originating from the primary interaction. While

it is straightforward to suppress charged particles from pileup by

identifying their origin, neutral particles are more difficult to sup-

press. One of the current state-of-the-art methods is to compute a

pileup probability weight per particle [156] using the local distribu-

tion shape, and to use it when computing higher-level quantities. As

a graph-based task, this can generally be conceptualized as a node

classification problem.
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Fig. 17. Gated graph network architecture used for pileup mitigation in [44]. The
event is preprocessed by linking local particles together, after which it is fed to 3
gated GNN layers with time steps 2, 1, and 1, respectively, including a residual
connection from the first to the third layer. Then an FC network calculates a
pileup classification score individually for each graph node.

In [44], the authors utilize the gated GNN architecture [157],

shown in Fig. 17, to predict a per particle probability of originat-

ing from the pileup interactions. The graph comprises one node per

charged and neutral particle of the event, and the edge connectivity

is restricted geometrically to ΔR < 0.3 in the η–φ plane. The per-

particle pileup probability is extracted with an FC model after three

stacked graph layers and a skip connection into the last graph layer.

The model outperforms other methods for pileup subtraction, includ-

ing GRU and FC network architectures, and improves the resolution

of several physical observable.

The authors of [45] take inspiration from the graph attention net-

work [87] and the graph attention pooling network (GAPNet) [158]

to predict a per-particle pileup probability with a model called

attention-based cloud network (ABCNet) shown in Fig. 18. The

node and edge features are updated by multiple FC models, where

each (directed) edge is weighted by an attention factor. The connec-

tivity is initialized to the k-nearest neighbors in the feature space

then updated based on the latent space of the stacked graph layers.

A multi-head attention mechanism, described in Sec. 3, is used to

improve the robustness of models. Skip connections further facilitate

the information flow. A global graph latent representation is used to

compute an output for each node using a fixed ordering. This method

improves the resolution of the single jet and dijet mass observables

over a large range of number of pileup interactions.
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Fig. 18. ABCNet architecture used for pileup identification in [18]. FC layer and
encoding node sizes are denoted inside curly brackets. For each graph attention
pooling layer (GAPLayer), the number of k-nearest neighbors and attention heads
(h) are given.

5.4. Calorimeter reconstruction

A calorimeter is a block of instrumented material in which parti-

cles to be measured are fully absorbed and their energy transformed

into a measurable quantity. Typically, the interaction of the incident

particle with the detector produces a cascade of secondary parti-

cles (known as a shower) with progressively smaller energies. The

energy deposited by the showering particles in the calorimeter can be

detected in the form of charge or light and serves as a measurement of

the energy of the incident particle. There are two primary categories

of particle showers, one caused by the electromagnetic force and con-

sisting of electrons, positrons, and photons, and the other resulting

from the strong nuclear force and composed of charged and neutral

hadrons. Corresponding to these two types of particle showers, there

the two primary forms of calorimeters: electromagnetic and hadron

calorimeters.
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Calorimeters can be further classified into sampling and homo-

geneous calorimeters. Sampling calorimeters consist of alternating

layers of an absorber, a dense material used to induce the shower and

energy loss of the incident particle, and an active medium that pro-

vides the detectable signal. Conversely, homogeneous calorimeters

are built of one type of material that performs both tasks, energy

degradation and signal generation. Nonetheless, both types are usu-

ally segmented into different cells, providing some spatial resolution.

Moreover, reconstruction of the energy of the incoming particle in

a calorimeter requires joint clustering and calibration of the signal

in various cells. Reviews of classical techniques for calorimetry in

high-energy physics can be found in [159–161]. From a GNN per-

spective, calorimeter reconstruction can be thought of as (possible)

graph pooling and node regression.

Reference [39] proposes a GNN-based approach to cluster and

assign signals in a high granularity calorimeter to separate particles.

A latent edge representation is constructed using a potential function

of the Euclidean distance djk between nodes j and k in (a subspace

of) the latent space

Vn(djk) = exp(−|djk|n) (10)

as an attention weight. One proposed model — GravNet — connects

the nearest neighbors in a latent space and uses the potential V2,

while another — GarNet — uses a fixed number of additional nodes

to define the graph connectivity and V1 as the potential. Node fea-

tures are updated using the concatenated messages from multiple

aggregations, and the output predicts the fraction of a cell’s energy

belonging to each particle. These methods improve over classical

approaches and could be more beneficial in future detectors with

greater complexity.

Reference [21] also proposes a GNN approach using stacked Edge-

Conv layers to identify clusters in the CMS high granularity calorime-

ter. The output is a set of edge weights classifying hit pairs as being

particles or noise. Results are promising in that muons, photons,

and pions are efficiently and purely reconstructed and their energy

is accurately measured as shown in Fig. 19 in the case of photons.
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Fig. 19. The ratio, per event, for photons of total collected calorimeter energy
deposits connected by predicted edges to the energy collected by the associations
from ground truth (left) for a GNN from [21]. The event display of a single
photon showing the predicted edges in red, the truth nodes in blue, and the
energy deposits from noise in black (right).

Ongoing work includes studies on how to reconstruct multiple parti-

cle types simultaneously using network architectures that can assign

categories to edges, and how to deal with overlapping showers and

fractional assignment of hit energy into clusters.

5.5. Particle-flow reconstruction

Modern general-purpose detectors at high-energy colliders are com-

posed of different types of detector layers nested around the beam

axis in addition to forward and backward “endcap” layers. Charged

particle tracks are measured by a tracking detector as described

in Sec. 5.1. As described in Sec. 5.4, electrons and photons are

absorbed in an electromagnetic calorimeter (ECAL), creating clus-

ters of energy that can be measured. Similarly, charged and neutral

hadrons are absorbed, clustered, and measured in a hadron calorime-

ter (HCAL). Muons may produce hits in additional tracking layers

called muon detectors, located outside of the calorimeters, while neu-

trinos escape unseen. Figure 20 displays a sketch of a transverse slice

of a modern general-purpose detector, the CMS detector [162] at the

CERN Large Hadron Collider (LHC), with different types of particles

and their corresponding signatures.
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Fig. 20. Different types of particles and their corresponding signatures in the
CMS detector [163]. Particle-flow algorithms aim to optimally combine differ-
ent measurements for different subdetectors to reconstruct a list of final-state
particles.

An improved global event description can be achieved by correlat-

ing the basic elements from all detector layers (tracks and clusters) to

identify each final-state particle, and by combining the correspond-

ing measurements to reconstruct the particle properties. This holistic

approach is called particle-flow (PF) reconstruction. The PF concept

was developed and used for the first time by the ALEPH experi-

ment at LEP [164] and has been successfully deployed at the LHC in

both CMS [163] and ATLAS [165]. An important ingredient in this

approach is the fine spatial granularity of the detector layers. The

ultimate goal of PF reconstruction is to provide a complete list of

identified final-state particles, with their momenta optimally recon-

structed from a combined fit of all pertaining measurements, and

links to contributing elements. From this list of particles, the physics

objects can then be determined with superior efficiencies and resolu-

tions. This is shown schematically in Fig. 21.
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input: set of clusters 
and tracks

output: sets of associated 
tracks and clusters

track

HCAL cluster

ECAL cluster

output: set of particle 
candidates 

Fig. 21. Schematic representation of a particle-flow algorithm based on input
HCAL cluster, ECAL clusters, and tracks. These inputs are associated to one
another and the list of final-state particles is determined by combining these
measurements.

ML methods based on an image representations have been studied

for PF reconstruction. Based on a computer-vision approach, [166]

uses a CNN with up and down sampling via choice of kernel size

and stride to combine information from ECAL and HCAL layers

to better reconstructed the energies of hadron showers. As a graph-

based learning problem, PF reconstruction has multiple objectives:

graph pooling or edge classification for associating input measure-

ments to output particles and node regression for measuring particle

momenta.

Reference [42] proposes the object condensation loss formulation

using GNN methods to extract the particle information from the

graph of measurements as well as grouping of the measurements.

The model predicts the properties of a smaller number of parti-

cles than there are measurements, in essence reducing the graph

without explicit assumptions on the number of targeted particles.

Certain nodes are chosen to be the “condensation” point of a parti-

cle, to which the target properties are attached. A stacked GravNet

model performs node-level regression of a kinematic correction fac-

tor together with a condensation weight βi, which indicates whether

that node is representative of a particle in the event. A special loss

function mimics attractive and repulsive electromagnetic potentials
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to ensure nodes belonging to the same particle are close in the latent

space. Explicitly, an effective charge is computed from the condensa-

tion weight through a function with zero gradient at 0 and monoton-

ically increasing gradient towards a pole at 1: qi = arctanh2βi+qmin.

The node α with maximum charge qα for each particle is used to

define an attractive potential V̆k(x) = ||x − xα||2qαk or a repulsive

potential V̂k(x) = max(0, 1− ||x− xα||)qαk depending on if the node

α belongs to the same particle. This is combined in the loss function,

LV =
1

N

N∑
j=1

qj

K∑
k=1

(
MjkV̆k(xj) + (1−Mjk)V̂k(xj)

)
, (11)

where Mjk is 1 if node j belongs to particle k and 0 otherwise. As

illustrated in Fig. 22, apart from a few saddle points, the node is

pulled towards the nodes belonging to the same particle and away

from nodes belonging to other particles.

The performance of this algorithm is compared with a baseline PF

algorithm in a sparse, low-pileup LHC environment. The proposed

method selects more real particles and misidentifies less fake particles

than the standard approach.

Similarly, in [43], an end-to-end trainable machine-learned PF

(MLPF) algorithm for reconstructing particle candidates is proposed

Fig. 22. Illustration of the object condensation loss function combining four effec-
tive potentials: three that repel a given node and one in the center that attracts
the node [42].
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based on a parallelizable, computationally efficient, scalable GNN

and a multi-task objective. Given set of detector inputs X, the goal

of the algorithm is to predict a set of particle candidates Y ′ that
closely approximates the target generator particle set Y , i.e. mini-

mizing some differentiable set-to-set metric ||Y −Y ′|| ∈ R. The target

and predicted sets may have a different number of elements. To sim-

plify the problem numerically, the target set Y can be zero-padded

so that |Y | = |X|. Then, the loss function can be computed element-

by-element:

||Y − Y ′|| ≡
∑

i∈event
L(yi, y

′
i) , (12)

L(yi, y
′
i) ≡ CLS(ci, c

′
i) + αREG(pi, p

′
i), (13)

where the target values and predictions yi = [ci; pi] are decomposed

such that the multi-classification (CLS) is encapsulated in the scores

and one-hot encoded classes ci, while the momentum and charge

regression (REG) values in pi. Since the target particles are often

geometrically and energetically close to identifiable detector inputs,

the target set Y can be arranged such that if a target particle yi is

best associated to a detector input xi, it is arranged to be in the same

location in the sequence. This data preprocessing step is conceptually

similar to the object condensation approach [42].

To create the dynamic graph (see Fig. 23) between input detector

elements, an approach based on kNN and locality sensitive hashing

(LSH) [167] is used to improve the time complexity of the graph

building algorithm. The method divides the input set into bins of

nearby elements using a hash function, such that constructing a kNN

graph in each bin is fast. With the graph built dynamically, mes-

sage passing is performed along the graph structure to create hidden

states of the input elements. Based on a benchmark particle-level

dataset generated using PYTHIA8 and DELPHES3, the MLPF

GNN reconstruction yields comparable or better physics performance

for charged and neutral hadrons relative to the baseline rule-based

PF algorithm in DELPHES. The inference time empirically scales
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Fig. 23. Schematic of the end-to-end trainable MLPF [43] setup with GNN. The
event is represented as a set of detector elements xi. The set is transformed into
a graph by the graph building step, which is implemented using an LSH approxi-
mation of kNN. The graph nodes are then encoded using a message passing step,
implemented using graph convolutional nets. The encoded elements are decoded
to the output feature vectors yi using pointwise feedforward networks.

approximately linearly with the input size, which is promising for

efficient evaluation at the HL-LHC.

6. Summary

Graph neural networks (GNNs) that operate on point clouds and

graphs are increasingly popular for applications in high-energy

physics (HEP) event reconstruction. One reason for their popu-

larity is a closer correspondence to the input HEP data or the

desired output. Namely, measurements in a detector naturally form

a point cloud, which can be interpreted as the nodes in a graph

once the connectivity (edges) is specified. The solution to many HEP
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reconstruction tasks can be mapped onto the edges of the graph

(e.g. track finding), the nodes of the graph (e.g. pileup mitigation), or

graph characteristics (e.g. jet tagging). Another reason is practical:

the computational performance of many traditional reconstruction

approaches scales poorly as the collision events become more com-

plex, while GNNs have the potential to scale up better, especially by

leveraging highly parallel architectures like graphics processing units

or field-programmable gate arrays.

A variety of GNN models have been used for node-level, edge-

level, and graph-pooled tasks, and all models share common struc-

tures that involve propagating and aggregating information between

different nodes in the graph. Another key ingredient is in the con-

struction of the initial graph connectivity and whether that connec-

tivity is dynamic (learned) or static. The physics performance of

GNNs has been shown to match or surpass that of state-of-the-art

techniques in several proof-of-concept studies. However, many of the

models have not yet been tested with real detector data, or bench-

marked in terms of their computational performance. Nonetheless,

the approach is increasingly promising, as more and more HEP appli-

cations continue to appear. At their core, GNNs model the nature

of the interactions between the objects in an input set, which may

explain why particle physicists, trying to model the nature of the

interactions between elementary particles, find them so applicable.
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[127] T. Åarrestad et al., Fast convolutional neural networks on FPGAs with
hls4ml, Mach. Learn. Sci. Technol. (2021); doi:10.1088/2632-2153/ac0ea1;
arXiv:2101.05108 [cs.LG].

[128] Y. Iiyama et al., Distance-weighted graph neural networks on FPGAs for
real-time particle reconstruction in high energy physics, Front. Big Data 3
(2021) 44; arXiv:2008.03601 [hep-ex].

[129] A. Heintz, V. Razavimaleki, J. Duarte, G. DeZoort, I. Ojalvo, S. Thais,
M. Atkinson, M. Neubauer, L. Gray, S. Jindariani, N. Tran, P. Harris,
D. Rankin, T. Aarrestad, V. Loncar, M. Pierini, S. Summers, J. Ngadiuba,
M. Liu, E. Kreinar and Z. Wu, Accelerated charged particle tracking with
graph neural networks on FPGAs, in 3rd Machine Learning and the Phys-
ical Sciences Workshop at the 34th Annual Conf. Neural Information Pro-
cessing Systems. (2020); arXiv:2012.01563 [physics.ins-det].

[130] J. Duarte et al., FPGA-accelerated machine learning inference as a ser-
vice for particle physics computing, Comput. Softw. Big Sci. 3 (2019) 13;
arXiv:1904.08986 [physics.data-an].

[131] J. Krupa et al., GPU coprocessors as a service for deep learning inference
in high energy physics, Mach. Learn. Sci. Technol. 2 (2021) 035005; doi:
10.1088/2632-2153/abec21; arXiv:2007.10359 [physics.comp-ph].

[132] D. S. Rankin et al., FPGAs-as-a-service toolkit (FaaST), in 2020
IEEE/ACM Int. Workshop on Heterogeneous High-Performance Reconfig-
urable Computing (H2RC) (2020); arXiv:2010.08556 [physics.comp-ph].

[133] M. Besta, D. Stanojevic, J. de Fine Licht, T. Ben-Nun and T. Hoefler,
Graph processing on FPGAs: Taxonomy, survey, challenges; arXiv:1903.
06697 [cs.DC].

[134] S. Amrouche et al., The tracking machine learning challenge: Accuracy
phase, in The NeurIPS ’18 Competition. (2020); arXiv:1904.06778 [hep-ex].
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Chapter 13

Image-Based Jet Analysis
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Image-based jet analysis is built upon the jet image representation of
jets that enables a direct connection between high-energy physics and
the fields of computer vision and deep learning. Through this connec-
tion, a wide array of new jet analysis techniques have emerged. In this
text, we survey jet image-based classification models, built primarily on
the use of convolutional neural networks, examine the methods to under-
stand what these models have learned and what is their sensitivity to
uncertainties, and review the recent successes in moving these models
from phenomenological studies to real-world application on experiments
at the LHC. Beyond jet classification, several other applications of jet
image-based techniques, including energy estimation, pileup noise reduc-
tion, data generation, and anomaly detection, are discussed.

1. Introduction

The jet image [1] approach to jet tagging is built upon the rapidly

developing field of computer vision (CV) in machine learning (ML).

Jets [2, 3] are collimated streams of particles produced by the frag-

mentation and hadronizaton of high-energy quarks and gluons. The

particles are subsequently measured by particle detectors and clus-

tered with jet clustering algorithms to define the jets. Jet images

view the energy depositions of the stream of particles comprising a

jet within a fixed geometric region of a detector as an image, thereby

connecting particle detector measurements with an image represen-

tation and allowing the application of image analysis techniques
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from CV. In this way, models built upon advancements in deep convo-

lutional neural networks (CNN) can be trained for jet classification,

energy determination through regression, and the reduction of noise,

e.g. from simultaneous background interactions at a high intensity

hadron collider such as the Large Hadron Collider (LHC). Through-

out this text, the focus will be on the use of jet image techniques

studied within the context of hadron colliders like the LHC [4].

Jet images form a representation of jets highly connected with the

detector; one can look at segmented detectors as imaging devices and

interpret the measurements as an image. In contrast, other represen-

tations of jets exist that are built more closely from the physics of jet

formation, such as viewing jets as sequences [5, 6] or trees [7] formed

through a sequential emission process, or viewing jets as sets, graphs,

or point clouds [8, 9] with the geometric relationship between con-

stituents of the jet encoded in the adjacency matrix and node proper-

ties. There are overlaps in these approaches, for instance a graph can

be defined over detector energy measurements, but these approaches

will not be discussed in detail in this chapter. The utilization of an

image-based approach comes with the major advantage that CV is a

highly developed field of ML with some of the most advanced mod-

els available for application to jet analysis with jet images. From the

experimental viewpoint, the detector measurements are fundamental

to any subsequent analysis, and the detailed knowledge of the detec-

tor and its systematic uncertainties can be highly advantageous for

analysis of LHC data.

Among the earliest use of jet images was for the classification of

the parent particle inducing the jet [1], and relied on utilizing lin-

ear discriminants trained on image representations of jets for this

task. While the remainder of this text will focus on deep learning

approaches to jet images, even this early work saw interesting dis-

crimination power for this task. By utilizing the detector measure-

ments directly, rather than relying on jet features developed using

physics domain knowledge, additional discrimination power could be

extracted. Deep learning approaches surpass such linear methods,

but build on this notion of learning discriminating information from

detector observables rather than engineered features.



December 14, 2021 16:15 Artificial Intelligence for High Energy Physics 9in x 6in b4322-ch13 page 441

Image-Based Jet Analysis 441

While designed to take advantage of advances in computer vision,

jet images have notable differences with respect to typical natural

images in CV. Jet images are sparse, with most pixels in the image

having zero content. This is markedly different from natural images

that tend to have all pixels containing content. Moreover, jet images

tend to have multiple localized regions of high density in addition

to diffusely located pixels throughout the image, as opposed to the

smooth structures typically found in natural images. An example top

quark jet image illustrating these features can be seen in Fig. 1. These

differences can lead to notable challenges, for instance the number of

parameters used in jet image models (and consequently the training

time) tends to be large to account for the size of the image, even

though most pixels carry no information. Some techniques exist for

sparse-image computer vision approaches [11], but have not been

explored in depth within the jet image community.

This text will first discuss jets and typical jet physics in Sec. 2. The

formation of jet images and the jet image preprocessing steps before

Fig. 1. An example jet image of a Lorentz boosted top quark jet after prepro-
cessing has been applied [10].
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classification are discussed in Sec. 3. A brief introduction to computer

vision is found in Sec. 4. The application of jet images in various

jet classification problems is then discussed in Sec. 5, followed by a

discussion on the interpretation of information learned by jet image-

based classifiers in Sec. 6. Some recent applications of jet images

beyond classification are discussed in Sec. 7. A brief note on the

notation used throughout the text follows below (Sec. 1.1).

It should be noted that the majority of the studies presented in

this text relate to phenomenological work using simplified setting

that often do not include a realistic modeling of a detector’s impact

on observables. These will frequently be denoted as phenomenological

studies, in contrast to the studies using realistic detector simulations

or using real experiment data that are discussed mainly in Sec. 5.4.

1.1. Notations and definitions

As we will focus on studies of jet images in the LHC setting, we

will primarily utilize the hadron collider coordinate system notation.

The beam-line defines the z-axis, φ indicates the azimuthal angle,

η = − log tan θ
2 is the pseudo-rapidity which is a transformation of

the polar angle θ. The rapidity is defined as y = 1
2 log

[
E+pz
E−pz

]
is

frequently used for the polar measurement of massive particles, such

as jets, as differences in rapidity are invariant with respect to Lorentz

boosts along the beam direction. The angular separation of particles

is defined as ΔR(p1, p2) =
√

(y1 − y2)2 + (φ1 − φ2)2. The transverse

momentum pT =
√
p2x + p2y is frequently used as it is invariant with

respect to Lorentz boosts along the beam direction. The transverse

energy is defined as ET = E sin(θ).

2. Jets and Jet Physics Challenges

Jets are collimated streams of particles produced by the fragmenta-

tion and hadronizaton of high-energy quarks and gluons. Jet clus-

tering algorithms are used to combine particles into clusters that

define the jets (see [2, 3] for recent reviews). At the LHC, jet algo-

rithms typically rely on sequential reclustering algorithms which,
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given a definition of distance, iteratively combine the closest two

constituents (either particles or previously combined sets of particles

denoted proto-jets) until a stopping condition is met. Different dis-

tance metrics define different jet algorithms and perhaps the most

commonly used algorithm at the LHC is the anti-kT algorithm [12]

in which the distance between particle i and particle j is defined as

dij = min{k−2
T,i , k

−2
T,j}Δ2

ij/R
2. Here, Δ2

ij = (yi−yj)2+(φi−φj)2 and y,
φ, and kT are the particle rapidity, azimuth, and transverse momen-

tum, respectively. The parameter R of the jet algorithm has the effect

of defining the spatial span, or approximate “radius” (though the jet

is not necessarily circular), of the jet. Jets and jet algorithms are

required to be IRC safe, i.e. insensitive to additional infrared radia-

tion or collinear splittings of particles, in order for the jet properties

to be calculable in fixed-order perturbation theory. This allows com-

parison between jets clustered on partons from the hard scattering

process, referred to as parton jets, on final state particles after show-

ering and hadronization simulation, referred to as particle jets, and

on reconstructed particles in detectors, referred to as reconstructed

jets.

Most of the work presented in this text are phenomenological

studies outside the context of any individual experiment. These stud-

ies primarily utilize particle level simulation after fragmentation and

hadronization and thus study particle jets defined after clustering the

final state particles. These studies typically do not use a simulation

of a detector and its impact on particle kinematic measurements.

Studies of jets and jet images after real detector simulation or in

real detector data are discussed in Sec. 5.4. In the detector setting,

various inputs to jet algorithms can be used to define jets: (1) towers

refer to a fixed spatial extent in η and φ in which all energy within

the longitudinal depth of the calorimeter is summed, (2) topological

clusters [13] are used to cluster together energy depositions in nearby

calorimeter cells, (3) tracks, or charged particle trajectories, mea-

sured using tracking detectors. The particle flow (PF) algorithm [14]

is used by the CMS collaboration to match charged particles with

energy in the calorimeter in order to utilize both measurements to

define PF candidates that can be used as inputs to jet algorithms.
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The R-parameter of the jet is used to define the spatial extent to

which particles are clustered into the jet. When studying quark and

gluon jets, R = 0.4 is frequently used. When studying the decay of

Lorentz boosted heavy particles, in which multiple partons may be

spatially collimated, large-R jets are often used which have a larger

R = 1.0 or R = 1.2. Subjets, defined by running a jet clustering

algorithm with smaller radius on the constituents of a jet, are fre-

quently used to study the internal properties of a jet. More broadly,

jet substructure refers to the study of the internal structure of jets

and the development of theoretically motivated jet features which are

useful for discrimination and inference tasks (see [15, 16] for recent

reviews).

One particularly important feature of a jet is the jet mass, com-

puted as: m2 =
(∑

i∈jet pi
)2
. The sum of four-vectors runs over all

the constituents i clustered into the jet. As different heavy reso-

nances have different masses, this feature can be a strong discrimi-

nant between jet types. Note that any operation performed on a jet

which alter the constituents, such as the pileup mitigation discussed

in the next paragraph, may alter the jet mass.

It is important to note that additional proton–proton interac-

tions within a bunch crossing, or pileup, creates additional parti-

cles present within an event that can impact jet clustering and the

estimation of jet properties. This is especially important for large-

R jets which cover large spatial extents. Dedicated pileup removal

algorithms are used to mitigate the impact of pileup [17]. Jet trim-

ming [18] is a jet grooming technique used to remove soft and wide

angle radiation from jets, in which small radius subjects are removed

if they carry a fraction of the jet energy below a threshold. Jet

trimming is frequently used on ATLAS to aid in pileup mitiga-

tion. The pileup per particle identification algorithm (PUPPI) [19]

is frequently used by CMS, in which for each particle a local shape

parameter, which probes the collinear vs. soft diffuse structure in

the neighborhood of the particle, is calculated. The distribution of

this shape parameter per event is used to calculate per particle

weights that describe the degree to which particles are pileup-like.

Particle four-momenta are then weighted and thus the impact of
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(down-weighted) pileup particles on jet clustering is reduce [19].

Pileup mitigation can greatly improve the estimation of the jet mass,

energy and momentum by removing/downweighting the pileup par-

ticles clustered into a jet that only serve as noise in the jet properties

estimation.

Jet identification, energy estimation, and pileup estimation/

reduction are among the primary challenges for which the jet images

approach has been employed: (i) Jet identification refers to the clas-

sification of the parent particle type that gave rise to the jet, and is

needed to determine the particle content of a collision event. (ii) Jet

energy estimation refers to the regression of the true jet total energy

from the noisy detector observations, and is needed to determine

the kinematic properties of an event. (iii) Jet pileup estimation and

reduction refers to the determination of the stochastic contributions

to detector observations arising from incident particles produced in

proton–proton collisions that are not from the primary hard scatter-

ing. This form of denoising is required to improve the energy and

momentum resolutions of measurements of jets.

Among the primary physics settings in which jet images have

been used are in studies of jets produced by Lorentz boosted heavy

particles, such as a W - or Z-boson, Higgs boson (h), top quark (t),

or a hypothetical new beyond the Standard Model particle. When

a heavy short-lived particle is produced with a momentum on the

order of twice its mass or more, the quark decay products of such

a heavy particle have a high likelihood of a collimated emergence in

which the subsequent hadronic showers produced by the quarks over-

lap. Jet clustering algorithms can capture the entirety of the heavy

particle decay within one large-R jet with an R-parameter typically

between 0.8 and 1.0, though in some cases larger R parameters have

been used. The internal structure of such a boosted jet can be highly

non-trivial and significantly different than a typical jet produced by

a single quark or gluon. However, the production of quarks and glu-

ons is ubiquitous at hadron colliders, and thus powerful discrimi-

nation methods, or taggers, are needed to identify relatively clean

samples of heavy-particle-induced boosted jets. Moreover, the mass

scale of heavy hadronically decaying particles in the Standard Model
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is similar, from the W -boson mass of ∼ 80GeV [20] up to the top

quark mass of ∼ 173GeV [20]. Typical discrimination tasks thus

include discriminating boosted W -, Z-, h-, or t-jets from quarks and

gluons, but also in discriminating between boosted heavy particle

jets.

Jet images have also been employed for studying jets from individ-

ual quarks and gluons. This includes discriminating between quark

and gluon jets, and between jets produced by quarks of different

flavor. In these cases, smaller jets typically with R = 0.4 are used.

3. Jet Images and Preprocessing

Jet images are built using a fixed grid, or pixelation, of the spatial

distribution of energy within a jet. Early instances of such pixela-

tion relied on energy depositions in calorimeter detectors, wherein

the angular segmentation of the detector cells was used to define the

“pixels” of the jet image and the pixel “intensity” was defined with

the transverse energy in a cell. More recently, high resolution mea-

surements of charged particles from tracking detectors have also been

used to form images, wherein the transverse momentum of all parti-

cles found within the spatial extent of a jet image pixel are summed

to define the pixel intensity. While calorimeter and tracking detectors

typically span a large angular acceptance, a typical jet has limited

angular span. The angular span of a jet is related to the R-parameter

of the jet clustering algorithm. Jet images are thus designed to cover

the catchment area of the jet [21]. In many cases, the jet image is

first defined to be slightly larger than the expected jet catchment

area, to ensure that preprocessing steps (discussed in Sec. 3.1) do

not disrupt peripheral pixel estimates, and then after pre-processing

are cropped. Nonetheless, only a slice of the angular space of the

detector is used to define the jet image, with the image centered on

the direction of the jet and the image size chosen to capture the

extend of a jet with a given R parameter. If depth segmentation is

present in a calorimeter, the energy is often summed in depth. From

this vantage point, a jet image can be viewed as a gray-scale image

comprising the energy measurements encapsulated by the angular
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span of the jet. In some cases energy depositions from hadronic and

electromagnetic calorimeters will be separated into different images,

or separate images will be formed from both calorimeter cell mea-

surements and the spatially pixelated charged particle measurement.

In these cases, the set of jet images, each defining a view of the jet

from a different set of measurements, can be seen as color channels

of jet image.

It should be noted that jet pileup mitigation, such as the afore-

mentioned trimming or PUPPI algorithms, is vital to reduce the

impact of pileup on downstream jet image prediction tasks. While

not explicitly discussed as a part of the jet image preprocessing, this

step is almost always performed prior to jet image formation using

the jet constituents, especially in the case of studying large-R jets.

3.1. Preprocessing

An important consideration in the training of a classifier is how to

process data before feeding it to the classifier such that the classi-

fier can learn most efficiently. For instance, a common preprocessing

step in ML is to standardize inputs by scaling and mean shifting

each input feature such that each feature has zero mean and unit

variance. In this case, standardization helps to ensure that features

have similar range and magnitude so that no single feature domi-

nates gradient updates. In general, data preprocessing can help to

stabilize the optimization process and can help remove redundancy

in the data features to ease the learning of useful representations and

improve the learning sample efficiency. However, data preprocessing

may come at a cost if the preprocessing step requires approximations

that lead to distortion of the information in the data. The primary

jet preprocessing steps include:

Translation: An important consideration when preparing inputs to

a classifier are the symmetries of data and transformations of inputs

that should not affect the classifier prediction. In the case of jet

images, these symmetries are related to the physical symmetries of

the system. At a particle collider, there is no preferred direction

transverse to the beam line, and the physics should be invariant to
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azimuthal rotations in the transverse plane. In terms of jet images,

given a fixed parent particle, the distribution of jet images at a given

azimuthal coordinate φ = φa should not differ from the distribution

at a different φ = φb. As such, an important preprocessing step is

to translate all jet images to be “centered” at φ = 0. This is often

performed by translating the highest pT subjet (formed by clustering

the jet constituents with a small R-parameter jet algorithms), or the

jet energy centroid, to be located at φ = 0. The same invariance is

not generically true for changes in η, as translations in η correspond

to Lorentz boosts along the beam direction which could alter the jet

properties if not handled carefully. When energy is used for jet image

pixel intensities, a translation in η while keeping pixel intensities fixed

will lead to a change in the jet mass. However, when the transverse

momentum, which is invariant to boosts along the beam direction, is

used to define pixel intensities, a translation in η can be performed

without altering the jet mass distribution. With this definition of

pixel intensities, jet images are typically translated such that the

leading subjet is located at η = 0. By centering the jet on the leading

pT subjet, the classifier can focus on learning the relative variations

of a jet, which are key for classification.

Rotation: The radiation within a jet is also approximately symmet-

ric about the jet axis in the η–φ plane. A common preprocessing

step is thus to rotate jet images, after centering the image on the

leading pT subjet, such that the second leading pT subjet or the first

principle axis of spatial distribution of pT in the image is aligned

along the y-axis of the image. However, there are challenges with

rotations. First, rotations in the η–φ plane can alter the jet mass,

thus potentially impacting the classification performance.a Second,

as jet images are discretized along the spatial dimensions, rotations

by angles other than factors of π/2 cannot be performed exactly.

One approach is to perform a spline interpolation of the pT distribu-

tion within a jet image, apply a rotation to this spline function, and

then impose an image grid to discretize the spline back to an image.

aAlternative definitions of rotations have been proposed that preserve jet
mass [22] but may alter other key jet properties.
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The interpolation and the post-rotation discretization can spatially

smear information in the jet and lead to aliasing. As such, there is

varying use of rotation preprocessing in jet image research.

Flipping: A transformation φ → −φ should not affect the physics

of the jet, and this transformation can be performed to ensure that

positive φ contains the half of the jet with more energy, for instance

due to radiation emission.

Normalization: A step often found in image preprocessing for com-

puter vision tasks is image normalization, typically through taking

an L2-norm of the image such that xi → xi/
∑

j x
2
j where xi is a pixel

intensity and the sum runs over all pixels in an image. However, in

the case of jet images, such a normalization may be destructive, as

it does not preserve the total mass of the jet (as computed from the

pixels) and can deteriorate discrimination performance due to this

loss of information [23]. As such, there is varying usage of image

normalization in jet image research.

The impact on the jet mass, as computed from the pixels of jet

images, for W -boson jets within a fixed pT range and within a fixed

pre-pixelation mass range can be found in Fig. 2. The distortion

on the jet mass from pixelation, rotations for images with ener-

gies as pixel intensities, and from L2 normalization, can be seen

clearly, whilst translation and flipping do not show distortions of

the jet image mass. As expected, mild distortion of the mass can

be seen when rotations are performed on jet images with transverse

energy used for pixel intensities. These distortions may or may not

be impactful on downstream tasks, depending on if the jet mass is a

key learned feature for the downstream model.

4. Computer Vision and Convolutional

Neural Networks

Object classification in computer vision (CV) tasks served as a pri-

mary setting where deep learning had major early successes [24],

quickly surpassing then state-of-the-art approaches and serving as

one of the drivers for a deep learning revolution. While much of
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Fig. 2. The impact of various preprocessing steps on the distribution of estimated
jet mass for boosted W -boson jet images [23].

the work in CV has focused on understanding natural images, data

collected by physics experiments come from heterogenous detectors,

tend to be sparse, and do not have a clear similarity to natural

images. Nonetheless, the success of DL in CV inspired a parallel

effort in the collider physics community to explore applications of

such techniques to HEP data. Below we present a brief introduc-

tion to convolutional neural networks (CNNs) [25] and some of the

state-of-the-art architecture variants in order to provide some back-

ground for the models used in jet tagging and other applications.

For a more in depth pedagogical introduction to this material, see

for instance [26].

Most of the models discussed in this text rely on the use of convo-

lutional layers. However, it should be noted that some models make

use of locally-connected layers [25, 27, 28], in which a given neuron

only has access to a small patch of an input but, unlike convolu-

tional layers that rely on weight sharing (as discussed below), the
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neuron processing each image patch is associated with a different set

of weights.

Convolutional neural networks rely on neuron local spatial con-

nectivity and weight sharing to produce translationally equivariant

models that are well adapted to image analysis. A typical CNN is

built by stacking one or more convolutional and nonlinear activation

layers often followed by a pooling layer. This structure is repeated

several times. Fully connected layers, with full connections from all

inputs to activations, are used to perform the final classification or

regression prediction. Images processed by CNNs are represented as

3D tensors with dimensions width × height × depth and are often

referred to as the image volume. The height and width dimensions

correspond to the spatial extend of the image while the depth is

typically the color channel.

Convolutional layers are composed of a set of filters, where each

filter applies an inner product between a set of weights and small

patch of an input image. The filter is scanned, or convolved, across

the height and width of the image to produce a 2D map, often referred

to as a response map or convolved image, that gives the response of

applying the filter at each position of the image. The response at each

position becomes large when the filter and the image patch match,

i.e. when their inner product is large. The filters will thus learn to

recognize visual features such as edges, textures, and shapes, and

produce large responses when such visual features are present in a

patch of an image. The spatial extent of the input patch is known

as the receptive field or filter size, and the filters extend to the full

depth of the image volume. Several filters are learned simultaneously

to respond to different visual features. The response map of the filters

are then stacked in depth, producing an output convolved image

volume. Finally, the response maps are passed through point-wise

(i.e. per pixel) nonlinear activations to produce an activation map.

By sharing weights between neurons, i.e. by scanning and apply-

ing the same filter at each image location, it is implicitly assumed

that it is useful to apply the same set of weights to different image

locations. This assumption is reasonable, as a visual feature may be
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present at any location in an image and the filter is thus testing

for that feature across the image. This results in the convolutional

layers being translationally equivariant, in that if a visual feature is

shifted in an image, the response to that feature will be shifted in the

activation map. In addition, parameter sharing results in dramatic

reduction in the number of free parameters in the network relative

to a fully connected network of the same number of neurons.

Pooling layers reduce the spatial extent of the image volume while

leaving the depth of the volume unchanged [29]. This further reduces

the number of parameters needed by the network and helps con-

trol for overfitting. Pooling is often performed with a max operation

wherein only the largest activation in a region, typically 2×2, is kept

for subsequent processing.

Normalization layers may be used to adjust activation outputs,

typically to control the mean and variance of the activation dis-

tribution. This helps ensure the that a neuron does not produce

extremely large or small activations relative to other neurons, which

can aid in gradient-based optimization and in mitigating exploding/

vanishing gradients. Batch normalization [30] is a common normal-

ization method in which, for each mini-batch, the mean and vari-

ance within the mini-batch of each activation dimension are used to

normalize the activation to have approximately zero mean and unit

variance. A linear transformation of the normalized activation, with

learnable scale and offset parameters, is then applied.

Fully connected layers are applied at the end of the network after

flattening the image volume into a vector in order to perform classifi-

cation or regression predictions. At this stage, auxiliary information,

potentially processed by a separate set of neural network layers, may

be merged with the information gleaned from the processing by con-

volutional layers in order to ensure that certain features are provided

for classification. Within the jet tagging context, such information

may correspond to information about the jet, such as its mass, or

global event information such as the number of interactions in a

given collision.
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Residual Connections: While CNNs encode powerful structural

information into the model, such as translation equivariance, it has

been noted that scaling up such models by stacking large numbers

of convolutional layers can lead to large challenges in training [31].

In order to train large models using the backpropagation algorithm,

the chain rule is used to compute the gradient from the model out-

put back to the relevant weight. In early layers, the multiplication

of many gradients can lead to vanishingly small or exploding gradi-

ents, thus resulting in unhelpful gradient updates. To overcome this

challenge, the residual block [32] was proposed, and has led to the

development of residual networks. While a typical neural network

layer passes input z through a nonlinear function f(·) to produce an

output z′ = f(z), a residual block also uses a “skip connection”

to pass the input to the output in the form z′res = Wsz + f(z)

where the weights Ws can be used to project the channels z to

have the same dimension as the function f(z). In this way, the func-

tion f(·) is tasked with learning the relative change to the input.

Moreover, the skip connection provides a path to efficiently pass

gradients backwards to earlier layers of the network without dis-

tortion through the nonlinearities, making gradient descent much

easier and thus enabling the training of significantly deeper models.

Note that the function f(·) can contain several layers of convolutions,

nonlinearities, and normalization before being recombined with the

input.

Training in supervised learning tasks is performed by minimizing

an appropriate loss function that compares the CNN prediction with

a true label. The loss is typically the cross-entropy in the case of

binary classification, and the mean squared error in the case of regres-

sion. Minimization is performed using stochastic gradient descent

(SGD) [33], or one of its variants such as ADAM [34] designed to

improve the convergence of the learning algorithm.

Evaluation Metrics: Receiver operating characteristic (ROC)

curves are frequently used to examine and compare the performance

of binary classification algorithms. Given a model which produces

a classification prediction c(x), where x is the input features and
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c(·) ∈ [0, 1], the model is applied to a set of inputs thus yielding a

distribution of predictions. A threshold τ on the prediction is scanned

from 0 to 1, and the fraction of inputs for each the signal and back-

ground classes above this threshold, i.e. the signal efficiency (εS)

and background efficiency (εB) for surviving this threshold, defines

a point on the ROC curve for each τ value. ROC curves thus dis-

play the background efficiency (or background rejection defined as 1

divided by the background efficiency) vs. the signal efficiency. When

the ROC curve is defined as the background efficiency vs. the sig-

nal efficiency, a metric commonly used to evaluate the overall model

performance is the ROC integral, also known as the area under the

curve (AUC).

Significance improvement characteristic (SIC) curves [35] are

closely related to ROC curves, but display εS/
√
εB as a function

of the signal efficiency εS. This curve targets displaying the poten-

tial improvement in statistical significance when applying a given

discriminant threshold relative to not applying such a threshold.

5. Jet Tagging

Jet tagging refers to the classification of the parent particle which

gave rise to a jet. Linear discriminant methods were first applied to

jet images defined using a single channel, or “gray-scale”, with pixel

intensities defined as the calorimeter cell pT [1]. Subsequently, CNN-

based classifiers trained on single-channel images were developed

for discriminating between W/Z jets and quark/gluon jets [23, 27],

between top jets and quark/gluon jets [10, 36–38], and for discrimi-

nating between quarks and gluons [39]. Quark/gluon discrimination

with single-channel jet images has also been explored for use in heavy

ion collisions [40]. The extension to utilizing jet images “in color”

with multiple channels, defined for instance using charged particle

information, has shown promising performance improvements over

single-channel approaches in many of these tasks [10, 39, 41–45], and

has been explored in realistic experimental settings by the ATLAS

and CMS collaborations [46, 47].
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5.1. Jet tagging on single-channel jet images

W/Z Tagging: The discrimination of boosted W and Z vector

boson initiated jets from quark/gluon jets has served as a bench-

mark task in boosted jet tagging. The color singlet nature of elec-

troweak bosons decaying to quark pairs leads to an internal structure

of boostedW/Z jets in which there are typically two high-energy clus-

ters, or subjets, and additional (dipole) radiation tends to appear in

the region between such subjets. The Higgs boson, also a color sin-

glet with decays to quark pairs, has a similar substructure, although

the decays of heavy flavor bottom and charm quark pairs can lead to

some structural differences owing to the long lifetime of such quarks

and their harder fragmentation than lighter quarks. In contrast, sin-

gle quarks and gluons tend to produce jets with a high-energy core,

lower energy secondary subjets created through radiative processes,

as well as diffuse wide angle radiation further from the core of the

jet. These features can be seen clearly in Fig. 3, which shows the

average W -boson jet image and average quark/gluon jet image after

preprocessing.

Building ML models applied to jet images for this discrimina-

tion task avoids the explicit design of physics-inspired features, and

Fig. 3. Average W -boson jet image (left) and average quark/gluon jet image
(right) after preprocessing [23].
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rather focuses on the learning task of identifying differences in the

jet image spatial energy distributions. In phenomenological studies,

both fully convolutional [23] and models with locally connected lay-

ers [27] have been examined for discriminating jet images of boosted

W and Z vector boson initiated jets from quark/gluon jets. The CNN

models were examined in simulated samples of jets without pileup.

The locally connected models were examined in events both with

and without pileup, thus enabling the examination of the impact of

pileup noise on jet image-based tagging.

Within both the studies on convolutional [23] and locally con-

nected [27] models, hyperparameter scans were performed to find

model parameters that maximized performance.b The hyperparam-

eters that were considered in the scans included the number of con-

volutional/locally connected layers, the number of hidden units per

layer, and the number of fully connected layers. The resulting opti-

mized models were similar, containing 3–4 convolutional or locally

connected layers, as well as 2–4 fully connected layers with approxi-

mately 300–400 hidden units at the end of the network. In the CNN,

32 filters were used in each convolutional layer, as well as (2 × 2)

or (3× 3) downsampling after each convolutional layer. One notable

additional optimization performed for the CNN models was the size

of the convolution filters in the first layer. While filter sizes are typ-

ically (3 × 3) or (4 × 4) in standard CV applications, in the case

of application to jet images it was found that a larger (11 × 11) fil-

ter in the first convolutional layer (with later layers using standard

(3× 3) filter sizes) resulted in the best performance. It was hypothe-

sized that the such large filters were beneficial when applied to sparse

images [23], in order to ensure that some non-zero pixels are likely

to be found within the image patch supporting the filter application.

The ROC curves indicating the performance of the CNN model

and locally connected model (applied to jets with pileup included)

are shown in Fig. 4. It should be noted that the jets in these figures

bIn the case of CNNs the AUC was maximized whilst the Spearmint Bayesian
Optimization package [48] was used to optimize the model with locally connected
layers.
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Fig. 4. ROC curves for quark/gluon background rejection vs. boosted W
boson tagging efficiency for (a) events without pileup [23], and (b) events with
pileup [27]. The jet image-based CNN taggers are seen to outperform combina-
tions of jet substructure features, and to be stable with respect to the addition
of pileup.

correspond to different pT ranges, with jets of pT ∈ (250, 300) GeV

for the CNN model and of pT ∈ [300, 400] GeV for the locally con-

nected model, and thus are not directly comparable. Also shown are

combinations of common physics expert engineered jet substructure

features, such as the jet mass, the distance between the two lead-

ing pT subjets, the τ21 n-subjetiness [49], and the energy correlation

function Dβ=2
2 [50]. Two variable combinations were computed using

2D binned likelihood ratios. Both the CNN and locally connected

model significantly outperform the 2D jet substructure feature com-

binations. It can also be seen that the jet image approach is not overly

sensitive to the effects of pileup as the large performance gain over

jet substructure features persists both with and without the presence

of pileup, owing to the use of jet trimming to reduce the impact of

pileup noise in the jets. In addition, a boosted decision tree (BDT)

classifier [51] combining six substructure features was compared with

the locally connected model and found to have similar performance.

While these early jet image-based models did not significantly out-

perform combinations of several jet substructure features, this may
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be due to their relatively small model structure. As will be seen,

more complex architectures and the use of multi-channel jet images

can lead to large gains over combinations of jet substructure features.

One can also see the effect of L2 image normalization on CNN

models, which appears to improve performance over unnormalized

images. This effect was found to occur because the CNN model out-

put was observed to have only small correlation with the jet mass,

and thus was not learning to be heavily reliant on the jet mass infor-

mation that is distorted by normalization. As a result, the regulation

of the image variations due to normalization was found to be benefi-

cial enough to overcome the induced distortion of the jet mass. With

more powerful models that learn representations more correlated to

the jet mass, this balance may not occur.

Top Tagging: The discrimination between boosted top quark jets

and quark/gluon jets using CNNs applied to jet images has also

been examined both in phenomenological studies [36] and in realistic

simulations by the CMS experiment [47]. Top quark jet images are

structurally more complex thanW/Z/h jet images as hadronic decays

of top quarks contain three quarks. This can have implications on

both the preprocessing and the tagging performance. That is, some

of the pre-processing steps previously defined will lead to uniformity

among jet images for two quark systems, such as the rotation step

which aligns the leading two subjets, but may not lead to the same

level of uniformity for three quark systems.

The DeepTop [36] model is a CNN applied to single-channel jet

images after the preprocessing described above, including image nor-

malization. Hyperparameter optimization yielded a model with four

convolutional layers, each with eight filters of size (4× 4), MaxPool-

ing for image downsampling after the second convolutional layer,

and three dense layers of 64 hidden units each for classification. For

these phenomenological studies, the model was trained with approx-

imately 150k jets using the mean squared error (MSE) loss. While

structurally similar to the single-channel CNN used for W/Z tagging

in reference [23] there are some notable differences such as the use of

fewer numbers of filters (8 rather than 32) and the smaller filter size
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(a) (b)

Fig. 5. ROC curves for quark/gluon jet rejection vs. boosted top efficiency for
(a) the DeepTop model [36], and (b) the updated DeepTop model from [42].
In both cases, the CNN-based DeepTop models outperform individual and BDT
combinations of substructure features, while the updated model in (b) is also seen
to significantly improve the DeepTop performance.

in the first layer of convolution. The reason for these difference may

be due to (a) the presence of three quarks in the top quark decay

leads to more pixel-populated images and thus allowed for the use

of smaller initial filter sizes, or (b) the global nature of the hyperpa-

rameter scan wherein the number of filters and the size of the filters

was fixed to be the same across all convolutional layers.

The performance of the DeepTop model can be found in Fig. 5(a)

in terms of the ROC curve comparing the quark/gluon rejec-

tion vs. the boosted top jet tagging efficiency for jets with pT ∈
[350, 450] GeV. In this momentum range, the decay products of the

top quark may not be contained in a single jet, and such a con-

tainment was not required for the jets under study. DeepTop was

compared with a combination of mass and n-subjettiness, as well

and a BDT, denoted MotherOfTaggers, combining several jet sub-

structure features. The jet image-based DeepTop algorithm showed

clear performance gains over substructure approaches across most of

the signal efficiency range. As previously mentioned, pre-processing

steps have the potential to be beneficial for the learning process by
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producing more uniform images, but may also lead to performance

degradation. This was studied within the scope of the DeepTop algo-

rithm, by examining the tagging performance using full preprocessing

and a minimal preprocessing that only performed centering but not

the rotation or the flipping. This can be seen in Fig. 5(a), where

a clear performance benefit was observed when utilizing only mini-

mal pre-processing. While the full pre-processing may be beneficial

for small sample sizes, with sufficient sample sizes and model com-

plexity the CNN models appear able to learn well all the variations

in jet images. In this case, the approximations introduced by pre-

processing steps appear to be more detrimental than the benefits

from uniformization of the jet image distributions.

Building upon the DeepTop design, developments in architecture

design, jet image preprocessing, and optimization were introduced

in the phenomenological study of [42]. These developments include:

(i) the cross entropy loss function, rather than the mean squared

error loss, was used as it is more suitable to binary classification

problems, (ii) a learning rate adaptive optimizer, AdaDelta [52], and

small mini-batch sizes of 128 was used rather than vanilla stochastic

gradient descent and large mini-batches of 1000, (iii) larger numbers

of filters per convolutional layer, between 64 and 128 rather than 8,

and 256 neurons in the dense layers instead of 64, (iv) preprocessing

is performed before pixelation under the assumption that one would

have access to high resolution particle momentum measurements, for

instance using Particle Flow [14] approaches to jet reconstruction,

and (v) the training set size was increased by nearly a factor of 10.

While the individual effects of these developments will be examined

further in Sec. 5.2 when discussing top tagging on multi-channel jet

images, the combination of these developments can be seen to provide

large performance improvements over DeepTop of nearly a factor of

two in background rejection at fixed signal efficiencies in Fig. 5(b).

In terms of more complex architectures, the ResNeXt-50 archi-

tecture [53] was adapted to boosted top jet tagging task using

single-channel jet images in the phenomenological studies in [10].

ResNeXt-50 utilizes blocks containing parallel convolutional layers

that are aggregated and merged also with a residual connection at
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the end of the block. As the jet images typically have fewer pixels

than natural images, the architecture was adapted to the top tag-

ging dataset by reducing the number of filters by a factor of four in

all but the first convolutional layer, and dropout was added before

the fully connected layer. In addition, smaller pixel sizes in the jet

images were utilized in this model, with a granularity of 0.025 radi-

ans in η–φ space (whereas the jet image granularities typically used

in other models is 0.1 radians in η–φ space).

The ROC curve comparing the ResNeXt-50 model to a CNN

based on [36, 42], and comparing to several other neural network

models with varying architectures can be found in Fig. 6. The

ResNeXt-50 model provides approximately 20% improvement in

background rejection for fixed signal efficiency over the CNN model,

and is among the most performant algorithms explored. This is

notable as many of the other neural network models utilize parti-

cle 4-vectors as inputs, rather than aggregated particle information

Fig. 6. ROC curve comparisons of various boosted top tagging models is
shown [10]. Both ResNeXt and CNN curves are jet image-based taggers using
CNN-based architectures.
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with a pixel cell, and make use of particle charge information, while

the ResNeXt model only utilizes the distribution of energy within

the jet. However, the ResNeXt-50 model contains nearly 1.5 million

parameters, which is far more than other models such as the CNN

which contains ≈ 610 k parameters and the tree structured neural

network (TreeNiN) which contains ≈ 34 k parameters. Thus powerful

information for discrimination can be extracted with jet image-based

models even from single-channel images, but it may come with the

price of models with large parameter counts.

This model comparison study has been performed in a phe-

nomenological setting on particle level simulations, and the ulti-

mate question remains as to the suitability for using these models

in real experiment settings. In experimental settings, realistic detec-

tor noise, detection efficiency, detector heterogeneity, and data taking

conditions such as pileup, underlying event, and beam evolution will

impact the model performance. Powerful models, including the large

ResNext and CNN models, will likely have sufficient flexibility to

learn powerful discriminators even in these more challenging settings.

However, in general it remains to be seen if these models can be accu-

rate whilst maintaining a low calibration error (where calibration in

this context refers to the criteria that the predicted class probabili-

ties correspond to the true probabilities of a given data input having

a given label) [54], or if additional care is needed to ensure calibra-

tion. Moreover, applications in real experimental settings must con-

sider systematic uncertainties associated with training ML models in

(high fidelity) simulation but applying them in real data with poten-

tially different feature distributions. The relationship between model

complexity and sensitivity to systematic uncertainties in real experi-

ment settings still remains to be thoroughly explored. The potential

benefits in terms of sensitivity to systematic uncertainties when using

neural networks with different structural assumptions, such as convo-

lutional vs. graph models, also requires further study and will likely

depend on the details of how a given systematic uncertainty effects

the feature distributions. Some exploration of these challenges can be

found in Sec. 5.3 examining model sensitivity to theoretical uncer-

tainties and in Sec. 5.4 examining applications of these models in
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HEP experiments. Nonetheless, these remain important and exciting

avenues of future work.

Decorrelated tagging with Jet Images: A common strategy in

HEP to search for a particle is the so-called bump hunt in which the

particle would give rise to a localized excess on top of a smoothly

falling background in the distribution of the mass of reconstructed

particle candidates. For instance, one may aim to identify the W -

boson mass peak over the quark and gluon background from the

distribution of jet mass. In addition to the particle mass being local-

ization, a key to this strategy is that the smoothly falling background

mass distribution can typically be characterized with simple para-

metric functions, thus facilitating a fit of the data to identify the

excess above this background. Jet classification methods can cause

challenges in the aforementioned strategy, as the classifier may pref-

erentially select for jets with a specific mass, thereby sculpting the

selected jet mass distribution of the background and rendering the

search strategy unusable. As a result, one line of work has focused

on de-correlating classifiers from a sensitive feature (e.g. mass) such

that the sensitive feature is not sculpted by the application of the

tagger. Such methods tend to rely on data augmentation or regular-

ization, and overviews of these methods can be found for instance in

[55, 56]. Two recent regularization techniques that have seen strong

de-correlation capability include (i) adversarial techniques [57, 58],

wherein a second neural network is trained simultaneously with the

jet classifier to penalize the jet classifier when the value of the sen-

sitive feature can be predicted from the classifier’s output or its

hidden representations, and (ii) distance correlation regularizers [59],

wherein the jet classifier loss is augmented with an additional reg-

ularization which explicitly computes the correlation between the

classifier predictions and the sensitive feature. In both cases, the

amount of penalization from the regularization can be varied through

a hyperparameter scaling the relative size of the regulation term to

the classification loss.

De-correlation for W -boson jet tagging with jet images using

CNNs was examined in phenomenological studies in [59], using a
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(a) (b)

Fig. 7. (a) For boosted W -boson tagging, the jet mass is shown before applying
a threshold on a trained CNN tagger and after applying a threshold on a standard
and mass decorrelated tagger [59]. A clear reduction in mass sculpting is observed.
(b) The rejection at 50% signal efficiency vs. one over the Jensen–Shannon diver-
gence, computed on the binned jet mass distribution before and after tagging, is
shown for various taggers [59]. Jet image-based CNN taggers are seen to outper-
form other methods, either using adversarial or distance-correlation-based mass
decorrelation.

CNN architecture similar to the model described in [42]. The quark

and gluon background jet mass distribution before and after apply-

ing a threshold on the output of a CNN can be seen in Fig. 7(a),

showing a clear sculpting of the mass distribution. However, when

the distance correlation regularization, or Disco, is used during train-

ing, the mass distribution remains largely unsculpted after applying

a classification threshold. The level of de-correlation can be esti-

mated by examining the agreement between the mass distribution

before and after applying a classifier threshold, for instance using

the Jensen–Shannon divergence (JSD) computed between the binned

mass distributions. For classifier thresholds fixed to 50% signal effi-

ciency, Fig. 7(b) shows the JSD as a function of the background

rejection where the curves are produced through training with vary-

ing sizes of the regularization hyperparameter. The CNN models are

compared with neural networks trained on substructure features and

other classifiers with de-correlation methods applied. The CNN mod-

els, both the adversarial and distance correlation regularization, are



December 14, 2021 16:15 Artificial Intelligence for High Energy Physics 9in x 6in b4322-ch13 page 465

Image-Based Jet Analysis 465

seen to typically provide the highest background rejection for a given

level of de-correlation compared to other models.

5.2. Multi-channel jet tagging with CNNs

Recent work on jet image-based tagging has shown performance gains

through the use of multi-channel images. While single-channel jet

images have provided gains in classification performance over indi-

vidual, or pairings of, engineered substructure features, the perfor-

mance benefits were typically smaller when compared to ML models

trained on larger groups of substructure features (except when very

large models were used, as in [10]). Multi-channel jet images use

calorimeter images as only a single input image channel, with addi-

tional channels computed from charged particle features such as the

momentum, multiplicity, or charge. There is a significant amount of

freedom in choosing the definition of the additional image channels,

allowing for a flexibility in the choice of inductive bias to deliver

relevant information to the CNN.

One challenge in combining charged particle trajectory informa-

tion and calorimeter images is the mismatch in resolution; charged

particle trajectories tend to have a significantly finer spatial reso-

lution than calorimeters, thus leading to the questions of how to

combine such information. As charged particles are not measured

on a regular grid, often the same spatial grid for the calorimeter

component is used for the charged particle image and the energy of

the constituents is summed within each pixel. Alternatively, sepa-

rate CNN blocks (or upsampling procedures) can be used to process

charged and calorimeter images separately into a latent representa-

tion of equal size such that they can be merged for further processing.

Note that when particle flow objects are used, and thus both neutral

and charged particle measurements do no necessarily fall on a grid, a

fine grid can be used to exploit the better charged particle momen-

tum resolution. It should also be noted that while phenomenological

studies at particle-level often use fixed grids to emulate the discretiza-

tion of real detectors, different inputs (i.e. charge vs. neutral) in real

detector settings have different resolutions which may be difficult to

account for in simple discretization approaches.
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Multi-channel jet image-based tagging was introduced in phe-

nomenological studies of discriminating between quark initiated and

gluon initiated jets [39, 41] and has since been explored within the

quark vs. gluon context on the ATLAS experiment [46], in CMS Open

Data [60, 61], and for tagging in heavy-ion collision environments [40].

More broadly, multi-channel jet image tagging has lead to improved

performance in phenomenological studies of boosted top quark jet

tagging [10, 37, 42], as well as in boosted W/Z jet tagging [43] and

in boosted Higgs boson tagging [44, 45]. Notably, multi-channel jet

image-based boosted top tagging has been explored on the CMS

experiment [47] including the comparison and calibration of this dis-

criminant with respect to CMS collision data, thus adding additional

insights into the usability of such models within LHC data analysis.

The use of multi-channel jet images built from charged particle

momentum and multiplicity information within the context of dis-

criminating between quarks and gluons is natural, as the number of

charged particles within such a jet is known to be a powerful discrim-

inant for this challenging task [62]. As such, in the phenomenological

studies of [39] three jet image channels were defined: (1) the trans-

verse momentum of charged particles within each pixel, (2) the trans-

verse momentum of neutral particles within each pixel, and (3) the

charged particle multiplicity within each pixel. The same pixel size

was used in each image, thus facilitating the direct application of

multi-channel CNNs. This approach thus relies on the ability to sep-

arate the charged and neutral components of a jet; while the charged

component is measured using tracking detectors, the unique identifi-

cation of the neutral component of a jet is significantly more challeng-

ing task. However, advancements in particle flow [14] aid in such a

separation, albeit not perfectly and with differing resolutions between

charged and neutral measurements.

The benefit of the multi-channel approach for quark vs. gluon

discrimination can be seen in the ROC and SIC curves in Fig. 8.

Both the calorimeter only approach, denoted Deep CNN grayscale,

as well as the multi-channel approach, denoted Deep CNN w/color,

outperform single features engineered for this task, BDTs trained

using five of such features, and a linear discriminant trained on the
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(a) (b)

Fig. 8. ROC curve (a) and SIC curve (b) for quark vs. gluon tagging using multi-
channel jet images [39]. Comparisons with jet substructure-based discriminants
is shown in (a), while comparison between single-channel and multi-channel jet
image-based tagging with CNNs is shown in (b).

grayscale jet images. In addition, the multi-channel model is seen to

dominate over the single-channel model in both the ROC curve for

jets with a momentum of pT ≈ 1000GeV and in the SIC curve across

a range of jet momentum. The multi-channel approach is found to

be especially beneficial at higher momentum where the jets have a

large charged particle multiplicity.

This multi-channel approach using charged, neutral, and multi-

plicity channels was also found to be powerful in phenomenological

studies of discriminating between boosted Higgs boson jets and a

background of gluon splitting to bb̄ jets in multi-jet events [44]. In

addition to a CNN focused on discrimination based on jet images, this

work also explored simultaneously processing an event image, defined

using the aforementioned three channels over the entire calorimeter,

through a separate set of convolutional layers and combining with

the output of the convolutional processing of jet image before dis-

crimination. By including such an event image, one may explore the

potential benefits of event topology information outside of the jet

image for discrimination. The SIC curve for this discrimination task

can be seen in Fig. 9, where the CNN approaches were seen to signif-

icantly outperform single engineered features. CNNs using only the

jet image, event image, or both (denoted “Full CNN Architecture”

in Fig. 9) were compared, showing that much of the discrimination
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Fig. 9. SIC curve for boosted Higgs to bb̄ tagging using multi-channel jet
images [44]. Models using only jet images, and models using both jet images
and “event images” are shown.

power rests in the jet image whilst the event image may provide some

modest improvements. In addition, the jet image discrimination with-

out the neutral particle channel was also found to be comparable to

one using the neutral channel, indicating that much of the discrimi-

nation power lies in the charged particle information within the jet.

While a clear approach to extending jet images to contain multiple

channels is to sum the momentum of the charged particles or com-

pute multiplicities in each pixel to form an image channel, the high

resolution of the charged particle information allows for the introduc-

tion of additional inductive bias. More specifically, given the set of

charged particles contained in the region of a pixel, one may compute

pixel-level features that may be more amenable to a given discrim-

ination task. This approach was followed for building CNNs to dis-

criminate between (a) up and down type quarks, and (b) quarks

and gluons [41]. In these phenomenological studies, knowledge of

the utility of the jet charge feature [63–65] for discriminating jets

of different parent particle charge inspired the development of the

jet image channel computed per pixel as the pT weighted charge
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(a) (b)

Fig. 10. SIC curves for (a) discriminating down quarks from up quarks [41], and
(b) discriminating between W+ and W− bosons [43]. The CNN κ = 0.1 model
in the left figure and the CNN models of the right figure utilize the per pixel pT
weighted charge image.

Qκ = 1

(
∑

j p
(j)
T )κ

∑
j Q

(j)(p
(j)
T )κ. The SIC curve showing the perfor-

mance of the CNN trained on the two channel jet images, one chan-

nel for pT and one for Qκ per pixel, is shown in Fig. 10(a). The

two channel CNN significantly outperformed the total jet charge and

classifiers trained on engineered features, and is comparable to other

deep architectures trained for this task.

A similar jet charge-based multi-channel CNN was explored for

discriminating between boosted W+/W−/Z boson jets in the phe-

nomenological studies of [43]. The per pixel charge image averaged

over the test set for W+, W−, and Z jet images is shown in Fig. 11.

The geometry of all three images is similar, but the average per pixel

charge differs significantly as expected, with the typical W+ image

carrying a positive pixel value, the typical W− image carrying a neg-

ative pixel value, and the typical Z image having charge close to

zero. The SIC curve for discriminating between W+ and W− jets

can be seen in Fig. 10(b). Two CNNs were explored in this work,

one denoted CNN in which both a pT and Qκ image were processed

together (i.e. as a single multi-channel image processed by convolu-

tional layers) and one denoted CNN2 in which each channel is pro-

cessed by a separate stack of convolutional layers and then combined
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Fig. 11. Average image of the per pixel pT weighted charge Qκ is shown for W+

(left), W− (middle), and Z-bosons (right) [43].

before the classification layers. Both CNNs significantly outperform

methods based on engineered features.

Multi-channel jet images were explored for top tagging in the phe-

nomenological studies of [42], using four-channel jet images defined

with the neutral jet component as measured by the calorimeter, the

charged particle sum pT per pixel, the charged particle multiplicity

per pixel, and the muon multiplicity per pixel. The architecture is

discussed in Sec. 5.1 within the context of single-channel jet images.

The inclusion of the muon image channel targets the identification

of b quark initiated subjets within the top jet as muons can be pro-

duced in b-hadron decays. As noted in Sec. 5.1, several changes to the

model architecture, preprocessing, and training procedure relative to

the first proposed DeepTop model [36] were included in this work.

The impact of these individual changes can be see in Fig. 12 wherein

developments on top of the first proposed DeepTop model [36] are

sequentially added to the model and the resulting ROC curve is

shown. The inclusion of multiple “color” channels was only seen to

provide modest performance gains over single-channel jet images.

Notable among changes that led to the largest improvements were

changing the optimization objective to be more suitable for classifi-

cation tasks and changing the optimizer to ADAM (denoted train-

ing in the figure), increasing the model size (denoted architecture

in the figure), and increasing the sample size. In agreement with

these results, recent CNN models built for processing jet images

have also tended to focus on larger models with large samples for

training.
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Fig. 12. ROC curve of boosted top jet tagging efficiency vs. background quark
and gluon rejection for the minimal DeepTop model [36] compared with models
sequentially including the changes proposed in [42].

5.3. Sensitivity to theory uncertainties

While matrix element and parton shower Monte Carlo generators

often provide high fidelity predictions of the data generation pro-

cess, they provide only approximations to the scattering and shower-

ing processes and empirical models of the hadronization process. As

such, uncertainties in the theoretical predictions of these generators

must be propagated to downstream analyses. One mechanism for

doing this is to compare an observable computed with samples from

different Monte Carlo generators. While not a precise estimation of

theoretical uncertainty, this comparison can provide a test of whether

an observable is potentially sensitive to the different approximations

of the different generators.

This sensitivity has been examined for CNN-based taggers oper-

ating on jet images in several works, and we focus here onW -tagging

in a phenomenological study [66] and on quark/gluon tagging using
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Fig. 13. (a) ROC curves for boosted W tagging for a jet image-based CNN tagger
trained on Pythia generated jet images and applied to jet images from various
generators are shown [66]. (b) In events with the ATLAS full detector simulation,
ROC curve for quark vs. gluon tagging for jet image-based CNN tagger trained
and applied on Pythia and Herwig-based jet images are shown [46].

ATLAS simulation [46]. As the CNN + jet image approaches utilize

the distribution of energy throughout a jet image to discriminate, one

concern is that the differences in modeling of the jet formation pro-

cess by different generators may lead to large performance variations.

To study this, [46] trained a CNN model on boosted W -boson jet

images generated by Pythia [67, 68] and applied this trained model on

samples of boostedW boson jet images generated by different Monte

Carlo generators. The ROC curves of the performance can be see in

Fig. 13(a), wherein, at the same signal efficiency, reductions of back-

ground rejection of up to 50% can be seen when this tagger is applied

to different generators. While such a variation is not ideal, it should

be noted that similar variations were seen when a tagger of only sub-

structure features, a binned two-dimensional signal over background

likelihood ratio of the distribution of jet mass and τ21, is applied for

the same tagging task. Similar levels of performance variation are

also seen in the ROC curves built for quark vs. gluon tagging in
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ATLAS simulation with a CNN trained on Pythia jet images applied

to Herwig [69] generated jet images, as seen in Fig. 13(b). Interest-

ingly, when the test is reversed and the CNN is trained on jet images

from Herwig and applied to jet images from Pythia, the tagging per-

formance is similar to the CNN trained and applied to Pythia jet

images. This suggests that the CNNs in both cases are learning simi-

lar representations of information useful for quark vs. gluon tagging,

but the amount this information is expressed in the jet images varies

between generators [46]. Thus while these studies show that CNNs

applied to different samples may vary in performance, there may be

an underlying robustness to the information learned by CNNs for jet

tagging.

Beyond the potential tagging variations due to generator uncer-

tainties, a key question when developing a jet observable of any kind

is whether such an observable is theoretically sound and calcula-

ble. This is often expressed as whether the observable is infrared

and collinear (IRC) safe. IRC safety for jet image-based tagging of

boosted top jets with CNNs has been examined empirically in the

phenomenological studies of [70]. In this work, within the context

of boosted top jet tagging using a jet image-based CNN, a feature

denoted ΔNN is studied which explores the impact of merging

soft/collinear radiation with nearby partons. ΔNN is constructed as

follows: (a) a CNN was trained on particle level jet images for boosted

top tagging, (b) parton level jet images are generated for boosted

top decays without (unmerged) and with (merged) adding the clos-

est gluon to a top quark parton together before forming the image,

(c) the difference in CNN output between unmerged and merged jet

images is defined as ΔNN . By examining the distribution of ΔNN and

its variations with features that explore soft or collinear effects, the

sensitivity of the CNN tagger to IRC effects can be studied empiri-

cally. This can be seen in Fig. 14, where the 2D distribution of ΔNN

and the gluon relative transverse momentum, and the ΔR to the

parton, are shown. As either the gluon relative momentum or the

ΔR tend to zero, the ΔNN distribution tends towards a sharp peak

at 0, which would be indicative of the CNN being insensitive to IRC

perturbations.
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(a) (b)

Fig. 14. ΔNN vs. (a) gluon relative transverse momentum and (b) ΔR between
the gluon on the nearest top decay parton. ΔNN is the difference between particle
jet trained CNN output applied on parton level jet images with and without merg-
ing the closest gluon with a top decay parton [70]. Red points denote the point
at which 90% of events within a vertical slice of the distribution are contained.

5.4. Jet images in LHC experiments

The ultimate tests for the efficacy of jet image-based tagging

approaches are that the performance observed in phenomenological

studies is also observed in realistic high fidelity simulations and that

their performance generalizes to real data without large systematic

uncertainties. With that in mind, jet image-based tagging approaches

have been examined for quark vs. gluon tagging in ATLAS simula-

tions [46] and in CMS Open Data [60] simulated samples [61], and for

boosted top quark jet tagging in CMS simulation and real data [47].

The ATLAS quark vs. gluon jet image-based CNN tagger [46]

was trained using fully simulated ATLAS events [71, 72]. Multi-

channel jet images were used, with one channel containing an image

of the sum of measured charged particle track pT per pixel. A sec-

ond image for calorimeter measurements was examined in two forms,

a jet image containing either the transverse energy measured in

calorimeter towers of size Δη × Δφ = 0.1 × 0.1 or a jet image

containing a projection onto a fixed grid of topologically clustered

calorimeter cells (topo-clusters) [13]. Translation, rotation, and nor-

malization pre-processing was performed. A three-layer CNN with
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(a) (b)

Fig. 15. ROC curves for quark jet efficiency vs. gluon jet rejection in ATLAS
fully simulated datasets showing comparisons of (a) jet image-based CNN taggers
against jet width and number-of-tracks discriminants, and (b) of jet image-based
CNN taggers trained with different input images [46].

filter sizes of 5× 5, 5× 5, and 3× 3, respectively, and max pool-

ing after each convolutional layer was used. As can be seen in the

ROC curve in Fig. 15(a), the CNN processing the track + tower jet

images outperforms other standard taggers for quark vs. gluon tag-

ging. Interestingly, the standard tagger based on the combination of

two jet substructure features (number of charged particles and the

jet width) outperforms the CNN approach at low quark efficiency.

This is likely due to the track image discretization that may result

in multiple tracks falling in the same pixel. As track multiplicity is

not stored in the images, this useful discriminating information is

lost for the CNN. In Fig. 15(b), the impact on performance of utiliz-

ing different jet image channels was examined, wherein utilizing only

calorimeter-based jet images provides significantly less performance

than tagging using track and calorimeter images. In addition, topo-

cluster-based images, which are formed by projecting the continuous

topo-cluster direction estimates into a discrete grid, are seen to have

lower performance than tower-based images. This is likely due to the

projection onto a fixed grid for use in a CNN, as this may cause a

loss of information about the spatial distribution of energy within a

topo-cluster and may result in the overlap of several clusters in the

same pixel. Moreover, it can be seen that the track + calorimeter

image approach does not reach the performance found when a CNN
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is trained on a jet image formed from truth particles (i.e. without

the impact of detector smearing). It was noted in [46] that when

comparing the performance of a CNN trained on only track images

to a CNN trained on only charged truth particles, the observed per-

formances were extremely similar. This similarity is driven by the

excellent charged particle track resolution, and further indicates the

difference between the track + calorimeter jet image-based CNN tag-

ger and the truth particle-based CNN tagger is driven by the low

resolution, and thus loss of information, of the calorimeter.

The CMS boosted top jet image-based CNN tagger [47], denoted

ImageTop, was trained on fully simulated CMS events [71]. Multi-

channel jet images with six channels were built using particle flow

(PF) objects found within an R = 0.8 jet. Before pixelation, parti-

cle flow objects within the jet are pre-processed using translation,

rotation, flipping, and normalization. The six channels were defined

as the sum of PF candidate pT per pixel with one channel contain-

ing all PF candidates, and one channel each for PF candidate flavor,

i.e. charged, neutral, photon, electron, and muon candidates. Image-

Top was based on the multi-channel DeepTop algorithm [42], and

comprises four convolutional layers each using 4 × 4 filter sizes and

max pooling after two consecutive convolutional layers, followed by

four dense layers before classification. To aid the classification of top

quark decays containing b-quarks, a b-tagging identification score [73]

evaluated on subjets of the large jet was also fed as input to the

dense layers of the tagger before classification. In addition to a base-

line ImageTop, a mass decorrelated version denoted ImageTop-MD

was also trained, wherein the mass decorrelation was performed by

down-sampling the background quark and gluon jet samples to have

the same mass distribution as the sample of boosted top jets used

for training. In this way, the discriminating information from the jet

mass is removed to first order.c

cAs the authors note, though this method is not guaranteed to remove tagger
mass dependence, it was found to work sufficiently well in this case as the baseline
tagger inputs were not observed to have a strong correlation to mass.
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Fig. 16. Examination of the CMS ImageTop tagger [47] trained on fully simulated
CMS events in (a) ROC curves of the quark/gluon jet efficiency vs. boosted
top jet tagging efficiency comparing several taggers and showing the dominant
performance of the deep neural net-based taggers, and (b) the impact of applying
a threshold on tagger outputs to the background jet mass distribution wherein
the mass decorrelated taggers show significantly less sculpting.

The ROC curve showing the performance of the ImageTop model

is seen in Fig. 16(a). Several algorithms were compared to ImageTop,

including several jet substructure feature-based taggers and a deep

neural network, denoted DeepAK8, based on processing PF candi-

dates. ImageTop is seen to outperform all other algorithms except

DeepAK8, and generally the deep network-based taggers are found

to significantly outperform other algorithms. Moreover, once mass

decorrelation is included, the ImageTop-MD is found to be the high-

est performing mass-deccorrelated model. The smaller change in per-

formance due to mass decorrelation of ImageTop relative to other

algorithms such as DeepAK8 may be due the the image preprocess-

ing; images are both normalized and “zoomed” using a Lorentz boost

determined by the jet pT to increase uniformity of jet images over

the pT range. These steps can result in a reduction of mass informa-

tion in the images and thus a reduction of the learned dependence

of ImageTop on the mass. The mass spectrum for background quark

and gluon jets before (in gray) and after applying a 30% signal effi-

ciency tagging threshold for ImageTop and ImageTop-MD (in green)
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can be seen in Fig. 16(b). The decorrelation method greatly helped

to preserve the mass distribution and was not seen to significantly

degrade performance, as seen in the ROC curves of Fig. 16(a).

As noted early, one concern with jet image-based approaches to

jet tagging is their potential dependence on pileup conditions. For

a fixed ImageTop tagging threshold giving an inclusive 30% top jet

tagging efficiency, the variations of the top jet tagging efficiency as a

function of the number of primary vertices in the event can be seen

in Fig. 17. Efficiency variations for both ImageTop and ImageTop-

MD were found to be small, at the level of less than 1%, across the

values of number of primary vertices. A similar level of stability was

observed for the background mis-identification rate. This stability

draws largely from the pileup mitigation applied to the jet before

creating the jet images, and this stability is not disturbed by the

CNN discriminant.
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Fig. 17. Variations as a function of the number of reconstructed vertices in an
event of boosted top jet tagging efficiency after applying a fixed tagger output
threshold on the CMS ImageTop tagger [47], as well as several other taggers,
trained on fully simulated CMS events.
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While the simulation-based training of classifiers can lead to pow-

erful discriminants, differences in feature distributions between data

and simulation could cause the tagger to have differing performance

between data and simulation. As such, the discriminant is typically

calibrated before application in data. Calibration entails defining

control samples of jets in data where the tagging efficiency and mis-

identification rate can be measured in data and simulation. The effi-

ciency of the tagger as a function of jet pT is evaluated in data

and simulation, and a pT -dependent ratio of efficiencies known as a

Scale Factor (SF) is derived. This SF can then be used to weight

events such that the simulation trained tagger efficiency matches the

data. The SFs for the ImageTop signal efficiency were estimated in

a sample of single muon events selected to have a high purity of

top-pair events in the 1-lepton decay channel, while quark and gluon

background mis-identification rates were estimated in dijet samples

and samples of photons recoiling off of jets. Systematic uncertainties

were evaluated on the data based estimation of the tagging efficiency

and propagated to SF uncertainties. These systematic uncertainties

included theory uncertainties in the parton showering model, renor-

malization and factorization scales, parton distribution functions, as

well as experimental uncertainties on the jet energy scale and res-

olution, pmiss
T unclustered energy, trigger and lepton identification,

pileup modeling, and integrated luminosity, as well as statistical

uncertainties of simulated samples.

The scale factors for ImageTop and ImageTop-MD for both the

top tagging efficiency and the background mis-identification rate

can be found in Fig. 18. The signal efficiency scale factors were

largest at low momentum, showing a departure from unity of around

10%, but were significantly closer to unity in essentially all other

pT ranges. The systematic uncertainties ranged from approximately

5–10%, with the largest uncertainties at low pT . The scale factors for

the mis-identification rate tended to be larger, up to a 20% departure

from unity in dijet samples but with smaller scale factors in the pho-

ton+jet samples. These calibrations indicate that while some depar-

tures from unity of the scale factors are observed, they are largely

consistent with observations from other taggers. The situation is
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Fig. 18. Calibration scale factors as a function of jet pT for (a) the top jet tagging
efficiency in single muon events, and (b) the quark/gluon jet mistag efficiency in
dijet events, for the CMS ImageTop tagger [47] trained on fully simulated CMS
events and calibrated to data.

similar in terms of the scale factor uncertainties. As such, the jet

image and CNN-based tagging approach can be seen to work well

in data, without extremely large calibrations and uncertainties, thus

indicating its viability for use in analysis.

6. Understanding Jet Image-Based Tagging

Interpretability and explainability are vital when applying ML meth-

ods to physics analysis in order to ensure that (i) reasonable and

physical information is being used for discrimination rather than

spurious features of the data, and (ii) when training models on sim-

ulation, models are not highly reliant on information that may be

mismodeled with respect to real data. Interpretability and explain-

ability of deep neural networks is highly challenging and is an active

area of research within the ML community [74]. While a large number

of techniques exist for examining CNNs, a subset of the techniques

from the ML community have been applied within the study of jet

images. A benefit of the computer vision approach to jet analysis is

that while the data input to ML models may be high dimensional,

in this case with a large number of pixels, they can be visualized on

the image grid for inspection and interpretation. Thus the tools for

interpreting CNN models applied to jet images tend to center on this
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aspect with tools such as pixel-discriminant correlation maps, filter

examination, and finding images that maximally activate neurons.

Given a jet image x with pixel values {xij} and discriminant

c(x), one can examine how changes to the input may effect the

discriminant prediction. Correlation maps examine Pearson corre-

lation coefficients between each pixel and the discriminant pre-

diction, thus probing how each input feature is correlated with

increases and decreases in prediction over a sample of inputs. For

a sample of N inputs, the correlation map is computed as ρij =
1

σxijσc

∑N
k=1(x

(k)
ij − x̄ij)(c(x

(k)) − c̄), where x̄ij = 1
N

∑N
k=1 x

(k)
ij and

c̄ = 1
N

∑N
k=1 c(x

(k)) are the mean feature and prediction values, while

σxij = 1
N

∑N
k=1(x

(k)
ij − x̄ij)2 and σc = 1

N

∑N
k=1(c(x

(k)) − c̄)2 are the

variances of the feature and prediction values.

The filters of a CNN perform local feature matching and are

applied directly to the pixels of the image (or convolved image), and

thus one may plot each filter as an image and examine what features

each filter is targeting. As there can be a large number of filters at

each CNN layer as well as a large number of channels in layers deep

within a CNN, this approach tends to be easiest at the first layers of

the CNN. In addition, rather than examining the filters themselves,

after processing an image by a CNN model, one may examine the

output of any given filter. This will produce a convolved image in

which the local feature matching has been applied at each position

of the image and will highlight the location of the image in which a

given filter has become active. In order to highlight difference in con-

volved images between classes, the difference between average con-

volved image between two classes can highlight relative differences

in the spatial location of information relevant for discrimination.

Maximally activating images or image patches correspond to

applying a CNN model on a large set of images and finding the

images, or image patches, that cause a given neuron to output a

large activation. In the case of neurons in the fully connected layers

at the end of the network, this corresponds to full images, whilst for

neurons in convolutional layers this corresponds to image patches in

which the neuron is most active.
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6.1. Probing CNNs

In Fig. 19, the filters in the CNNs for W tagging [23] and top tag-

ging [36] with jet images are examined. Several filters from the first

convolutional layer of the CNN for W tagging are shown in the top

row of Fig. 19(a), and the bottom row shows the corresponding dif-

ference between the average convolved image resulting from apply-

ing each filter. While the filters are not easy to interpret, one can

see dark regions of the filters corresponding to relative locations of

large energy depositions in the jet image as well as some intensity

gradients that help identify regions where additional radiation may

be expected. After applying the filters to sets of signal and back-

ground images and taking the difference of the average convolutions

to each sample, one can explore how each filter is finding different

information in signal and background-like images. The more signal-

like regions are shown in red while the more background-like regions

are shown in blue. The blue region at the centers identifies wider

(a) (b)

Fig. 19. (a) Filters from the first convolutional layer for boosted W tagging with
a jet image-based CNN tagger [23] are shown in the top row, while the bottom
row shows the average difference between signal and background-convolved images
from the corresponding filter in the top row. (b) The average difference between
signal and background-convolved images for several filters of the DeepTop jet
image-based CNN tagger for boosted top jets [36].
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energy depositions at the center of the jet image, whilst the signal-

like regions at the bottom of such images identify common locations

for the subleading energy deposition. There is a strong focus on iden-

tifying signal-like radiation between the leading two energy deposi-

tions. Similarly for the DeepTop model, in Fig. 19(b) one can see the

convolved average image difference for several filters at each layer

of the model, where the rows correspond to layer depth from top

to bottom. We again see the tendency for the central region to be

background-like, whilst the signal-like regions correspond to differ-

ent locations of the subleading subjet and radiation between the two

leading subjets. One can also see broader radiation patterns which

vary depending on the location of the subleading subjet and attempt

to identify likely locations of additional subjets in the image.

Figure 20 examines the average of the 500 images that lead to the

highest activation for each of several neurons in the last (dense) layer

of the CNN for W tagging [23]. The fraction of signal jet images in

this sample is also noted, and the images are ordered left to right

in terms of this signal fraction. The neuron that activates predomi-

nantly on signal jet images has a clear two prong structure and a tight

core between these two prongs where radiation is expected. The neu-

ron activating predominantly on background jet images shows a very

different pattern, with a much broader central region where energy

may be found and a broad ring around the central region where

additional wide angle radiation may be present. These features are

in agreement with the known physics of such jets.

Fig. 20. The average jet image which most activates a neural in the final layer of
a jet image-based CNN for boosted W tagging [23]. The fraction of signal events
for each neuron is noted, thus indicating if the neuron was most activated by
signal or background-like image.
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Fig. 21. Correlation images showing the Pearson linear correlation coefficient per
pixel between jet image pixels and a jet image-based CNN tagger output for (a)
boosted W tagging [23], and (b) boosted top tagging with DeepTop [36].

For a more global view of what the discriminant has learned, one

can examine the correlation maps for the CNN W tagging [23] and

the DeepTop model [36] using full preprocessing in Fig. 21. Struc-

turally they are quite similar,d however the regions of signal (red)

and background (blue) correlation appear inverted. For W tagging,

the location of the subleading subjet at the bottom of the image

is a strong indicator of signal owing to the fact that W jets have

a two particle decay structure which strongly restricts the relative

location of the two subjets for a fixed jet pT . This relative location

is not as strict in quark/gluon jets and may vary due to additional

radiation. The region around the central core of the jet is corre-

lated with background-like images where additional radiation may

be found. For top tagging, a strong energy deposition above the cen-

tral leading energy deposition as well as addition energy depositions,

i.e. the third expected subjet in a top quark decay, are correlated

with signal-like images. This correlation pattern indicates that the

discriminant relies heavily on the identification of the third subjet,

as would be expected in a top quark decay.

dThe relative location of the second subjet was rotated to be below the leading
subjet in the case of W tagging and above the leading subjet for DeepTop which
leads to the apparent flip in the correlation images over the horizontal axis.
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7. Other Applications of Jet Images

In addition to classification tasks, the approach of using jet images

and convolutional layers for processing have also been explored in

several other data analysis challenges. We briefly examine some of

these applications, showing how this computer vision to jet analysis

can be powerful in a variety of settings.

7.1. Jet energy regression and pileup removal

Among the major challenges facing analyses utilizing jets at high

luminosity hadron colliders is the presence of pileup, or interactions

occurring in the same bunch crossing as the primary hard scatter-

ing. Pileup interactions lead to additional particles which may fall

within the catchment area of a jet and thus are effectively “noise”

in the estimation of jet properties. A variety of techniques have been

proposed for pileup mitigation in jets [17] ranging from subtracting

an average pileup energy density from a jet to techniques targeting

the classification of each particle in a jet as pileup or from the hard

scatter.

Within the paradigm of jet images, one approach to pileup mit-

igation is to predict the per pixel pileup contributions, as is done

in the PUMML method [75]. In this technique, a jet can be consid-

ered as composed of four components, the charged and neutral hard

scatter contributions and the charged and neutral pileup contribu-

tions. While the charged components of the hard scatter and pileup

are known from charged particle tracking measurements, the neutral

hard scatter and pileup components are only observed together in

calorimeter measurements. PUMML performs a per pixel regression

of the neutral component of the hard scatter contributions to the jet.

A multi-channel jet image was used as input, with one channel for

each the hard scatter and pileup charged components of the jet, and

one channel for the combined neutral component. As the charged

contribution measured by tracking detectors has significantly better

resolution than the neutral component, a significantly smaller pixel

size of Δη × Δφ = 0.025 × 0.025 was used for the charged images

than the Δη ×Δφ = 0.1 × 0.1 pixels sizes used for the calorimeter
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images. Upsampling was then used to create a finer pixel image that

matches the resolution of the charged component. These three chan-

nel images were then processed by a three layer CNN with a per

pixel output prediction of the neutral hard scatter component of

the jet.

The hard scatter neutral component prediction was combined

with the known charged component to estimate jet properties and

examine the efficacy of the method. In phenomenological studies

using simulated dijet events produced from the decay of a hypotheti-

cal new resonance and with an average of 140 additional pileup inter-

actions, the distributions of jet momentum and mass before and after

pileup mitigation from PUMML and other methods were compared,

as shown in Fig. 22. In terms of momentum prediction, comparing

the pileup corrected distributions to the true distribution showed

that all methods produced predictions of similar quality, though

PUMMPL was seen to have lower per-jet reconstruction error. In

terms of jet mass distribution prediction, PUMML was seen to better

replicate the underlying true jet mass distribution over other tech-

niques. While not yet applied in an experiment setting, similar ideas

applied to pileup reduction for missing energy estimation have been

explored on ATLAS in fully simulated events [76] and have shown

promising initial results.

(a) (b)

Fig. 22. The impact of pileup mitigation on (a) jet pT , and (b) jet mass, for var-
ious mitigation techniques including the jet image-based PUMML algorithm [75].
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7.2. Generative models with jet images

Among the earliest work applying deep generative models as approx-

imations for HEP high fidelity simulators made use of jet images as

the data representation [28]. The aim of this work was to learn the

structure of jet images as they may appear in a calorimeter and sub-

sequently draw sample jets from the learned generative model. As a

neural generative model can be significantly faster than running a

high fidelity simulator, such approaches have the potential to signifi-

cantly reduce the large simulation times in HEP. In the phenomeno-

logical studies of [28], a generative adversarial network (GAN) setup

was used to train a generative model to transform samples from a

standard normal distribution into samples of jet images, whilst a

second discriminator network was used to penalize the generative

model if it could discriminate between real and generated jet images.

Locally connected layers as well as convolutional layers were inves-

tigated for use in the networks. The distribution of pT for W -boson

jets and of quark/gluon jets were compared between the Pythia sim-

ulator [67, 68] and the GAN generated images, as seen in Fig. 23(a).

Figure 23(b) shows a set of Pythia simulated jet images in the top

row and their nearest-neighbor GAN generated jet images in the

bottom row. Both the distribution of jet properties and the general

(a) (b)

Fig. 23. (a) The jet image pT for W -boson jet and quark/gluon jets comparing
the GAN generated distribution to the Pythia simulated distribution [28]. (b)
A visual comparison of Pythia simulated (top) and the nearest GAN generated
(bottom) jet images.



December 14, 2021 16:15 Artificial Intelligence for High Energy Physics 9in x 6in b4322-ch13 page 488

488 M. Kagan

structure of jet images were reasonably well produced by the GAN

approach. While not yet reaching the fidelity of HEP simulators, this

early work in HEP data generation showed the potential utility in

examining fast approximation simulators from deep generative mod-

els for HEP.

7.3. Anomaly detection

The use of CNNs to process jet images provides a powerful scheme

to learn useful representations of the information contained within a

jet. In typical classification tasks, these representations are used for

discriminating classes of jets. However, when searching for signs of

new physics, one may not know a priori the properties of such a new

signal but only that such a signal would have properties that devi-

ate from known Standard Model processes. Such anomaly detection

tasks are challenging due to the lack of signal knowledge and thus the

inability to use standard classifiers for this task. Within the context

of a search for jets produced by new particles, recent work has com-

bined the power of CNN representation learning on jet images with

autoencoder network architectures [77, 78] to search for anomalous

jets [79, 80].

Autoencoder models are designed to map an input to a com-

pressed latent representation through an “encoder”, and then decom-

press the latent representation back to original input via a “decoder”.

Such models are trained to minimize the “reconstruction error” com-

puted as the MSE between the original input and the autoencoder

output. The reconstruction error can be used to identify inputs

that are not well adapted for the compression and reconstruction

scheme learned by the autoencoder. When used for anomaly detec-

tion, autoencoders are trained to compress and reconstruct one class

of events. Under the assumption that this compression and recon-

struction scheme would not be well adapted for inputs from classes

different from the training sample, the reconstruction for inputs from

new classes is expected to perform poorly and thus lead to a large

reconstruction error.
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Fig. 24. (a) The distribution of autoencoder reconstruction error trained on
quarks/gluon jets, showing potential top or gluino signal distributions. (b) ROC
curves for identifying boosted top jets from quarks/gluon jets using autoencoders
with various architectures, wherein the jet image-based CNN is shown to outper-
formance other methods [80].

When applied to searches for anomalous jets in phenomenological

studies, jet images have been examined as the data representation,

and convolutional layers combined with max pooling and with

upsampling have been used for the encoder and decoder, respectively.

In this case, the autoencoder is trained on a background sample of

standard quark and gluon jets, and the ability to identify different

signal jets was examined. The reconstruction error was used directly

to search for excesses of events, as seen in Fig. 24 where the sig-

nal was either a sample of top quark jets or jets from a hypotheti-

cal new gluino particle. The distribution of the reconstruction error

shows a large separation from the background, denoted QCD, and

the potential signal jets. The ROC curve for identifying top jets,

produced by scanning a threshold on the reconstruction error, is

also shown and compares the CNN-based autoencoder with dense

architecture-based autoencoder applied to a flattened vector of pixel

pT ’s (denoted Dense), principle components analysis, and applying

a threshold only on the jet mass. The jet image+CNN architecture

approach dominated the other methods. However, it should be noted

that this domination was not seen for gluino jets.
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One challenge with autoencoder approaches for anomalous jet

searches is the possibility that the autoencoder reconstruction qual-

ity is dependent on the jet mass. In this case, the signal identifica-

tion efficiency could be mass dependent. Moreover, if a bump hunt

analysis in the jet mass spectrum is subsequently performed, such

a reconstruction error correlation with mass could disturb the jet

mass distribution and render the bump hunt strategy infeasible. To

overcome such a challenge, an adversarial approach was investigated

in [79], wherein a second network is simultaneously trained with the

autoencoder to predict the jet mass from the autoencoder output

whilst the autoencoder is penalized during training if the second

network is successful. The resulting adversarial autoencoder perfor-

mance for identifying a top jet signal can be see in Fig. 25. With the

adversary in use, the jet mass distribution was kept relatively stable

even when applying a threshold on the reconstruction error which

only permits a 5% background jet false positive rate. However, as

seen in the ROC curve, increasing the strength λ of the adversarial

(a) (b)

Fig. 25. (a) The jet mass distribution after applying a threshold allowing 3%
or 5% quark/gluon jet background efficiency on the jet image-based adversarial
autoencoder. The background is largely unsculpted and the top jet peaks can be
clearly seen [79]. (b) ROC curves for quark/gluon jet rejection vs. top jet efficiency
for jet image-based adversarial autoencoders with varying strength of adversarial
penalty during training [79].
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penalty on the autoencoder could significantly decrease the top jet

signal sensitivity.

8. Conclusion

The representation of jets as images has proven highly useful for

connecting the fields of high-energy physics and machine learning.

Through this connection, advanced methods in deep learning and

computer vision, primarily with convolutional neural network archi-

tectures, have been applied to the challenges of jet physics and have

shown promising performance both in phenomenological studies and

in experiments at the LHC. Jet images have seen a broad set of use

cases, not only for jet classification but also for energy regression,

pileup noise removal, data generation, and anomaly detection. Image-

based jet tagging remains an active area of research and broad classes

of state-of-the-art deep neural network architectures for computer

vision are being explored within the field of high-energy physics.

While much of the work presented in this text has been in phe-

nomenological studies using particle level simulations, there remains

open question on the applicability of these methods on high-fidelity

simulated data and in real experimental data. In more realistic set-

tings, the complexity of the detector and the data-taking condi-

tions, and the challenges of the differences between simulated and

real data will be key challenges for understanding and optimiz-

ing these models. Understanding the relationships in realistic data

between model accuracy and calibration error, and model complex-

ity/structural assumptions and sensitivity to systematic uncertain-

ties, will be important for the long-term efficacy of these image-based

methods. Nonetheless, initial results from both ATLAS and CMS

have shown promise, pointing towards the exciting potential for jet

imaging in the future.
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Particle identification is a central task in the analysis of data from
experiments. This is particularly true for data from Neutrino detectors
where observations are made only through the products of interactions.
The information available for identification varies depending on detector
type. We survey various machine learning methods for particle and inter-
action identification. In particular, we cover applications making use of
recently developed deep learning algorithms.

1. Introduction

Reliably identifying the type of particle observed in a detector is a

key task for any particle physics experiment. This is no less true for

experiments dedicated to studying the neutrino, which does not leave

direct evidence of its path through a detector. Instead, the neutrino’s

flavor and kinematics must be inferred through the charged particles

produced from its interactions with nuclei, which are energy depen-

dent. Current experiments study neutrinos produced over a wide

range of energies, from low energy neutrinos from nuclear reactors

producing particles around 1 MeV to astrophysical neutrinos pro-

ducing particles in the TeV to PeV scale. As a result, several types

of detectors are in use, and the task of particle identification in these

detectors will differ.

In this chapter, three broad classes of neutrino detectors will be

discussed: scintillator detectors, Cherenkov ring imaging detectors,
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Table 1. Detector types discussed in this chapter. This is only a subset of the
detectors used in neutrino experiments.

Detector Typical neutrino Primary source of
type Signal(s) energy range particle ID power

scintillator scintillation photons 0.5–10 MeV spatial and temporal
pattern of photons
detected

ring-imaging
cherenkov

cherenkov photons 1 MeV–10 GeV spatial pattern of
photons detected

segmented ionization or
scintillation photons

10 MeV–10 GeV charged particle
trajectory

time-projected
chamber

ionization 10 MeV–10 GeV charged particle
trajectory

and tracking detectors. These are some of the most common detectors

and represent most (but definitely not all!) of detector technologies

employed by future experiments. Table 1 lists the detectors discussed

and the neutrino energies for which each are typically used. For each

detector type, we will briefly describe the underlying physics and

an example of a technique that utilizes that physics to classify par-

ticles or neutrino interactions. What the authors hope will emerge

from this survey is the large range of techniques applied. However,

the development of machine learning (ML) techniques for particle

identification (ID) is still very much in its infancy, and there are

still many possible directions to explore. Such future efforts will play

important roles in the field’s effort to fully understand the properties

of the neutrino.

2. Behavior of Particles in Matter

The behavior of a particle as it travels through matter is dictated

largely by its charge, mass, energy, and the fundamental forces it

couples to [1]. Particles with electric charge are the most visible types

of particles due to electromagnetic interactions with the atoms in the

detector. These interactions will produce signals that can be used

to directly observe their trajectories. Electrically neutral particles

like photons, neutrons, and neutrinos are observed only through the
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production of charged particles via interactions with the atoms of

the detector.

Charged particles when traveling through the detector transfer

their energy to nearby atoms or molecules. One result of this inter-

action is that electrons within the atoms or molecules can be given

enough energy to move into an excited orbital state, temporarily pro-

ducing excited atoms or molecules. Another result is that one or more

electrons are given enough energy to become unbound from the atom

or molecule producing a free electron and positively charged atom,

i.e. ion, or charged molecule.

The excited and ionized atoms/molecules are produced along the

path of the charged particle and provide the means to infer the par-

ticle’s properties. Excited atoms and molecules eventually transition

back into their ground state. In the process, some transitions will

produce photons that can be detected with photosensors. This pro-

cess of light production is referred to as scintillation and will be

discussed further in Sec. 4. There is also a special case of photon

production when the charged particle exciting the molecules in the

detector travels faster than the speed of light in the medium. This

is called Cherenkov radiation and will be discussed further in Sec. 5.

The free electrons liberated from their atoms are called ionization

electrons. Ionization electrons can be collected and measured, often

in a way that attempts to preserve the spatial pattern left behind by

the initial charged particle trajectories. Detectors which record the

spatial information of trajectories are called tracking detectors and

will be discussed in Sec. 6.

Both the spatial patterns of the trajectories and the ionization cre-

ated per distance traveled are used to distinguish between particles

of different types. Different particles making their way through the

detector will leave different patterns of trajectories due to the types

of interactions available to them. The behavior of the four common

charged particles detected in neutrino experiments are as follows.

Electrons have low mass and, consequently, are easily deflected

when traveling through matter. When they do, they can radiate a

photon. This photon can then interact with the medium by the photo

electron effect, Compton scattering or photon conversion. For the
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first two processes, one new electron is produced; for the latter a

positron–electron pair is produced. Either way, one or two new trajec-

tories are created and are potentially separated some distance from

the original trajectory. Being electrons or positions, they too can

radiate producing more trajectories. This behavior can repeat with

the end result a cascade of trajectories branching out into what is

referred to as an electromagnetic (EM) “shower”.

Muons are relatively heavier and are not as easily deflected. As a

result, they produce a simple linear trajectory, or “track”. However,

muons are light enough such that their trajectories can be observed

to wobble due to multiple Coulomb scattering.

Protons are very heavy and produce a linear trajectory with

little scattering. Composed of quarks, protons can often interact with

nuclei in the detector and scatter, making a sharp change in their

trajectory or even producing other particles. With sufficiently high

energy, there are enough additional particles that the proton induces

a cascade of trajectories referred to as a hadronic shower.

Charged pions have a mass similar to a muon and produce sim-

ilar “track” trajectories. Like protons they are composed of quarks

and can scatter on nuclei and produce more particles. At high enough

energies, pions induce hardonic showers as well. Hadronic showers can

be discriminated from EM showers using their widths. Compared to

electrons and photons in an EM shower, pions and protons inter-

actions produce scattering or secondary particles at larger angles.

The result is that hadronic showers are wider than electromagnetic

showers.

For neutral particles, their presence is inferred through interac-

tions which produce the above charged particles. Photons typically

are observed through the production of electrons and positrons. Neu-

trons interacting with nuclei will produce pions and protons. Sec-

tion 6 will discuss how tracking detectors make use of this trajectory

information.

Finally, another key piece of information for particle discrimina-

tion is the amount of ionization left behind per unit distance trav-

eled. This is information which can be used to distinguish between

different species of particles, in particular between those that leave
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Table 2. Common particles targeted for identification in neutrino
experiments. This table lists the mass and the typical trajectories these
particles will take within a detector for experiments where the neutrino
energies are approximately 100 MeV or higher.

Particle Mass (MeV/c2) Trajectory pattern

Electron 0.511 (narrow) EM shower

Muon 105 Long lines

Charged pion 140 (wide) hadronic
showers, lines

Proton 938 Short lines, (wide)
hadronic showers

similar spatial patterns. For example, one would use this informa-

tion to classify a track-like trajectory with no observable scattering

or straggling into either a muon, a proton, or a charged pion. Electron

and photons both leave behind shower patterns. However, because

the photon sometimes starts a shower through photon conversion

into an electron–positron pair, the amount of energy deposited at

the beginning of the shower will be approximately twice as much as

in a shower started by a single electron.

3. Neutrino Interactions with Matter

The properties of neutrinos must be inferred through the particles

they produce via weak force interactions with nuclei in the detector.

The weak interaction is mediated either by the neutral Z0 or

chargedW±-bosons. Those involving theZ0 are called neutral-current

(NC) interactions; those involving theW± are called charged-current

(CC) interactions. When a neutrino interacts via the charged cur-

rent, it produces a charged lepton with the same flavor as the

neutrino: muon–neutrinos (νμ) will produce a muon (μ−); electron–
neutrinos (νe) will produce an electron (e−); and tau–neutrinos (ντ )

will produce a tau lepton (τ−). Therefore, if the interaction is CC,

the identification of the lepton is how the flavor of the neutrino is

inferred in experiments. Detecting the absence of any charged lepton
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is necessary for identifying NC interactions. Identifying the flavor

of the neutrino and the NC or CC channel are often central to the

targeted physics measurements.

In addition to dividing the interactions between NC and CC,

interactions are grouped by the set of observable particles, referred

to as the “final state”. For example, interactions can be classified

by the number of protons or pions created and observed. Grouping

interactions into final state is useful as each can be correlated with

the ways in which a neutrino is thought to scatter with the nucleus

and its constituents. A common interaction mode isolated by experi-

ments is the charged-current quasi-elastic (CCQE) interaction which

produces a charged lepton and some number of protons one can iden-

tify in the detector. The CCQE interaction is one where the neutrino

scatters quasi-elastically with a single nucleon in the nucleus. Events

created by a CCQE reaction are often the target of analyses because

the neutrino energy can be estimated using just the charged lepton

kinematics. Furthermore, having a model for a process can help with

estimating the systematic uncertainties of kinematic measurements

through techniques which study the variation on the predicted obser-

vation over some range of model parameter values. Describing all the

different modes of neutrino-nucleus interactions is beyond the scope

of this chapter. For an extensive review, please refer to Ref. [2].

4. Scintillator Detectors

Scintillator detectors count the photons emitted when charged par-

ticles travel through the detector. The detectors are composed of a

large volume of liquid or solid material surrounded by photosensors.

The material used for the detector contains molecules (or atoms)

which, when induced into an excited electronic state, will emit one

or more photons in the course of transitioning back to the ground

state. The utility of these detectors derives from the dynamics of

different molecular and atomic orbitals, which differ for any given

material. The number of transitions that occur is proportional to the

amount of energy lost by a particle as it travels through the detector.

This provides the means to measure particle energy. The difference
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in energy levels between transitioning orbital states dictates the fre-

quency, i.e. color, of the photons. This allows one to choose materials

that emit light with the color detected most efficiently for a given

photosensor. The time it takes to transition between states for a

given atom or molecule varies, ranging between “fast” transitions

occurring within O(10) ns or below, and “slow” transitions that are

approximately O(1)μs or longer.

What gives some scintillators discriminating power between dif-

ferent particles is the fact that different classes of particles activate

different populations of molecular and atomic transitions. This phe-

nomenon underlies the information available to distinguish different

classes of particles, which is observed as different temporal patterns

in the arrival time of photons in the photosensors. The population of

transitions induced is related to the density of excited molecules left

behind by a particle. More massive particles deposit their energy over

a smaller volume of molecules, while lighter particles deposit their

energy over a larger volume. Massive particles would include protons

or alphas particles, the latter of which can be emitted by decaying

nuclei and is composed of two protons and two neutrons. Examples

of lighter particles would be electrons or muons. For example, NE-

213a is a liquid scintillator with particle identification capabilities [3].

Neutrons, which produce a nuclear recoil when interacting with the

detector, cause the medium to emit a pulse of scintillation light which

occurs over approximately O(10) ns. A photon interacting with the

medium will produce a recoiling electron and cause the medium to

emit a pulse over approximately O(100) ns.

The data coming from scintillator detectors is the recorded num-

ber of photons observed over some window of time, typically between

O(10) ns to O(100) μs. Particle interactions in these detectors will

produce a burst, or pulse, of light to be measured. From these pulses,

experiments are able to extract the energy deposited into the scin-

tillator, the position of the interaction, and particle identification.

a“NE-213” is the name given to a commercially available cocktail of hydrocarbons
with well-characterized scintillation properties. Such scintillators are given names
with the initial letters deriving from the name of the manufacturer.
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The energy is primarily a function of the total hits observed. The

position can be derived from the spatial pattern of hits in the pho-

tosensors arrayed in the detector. Particle identification comes from

the shapes of the pulses which can be different for different classes

of particles due to the microscopic physics of scintillation.

4.1. Pulse shape discrimination using CNNs

In this subsection we describe the work in [4], which utilizes convolu-

tional neural networks (CNNs) to perform pulse shape discrimination

with a scintillator detector. The work was performed in the context

of the SoLiD neutrino experiment, which aims to measure neutrino

interactions from a nuclear reactor [5]. Anti-electron neutrinos are

emitted from nuclear reactors with energies ranging from keVs to

MeVs [6]. At these energies, the channel that is used to observe neu-

trinos is the inverse-beta decay (IBD) reaction where

ν̄e + p→ n+ e+. (1)

Therefore, the goal is to be able to identify the presence of a positron

and neutron in the detector within some coincident time window.

The SoLiD detector uses elements consisting of a rectangular

block of a type of plastic, polyvinyltoluene (PVT), with a thin plastic

sheet covered in a thin film of 6LiF:ZnS(Ag) affixed mechanically to

one of the faces of the block. The ZnS(Ag) is a commercially avail-

able phosphor with known scintillation properties. Photosensors are

coupled to the block in order to observe the light produced by both

the plastic and the thin film. The plastic scintillator emits observable

scintillation photons in response to the positron (electron scintillation

or ES). The thin film is intended to detect the presence of neutrons

in the detector through the neutron capture reaction

n+6 Li→ α+3
1 H(4.8MeV). (2)

The recoil alpha and tritium induce scintillation photons in the phos-

phor (nuclear scintillation or NS). Because the same photosensors will

observe the light from both the PVT bulk and the phosphor screen,

an algorithm is needed to identify which pulses belong to which.

The discrimination between positron and neutron pulses relies on the
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Fig. 1. Average waveforms (bold solid line) from scintillation light coming from
nuclear (top) and electron (bottom) events. Signals recorded using a silicon pho-
tomultiplier (SiPM). The shaded bands represent the central 68% interval of the
amplitudes. For each signal type, an example waveform is also shown (light solid
line). Figure taken from [4].

expected different shape. In this case, the difference in pulse shape

is driven by the use of two different scintillators, PVT for positrons

and ZnS for neutrons. This is opposed to the more typical case where

a single scintillator is used, but the pulse shape difference is driven

by the different mixture of fast and slow scintillation components

discussed above. Figure 1 shows average waveforms for nuclear scin-

tillation (top) and electron scintillation (bottom) events.

A CNN is used to separate ES and NS pulses. The network is

trained in a supervised fashion with labeled examples. Training data

was obtained by taking real waveform data with a prototype setup of
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a single detector element. The data was generated by recording detec-

tor responses to a AmBe radioactive source which emits both gamma

rays and neutrons. Two types of photosensors observe the detector

element, a photomultiplier tube (PMT) and a silicon photomultiplier

(SiPM). The SiPM is the photosensor to be used in the final detector.

The PMT is used in this work to provide the labels to train the net-

work. The PMT in the prototype setup is able to collect much more

light, such that the mis-labeling of waveforms is sufficiently small

(see Fig. 2 in [4]). The setup was used to label SiPM waveforms, a

time-series of the voltage measured from the SiPM over 1000 samples

measured at intervals of 10 ns. The waveforms were labeled as either

ES, coming from gamma interactions producing a recoil electron, or

NS, coming from neutron capture events from the phosphor film.

The CNN architecture consisted first of two one-dimensional (1D)

convolution layers each followed with a ReLU and max pooling layer.

This was followed by a fully connected layer that outputs a single

classification score. The 1D convolution layers used a 1D filter with

size 10. The first convolution layer contained 7 channels while the

second contained 14. Each max pooling layer is downsampled by a

factor of two. The fully connected layer contained 64 units.

The CNN network was shown to be able to separate the two types

of labeled waveforms better than two common non-ML techniques for

pulse shape discrimination. The two non-ML techniques were charge

integral (CI) and continuous wavelet transform (CWT). The CI tech-

nique measures the fraction of photons in a burst that arrive within

some initial time window from the start of the pulse. The use of such

a window distills the information contained in the pulses of light into

a single number. The CWT approach is a more powerful method

which uses information in both the time and frequency domain to

generate features for discrimination [7]. Figure 2 compares the ROC

(receiver operating characteristic) curve for three methods analyzing

a separate test dataset.

Notably, this work used t-SNE [8] to visualize the 64 features in

the fully connected layer in two dimensions and correlate them to

the output of the CNN. This visualization is shown in Fig. 2. The

work used the t-SNE to qualitatively identify the features encoded
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Fig. 2. (Left) ROC curves comparing classification performance between CNN
(green), continuous wavelet transform (blue), and charge integration (red) algo-
rithms. (Right) t-SNE embedding [8] of the fully-connected layer of the CNN.
Each point represents a single scintillation signal. Electron scintillation signals
are represented by circles, and nuclear scintillation signals are represented by
squares. The color-scale represents the CNN output with red being more electron
scintillation-like. Highlighted in black are mis-classified events where the NS (ES)
signals that have a CNN output of less (greater) than 0.5. Points labeled with
letters are examples discussed in [4] from which this figure was taken.

by the CNN and determine clusters of waveforms corresponding to

event types within the ES and NS classes. For example, waveforms

from muons cross the detector were identified at one extremity of the

t-SNE projection (event D in Fig. 2). Events near the boundary of

the ES and NS events were also identified that were likely not from

either gamma or neutron events, but instead possible events consist-

ing simply of accidental coincidences of single photon detection in

the SiPM.

4.2. Neutrino vs. background discrimination

using artificial neural networks

The work discussed here and done for the Double Chooz experi-

ment [9] is an example of applying machine learning techniques to

higher-level reconstruction quantities. In this case, an artificial neural

network is used to classify events into signal and background inter-

actions. Note that unlike the previous case, the goal is to identify

neutrino interactions from events in the detector caused by other pro-

cesses as opposed to individual particles. The formation of high-level
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quantities, which condense the raw data into a handful of features, is

representative of how physics analyses have traditionally proceeded.

It will contrast in later sections with the use of representations of the

data closer to the raw signals of the detector.

The Double Chooz experiment uses two liquid scintillator detec-

tors to observe reactor anti-neutrinos from the Chooz nuclear power

plant in Northern France and measure the neutrino mixing angle θ13.

The two detectors, called Far and Near based on their proximity to

the reactor cores, are identical in structure. They consist of an Inner

detector surrounded by active and passive subdetectors primarily

for cosmic background rejection. The Inner detector is made up of

three concentric cylindrical vessels. From the inside out those are the

Neutrino Target, an acrylic vessel filled with Gadolinium-loaded liq-

uid scintillator; the Gamma Catcher, an acrylic vessel with unloaded

scintillator; and the Buffer, a stainless steel vessel filled with mineral

oil and instrumented with 390 10-inch PMTs.

At 4MeV peak energy, reactor anti-neutrinos interact inside the

detector via inverse beta decay (IBD), described in the previous sub-

section. The products of the reaction, a positron and a neutron, are

observed as a delayed coincidence of two signals. The early or prompt

signal consists of the energy deposited by the positron, as well as

the two gamma rays from pair annihilation. The amount of visible

energy from the prompt deposits range approximately from 1MeV

to 12MeV. The late or delayed signal is gamma rays emitted at de-

excitation when the neutron is captured on a nucleus. Within the

Gadolinium-loaded scintillator fluid, the majority of captures are on

Gd nuclei, in which case the total energy of the delayed signal is

around 8MeV and neutron capture characteristic time is approx-

imately 30 μs. In non-loaded scintillator captures occur primarily

on hydrogen resulting in a single 2.2MeV gamma ray released after

approximately 200μs. A major irreducible background to this signal

is the so-called accidental background, which consists of accidentally

coincident environmental gamma rays or a gamma ray and a spalla-

tion neutron capture. To fight accidental background, one can take

advantage of the difference in high-level characteristics of the delayed

coincidence between neutrinos and accidental pairs. Variables used
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in Double Chooz and other reactor neutrino experiments include the

physical distance between the prompt and delayed signals ΔR, the

time difference ΔT , and the total visible energy of the delayed signal

Evisd. Accidental background events are expected to show little to

no correlation, since they are pairs of random signals. IBD events, on

the other hand, show strong anticorrelation between delayed signal

energy and ΔT . This comes from the overall shorter time constant

for Gd captures as compared to H captures.

Earlier analyses in Double Chooz applied one-dimensional cuts on

the above listed variables to reject accidental background. For the lat-

est neutrino analysis [10] however a multivariate analysis (MVA) was

employed, taking advantage of the linear correlations shown above.

A multi layer Perceptron (MLP) network was chosen as the preferred

MVA method and was implemented using the TMVA [11] package

in ROOT [12].

Three networks were trained separately for three independent

neutrino datasets: Far detector in single-detector mode (FD-I), Far

detector in multi-detector mode (FD-II), and Near detector (ND).

The network architectures for the three are identical, with one hid-

den layer and a single classifier in the output layer. Each network

was trained on a sample of simulated neutrino data and a sample of

accidental coincidences from data.

Fig. 3. High-level variables comparison between IBD signal MC (blue) and acci-
dental BG (red). From left to right: Visible energy of the delayed signal (MeV),
time difference between prompt and delayed (μs), distance between prompt and
delayed (cm). Figure by authors.
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Fig. 4. Comparison of the delayed energy spectra of selected IBD candidates
before (left) and after (right) applying a cut the MLP classification score. Acci-
dental background in blue, signal MC in red solid line, neutrino candidate data
in black solid line, background subtracted data in black or blue markers. FD-II
data. Figure by authors.

The value of the MLP classifier used to accept events was chosen

such that the signal efficiency is approximately 85% as estimated in

simulated data. Requiring a classifier score above 0.85 for FD-I and

FD-II sets, and above 0.86 for the ND set, one rejects approximately

97% of the accidental background events. The effect of the cut on the

delayed energy is shown in Fig. 4. It can be seen that the remaining

background has been sculpted to resemble IBD events.

4.3. Supervised and unsupervised classification

using CNNs

The previous example distinguished events using reconstructed quan-

tities derived from the PMT signals. The work in [13] is an example

of using the PMT information more directly. It is also an example

of unsupervised learning to separate event types in data with the

use of labels. The work uses data from the Daya Bay detector [14].

The detector technology is similar to Double Chooz above, in that

a cylindrical arrangement of PMTs monitor a volume of liquid scin-

tillator. The PMTs are arranged only on the walls of the cylinder,
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i.e. no PMTs on the end-cap, with 8 rows of 24 PMTs each for a total

of 192 PMTs. This spatial arrangement is fairly straight forward to

arrange in a 2D grid for use with CNNs. The work studied the use

of both supervised and unsupervised classification using CNNs.

The data is prepared by forming an 8×24 image. The values of the

pixels are related to the integrated charge from a single PMT wave-

form. The data includes low energy events, e.g. signal IBD events,

and high energy cosmic muon events. To handle this large dynamic

range, the value in the pixel is the natural log of the charge of each

PMT. For the supervised application, the columns in the image are

cyclically permuted so that the largest valued pixel is near the middle

of the image, specifically the 12th column.

The sample used in the study is composed of real data events from

the detector. Traditional algorithms are used to label each event as

either a “muon”, “flasher”, “IBD prompt”, “IBD delay”, or “other”.

“Muon” events are those that see coincident activity in muon vetos.

“Flasher” events are those suspected to be due to one of the PMTs

producing a flash of light. The “IBD prompt” and “IBD delayed”

events are the pulses of light associated with the signal interaction.

“Other”, of course, are the rest of the interactions not falling into the

four categories. Note that the algorithms to classify the events rely

on not just the total charge seen by a PMT after an event trigger,

but also time information from the PMT waveforms and output from

external detectors like a muon veto. In this study, only the spatial

distribution of charge is provided.

The CNN architecture used for the supervised classification study

consisted first of two 2D convolution layers each followed by a max

pooling layer. This was followed by a fully connected layer that out-

put a single classification score. For the unsupervised network, a con-

volutional autoencoder is used. The encoding portion of the network

included sets of layers consisting of a 2D convolution operation, max

pool, and ReLU activation layer. A fully connected layer takes the

2D feature maps from the convolution layers into a 10-dimensional

latent space. This is then acted upon by three transpose convolution

layers to up-sample the latent vector back into a 2D array the same

size as the input image.
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The supervised classification network performs well, correctly

classifying 0.977, 0.995, 0.999, 0.974, and 0.962 of test set images

with ground truth label IBD prompt, IBD delay, Muon, Flasher, and

Other, respectively. The CNN outperforms other multi-variate tech-

niques tested for comparison, k-Nearest Neighbor clustering (0.950,

0.990, 0.998, 0.891, and 0.896), and a support vector machine (0.966,

0.992, 0.998, 0.947, and 0.938). Particularly noteworthy is the analy-

sis of the unsupervised result. Projecting the 10-dimensional feature

space into 2D using t-SNE, the IBD delayed and Muon events were

separated clearly. IBD prompt events were somewhat intertwined

with the Other and Flasher categories. Figure 5 shows the t-SNE

projection. As noted, both the supervised and unsupervised results

use only the spatial pattern of the integrated PMT charge. As the two

previous scintillator examples show, there is also lots more informa-

tion within the time structure of light pulse seen within each PMT.

Current and future efforts are focusing on bringing all of that infor-

mation together.

Fig. 5. t-SNE representation of the latent space features learned by a convolu-
tional autoencoder trained on data from the Daya Bay experiment. Figure taken
from [13].
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5. Cherenkov Ring Imaging Detectors

Like the scintillator detectors described in the previous section,

Cherenkov Ring Imaging Detectors observe photons. However, the

photons come from Cherenkov radiation. This process occurs when-

ever a charged particle travels faster than the speed of light in the

medium. Because the particle moves faster than light propagates in

the medium the result is a wake of photon emission analogous to

the shock-wave produced by a super-sonic aircraft or the wake of

waves produced by a fast boat in the water. However, in this case,

the photons in the Cherenkov process are emitted in the direction of

the particle at an angle related to the relative speed of the particle

to the speed of light in the medium. The relationship is given by

cos θ =
(c/n)

v
, (3)

where c is the speed of light in vacuum, v is the particle’s velocity in

the rest frame of the detector, and n is the index of refraction of the

medium. Note that c
n gives the speed of light in the medium. For a

particle with a velocity above threshold, the Cherenkov emission will

produce a cone of light whose axis is in the direction of the particle

velocity. Typically, a detector built to detect Cherenkov light will line

photosensors along the boundary of the detector. When that cone of

light hits the walls of a detector, a circular pattern can be observed

with the photosensors. If the particle stopped before reaching the

detector boundary, the circular pattern looks like a ring, i.e. there

is a hole in the middle. If the particle crosses the boundary or gets

near, the circle is filled in.

Discriminating between different particles in Cherenkov ring-

image detectors relies on using the different behaviors of particles

discussed in Sec. 2 and summarized in Table 2. Because electrons are

light they will be deflected and induce a cascade of additional electron

trajectories. This leads to many short trajectories emitting cones of

light in a range of directions around the initial electron direction. The

end result is a ring pattern whose outer edge is “fuzzy” compared to

the ring pattern left by a heavy particle like a muon, charged pion,

or proton. A muon in comparison travels in a relatively straight line
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leading to a comparatively “sharp” ring pattern seen by the photo

detectors. Charged pions, whose mass is similar to muons will leave a

similarly sharp ring if they merely travel through the detector. How-

ever, because charged pions are made of quarks and have a sizable

interaction cross-section with nuclei, they will often scatter, leaving

a pattern of two or more rings in the detector. Neutral pions, which

quickly decay into two gammas, can be identified by the observation

of two fuzzy rings.

The different rate at which particles lose their energy is also, in

principle, information one can use to assign the particle ID to a ring.

Once a particle’s velocity falls below the Cherenkov threshold, photon

emission stops. The angle at which photons are emitted also changes

with the velocity of the particle. These effects lead to differences in

the width of the ring for particles of the same kinetic energy.

5.1. Convolutional variational auto-encoder

for separating electron and gamma events

One goal of several current and future experiments is to determine

if there is CP-violation in the neutrino sector, and if so, how large?

If there is, this means that neutrinos and anti-neutrinos can behave

differently. Observing this fact, and seeing that the difference can be

large, leads credence to scenarios that explain how the universe has

come to have such an imbalance between matter and anti-matter.

Even without the motivation of answering such a big question, the

amount of CP-violation in neutrinos is a fundamental feature in the

Standard Model that should be measured as precisely as possible.

The means to measure CP-violation will come through preci-

sion measurements of neutrino oscillations, where one neutrino can

change into another. The typical experimental setup is to start with

a beam almost entirely consisting of muon neutrinos and then use

a detector some distance away, O(100) km, in order to estimate the

fraction of the beam that is now electron neutrinos. Because neu-

trinos cannot be observed directly, accomplishing this measurement

requires identifying neutrino interactions that produce an electron.

To measure CP-violation, the beam is changed into one made up of

mostly anti-muon neutrinos, the fraction of anti-electron neutrinos
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is measured, and the oscillation rate is compared to that measured

using the original neutrino beam. Because counting neutrino inter-

actions with electrons plays such a central role, much effort needs to

go into estimating or eliminating the amount of particle interactions

that can mimic electrons. This is often particle interactions made

by gammas. For those gammas that Compton scatter and produce a

recoiling electron, this is indistinguishable to a single electron made

by a neutrino. However, gammas will often pair produce and create

an electron and positron pair. Any attempt to discriminate gammas

from electrons would rely on detecting the effect on the ring pattern

from the additional positron.

The work in [15] studies the use of convolutional neural networks

to discriminate between electron, muon, and pair production photon

events. One study in this work compared a more typical, fully convo-

lutional classification network with a classification network that used

the features in the latent space of a pretrained variational autoen-

coder (VAE). The deterministic output of the encoder is used as

the feature vector given to a 4-layer MLP. They find that for small

training sample sizes, an MLP trained on the latent space features

out-performed the fully convolutional classifier.

The investigation of a VAE is progress towards generative net-

works to produce hit patterns for particles of a given energy. Gen-

erative models which produce patterns more similar to data would

improve existing likelihood-based reconstruction methods for water

Cherenkov detectors [16]. Such generative models also have the

potential to speed up these algorithms as producing hit pattern

hypotheses is one of the costliest steps. Figure 6 from [15] provides

examples of image reconstructions by a VAE.

Fig. 6. Examples of image reconstructions of simulated water Cherenkov events
by a variational auto-encoder. Figure taken from [15]. The top row are images pro-
duced by the simulation. The bottom row are the corresponding reconstructions.
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One last point from this work was in the preparation of the train-

ing data, which consisted entirely of simulated images. The Super-

Kamiokande [17] and Hyper-Kamiokande [18] detectors, current and

future water Cherenkov experiments, respectively, have a cylindrical

geometry. This makes the choice of data representation an area of

research. The use existing 2D techniques, a choice of projection is

needed. In the work described here, the end caps are simply disre-

garded, which is not an acceptable choice for the actual experiments.

Future work can explore different 2D projections, using 3D represen-

tations, or taking advantage of graph network methods.

5.2. Separating neutrino-less double beta decay

events from 10C background with a CNN

We discuss the work in [19] as an example application of ML for par-

ticle ID that attempts to make use of both Cherenkov and scintilla-

tion photons. The work is done in the context of current and future

experiments searching for a hypothetical process, 0νββ, in which a

nucleus has two of its neutrons transition into two protons while

emitting two electrons. The process is similar to the 2νββ process

where two beta-decays occur simultaneously, emitting two electrons

and two anti-electron neutrinos. The 2νββ process is possible when

single beta decay is energetically forbidden while the double beta

decay is allowed. For 0νββ, no neutrinos are emitted. For this to

occur, the neutrino must be the same as its anti-particle, i.e. the

neutrino would be what is called a Majorana fermion. If true, this

would make the neutrino remarkably different from the other leptons

and the quarks, all of which are Dirac fermions. This has implications

for the neutrino mass. If the neutrino is a different type of fermion,

the way it gets its mass can differ from the other leptons, opening a

large number of compelling possibilities. One is that the mass term

is connected to very massive neutrino species, potentially connecting

the neutrino to much higher energy scales than we currently have

direct access to [20–22].

The 0νββ process, even if it exists, will have a long lifetime.

Current limits set the half-life to over 1026 years. Any experi-

ment searching for the process must remove backgrounds through
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extremely clean detector construction and efficient background rejec-

tion. In [19], CNNs are used to separate signal 0νββ from an impor-

tant source of background events coming from the decays of 10C.

This isotope emits gammas in the few MeV range which fall within

the energy window of the 0νββ process. But the study in [19] is fairly

generic in that what it tries to exploit is the very specific topology

of 0νββ events.

The electrons emitted by 0νββ events will have equal energy and

be traveling in opposite directions. This is due to the fact that, since

there are no neutrinos emitted, the process is a two-body decay where

the electron momenta are fixed to be opposed to one another. In a

Cherenkov detector, what will be see is two rings of sensor hits, on

opposite sides of the detector. Most backgrounds producing events

with similar total energy as the two electrons will consist of single

gamma or single beta events. Coincident events will unlikely be equal

and opposite in measured momentum.

The study in [19] used a CNN to perform the signal and back-

ground separation. They simulated a spherical detector with PMTs

lined along the surface of the active volume and oriented towards

the center of the sphere. The dimensions of the detector, the number

of PMTs assumed, and parameters for the detector medium were

chosen to be close to that of the KAMLAND-Zen experiment [23].

Importantly, the detector medium emits both Cherenkov radiation

and scintillation light. Because there is a delay between the time a

scintillator is excited and when it emits a photon, the Cherenkov

radiation, which is promptly emitted, will arrive the earliest. This

means that the data one wants to use is not only the spatial pattern

of PMT hits but also the arrival time of photons as well. The work

in [19] provides the CNN with images of hit patterns over several

time windows. A visualization of this data is shown in Fig. 7.

Like all of the experiments discussed in the chapter, there are

important processing choices. For spherical detectors, very common

in neutrino experiments, how to treat the non-rectilinear geometry

is an important consideration. Also, the data in this example is also

locally-dense, but globally sparse. Sparse representation and opera-

tions can help with this issue. In this work, the spherical geometry
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Fig. 7. Example 0νββ signal event and 10C background event. In the sequence
of images, each image captures the pattern of PMT hits within a specified time
window for a spherical detector. Note that the early time window one can see
hits due mostly to Cherenkov radiation, while the hits in the other images are
mostly from scintillation photons. Image sequences like the one shown were used
to train a CNN to discriminate between signal and background events. Figure
taken from [19].

is handled through projection of the data into 2D. This is done by

binning the hit information by the polar and azimuth angles of the

PMT locations relative to the center of the detector. This choice

makes it easy to represent the data. However, events with the same

energy and individual particle momentum will look different when

occurring throughout the detector volume. Another plausible choice

would be to rely on an upstream algorithm to reconstruct the vertex

and re-project the data.

With a standard detector configuration similar to the current

KamLAND detector [24], the network can reject 61.6% of the 10C

background with 90% acceptance of the 0νββ signal. A detector with

the same geometry and perfect light collection could achieve 98.2%
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rejection. Performance increases to better than 99.98% for centrally

located events. The overall uncertainty of the algorithm is 2.7%.

Noteworthy is the study the authors performed in trying to quan-

tify the effect of Cherenkov light. A test sample was made for signal

and background events coming from the center of the detector. One

key difference in the sample was that no Cherenkov light was gener-

ated. What they find is that the performance degrades only slightly,

and even increases for a smaller sized detector. This indicates that the

dominant source of discriminating information is the arrival time of

scintillation photons. One interpretation of this result is that further

work can be done to better utilize the information from Cherenkov

photons.

6. Tracking Detectors

Tracking detectors are devices that measure the trajectories of

charged particles. They also measure the amount of energy lost by a

particle at a given location. There are various strategies for making

these measurements. In this chapter, we survey results from detectors

using two common strategies. The first are “segmentation” detectors

which split, or segment, the detector into sub-volumes. The collec-

tion of segments that observe energy deposited gives the information

needed to reconstruct the trajectory. The second method is to use a

time projection chamber (TPC). In this case, the central region of the

detector is monolithic and un-instrumented. Instead, charge-sensitive

electronics are placed on one side of the volume. When charged parti-

cles travel through the detector they leave behind a trail of ionization

electrons which can be used to infer their trajectories. In order to

measure this ionization, an electric field is applied across the active

region of the detector in order to pull (drift) the ionization towards

charge-sensitive electronics. The collection of sensors then records the

location of charge over a series of time slices. This 2D information

over time is combined with knowledge of the drift velocity and a mea-

surement of how much time has elapsed between the moment when

a particle crossed the detector and when the resulting ionization is
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observed. This gives the 3D position of the observed ionization along

the field direction.

The information available in tracker detectors is quite rich. This

has made them an appealing target for the application of deep learn-

ing techniques, in particular CNNs which finds translationally invari-

ant spatial patterns in image-like data. We survey such techniques

here.

6.1. Segmented detectors

The cells of a segmented detector are constructed using materials

which reflect the constraints of the experiment. For collider exper-

iments where precision and timing are required, tracking detectors

are composed of solid state silicon pixels which can provide a dense

3D array of cells providing very precise position measurements. For

neutrino experiments, the detector must be large in order to compen-

sate for the rate of neutrino interactions. As a result, the detectors

are constructed using either plastic or liquid scintillator, which are

relatively more cost-effective. We survey some strategies for particle

ID in NOvA as an example of applications in a segmented detector.

6.1.1. Particle identification using a CNN

The NOvA experiment employs two detectors [25]. A near detector

close to the source of neutrino beam and a far detector 810 km away.

Both detectors are made up of rectangular cells of extruded, highly

reflective PCV plastic filled with liquid scintillator. Each cell in the

far detector is 3.9 cm wide, 6.0 cm deep, and 15.5m long. Planes of

cells are constructed by placing multiple cells along the width direc-

tion. Planes can then be arranged along the depth dimension, z,

along the direction of the beam, to make a large rectangular detector.

An orientation for each plane can be defined along the long dimen-

sion of the cells. The orientation of the planes are then alternated

between vertical, y, and horizontal, x, as they are arranged depth

wise. Both the near and far detector are constructed in this manner.

The near detector mass is 300 metric-ton while the far detector is

14 metric-kilotons.
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Each cell is filled with liquid scintillator which produces photons

when charged particles travel through it. A wavelength-shifting fiber

runs through the cell to collect the scintillation photons and guide

them to the fiber ends and out onto photodetectors. As a charged

particle travels through the detector, it will cause multiple cells to

produce light. The 3D trajectory can be inferred from the combina-

tion of cells oriented in both horizontal and vertical positions.

Both the NOvA near and far detectors are large. As a result, a

high rate of cosmic ray particles cross the detector. This is particu-

larly true of the far detector which is near the surface. However, the

experiment was designed to able to isolate neutrino interactions using

the excellent timing of the scintillator cells. Photons travel quickly

and within nanoseconds of a particle crossing a cell, the photosensors

register the beginning and end of a pulse of light. This fast response

allows the experiment to isolate individual neutrino interactions and

cosmic particles mostly through timing. Furthermore, for the neu-

trino interactions from the beam, the window of time during which

they arrive at the detector can be calculated. Such a timing cut can

be used to isolate pure samples of neutrino interactions.

The data from the segmentation cells are natural 2D images.

Recall that cells are oriented in two directions. By recording the

amount of light seen in each cell and arranging data from the cells in

either the horizontal or vertical orientations one forms a set of two 2D

images representing the XZ and YZ projections of the event. Figure 8

provides a schematic of the NOvA detectors along with illustrations

of the XY and YZ views.

One of the primary goals of the NOvA experiment is to measure

the rate at which muon neutrinos created by the Fermilab accellera-

tor change into electron or tau neutrinos by the time they arrive at

the far detector. This change from one type of neutrino to another is

possible through the phenomenon of neutrino oscillation. A descrip-

tion of this is outside the scope of this chapter. See [27–29] for reviews

of recent experimental results on neutrino oscillations at the time of

writing. Therefore, in the end, the task on hand is to count the num-

ber of muon neutrinos and electron neutrinos at the near and far

detector.
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Fig. 8. Schematic of the NOvA detectors. (Left) An illustration of the 3D detec-
tor. Illustrations of the detector from the top (top right) and side (bottom right)
are shown. These views help to show how images of neutrino interactions in the
NOvA detector are formed. For each view, one can form images giving the XZ
projection (top right) and YZ projection (bottom right) by ignoring the cells that
or oriented vertically with respect to the view. Such interaction images are used
in a CNN for classifying neutrino interactions in NOvA. Figure taken from [26].

NOvA pioneered the application of CNNs to neutrino experi-

ments [26]. The first application targeted the identification of muon

neutrino interactions from electron neutrino interactions. This was

not particle ID for individual particles but rather for the interac-

tion on the whole. However, as described in Sec. 3, the flavor of

the neutrino is only known if the partner lepton is produced via

a charge-current interaction. This implies that the network must

learn to reliable detect the presence of either a muon or electron

within the entire interaction image. For more details on this, see

Chapter 13.

The reason that whole interaction classification was the natural

first application and not individual particles is the need in tracker

detectors to cluster the locations of energy deposits in two individ-

ual particle trajectories. Because of the scintillation pulses last for
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approximately less than O(1) μs, the detector has the ability to iso-

late individual interactions through timing. However, the time res-

olution is not fast enough separate the individual charged particle

trajectories. Because of the need to cluster images, particle identifi-

cation (PID) algorithm using supervised-learning techniques is likely

affected by the quality of the clustering algorithm. The clustering

algorithm acts as a pre-processing step which will produce mistakes

that the PID must learn to account for. If the clustering is poor,

this potentially introduces enough noise in the labels to limit the

performance of the algorithm.

The work in [30] approaches this clustering issue by simultane-

ously providing a convolutional neural network images of individual

trajectories in addition to the full, un-clustered interaction image.

The authors refer to this as “context-enriched particle identifica-

tion”. The principle is that the context of the particle within the

interaction provides information to make a more accurate classifica-

tion. For example, electrons and photons both produce EM shower

patterns in the detector. Inspecting the showers alone, the dE/dx

in the very beginning portion of the shower is the primary han-

dle to resolve between an electron or photon induced shower. With

the whole interaction in view, the identification of a second shower

increases the likelihood that both showers were produced by photons

from the decay of a neutral pion. This is an example of information

that the network could use.

The network architecture used consisted of four-towers with the

same sequence of operations. Four towers were used because a total of

four images per particle are provided to the network. This consisted

of two sets of a particle-only and full-interaction image pair, with one

set for each of the two views of the detector, XZ and YZ. Figure 9

shows examples of images from the NOvA detector along with exam-

ples of the trajectory clusters. The first set of layers apply a sequence

of 2D convolution layers followed by one GoogLeNet inception mod-

ule. The output of the four towers are then concatenated and passed

into one inception module. A final convolution layer produces scores

for five particle types: electrons, photons, muons, charged pions, and

protons.



December 14, 2021 16:15 Artificial Intelligence for High Energy Physics 9in x 6in b4322-ch14 page 524

524 R. Sharankova & T. Wongjirad

Fig. 9. Examples of neutrino interaction images from the NOvA detector. The
top row shows examples of full interaction images passed into a “context-enriched”
particle identification network. They also show examples of muons, protons, elec-
trons, and photons. The annotations are to show possible particle type assign-
ments and not part of the context given to the network. The network, in addition,
to full interaction images are provided images where only the trajectory in ques-
tion is shown. The bottom row shows more interaction images with individual
particle clusters outlined. The reconstructed neutrino vertex is indicated by a
cross. The pixels inside the contours are those used to form individual particle
images, one for each cluster. Figure taken from [30].

The algorithm that forms the clusters is based on fuzzy K-

means [31]. It is applied over the set of angles with respect to

the reconstructed neutrino vertex of cells with energy observed over

threshold. First clusters are formed in each of the views. Next, these

clusters are matched between the views based on their consistency in

energy and location. According to studies using simulated data with

available truth information, the algorithm produces clusters which

contain nearly all of the cells into which a given particle deposited

energy. The purity of a cluster, however, is lower as each cell tends

to contain energy deposited by overlapping particles.

The set of clusters used to form the training data are a subset of

all clusters formed. First, clusters shorter than 5m are used. Longer

clusters are very likely muons and so there is not much need for the



December 14, 2021 16:15 Artificial Intelligence for High Energy Physics 9in x 6in b4322-ch14 page 525

Particle Identification in Neutrino Detectors 525

classifier for these clusters. Next, a cut on purity is applied. True

muon, electron, and photon clusters are required to have purity of

0.5. True pion and proton clusters are required to have a purity of

0.35. This was done to isolate examples with minimal overlap. The

training set consisted of 2.95 million clusters.

The network correctly classifies 93%, 75%, 93%, 65%, and 81%

of true electrons, photons, muons, pions, and protons, respectively.

Of those labeled electron, photon, muon, pion, and proton the frac-

tion correctly labeled is 90%, 75%, 87%, 54%, and 89%, respectively.

The largest mis-identifications come between electrons–photons and

protons–pions as might be expected. Electrons and photons are con-

fused due to their similar topology. Protons and pions are confused

due to their typically short trajectory length. When compared to a

network without context information, the increase in classification

accuracy is seen in photons and pions. The non-context network was

implemented with only two towers, one for each single-particle image,

where each tower contained the same number of layers and features

per layer. The context-enriched network is 11% more accurate for in

correctly labeling photons and pions. True electrons mis-identified

as photons reduces by 5% when using the context-enriched network.

True photons mis-identified as electrons reduced by 3%. Pions mis-

takenly classified as photons is reduced by 8%.

6.2. Time projection chambers

Time projection chambers differ mostly in the target material used

and the strategy for reading out the ionization from particle trajec-

tories. TPCs were first developed using gas. Electron drift velocities

range from mm/μs to cm/μs. For liquid detectors, drift velocities

are of the order of 1 mm/μs. The drift velocity determines the time

it takes to draw ionization electrons to the instrumentation. Within

that time other particle trajectories can cross the volume, especially

if the detector is near the surface where the number of cosmic rays

detected in time with particle or interaction of interest can begin to

be large. For machine learning techniques, this confronts one with

the need to isolate the particle of interest before being able to eval-

uate the particle. This leads to potential background in the test and
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training sample. For algorithms like CNNs, the isolation of the par-

ticle requires what amounts to image pre-processing, whose affects

on training and testing one needs to consider.

6.2.1. Signal and background separation for neutrino-less

double beta decay

The Neutrino Experiment with a Xenon TPC, or NEXT [32], is ded-

icated to searching for neutrino-less double beta decay (0νββ). The

NEXT detector employs a TPC filled with high-pressure xenon gas.

The operation of the detector is similar to the other TPCs previ-

ously discusssed. However, one way in which it differs is in the way

it records to the 2D position of ionization clusters near the anode

of the drift region. Instead of charge-sensitive electrics recording the

induced current, PMTs sit outside the drift region and face into it.

The drift region near the PMTs is further segmented by a wire mesh

into an additional amplification region. Here an electric field, larger

than the one used to drift the electrons, is used to accelerate the

ionization electrons. The goal is to impart enough energy to the ion-

ization electrons so that they begin to multiply through the liberation

of additional atomic electrons and also induce the emission of scintil-

lation photons by the xenon. The end result is that a charged particle

leaves behind a trajectory of ionization that is seen as a series of 2D

patterns of light flashes occurring over time. This information can be

used to reconstruct the 3D trajectory.

The goal of the NEXT experiment is to search for the set of tra-

jectories coming from 0νββ. The signature for this process, initially

described in Sec. 5.2, is two electrons emitted with the same energy,

back-to-back. The total energy of the electrons coming from the

decay of a Xenon nucleus is expected to be 2.46MeV [33]. The dom-

inant backgrounds to observing 0νββwill be from nuclei which emit

beta or gamma particles around this energy. Examples are gamma

rays of energies 2.447MeV and 2.614MeV, emitted by daughters of
214Bi and 208Tl, respectively.

The key topological handle the detector will have to separate sig-

nal from background is the fact that the signal decay consists of two
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electrons. The background events may consist of (1) a single electron

or positron from beta decays, (2) a single electron from a gamma

Compton scattering on an atomic electron, or (3) an electron and

position pair from a gamma converted through the pair-production

process. The fact that the signal will have two particles means that

one can look for two electrons stopping in the detector and the result-

ing two Bragg peaks. Electrons coming to a stop produce a large

amount of ionization at the end of the trajectory. The presence of

two such balls at the end of a contiguous cluster of ionization is the

feature that one targets in trying to select signal events. Figure 10

provides an example event display of two electron trajectories from

0νββ.

The reason single electron background trajectories can mimic the

two-end-blob topology is due to the large fluctuations of ionization

that can occur while charged particles travel through matter. The dis-

tribution of ionization produced per unit distance traveled is peaked,

but has a long tail. For single electron background events, if a fluc-

tuation in the ionization occurs sufficiently close to the beginning of

Fig. 10. (Left) Simulation of a signal (0νββ) event in xenon gas at 15 bar. The
color corresponds to energy deposition in the gas, red representing higher density
of energy deposition and blue representing lower density. The signal consist of
two electrons emitted from a common vertex (figure from [34]). The trajectory is
shown at a resolution higher than what the NEXT detector can measure. (Middle)
XY projection of signal trajectory voxelized with 2 × 2 × 2 mm3 voxels. (Right)
Same signal trajectory as the middle figure but binned with 10 × 10 × 5 mm3

voxels. The middle and right image, taken from a figure in [33], are examples of
the data passed into a CNN.
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the electron trajectory, this can produce an ionization cluster that

looks like it has two end-blobs.

A study was performed investigating the ability of a CNN to dis-

tinguish signal from background events [35]. The data from the detec-

tor was presented to the CNN as a set of three 2D images made by

taking the projections of the 3D ionization data. Two image resolu-

tions were studied, based on the size of 3D voxels used to bin the

ionization data before projection. The first is 10 × 10 × 5 cm3 and

the second is 2 × 2 × 2 cm3. The first is a resolution close to that

demonstrated by current NEXT prototypes. The latter is a resolu-

tion closer to the expected capability of the detector. The resolution

is expected to play a large role in being able to reject background

events as it directly impacts the ability to determine that a large

amount of ionization away from the trajectory end.

The current limit on the half-life 0νββ is O(1026) years. If the

process can occur, the number of events in the detector will be small

compared to other backgrounds, even after the impressive efforts in

background mitigation realized through meticulous choices of mate-

rials and assembly techniques. This emphasizes the need to use some

pre-processing algorithms on the data to remove events that are very-

likely backgrounds. Only the more difficult cases are given to the

CNN, which makes a decision as to the class of the event as a last step.

The pre-processing steps applied in the study involved (1) a cut on

the total energy to be between 2.4 and 2.5MeV, (2) a cut on the dis-

tance away from the edge of the TPC boundary, and (3) the presence

of a dis-joint ionization cluster. The latter suppresses gamma events

where an initial electron trajectory is created by Compton scattering

and then interacts again near-by either via another Compton scatter

or via pair production.

The GoogLeNet [36] architecture was used in the studies. Both

the signal and background examples are first passed through the

pre-processing steps above. As a comparison, an expert-made algo-

rithm was also applied that looks for the end of the trajectories and

sums the ionization at those locations. Two-blob events were then

identified in large part by the endpoint ionization. The CNN slightly

out-performs the expert-algorithm. For the coarse-grained resolution,
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the background acceptance drops from 11.0% to 9.4%. For the finer-

grained resolution, the background acceptance drops from 7.6% to

4.7%. As expected, the use of higher-resolution images improves the

performance.

A note-worthy study in this work is the attempt to relate per-

formance of the CNN to the microscopic physics of the electron tra-

jectory. The tools used to produce simulated electron trajectories

can be modified to include or exclude particular physics effects. The

work presented here, toggled through a series of simulation configu-

rations which was shown to modulate the performance of the CNN

from near perfect to the observed performance when including all the

expected physics. For example, the expected fluctuation in the ioniza-

tion amount per distance traveled can be turned off and replaced by

a constant amount of ionization. As expected, the ionization fluctua-

tions were one of the largest contributors to mistakes. When possible,

the intention in correlating the performance to these physical effects

is to increase the credibility that the networks are using information

from physics processes related to real differences in the signal and

background events.

6.2.2. Particle ID in a liquid argon TPC

The MicroBooNE detector is a TPC where liquid argon is used as

the target medium [37]. Cryogenic liquid noble gases are very inert

and can be purified to the levels of several parts per billion of con-

taminants to liquid argon molecules. It has been shown that liquid

argon with such purity can accommodate the drifting of ionization

electrons over meter-long distances [38]. This property along with

the fact that liquid argon is a relatively inexpensive material, allows

liquid argon TPCs (LArTPCs) to scale up to large sizes. The use

of a cryogenic liquid also means that the detector medium is several

times denser than gas and can therefore proportionally increase the

rate of neutrino interactions that occur. This has made LArTPCs

the choice for several current and future neutrino experiments.

The downside to LArTPCs is that the time to capture an event

is relatively long for particle physics detectors. For example, the
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dimensions of the MicroBooNE TPC are 2.56× 2.33× 10.36m. The

drift field is oriented along the dimension whose length is 2.56m.

With an applied potential of 75 kilovolts, the drift velocity of ion-

ization electrons is 1.098 ± 0.0044mm/μs [39], making the time to

drift across the entire detector 2.3ms. This is time window is long

enough to cause challenges. Assuming that it is known that an event

of interest occurs somewhere in the detector, to ensure the ionization

electrons are measured, one must collect data over the full drift win-

dows. For MicroBooNE, this means recording data around the known

time a neutrino beam will pass through the detector. This beam win-

dow is 1.6μs wide and much smaller than the drift window. As a

result other particles can enter the detector within the drift window

and will complicate the task of identifying specific types of particles

or neutrino interaction types. The effect is that particle or interac-

tion ID is dependent on the performance of algorithms dedicated to

clustering locations of ionization. For MicroBooNE, which operates

near the surface, the complication is quite large as a neutrino inter-

actions, even if one occurs within the drift window, is accompanied

by roughly 10–15 interactions coming from cosmic rays. This point is

emphasized because the examples of particle or interaction ID that

follow either assumes clustering has already occurred or even pro-

duces information related to particle ID in order to assist clustering.

Single Particle Classification: In this work [40], particle ID in the

MicroBooNE LArTPC was studied assuming perfect clustering. The

training and test data consisted of images cropped around the sim-

ulated trajectories of single particles. Five different particle species

were used: μ−, p, π+, e−, and γ. The particles were generated uni-

formly over the detector and over a range of particle kinetic energies.

The direction of the particles were generated isotropically. Crops of

576× 576 pixel images were made by partitioning the detector in 3D

regions. The effective result is that the particle can be located any-

where in the cropped image. Figure 11 from [40] shows an example

image from one of the different particle types.

We focus on the CNN performance on a particular pair of par-

ticles, electrons and photons, which is an important for LArTPC

experiments studying neutrino oscillations. Like other experiments
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Fig. 11. Examples of the five particle types in the MicroBooNE detector: (top
left) electron, (top right) gamma, (middle left) π−, (middle right) μ−, and (bot-
tom) proton. Figure taken from [40].
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Fig. 12. Electron selection efficiency vs. photon rejection curve for two different
CNN architectures, GoogLeNet and AlexNet, trained for 5-particle classification.
Figure taken from [40].

described in this chapter, interactions that produce photons are one

of the largest backgrounds in MicroBooNE in measurements of elec-

tron neutrino events. The ability to separate electrons from photons

is shown in Fig. 12. The furthest extent in the electron efficiency vs.

purity achieves an efficiency of 83.0 ± 0.7% with a purity of 82.0%.

There is minimal confusion between electrons and photons, which

produce shower-like trajectories, with particle types that make track-

like trajectories, muons, pions, and protons. Note that the efficiency

values shown are for test images generated over the same momen-

tum ranges as the training set, i.e. uniformly between 100MeV to

1GeV, and not over a distribution of electrons and photons that the

MicroBooNE experiment expects to see.

Track-Shower Semantic Segmentation: The network described

above, assumed that particle clustering has already been perfectly

applied. In contrast, in [41] the authors targeted network outputs

that could be used to seed potential particle clustering algorithms.

The goal of the network was to label pixels in the LArTPC images

as either deriving from particles that produce a track-like ioniza-

tion pattern, i.e. μ, p, π±, or deriving from particles that produce

a shower-like ionization pattern, i.e. e±, γ. The network was based
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on fully convolutional semantic segmentation network. The network

used a U-Net architecture [42] with residual convolution layers.

The data used for training was generated with simulations where

a random number of particles, uniformly distributed from one to four,

were emitted from a common vertex. For 80% of the sample, one of

the particles had to be an electron or a muon. The maximum multi-

plicity for leptons and protons had to be three and for photons and

charged pions — two. The directions of the particles were distributed

isotropically, while the kinetic energy of the particles were generated

uniformly over a range between 50 to 1000MeV. For the other 20% of

the sample, the presence of one electron or muon is not required and

the maximum multiplicity for any particle is two. The goal for this

portion of the sample was to provide low energy examples, and so

the ranges for the randomly assigned momenta were 30–100MeV/c

for electrons and photons, 85–175MeV/c for muons, 95–195MeV/c

for charged pions, and 300–450MeV/c for protons. The individual

choices for multiplicities were random. But the point of generating

images in this fashion was to avoid the use of a neutrino interac-

tion generator which would build in assumptions on the multiplicity

and distributions of momentum. The multi-particle generator was an

attempt to give a wider range of possible final state configurations,

including even non-physical ones. To quantify the effect of this choice,

the accuracy is calculated for specific neutrino interaction samples

with a range of particle energies. Table 3 compares the incorrect pixel

fraction per event for the test set, made with the same particle kine-

matics as the training sample, along with different samples of interest

to MicroBooNE analyses.

One aspect that is noteworthy in the training of the network was

the use of pixel-wise weights in the loss function. The goal was to use

the pixel labels upstream of not only clustering, but also candidate

neutrino vertex formation. This meant that not all pixels were of the

same importance. Instead, it was vital that pixels at the boundary

between differ classes of particles would be considered important,

with pixels near the neutrino interaction vertex most important of

all. This motivated the weighting of pixels based not only to account

for the frequency at which a given label appears, but also on their
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Table 3. Summary of the performance of a CNN
tasked with assigning pixels as either track-like or
shower-like. The metric shown is the mean and
90%-percentile incorrect pixel fraction (ICPF)
per image. Also shown in the last two columns are
the mean ICPF for true shower and track pixels.
The test set sample was made in the same fash-
ion as the training images by generating particles
from a common start point without the use of a
neutrino interaction generator. The metrics for
the test set are compared to samples that incor-
porate estimates of the νe and νµ flux as seen
by MicroBooNE and interaction cross-sections as
modeled by the GENIE generator (second and
third row). The last three rows of the table show
the metrics for specific final state that are the
target of physics searches. These are 1 electron
and 1 proton (1e1p) events, low energy 1 electron
and 1 proton (1e1p-LE) events, and low energy
1 muon and 1 proton (1μ1p-LE) events. Figure
taken from [41].

ICPF ICPF
Sample mean 90% Shower Track

Test 1.9 4.6 4.1 2.6
νe 6.0 13.8 7.6 13.8
νµ 3.9 4.5 14.2 4.3
1e1p 2.2 5.7 2.8 4.0
1μ1p-LE 2.3 2.2 6.2 2.4
1e1p-LE 3.9 11.5 3.8 8.0

importance to downstream reconstruction stages. Figure 13 provides

an example multi-particle image used in the training sample. The

different classes of pixel-wise weights are also shown.

In this work, there are several studies comparing the behavior of

the network on real and simulated images. Two event samples were

prepared to do such studies. The first is a sample of images contain-

ing a stopping muon that decays into a Michel electron. The second

sample was composed of νμ-CC interactions where a π0 is identi-

fied. This sample was selected using different, non-ML reconstruction

algorithms. Data samples, both from real data and from simulated
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Fig. 13. Example image illustrating the pixel-wise weights used during training.
(Top) Image showing the pixel values along with labels of the different parti-
cles created from a common start vertex. (Bottom) the classes of pixels to which
weights were assigned to adjust their importance during training. This was done
by weighting their contributions up or down relative to other pixels when calcu-
lating the average classification loss per pixel. Also, color labels indicating the
particle type of certain pixels in the image. The first category of pixels that were
up-weighted are pixels at the boundary of two classes or one class and back-
ground. The second class of pixels are down-weighted and consist of background
pixels, defined as pixels with a threshold below some value. The third category of
pixels are those at the generation vertex. These are given the largest up-weight.
Figure taken from [41].

images, were prepared for both categories. This provided the events

to compare the network behavior on between data and MC.

Comparisons of the track and shower score distributions between

data and MC samples showed good agreement. Additionally, the

data and MC agreement was checked by comparing against human-

generated labels on both data and MC images. The goal was to

quantify how similar was the network behavior on real and simu-

lated images through the fraction of pixels where the network and

human-labels agreed. For both the Michel electron and CCπ0 sample,
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the fraction of pixels that the network disagreed with the hand-scan

labels were within statistical error.

Finally, qualitative checks of network behavior were performed

using ablation studies. The network score was checked on image

regions where physics-based correlations are expected. These were

(1) a portion of a MIP track, (2) the Bragg peak of a muon, and

(3) near the trunk of a shower. All of these locations have informa-

tion nearby that one would expect should correlate with a track or

shower decision. For the MIP track segment, one would expect the

confidence in a track-like label would increase the long the track seg-

ment was. The Bragg peak is a very characteristic feature of track

trajectories, so one would expect little change to the label regardless

of information around it. And finally, for the pixels near the shower

trunk, one would expect that as more pixels can be seen that branch

and deviate from the initial line-like trajectory of the trunk, the

confidence the trunk should be labeled as shower would get higher.

All of this behavior was seen. These studies, of course, cannot guar-

antee that some non-physical features have influence on the track-

shower determination. However, it does show that pixel patterns

associated with well-known physical phenomenon are correlated with

the network score. The studies also demonstrated how CNNs can

assign labels to a given pixel using information from the surrounding

region.

7. Concluding Thoughts

In this chapter we provided a brief survey of the ML techniques

used to identify both individual particles and interaction types rele-

vant to neutrino experiments. There are many new approaches being

explored on a variety of detector types which each have different

forms of information for identifying particles and interactions. Fur-

thermore, recent develops in ML algorithms has allowed particle and

interaction identification to occur at all levels of event reconstruc-

tion. In particular, algorithms like CNNs aim to exploit correlations

in representations of the data close to the raw output of the detector’s

sensors.
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Despite the wide variety of detectors and techniques applied, com-

mon issues arise. The first is that the adoption of new ML techniques

sometimes imposes a representation of the data. For example, the use

of CNNs require one to come up with projections into a 2D array for

detectors where the spatial geometry is not naturally grid-like. Cur-

rent and future work will explore how other classes of algorithms,

such as graph neural networks, might be a better fit for this data.

In assembling the training data, choices are made as to the dis-

tribution of the examples over important quantities like the particle

type or energy. Common approaches are to generate training data

similar to the interactions expected in the detector or to generate

data over distributions agnostic to the underlying physics as pos-

sible. What is the best approach is still up to debate. The latter

might be more preferable for situations where models have a lot of

uncertainty. But one would expect that, with all things being equal,

generating the training the sample closer to the expected data distri-

bution would be important in achieving optimal results in the context

of a given analysis. Future work might include developing techniques

to quantify how much the data one is running inference on is com-

patible with the domain of the training set. One can also modify the

training of the networks to incorporate insensitivity to these prior

assumptions.

The other issue is training on simulated data. Many examples

shown above, use physics-based simulations to generate training

data. This provides some advantages. For supervised learning tasks,

simulations provide the means to associate a labeled data for just

about any quantity. This has aided in the adoption of machine learn-

ing techniques in neutrino and particle physics. Of course, the draw-

back is that the simulations must be sufficiently similar to real data

from the detectors. How to quantify what sufficiently close is is dif-

ficult. Relatedly, uncertainties in the behavior of networks needs to

be quantified for different aspects of data/MC agreement. One can

see various efforts above use simple manipulations of the data, such

as scaling of amplitudes to make first estimates. Important future

work will be needed to perform more sophisticated estimations. Here,

one possible direction was seen in the NEXT example. In this case,
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performance of the network was correlated with physical processes

in the simulation. This again uses the access to simulations as a

strength. Potential future work could exploit such connections to

quantify systematic uncertainties. For example, one could estimate

the variation in network behavior to values of parameters for models

of physics processes.
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Sequence-based modeling broadly refers to algorithms that act on data
that is represented as an ordered set of input elements. In particular,
machine learning algorithms with sequences as inputs have seen suc-
cessful applications to important problems, such as natural language
processing (NLP) and speech signal modeling. The usage of this class
of models in collider physics leverages their ability to act on data with
variable sequence lengths, such as constituents inside a jet. In this chap-
ter, we explore the application of recurrent neural networks (RNNs)
and other sequence-based neural network architectures to classify jets,
regress jet-related quantities, and build a physics-inspired jet representa-
tion, in connection to jet clustering algorithms. In addition, alternatives
to sequential data representations are briefly discussed.

1. Introduction

Sequence-based learning deals with the concepts and algorithms used

to learn from data represented as an ordered set (sequence) of objects,

each with its set of characteristics (features), in which positional

information of each object (context) is important. The idea of con-

textual information as being important for the algorithms is funda-

mental, since it can encode correlations between objects along the

sequence. One of the main applications of this class of models is in

natural language processing (NLP). In these cases, the sequence is

often built from words in a sentence and the algorithm must learn

541
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from it. How the learning occurs and what is learned will depend on

the application. To perform a translation task (neural machine trans-

lation), for example, the algorithm must output another sequence.

In other instances, a summary semantic information needs to be

obtained, such as when the algorithm needs to classify a certain sen-

tence as positive or negative in an online product review.

In more mathematical terms, sequence-based models aim to per-

form operations f on a sequence of inputs {xt}, where each entry xt

is a vector of features, and t is a position in the ordered sequence with

a length T , as shown in the scheme presented in Fig. 1. In particle

physics terms, the sequence can represent an ordered set of tracks

that constitutes a jet, for example, while the entry xt represents the

kinematics of the track in the position t in that sequence. An algo-

rithm acting on the sequence J = {xt} can then be used to learn

information about that jet, such as its flavor or charge (as will be

discussed in the following sections).

In general, different sequences being utilized for the algorithm

definition will have different lengths, just as jets can have different

number of tracks. If all sequences have fixed length, they can be

collapsed into a single feature vector and simpler algorithms, such as

densely-connected NNs, can be used. However, even for fixed-length

sequence problems, sequence-based models can outperform simpler

models by exploiting the ordered nature of the input data.

A key feature of sequence-based models is the ability to share

parameters in different parts of the same model, i.e. the operation

f , which is learned, is applied to every step in the sequence. With

parameter sharing, these models are able to generalize to sequences

of different lengths, using the same set of parameters throughout the

input elements. If different parameters were to be learned individ-

ually, the desired generalizability would not be achievable, and the

model would behave similar to a densely-connected network.

xt−1 xt xt+1
f f f f

Fig. 1. Scheme of a sequence-based algorithm acting on a sequence of inputs xt.
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1.1. Recurrent neural networks

A recurrent neural network (RNN) is a neural network implemen-

tation of the concepts described in the previous section. Densely-

connected neural networks map an input vector of features x to an

output vector o. In contrast, RNNs map a sequence of inputs x into

an output, which can be a vector or a sequence as well. This differ-

ence can be achieved in many different ways, but RNN architectures

generally present cyclical connections between units in the same or

different layers.

These interconnections between units are sequential, in the sense

that each unit’s hidden state is obtained by a combination of the

previous unit’s hidden state and the input from that step. This means

that instead of a unit’s hidden state be given by h = f(x; θ), it will

be given by ht = f(ht−1,xt; θ). On the particular case in which f is

given by a hyperbolic tangent function, for example, the RNN can

be represented as

ht = tanh
(
W�xt +V�ht−1 + b

)
, (1)

instead of a simple densely-connected unit h = tanh
(
W�x+ b

)
,

where W, V, and b represent learnable weights and biases.

Notice that in Eq. (1) the weights on the operations (θ, or W, V,

and b explicitly) do not depend on the time step, or the sequence ele-

ment position, t, explicitly showcasing the parameter sharing feature

of the RNN. Similarly to MLPs functioning as universal approxima-

tors, large enough RNNs have been shown to universally approximate

any measurable sequence-to-sequence maps [1].

In general, RNN architectures add other features on top of the

recurrent layer format described above. For example, in tasks where

the algorithm needs to output another sequence, each individual hid-

den state in the recurrent layer might be read out into a densely

connected network. In contrast, the cases where only a single out-

put is read at the end of the sequential layer (also known as time-

unfolded RNNs) are used to extract a summary information of the

input sequence. Even though the presence of cycles in these archi-

tectures could potentially complicate the process of updating the
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network parameters during the optimization step, backpropagation

can still be applied to the unrolled computation graph,a thus no spe-

cialized algorithms are necessary.

A simple but powerful extension of standard RNN architectures

are bidirectional recurrent neural networks (BRNNs) [2]. For certain

sequence-based modeling applications, knowledge about backward-

in-time context might be as important as forward-in-time, only the

latter of which is exploited in standard RNNs. BRNNs manage to

extend that context information by adding a second recurrent layer

to the network architecture which processes the sequence in reversed

order. Both the forward and backward RNNs are then connected to

the same output layer, providing a combined representation.

An idea related to RNN architectures which is also used in time-

series and signal processing analyses are 1D convolutional layers. In

these architectures, the convolution operation kernal acts on neigh-

bouring time steps, and outputs a new sequence based on its inputs.

These operations act on fixed length sequences, where empty entries

can be masked — similarly to 2D CNNs acting on sparse images with

a fixed pixel grid. Parameter sharing is also an important feature

here, exploited by the use of a single convolution operation across

different time steps. One drawback of this method is its limited sen-

sitivity to long-term dependencies, only exploring correlations across

close neighbours, as defined by the kernel length.

1.2. Long-term dependencies, LSTMs and GRUs

When dealing with large sequences, one expected behavior of RNNs

is to learn how correlated certain entries are, regardless of how far

apart they appear in the input sequence. In practical terms, this

implies that information from early entries in the sequence must be

encoded in how the network learns about latter entries (long-term

dependencies). Unfortunately, in the learning steps, it is common for

gradients propagated through many steps to either quickly approach

zero or increase — both undesirable features in terms of optimization.

aThe application of backpropagation on the time-series unrolled RNN is known
as backpropagation through time.
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This issue is referred in the literature as the vanishing or exploding

gradient problem (e.g. in [3]). Vanishing gradients, for example, can

lead to long-term dependencies being given less importance through

the sequence compared to short-term ones.

This issue can be understood by imagining a simplified recur-

rent structure as a linear transformation between hidden states

ht = V�ht−1. This operation will be therefore performed T times

when moving from the time-step 0 to the last sequence entry. This

shows that the learnable parameters in V will be raised to the power

of T , which means that weights less than 1 will tend to approxi-

mate 0 at later steps, while weights larger than 1 will quickly grow.

Most modern RNN architectures solve this problem with the usage of

long–short-term memory (LSTM) [4] units or gated recurrent units

(GRUs) [5].

LSTM units mitigate the vanishing gradient problem by introduc-

ing a new path in the recurrent loop where the information coming

from each sequence entry can flow for long durations, possibly with-

out interference from subsequent hidden states. This path is dynam-

ically gated through learnable parameters, which means that the

importance of long-term dependencies is optimized with the rest of

the network parameters. In particular, if the activation function per-

taining to a gate remains close to 0, the information from the previous

time-step will not be propagated throughout the sequence. However,

the LSTM will still use that time-step information to update its cur-

rent hidden state. This optimizable gated structure ensures that both

long-term and short-term contributions to the gradient are taken into

account.

A schematic view of three sequential LSTM units is shown in

Fig. 2. The LSTM receives at the time step t both the hidden state of

the previous time step (ht−1), which is concatenated with the feature

vector xt, and an extra input (the cell state, Ct−1) which is regulated

by a forget gate (ft). The forget gate can be a neural network itself,

with a sigmoid output which is shared across all units, ensuring that

the LSTM actively learns how much long-term correlations should

be propagated in the sequence. Next, the cell state is updated with

information learned from the previous hidden state and xt with a
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Fig. 2. Schematic structure of an LSTM recurrent layer. Two outputs for the
unit’s hidden state ht are shown, representing the case in which the LSTM layer
outputs another sequence. Image adapted from [6].

dedicated neural network, generating an intermediate cell state C̃t.

The impact of C̃t in the final cell state is regulated by another neural

network, it. After the update, Ct is propagated to the next time-step.

The final hidden state at this time step is derived with information

learned from the previous hidden state and xt through a network

(ot), and also C̃t.

GRUs work with a similar gated structure — however, the same

forget gate that decides on the propagation of the previous cell state

also determines, with an inverse importance, how the current cell

state should be updated with ht−1 and xt. With the LSTM nomen-

clature used above, the forget gate and the cell state update gate

would be given by ft = ut and it = (1 − ut), respectively, where

ut is called the update gate. GRUs comparatively uses less trainable

parameters than LSTMs, which can be beneficial for smaller datasets;

its less flexible architecture can potentially be detrimental in more

complex applications — however, the studies to be shown below that

compared GRUs and LSTMs generally see similar performances.

2. Applications of RNNs to Jet Physics

Representing reconstructed jets in collider experiments as images for

classification and other machine learning-based tasks, has been a suc-

cessful avenue of research for years now (see Chapter 13). There are,

however, a few features related to this choice of representation that

can make the process of training a computer vision-based algorithm

difficult when compared, for example, to the training of a simple

densely-connected neural network based on engineered features.
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Jet images can be very sparse, i.e. containing few populated

pixels,b making the identification of features on individual jets a

complicated task, even if identifying these features on their averaged

images might be very easy. Pre-processing steps can be applied to

reduce sparseness, for example, increasing the coarseness the image

further by combining adjacent pixels. This procedure, however, effec-

tively reduces the spatial information contained in the input image,

penalizing the algorithm’s performance.

Another issue arising in the pre-processing step is finding a unique

geometrical representation for these images that reflects the expected

symmetries of the problem. In general, geometrical transformations

(e.g. rotations, translations and reflections) are used, aligning pre-

defined axes based on the jets’ spatial energy distributions—but these

definitions can be very task specific and not well generalizable. This is

specially true when the pattern of energy deposition inside these jets

displays a different number of core clusters (prongness)— for example,

when comparing quark-initiated jets, jets from a collimated hadronic

W-boson decay, and jets from a collimated top quark decay.

The algorithms to be described below think about the jet instead

as collection of correlated objects, each one with its set of character-

istics (such as position and energy), and apply some of the sequence-

based ML ideas discussed above for different types of tasks. This idea

is reminiscent of the actual way jets are built in collider experiments,

using sequential clustering algorithms (for example, the widely used

in LHC experiments anti-kt algorithm [8]), acting on low-level detec-

tor quantities, such as calorimeter deposits or tracks.

2.1. Identifying heavy flavor jets

The identification of jets originated from the products of the

hadronization process of heavy quarks (bottom and charm quarks),

known as heavy flavor jets, is of fundamental importance for experi-

ments at the LHC for two main reasons. Firstly, the Higgs boson —

discovered in 2012 by ATLAS and CMS, and currently the focus

bInitial computer vision-based jet images studies have reported 5–10% of acti-
vated pixels on average for 25 × 25 pixels images from signal- and background-
type jets [7].
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of intense experimental investigation — mainly decays to a pair

of bottom quarks, with a predicted decay branching fraction of

about 56% [9]. Secondly, the top quark, which together with the

Higgs boson can help us learn about the structure of the elec-

troweak vacuum [10], decays almost entirely to a bottom quark plus

a W-boson [11].

Finding these Higgs and top decays is not an easy task due to

the enormous multijet background events at the LHC (events with at

least two reconstructed jets). These multijet events are produced with

cross-sections over three times larger than events with top quarks,

and four times larger than events with a Higgs boson [12]. Fortu-

nately, most of these events contain light jets, which are originated

by up, down, strange quarks and gluons. Therefore, learning how to

separate heavy flavor signal jets from the light jets background is

necessary.

Hadrons containing bottom and charm quarks are heavy — for

example, the B0 meson invariant mass is about 5.3 GeV/c2 [11].

They decay through the Weak force, thus having a long mean life-

time (τB0 � 1.5 × 10−12 s). Therefore, a B0 with a momentum of

50 GeV/c will travel on average over 4.5 mm before decaying. This

displaced decay can be reconstructed as a secondary vertex, i.e. a ver-

tex that is separated from the collision’s primary vertex (where the

initial proton–proton interaction occurred, in the case of the LHC).

The LHC experiment’s inner trackers (responsible for reconstructing

the trajectory of charged particles) have been built with the intent

of separating these secondary vertices with good precision, in order

to identify heavy flavor jets. The decay chain of a B0 meson, as

simulated by the ATLAS experiment, is shown in Fig. 3 [13], which

also includes the tertiary vertex from the displaced decay of the D0

meson, containing a charm quark.

In general, requiring that a secondary vertex needs to be recon-

structed in order to identify a b-jet can be detrimental for a high-

efficiency algorithm. However, tracks originated from this displaced

location will have very particular characteristics when compared

to tracks from the primary vertex, and will be correlated by their

shared origin. Therefore, algorithms that focus on finding correlations

between tracks perform comparatively well with respect to direct
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ATLAS Simulation Preliminary
s = 13 TeV, tt

Fig. 3. Simulated decay chain of a B0 meson in the ATLAS experiment. This
event display was obtained from a simulated dataset of top quark pair production,
at center-of-mass energy of 13 TeV. It shows the displacement of the vertices
produced from B0 (secondary vertex) and subsequentD0 (tertiary vertex) decays,
with respect to the center of the coordinate system (primary vertex).

secondary vertex finding, and can provide complimentary informa-

tion for a combined heavy vs. light jet discrimination.

In the ATLAS experiment, two different types of algorithms have

been developed to identify heavy flavor jets based on the likelihood of

tracks being originated from secondary vertices. Both use the tracks’

impact parameter information, which encodes the distance of closest

approach of the charged particle’s trajectory with respect to the pri-

mary vertex. Particles originated from the primary vertex will have

small impact parameters, while particles from secondary vertices will

tend to have larger impact parameters. An important related quan-

tity is the impact parameter significance, in which the distance is

divided by the uncertainty in its measurement. Utilizing the signif-

icance minimizes the impact of low-quality tracks with large mis-

measured impact parameters.

IP3D [14], one of the first ATLAS algorithm based on tracks

impact parameter information, treats the tracks as independent
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Fig. 4. 2D histogram of Sd0 for leading (horizontal axis) and subleading (vertical
axis) tracks inside a b-jet (left) and a light flavor jet (right). The correlation
observed is an indication that the näıve Bayes approach of the IP3D algorithm
is not enough to exploit the full information contained in the tracks’ impact
parameters with respect to b-jet identification.

entities, ignoring possible correlations. It uses 3D histograms of

transverse and longitudinal impact parameter significances (Sd0 and

Sz0 , respectively), and a track quality grade, built from simulation

and separately for b-jets, c-jets and light flavor jets. Per-flavor condi-

tional likelihoods are calculated from these histograms for each track

in a jet. With a näıve Bayes approach, a final jet-level likelihood

is built by multiplying the individual tracks likelihoods. However,

important information is lost with the assumption that the tracks in

the jet are uncorrelated. This can be seen in Fig. 4, where a strong

correlation between the Sd0 distribution of the leading and sublead-

ing track in the jet (ordered by Sd0) can be seen near the diagonal

for b-jets but not for light jets.

More recently, algorithms exploiting RNN architectures based on

LSTMs have been proposed to perform the task described above,

treating the list of tracks within the jet as the input sequence to the

algorithm. Due to the variable number of tracks within a jet, RNNs

are better suited than dense architectures in this approach. Even

though no natural track ordering is clear to the problem, tracks with

larger impact parameters are more likely to come from heavy flavor

jets, therefore, impact parameter based ordering is a good ansatz.c

cEmpirically, the studies mentioned below have shown that certain track orderings
work better than others.
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While the most basic version of this algorithm acts on tracks only,

proposals have been made to combine track and secondary vertices

information in a single LSTM-based architecture [15].

The ATLAS implementation of the LSTM-based architecture for

heavy jets identification with tracks’ impact parameters is called

RNNIP [16]. It treats the tracks within a jet as a sequence, and

uses the impact parameter significance information and track kine-

matics as features. It also uses categorical information based on the

track reconstruction quality in an embedded layer. These categories

separate high quality, well measured tracks, in which a better impact

parameter resolution is expected, based on detector-level information

such as the number of hits in the innermost tracker layer.

The tracks are ordered by Sd0 , although other orderings (such

as by track pT ) have shown similar performance. The algorithm is

trained in a simulated sample of top pairs, which provide a dataset

enriched of both heavy and light quarks, and outputs a probability

of a given jet to be a bottom jet (b-jet), a charm jet (c-jet), or a light

flavor jet. The three probabilities are then combined into a likelihood

that is used for discrimination.

A comparison between the performance of the näıve Bayes algo-

rithm described above (IP3D) and RNNIP is shown in Fig. 5. The

efficiency of identifying b-jets is plotted on the horizontal axis, while

one over the probability of identifying light flavor jets (misidenti-

fication probability) as b-jets is plotted on the vertical axis. The

RNNIP algorithm displays a better light flavor jet discrimination

for every value of b-jet efficiency, and is comparable to a boosted

decision tree that combines IP3D with the secondary vertex-based

ATLAS algorithms (MV2c10 [14]), even though it does not explicitly

reconstruct secondary vertices. Performances were measured for jets

clustered with the anti-kT algorithm [8] with R = 0.4, with a trans-

verse momentum above 20GeV, in a simulated dataset of top quark

pairs, at center-of-mass energy of 13TeV.

Figure 6 shows the Pearson’s correlation coefficient ρ between the

RNNIP likelihood, and Sd0 and Sz0 for each track in the sequence. It

is interesting to note that stronger correlations in b-jets are seen for

impact parameter significances of the first ∼8 tracks, which may be

related to the expected charged particle multiplicity of b-hadron
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decays. This shows that the network architecture is able to learn

contextual information from the given sequence ordering.

Heavy flavor jets identification in the CMS experiment shares

many similarities with the strategies employed by ATLAS. In par-

ticular, their final discriminant is also a combination of information
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pertaining to secondary vertexing and the set of tracks inside the jet.

Two sets of algorithms have been developed with this intent: one set

combining engineered features extracted from the jet, and one that

directly uses reconstructed objects information into a neural net-

work architecture which includes LSTM layers. The CMS DeepCSV

algorithm [17] exemplifies the first strategy, similarly to the ATLAS

MV2c10 boosted decision tree. It is based on a densely-connected

neural network with four hidden layers, with inputs that are defined

by other algorithms which act directly on tracks’ impact parameter

information and reconstructed secondary vertices.

Significant improvement has been observed by CMS by moving

to the DeepFlavor algorithm [18], which acts directly on these low-

level observables. The DeepFlavor network receives three sequences

as inputs: a sequence of charged particles (reconstructed from tracks

and calorimeter clusters), a sequence of neutral particles (calorimeter

clusters with no associated tracks), and a sequence of reconstructed

secondary vertices. Each sequence is processed by a one-dimensional

(1D) convolutional layer, which learns a shared representation that

is specific for each type of sequence. The convolutional layer out-

puts are then fed to three different LSTM layers, which summa-

rized the sequences information into three fixed length feature vector.

These features are combined with additional jet-level information in a

densely connected network, which outputs the jet flavor probabilities.

Figure 7 summarizes the CMS b-jet identification performance.

The red and blue lines represent the performance of the DeepCSV

and DeepFlavor algorithms respectively, with the CMS detector con-

ditions present during the 2017 LHC data taking period (Phase 1),

while the green line shows the DeepCSV performance with the CMS

detector conditions in 2016 (Phase 0). Between 2016 and 2017, CMS

inner tracking detector was upgraded to deal with the harsher radi-

ation conditions at the LHC later Run 2 years. This upgrade also

provided the CMS experiment a better impact parameter resolution,

directly improving their heavy flavor identification performance. The

b-jet efficiency is shown as a function of the light flavor jets misidenti-

fication probability (full lines), and as a function of the c-jets misiden-

tification probability (dashed lines). While a large improvement is

seen in the performance of the DeepCSV algorithm with the CMS
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Fig. 7. Performance of heavy flavor identification algorithms in the CMS exper-
iment [18]. The horizontal axis shows the efficiency of correctly identifying b-jets,
while the vertical axis shows the efficiency of identifying light flavor jets (full
lines) or c-jets (dashed lines) as b-jets. The red and blue curves represent the
DeepCSV and DeepFlavor algorithms performances with the 2017 CMS detector
conditions, while the green curve represents the DeepCSV algorithm with the
2016 CMS detector conditions.

Phase 1 inner tracker upgrade, an improvement just as large is seen

with the usage of DeepFlavor in terms of light flavor jet discrimina-

tion, with an even large gain in terms of c-jet rejection. Performances

were measured for jets clustered with the anti-kT algorithm, with a

transverse momentum above 30 GeV, in a simulated dataset of top

quark pairs, at center-of-mass energy of 13 TeV.

2.2. Identifying strange jets

Jets from strange quarks are grouped within the light flavor jets cate-

gory for the algorithms described above. However, for certain physics

applications, such as the direct measurement of the |Vts| element of

the CKM matrix through the search of the rare decay t → W+s
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(or t̄ → W−s̄) [19], discriminating strange jets from first-generation

jets is a necessity.

A LSTM-based algorithm has recently been proposed to tackle

this problem [20]. The study is performed with a simplified detec-

tor description model (Delphes [21]) based on a CMS-like detector.

The algorithm is trained to discriminate between strange jets and

jets from the hadronization of up and down quarks, produced by

proton–proton QCD interactions. Similarly to the ATLAS RNNIP,

the proposed algorithm acts on sequences of tracks, with features

based on their impact parameters and kinematics with respect to

the jet.

Secondary vertices are expected to be present in strange jets

through the decay of strange kaons into ππ and lambda baryons into

pπ. Therefore, all possible secondary vertices in the jet are recon-

structed by pairing tracks with small distances of closest approach

to each other. These vertices are then used to define a track ordering

based on the parameter R assigned to each track. This parameter is

defined either by the transverse distance between the primary vertex

and the secondary vertex to which that track belongs, or, in the cases

where the track is not associated to a secondary vertex, the inner-

most tracker hit belonging to that track. If multiple tracks receive

the same R (e.g. two tracks from the same secondary vertex), their

ordering is performed by pT . This ordering ensures that adjacent

tracks belong to the same secondary vertex, which the network will

use to learn about displaced decays.

Figure 8 compares the performance of the LSTM-based strange

jet discriminator to the performance of simpler methods. In partic-

ular, the performance of using the transverse momentum fraction

xK and xΛ of identified kaons and lambda baryons is also inves-

tigated. To calculate these quantities, a selection on the invariant

mass of the reconstructed secondary vertices, consistent with the K

and Λ masses, is applied. The highest pT K and Λ candidates of the

remaining vertices are chosen, and used to calculate xK and xΛ to

their parent jet. Two different setups of the LSTM are compared: one

including all selected jets, and one only including jets that contain at

least one track with large transverse impact parameter |d0| > 1 mm.
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Fig. 8. Performance of strange jet identification algorithms based on LSTM
architectures and strange hadron reconstruction [20]. The vertical axis shows the
efficiency of correctly identifying strange jets, while the horizontal axis shows the
efficiency of incorrectly identifying up and down quark jets as strange jets.
The blue and orange lines show the performance of the LSTM-based algorithm
using all jets and jets with at least one track with transverse impact parameter
|d0| > 1 mm, respectively. The red dashed and full black lines show the perfor-
mance of selecting on the transverse momentum fractions xK and xΛ, and only
on xK , respectively.

The overall performance of this algorithm is unfortunately limited

by the similarity between strange and first-generation quark jets —

achieving a background efficiency of 21% (63%) for a signal efficiency

of 30% (70%). The secondary vertices from kaon decays are not as dis-

placed as vertices from b-jets or c-jets and can easily be misidentified

from vertices produced by material interaction or decays of particles

originated in the hadronization process. One important improvement

with respect to using xK and xΛ, however, is the ability to achieve

higher signal efficiencies, as shown in Fig. 8.

2.3. Identifying tau lepton jets

Similarly to heavy flavor jet identification, identification of tau lep-

tons is particularly interesting due to its ties to Higgs physics.
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The coupling between the Higgs and the tau lepton is the largest

Higgs couplings to leptons in the Standard Model. It is therefore an

opportunity to directly measure the structure of the Higgs Yukawa

couplings to that sector of the Standard Model.

Taus decay either leptonically (τ → ντ + �ν�, in which � is an

electron or a muon), or hadronically (τ → ντ+ hadrons). Leptonic

tau decays are roughly indistinguishable from isolated leptons in

hadron collider experiments. Therefore, tau identification focuses on

hadronic taus, which represent a branching fraction of approximately

65% [11]. Hadronic tau decays usually include one or three charged

pions and one or more neutral pions. Therefore, these decays are seen

in the detector as narrow jets with one or more tracks.

Since neutral pions do not leave signals on the detectors’ inner

tracks, their trajectories cannot be reconstructed as tracks. This

means that if only track information were used, a large portion of

information for tau identification would be missing. Therefore, an

optimal strategy should aim to combine the tracking and calorime-

try information.

The ATLAS experiment state-of-the-art tau identification algo-

rithm is based on a double LSTM architecture that combines track

sequences and calorimeter deposits (clusters) sequences [22]. The

algorithm has three sets of inputs: a track sequence, a cluster

sequence, and a set of high-level variables connected to a dense layer.

The track and cluster features considered refer to their kinematics

and detector-level properties, while the the high-level ones are related

to the jet itself, or engineered features based on the collection of jet

constituents.

Tracks are individually fed through dense layers with shared

weights, so that an embedded representation can be learned. The

same procedure is applied to calorimeter clusters separately. The

two processed sequences, one of track embeddings and one of cluster

embeddings, are ordered by decreasing pT of the original objects and

used as inputs to two separate LSTM blocks. These blocks includes

two layers of LSTM units — the first one maps the sequence in

the learned representation into another sequence of the same length.

The second LSTM layer only outputs the information at the last



December 14, 2021 16:15 Artificial Intelligence for High Energy Physics 9in x 6in b4322-ch15 page 558

558 R. Teixeira de Lima

time-step, thus providing a summary of the input sequence. The

LSTM blocks outputs are fed to a densely-connected block, which

also receives information from a densely-connected block encoding

high-level observables of the tau jet.

The training and evaluation of the architecture defined above is

performed separately for the cases in which the tau decay includes

one or three tracks. The tau decays (signal) are provided by simu-

lation of γ∗ → ττ events, while background jets are selected from a

simulation of dijet events.

The performance obtained in Fig. 9 compares the LSTM architec-

ture (RNN) optimized for tau decays with one (1-prong) and three

(3-prong) tracks. It also compares to the previous algorithm used in

the ATLAS experiment, based on a boosted decision tree (dashed

lines). The LSTM-based architecture outperforms the previous base-

line for all hadronic tau efficiencies. These improvements have been

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 efficiencyvisTrue had-

1

10

210

310

410

 r
ej

ec
tio

n
ha

d-
vi

s
F

ak
e 

ATLAS Simulation Preliminary

Working points (3-prong)

RNN (1-prong)

BDT (1-prong)

Working points (1-prong)

RNN (3-prong)

BDT (3-prong)

Fig. 9. Performance of hadronic tau jets algorithms in the ATLAS exper-
iment [22]. The horizontal axis shows the efficiency of correctly identifying
hadronic tau jets, while the vertical axis shows the inverse of the efficiency of
incorrectly identifying quark-initiated jets as hadronic tau jets. The red curves
show the performance exclusively on tau jets with a single track (1-prong), while
the blue curves represent tau jets with three tracks (3-prong). The RNN-based
model’s performance is shown in the full lines, with the dashed lines representing
an algorithm with similar inputs but based on a boosted decision tree.
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shown to be significant enough that the new architecture has actu-

ally been used for identifying tau candidates at the ATLAS high-level

trigger (HLT) in 2018.

2.4. Identifying top jets

When produced at large momenta, top quarks’ decay products will

start to merge, making it more difficult to resolve them spatially

in the detector. In this regime, the entire top quark decay can be

clustered into a single jet. Usually these jets have larger radius

parameters: CMS [23] utilizes R = 0.8 anti-kt jets and R = 1.5

Cambridge-Aachen jets [24], while ATLAS [25] focuses on R = 1.0

anti-kt jets. Identifying these boosted top objects, from a background

of jets from the hadronization of lighter quarks and gluons, is par-

ticularly interesting when searching for Beyond the Standard Model

physics which predict TeV-range resonances decaying to top pairs.

Several interesting features which are present in a boosted top jet

can be used to discriminate against a high momentum jet produced

by QCD interactions. In particular, hadronic top decays will tend

to be three-pronged, with each prong corresponding to a final state

particle in the t→ bW → bqq′ decay chain. Two important details on

this chain is that one of these prongs will be consistent with a heavy

flavor jet, and the other two will be consistent with a W-boson decay.

LSTM-based architectures have been proposed for identifying

these boosted top jets [26]. The study is performed with a Delphes-

based detector simulation [21] with a particle flow type of particle

reconstruction, overlaying minimum bias events to emulate the LHC

2016 collisions conditions, averaging of 23 proton–proton interaction

per event. Jets are clustered following the ATLAS strategy, with the

anti-kT algorithm and R = 1.0. The signal top jets are obtained from

simulating a beyond the Standard Model process in which a Z ′-boson
with masses ranging from 1400–6360 GeV decays to hadronically

decaying tt̄ pairs. Background jets come from the simulation pure

QCD hard scattering processes (QCD jets).

Similar to tau identification, the sequence for the recurrent model

is built of calorimeter clusters. The input ordering is defined based on
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Fig. 10. Scheme of jet clustering history used to define input sequence ordering
in LSTM-based top identification algorithm [26]. The anti-kT distance dij is used
to choose which path to follow in the tree.

going through the clustering history of the jet, starting from the final

reconstructed jet, and adding constituents to the sequence as they

appear in each step. The decision on which path to follow in each time

two parent nodes merge depends on the anti-kT distance metric dij .

If the two parent nodes are present in the list of jet constituents, they

are added to the sequence ordered by pT . A scheme presenting how

the clustering tree is used to build the sequence ordering is shown in

Fig. 10. Another strategy is based on reconstructing R = 0.2 anti-kT
subjets, order them by descending pT , then adding constituents to

the sequence depending to which subjet they belong — constituents

on the same subjet are also ordered by descending pT . These schemes

are compared with purely ordering on the jet constituents pT .

As seen in Fig. 11 (left), the LSTM-based architecture with sub-

structure ordering outperforms the previous baseline studied by the

same group [27], based on a fully connected dense neural network.

The results are presented depending on the ordering scheme as well

whether the jets are trimmed or not. Trimming [28] is a technique

that ensures robustness of the jet kinematics, especially the jet mass,

with respect to pile-up contamination by removing R = 0.2 subjet

constituents with a certain energy fraction; in this case, subjets are

removed if their energy fraction is lower than 5%. Figure 11 (right)

shows that the impact of the ordering strategy is limited. In fact, it

appears to be smaller than the impact of applying trimming, which
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Fig. 11. Performance of top identification with LSTM-based techniques [26]. The
horizontal axis shows the efficiency of correctly identifying top jets, while the
vertical axis shows one over the efficiency of incorrectly identifying QCD jets as
top jets. The left plot compares the LSTM algorithm with a strategy using a
dense neural network. The right plot compares different training strategies for
the LSTM, including different sequence orderings (substructure, subjet or purely
constituent pT based) and with or without trimming.

removes subjet information that could be important for top identifi-

cation. For more information on top jet identification with jet images,

see Chapter 13.

2.5. Learning a jet representation

In general, a jet can be understood as a collection of final state

particles that are results of the hadronization and fragmentation

processes of a quark or a gluon. However, the actual procedure of

reverse-engineering these processes, which are quantum mechanical

by nature, can be complicated, especially when dealing with the busy

environment of a hadron collider event. Jet clustering algorithms aim

to reduce this complexity and make the connection between observ-

able final state particles and the phenomenological predictions based

on partons.

While many types of jet clustering algorithms have been pro-

posed in the past, most recent applications utilize strategies based

on sequential clustering, such as the ones already discussed here (kT ,

anti-kT and Cambridge-Aachen being three well-known examples).

These algorithms take advantage from the fact that the processes for
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the particle shower development can be approximated well, due to

factorization theorems, by a sequence of 2 → 1 splittings in creat-

ing a hierarchical representation of the jet. When reverse-engineered,

this sequence of splittings becomes a sequence of mergings of jet

constituents, forming a binary tree. This binary tree represents the

jet clustering history, and encodes important information about the

nature of that jet.

As presented in the previous section, the usage of RNN architec-

tures for learning jet labels has been a successful avenue in collider

experiments, greatly improving on previous, often already Machine

Learning-based, strategies. Treating the jet constituents simply as

an input sequence, however, des not fully exploit the full informa-

tion contained in the jet clustering history as represented by the

clustering tree.

It has been suggested that through understanding the inter-

play between the clustering history and neural network architec-

tures could lead to a more natural jet representation [29]. The study

presents a framework in which a neural network can be built based

on the clustering tree obtained from the jet clustering algorithm his-

tory. It tries to exploit the entire physical knowledge contained within

the jet, particularly with respect to hierarchical correlations between

individual constituents. This structure is then used to learn an overall

probabilistic model of the jet conditioned on its constituents, through

an unsupervised training task.

Building a probabilistic model for a class of jets presents the pos-

sibility of having a tractable and differentiable distribution function

which can inform different aspects of jet physics. In particular, mod-

els trained for different classes of jets, such as b-jets and light flavor

jets, can be used to compute likelihood ratios for discrimination.

Models can also be sampled in order to generate new jets, a process

which can take a significant amount of time when large datasets are

required.

The framework, named JUNIPR (“Jets from UNsupervised Inter-

pretable PRobabilistic models”), is based on the factorization of the

jet probabilistic model into a product of probabilities given by each

step of the clustering tree. For a set of jet constituents denoted
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Fig. 12. JUNIPR calculation of jet-level probability model based on its factor-
ization to nodes in binary tree of the jet clustering history [29].

by their 4-momenta p1, . . . , pn, it computes the probability density

Pjet({p1, . . . , pn}) of this set to have arisen from the specified model.

This probability factorizes based on the 2 → 1 clustering tree, so

that Pjet({p1, . . . , pn}) =
∏t=n

t Pt, where Pt represents the probabil-

ity model of the branching step t. This factorization is schematically

shown in Fig. 12.

The study further models Pt as the product of three independent

probabilities: Pend, probability over binary values predicting if the

tree stops after this split; Pmother, probability over integers of how

likely is that the mother in step t indeed participates on the splitting

1 → 2; and Pbranch, probability over kinematic configurations of the

three states involved in the branching step t. Each one of these three

probabilities are modeled with densely-connected neural networks.

They use as inputs the hidden state ht at branching step t, calculated

based on the recurrent relation below:

ht = tanh
(
V · (ktd1 , ktd2)+W · ht−1 + b

)
, (2)

where ktd1 , kd2 represent the 4-momenta of the two daughters involved

in the splitting step t, and V , W , and b represent learnable weights

and biases. This equation has the same form as the one presented

in Sec. 1.1 detailing the functioning of RNNs. The study also tried

to replace this simple RNN strategy in the equation above with

more complex solutions, such as LSTMs and GRUs. No significant

improvement in performance was observed; it was argued that this

was due to the simplicity of the task, acting on sequences with only

two elements.

The algorithm is trained based on the full jet probabilistic model,

maximizing the log-likelihood over the examples in the training

dataset, with stochastic gradient descent. Datasets are generated
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Fig. 13. Performance of JUNIPR used for binary classification, based on the
calculation of likelihood ratios [29]. The horizontal axis shows the efficiency of
identifying Z -jets, while the vertical axis shows one minus the efficiency of incor-
rectly identifying quark jets as Z -jets. The image also shows the discrimination
performance by simply using a substructure variable τ21 and constituents multi-
plicity information.

by e+e− collisions, without detector simulation, at center-of-mass

energy of 1 TeV. The two jets in the final state are separated into

hemispheres by the exclusive kT algorithm [30], and their clustering

trees are obtained with the Cambridge-Aachen algorithm.

Results of using the learned jet probability applied to jet classifi-

cation, through likelihood ratio computation, are shown in Fig. 13.

The blue line represents the discrimination power between jets from

quarks and jets from a boosted hadronic Z decay by calculating the

likelihood ratio between the jets probabilities based on each hypothe-

ses PZ(jet)/Pq(jet). PZ(jet) and Pq(jet) represent the JUNIPR prob-

abilities trained individually on Z jets and quark jets, respectively,

and evaluated on a given jet. The JUNIPR likelihood ratio greatly

outperforms the strategy based on engineered features representing

the jet substructure.

The framework has also been used for direct binary classifica-

tion tasks [31]. In this case, two JUNIPR networks are built based

on two different types of jets (quark jets and gluon jets, for exam-

ple). The two networks are trained with a cross entropy objective

function, where the individual jet probabilities from each jet type



December 14, 2021 16:15 Artificial Intelligence for High Energy Physics 9in x 6in b4322-ch15 page 565

Sequence-Based Learning 565

are defined by the JUNIPR networks. The quark vs. gluon discrim-

ination achieved by this method was seen to outperform standard

approaches, such as CNNs on jet images. It also significantly outper-

forms the strategy above of individually training JUNIPR models

and calculating their likelihood ratio.

3. Alternatives to RNNs

The applications of RNN architectures in collider experiments and

phenomenological studies has been an active area of recent develop-

ments, successfully avoiding issues previously seen with CNN archi-

tectures, while very often improving on their performances. Some

features of these architectures are, however, less desirable for certain

problems. Certain the physics problems utilizing RNNs do not have

a well-defined, natural ordering of the sequence elements. Choosing

a specific order becomes a non-trivial step of the data formatting,

one that could lead to undesirable performance losses. On the other

hand, other physics problems might benefit from topological struc-

tures that encode more complex relations than a sequence.

3.1. Recursive neural networks

Recursive neural networks (RecNNs) have been proposed in the lit-

erature as possible generalizations of RNNs, in which the sequential

computational graph is replaced by a tree structure [32]. This means

that a node hidden state still depends on the previous step in the

computational graph, similarly to the RNN, but the step itself is

defined by a binary tree instead of a sequence. This feature opens up

the possibility of adding extra domain knowledge information into

the network architecture itself when building the tree. A scheme of

a recursive structure based on a binary tree is shown in Fig. 14.

When building a RecNN, entries in a sequence are combined via a

learned function, with a predetermined binary tree structure. There-

fore, a hidden state combining entries xi and xj is represented by

h = f(xi,xj , θ), where θ represents the learnable parameters. This

function f(·, ·, θ) is then used in all binary combinations, which allows
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h0 h1

h2 x4

o

Fig. 14. Scheme of a recursive binary tree structure algorithm acting on a
sequence of inputs x0,x1,x2,x3,x4. The hi nodes correspond to hidden states
performing the combination of two other nodes, while the o node represents the
output.

the architecture to act on variable-length sequences.d Another advan-

tage of RecNNs over RNNs is its lower complexity, since the compu-

tations are not performed per sequence entry anymore.

Studies utilizing RecNNs with trees reproducing the jet clustering

history as a basis for jet representation have been performed in the

context of jet classification [33–35] and will be detailed below. They

show that RecNNs are able to learn a fixed-length jet embedding

from a variable length tree structure built from the jet constituents.

This embedding can be further used for different tasks, such as clas-

sification and regression.

Applications to Jet Physics

Initial studies used the RecNN architecture for jet discrimination

[33], using simulated events processed through a simplified detector

simulation (Delphes). The signal jets are comprised of hadronically

decaying W-bosons reconstructed as a single R = 1.0 anti-kT -jet

(boosted jet), while the background is taken from purely QCD hard

scattering proton-proton collisions. The study performs a comparison

dThis is another instance of weights sharing in neural networks, a necessity when
dealing with variable length inputs.
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Fig. 15. Performance of RecNN-based algorithm for identifying boosted W -jets
with respect to jets produced via purely QCD interactions [33]. The horizontal
axis shows the efficiency of correctly identifying W -jets, while the vertical axis
shows one over the efficiency of incorrectly identifying QCD jets as W -jets. The
different line colors correspond to different jet clustering algorithms used to build
the binary tree topology in the RecNN.

between RecNN architectures based on different binary trees, corre-

sponding to different jet clustering algorithms histories. The result

of this comparison is shown in Fig. 15. It is interesting to note that,

even though the jets have been initially clustered with the anti-kT
algorithm, other clustering histories, such as kT , perform better. This

is consistent with previous observations that kT outperforms anti-kT
in terms of identifying substructures in jets. In general, this variation

in performance is an evidence for the strong dependence of RecNNs

architectures on the choice of binary tree topology.

The performance is also studied when adding gating to the RecNN

nodes. Similarly to LSTMs and GRUs, gated structures are used to



December 14, 2021 16:15 Artificial Intelligence for High Energy Physics 9in x 6in b4322-ch15 page 568

568 R. Teixeira de Lima

regulate how much information is passed through the binary tree.

An improvement in performance is observed with gating, but the

importance of topology is still dominant in the results.

This study also shows that the learned RecNN jet embedding

can be used for event-wide discrimination, identifying beyond the

Standard Model processes involving boosted W - and Z -jets from

purely QCD processes. In this case, these RecNN embeddings of

the individual jets in an event are passed through as a pT -ordered

sequence to a GRU-based architecture which performs the classifi-

cation task. It was observed that the usage of RecNN-based embed-

dings improves significantly the event classification performance with

respect to using a GRU-only architecture acting on sequences of jets.

A similar strategy has also been employed for quark vs. gluon

jet discrimination [34], showing a slight improvement on a baseline

boosted decision tree-based algorithm. Quark vs. gluon discrimina-

tion is an important avenue of work at the LHC, due to the enor-

mous gluon background from soft hadronic interactions, which have

a strong impact on analyses with light quarks in the final state. One

important application of this class of algorithms is identifying the

hard scatter final state light jets involved in production of the Higgs

boson via vector boson fusion.

As in the previous study, simulated events are processed with

Delphes and jets are clustered with the anti-kT algorithm with

R = 0.7 for high jets with pT > 1 TeV and R = 0.4 for jets with lower

pT . Purely QCD events with two jets from the hard scatter (dijet

events) are produced separately for when the hard scatter partons

are gluons (background), or up, down or strange quarks (signal). The

discrimination achieved with the RecNN under different jet recon-

struction strategies is shown in Fig. 16, together with a baseline

approach based on a BDT with engineered features (jet shape and

kinematics). Three types of jet reconstructions are compared: using

calorimeter towers only (“nopflow”); using particle identification for

neutral hadrons, photons, and positively and negatively charged par-

ticles, encoded in one-hot vectors for each jet constituent in the tree

(“one-hot”); using a pT weighted jet charge defined by the cluster-

ing tree (“ptwcharge”). Although little difference is observed with
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Fig. 16. Performance of RecNN-based algorithm for discriminating quark and
gluon jets [34]. The horizontal axis shows the efficiency of correctly identifying
quark initiated jets, while the vertical axis shows one minus the efficiency of
incorrectly identifying gluon jets as quark jets. The red lines correspond to the
RecNN models trained with different jet reconstruction techniques. The blue line
shows the performance of a baseline BDT based on engineered features related
to jet shape and kinematics.

respect to the investigated jet reconstruction schemes, a significant

improvement is obtained over the BDT baseline.

Recent studies have also compared RecNNs to RNNs and CNNs

when tasked to estimate jet charges [35]. In the same spirit of identi-

fying jet flavor, identifying jet charges can help with mitigating the

enormous multijet background present in hadronic LHC searches.

Requiring that two jets forming a neutral resonance have opposite

charges could potentially reach that goal, assuming a good charge

reconstruction resolution is achieved.

For these studies, jets from up quarks were used as proxies for

positively charged jets, while jets from down quarks were used for

negatively charged jets. Jets were simulated from QCD hard scatter-

ing processes in proton–proton interactions, and clustered from final

state particles with the anti-kT algorithm with R = 0.4. To test the
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performance of CNN’s on jet images, the jets were formatted into

δφ × δη = 33 × 33 pixel box, with pixel intensities referring to the

transverse momenta going into that specific pixel, and to the sum

of track charges weighted by their momenta over the tracks corre-

sponding to that pixel.

Results are shown comparing different ML-based models acting

on jet constituents: standard CNNs, residual CNNs, RNNs and Rec-

NNs. The RNN architecture implemented is based on GRUs, with

LSTMs performing similarly; the jet constituents are ordered in the

input sequence by their pT , with the ordering based on distance to the

jet axis performing equally. These different algorithms’ performances

are presented in Fig. 17 in terms of Significance Improvement Curves

(SIC), defined by εs/
√
εb, where εs is the efficiency of correctly identi-

fying down quark initiated jets, and εb is the efficiency of incorrectly

identifying up quark jets as down jets. They are compared to more

standard strategies based on engineered features. Overall, the algo-

rithms acting on jet constituents consistently outperform the baseline

approaches.

Fig. 17. Performance of ML-based algorithms acting on jet constituents to dis-
criminate up and down jets based on their electric charges [35]. The horizontal
axis shows the efficiency of correctly identifying down quark initiated jets (εs),
while the vertical axis shows the ratio εs/

√
εb, where εb is the efficiency of incor-

rectly identifying up quark jets as down jets.
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3.2. Transformers and deep sets

As shown by some of the studies described above, the ordering choice

can be detrimental to the RNNs performance. One recent strategy

proposed to overcome this ordering dependency is attention mecha-

nisms [36]. The main working point of attention mechanisms can be

understood with a simple NLP example. Within translation prob-

lems, two languages often display different semantic structures for the

same sentence: “a yellow cat” in English becomes “um gato amarelo”

in Portuguese, with the words for “cat” and “yellow” switching posi-

tions. This relationship is difficult to be learned through standard

RNNs in which the input and output sequences have a defined order.

To solve this issue, network architectures with attention will directly

learn correlations between the entries in the input sequence and the

entries in the output sequence, which might not be encoded in the

sequences ordering.

Different strategies and architectures involving ideas related to

neural network attention have been proposed to mitigate the ordering

issue. In particular, transformer networks [37], which employ a self-

attention technique, learning two-by-two correlations between the

sequence inputs themselves through attention weights. Transformers

have become common tools in NLP, with pretrained models such as

BERT (bidirectional encoder representations from transformers) [38]

being adopted by Google in its search engine for better understanding

search queries.

Another method which aims to exploit correlations on a variable-

length input structure is the deep sets architecture [39]. Deep sets

are particularly suited for situations in which the ordering is not well

defined, as it treats the variable-length input sequence as a permu-

tation invariant set. A similar deep sets architecture was used [40] to

learn representations for events in collider experiments (particle flow

networks). These particle flow networks act on lists of particles, such

as jet constituents, learns a combined representation through dense

layers with shared weights, and sums them into a single, object-wide

representation.

A similar architecture to the particle flow networks was used in

the ATLAS experiment as an alternative to the RNN-based model
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Fig. 18. Performance of the RNNIP [16] and DIPS [41] heavy flavor identification
algorithms in the ATLAS experiment. The horizontal axis shows the efficiency of
correctly identifying b-jets, while the vertical axis shows the inverse of the effi-
ciency of incorrectly identifying light flavor jets as b-jets. The violet band shows
the performance the DIPS performance, while the green band represents RNNIP.
The width and central value of the curves represent the standard deviation and
mean of the light flavor jets rejection for a given b-jet efficiency for five different
network trainings. Performances were measured for jets with a transverse momen-
tum above 20 GeV, in a simulated dataset of top quark pairs, at center-of-mass
energy of 13 TeV.

in the context of heavy flavor identification [41]. The deep sets-based

ATLAS heavy flavor discriminant (DIPS) outperforms its RNN anal-

ogous (RNNIP, described in Sec. 2.1) version of the RNNIP ATLAS

heavy flavor discriminant by up to 20% for b-jet efficiencies larger

than 60%, while using the same inputs, as seen in Fig. 18. DIPS has

also been found to reduce significantly the training and evaluation

time with respect to RNNIP, due to its paralelizability. The ability

of parallelizing computations on each sequence element is an impor-

tant feature of this model, particularly for applications in which the

network evaluation time is limited.

4. Conclusion

Sequence-based machine learning algorithms have a long and rich

history in the context of natural language processing. While the idea
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of representing a jet as a sequence of its constituents is not new in

particle physics, as evidenced by jet clustering algorithms, the usage

of ML concepts exploting this representation is relatively recent when

compared to computer vision algorithms. Even so, the application

of RNNs to jet physics in particular has been a fruitful avenue of

research in the past few years. Special attention was given to the

predictive power of these models, with the successful application of

LSTM-based neural network architectures to different types of jet

classification tasks. More generally, recurrent structures were shown

to be well-suited to describe jet clustering histories, leading to a full

probabilistic model of a jet given its constituents.

Recent work has also been focused on expanding the basic RNN

ideas of hierarchical context learning to more physics inspired archi-

tectures, such as recursive neural networks. However, while these

models achieve high precision when the correct choice of input struc-

ture is used — either the binary tree in a RecNN or the ordered

sequence itself for RNNs — their performances can be significantly

degraded given a wrong structure choice. This is particularly diffi-

cult to deal with when the input has variable sized length but the

data structure is not obvious. For example, how one chooses to order

the set of tracks inside the jet will depend on the task to be per-

formed: ordering in impact parameter significance can be suited for

b-jet identification, but not for quark vs. gluon discrimination. With

that in mind, algorithms in which the data structure itself is either

learned, such as transformers or graphs, or invariant under certain

problem transformations, such as permutation invariant sets, have

shown a great potential for future studies.
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Our predictions for particle physics processes are realized in a chain of
complex simulators. They allow us to generate high-fidelty simulated
data, but they are not well-suited for inference on the theory parame-
ters with observed data. We explain why the likelihood function of high-
dimensional LHC data cannot be explicitly evaluated, why this matters
for data analysis, and reframe what the field has traditionally done to
circumvent this problem. We then review new simulation-based inference
methods that let us directly analyze high-dimensional data by combining
machine learning techniques and information from the simulator. Initial
studies indicate that these techniques have the potential to substan-
tially improve the precision of LHC measurements. Finally, we discuss
probabilistic programming, an emerging paradigm that lets us extend
inference to the latent process of the simulator.

1. Particle Physics Measurements as a

Simulation-Based Inference Problem

1.1. A fundamental problem for LHC measurements

Among the sciences, particle physics has the luxury of having a very

well-established theoretical basis. Quantum field theory provides a

framework not only for the Standard Model, but also for theories

of physics beyond the standard model (BSM). We almost take for

granted the predictive power of our theories, but the way our field

formulates searches for new physics in terms of hypothesis tests and
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confidence intervals is critically tied to the fact that we have predic-

tive models to test in the first place.

Often we seem to equate the predictions of a theory with Feynman

diagrams and the matrix element for a hard scattering process, which

in turn can be used to predict a fully differential cross-section. Of

course, that is not the full story, as one must include parton density

functions and quarks and gluons give rise to a parton shower and

subsequent hadronization process. Moreover, we observe electronic

signatures tied to scintillation, ionization, etc. in our detectors, not

the final-state particles directly. Therefore, the predictive model for

a theory must incorporate the response of the detector to the final

state particles.

While all of these points are well known to an experimental parti-

cle physicist, it has not been customary to describe the full simulation

chain explicitly as a probabilistic model for the data. Why is that? In

part that is because we have no explicit closed-form equation to write

down nor do we have a function that we can provide to Minuit [1]

that describes the probability distribution for the raw data in terms

of parameters that appear in the Lagrangian for a given theory. Nev-

ertheless, we can produce synthetic data using Monte Carlo simula-

tion tools like MadGraph [2], Sherpa [3], Pythia [4], Herwig [5], and

GEANT4 [6].

The colloquial term or jargon for both the simulation tools and

the synthetic data they produce is Monte Carlo. This term refers to

methods that sample from probability distributions to compute an

integral. Particle physics simulators use such methods to compute the

cross-section of a process by sampling a number of events following

the probability distribution

p(x, zd, zs, zp|θ) = px(x|zd) pd(zd|zs) ps(zs|zp) p(zp|θ) . (1)

Here the four probability densities describe the sequence of hard

process, parton shower, interactions with the detector, and construc-

tion of observables. This factorization represents the reality that

the Geant4 detector simulation does not depend on the Lagrangian

parameters that are modified in the hard scattering modeled by

MadGraph, and so on. The vector zp is the parton-level phase-space

point of a simulated event (i.e. the parton four-momenta, helicities,
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and charges); the vector zs summarizes the parton shower simulation,

including the stable particles that emerge from it; zd are the inter-

actions in the detector. These three vectors collectively define the

“Monte-Carlo truth record” of a simulated event and are the latent

variables of the process: we cannot measure them, and in fact they

are only well defined within a given simulator code. Finally, x is the

vector of observables. While a real-life observation consists of tens of

millions of sensor read-outs, one can consider the reconstruction of

the event as part of the measurement process and take x as a vector

of four-momenta and other properties of the reconstructed particles.

In Table 1 we provide a look-up table for these and other symbols

that appear in this chapter and translate between particle physics

and machine learning or statistics nomenclature.

There is an established chain of high-fidelity simulators that can

sample events from the probability density in Eq. (1). However, sta-

tistical inference — quantifying the degree to which parameter values

θ are in agreement with an observed set of events D = {xi}ni=1 — is

surprisingly challenging. Why? The key quantity for both frequentist

and Bayesian inference method is the likelihood function pfull(D|θ),
the probability density of an observed set of events D as a function

of the parameters θ. The full likelihood function is given by

pfull(D|θ) = Pois(n|ε Lσ(θ))
∏
i

p(xi|θ) , (2)

where Pois(n|ε Lσ(θ)) is the Poisson probability density for n

observed events, efficiency and acceptance factors ε, integrated lumi-

nosity L, total cross-section σ(θ), and where

p(x|θ) =
∫

dzd

∫
dzs

∫
dzp p(x, zd, zs, zp|θ) (3)

is the probability density for an individual event to have data x.

This likelihood function involves integrals over the entire parton-level

phase space, all possible shower histories, and all possible detector

interactions compatible with the measurement x. The integral over

this enormous space clearly cannot be computed in practice, so we

cannot directly evaluate the likelihood of an observed event under

different parameter values θ. This means that we cannot directly find
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Table 1. Dictionary of symbols that appear in this chapter (derived from [7]).

Symbol Meaning ML abstraction

θ Theory parameters Parameters of interest
x All observables Features
v 1–2 selected kinematic variables Summary statistics
zp Parton-level four-momenta Latent variables
zs Parton shower history Latent variables
zd Detector interactions Latent variables
z = (zp, zs, zd) Full simulation history of event All latent variables

pfull({x}|θ) Full likelihood function, see Eq. (2) Implicit density
p(x|θ) Kinematic likelihood for single event Implicit density

(normalized fully differential
cross-section, Eq. (3))

pp(zp|θ) Parton-level distribution Tractable density
ps(zs|zp) Parton-shower effects Implicit density
pd(zs|zp) Detector effects Implicit density
px(x|zd) Detector readout Implicit density
r(x|θ) Likelihood ratio function, see Eq. (4)
r(x, z|θ) Joint likelihood ratio, see Eq. (8) Unbiased est. of r(x|θ)
t(x) Score (locally optimal obs., Eq. (10))
t(x, z|θ) Joint score, see Eq. (9) Unbiased est. of score

θ̂ Best fit for theory parameters Estimator for θ
p̂(x|θ) Parameterized estimator for

likelihood
r̂(x|θ) Parameterized estimator for

likelihood ratio
ŝ(x|θ) Parameterized classifier decision

function
t̂(x) Estimator for score
p̂tf (x|zp) Approximate shower and detector

effects
(transfer function)

the maximum-likelihood estimators that best fit a given observation,

construct confidence limits based on a likelihood ratio test statistic,

or compute the Bayesian posterior p(θ|x)!
The task of performing statistical inference when the data gen-

erating process does not have a tractable likelihood is known as

simulation-based or likelihood-free inference. This case is not at all

unique to particle physics. The formulation of this problem in a



December 14, 2021 16:15 Artificial Intelligence for High Energy Physics 9in x 6in b4322-ch16 page 583

Simulation-Based Inference Methods for Particle Physics 583

common, abstract language has led to statisticians, computer scien-

tists, and domain scientists from various fields developing powerful

methods for simulation-based inference together. While this chap-

ter focuses on the particle physics case, the methods apply equally

to a range of problems for instance in neuroscience, cosmology, or

epidemiology.

1.2. Solving the problem with summary statistics

If the intractability of the likelihood function is such a problem, how

have high-energy physicists successfully analyzed particle collisions

for decades? The reason that this problem is rarely acknowledged

explicitly is that particle physicists have a track record of develop-

ing a good intuition about processes they study and finding powerful

summary statistics for them. Summary statistics are individual vari-

ables that condense a high-dimensional observation. Typical exam-

ples are the reconstructed mass of a decaying unstable particle, decay

angles between decay products, or other kinematic variables [8, 9]. An

ideal summary statistics vector v captures all of the relevant informa-

tion in the observed event x relevant to the parameter θ, while being

of much lower dimensionality. Given one or two summary statistics,

we can easily compute the likelihood function p(v|θ) with histograms,

kernel density estimation, or other density estimation techniques and

then find the maximum-likelihood estimator in the parameter space

and construct confidence limits based on the (profile) likelihood ratio

test statistic [10, 11]. This approach has been the workhorse of sta-

tistical analysis in collider physics for decades.

Note that most uses of machine learning in experimental parti-

cle physics take place within this approach. Experimental particle

physicists have embraced the use of multivariate models (commonly

boosted decision trees or fully connected neural networks) in the

event selection, as reviewed in Chapter 2. The statistical analysis of

the events that pass this selection is then still based on histograms

of kinematics-based summary statistics or the neural network output

itself.

The reduction of data to summary statistics also enables approx-

imate Bayesian computation (ABC) [12, 13], a simulation-based
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inference method that is gaining popularity in cosmology and is

widely used in many scientific fields outside of physics. It directly

targets Bayesian inference, using repeated runs of the simulator

together with an accept–reject criterion to draw parameter samples

that approximately follow the posterior.

Both the histogram method popular in particle physics and ABC

suffer from the curse of dimensionality: the number of simulations

required scales exponentially with the dimensionality of x or v. This

is why they only work with a low-dimensional statistic v and cannot

be effectively applied to high-dimensional data x. However, finding

suitable summary statistics is a difficult and task-dependent problem

and almost any choice of summary statistics discards some informa-

tion. As a result, data analysis based on summary statistics typically

leads to reduced sensitivity and statistical power.

1.3. The frontier of simulation-based inference

In the next sections, we will describe modern simulation-based infer-

ence methods that allow us to analyze higher-dimensional data,

improve the quality of inference, and improve the sample efficiency.

Three developments are the key drivers behind these improve-

ments [14]:

(1) The revolution in machine learning provides us with powerful

surrogate models for the likelihood, likelihood ratio, or posterior

function, or for optimal summary statistics. We can thus tap into

the ability of modern machine learning methods to learn useful

representations directly from high-dimensional data.

(2) Active learning methods iteratively use past results to steer the

next simulations, leading to a better sample efficiency.

(3) Integrating inference capabilities with the simulation code and

augmenting the training data with additional information that

can be extracted from the simulator can substantially improve

sample efficiency and quality of inference.

Against the backdrop of these three broad trends, many different

inference algorithms have been proposed in recent years, see [14] for
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an overview. Here we focus on a few methods that are particularly

relevant for particle physics. In Sec. 2, we discuss techniques that

aim to estimate the likelihood function or the likelihood ratio func-

tion, ranging from the Matrix-Element Method to machine learning–

based methods to techniques that bring together matrix-element

information and machine learning. Section 3 covers methods that

aim to define powerful summary statistics, from parton-level Opti-

mal Observables to neural network surrogates for the score function.

We summarize and compare the main methods we discuss in Table 2.

In the following sections, we will briefly discuss diagnostic tools and

systematic uncertainties as well as software implementations of these

ideas. In Sec. 5, we focus more on the latent process of the simula-

tors and describe the paradigm of probabilistic programming. We

discuss implementations of these methods in the HEP software stack

in Sec. 6, before concluding with a summary in Sec. 7.

Table 2. Simulation-based inference methods for particle physics. We classify
methods by the key quantity that is estimated in the different approaches, by
whether they rely on a manual choice of summary statistics, are based on a
transfer-function approximation (“TF”), whether their optimality depends on a
local approximation (“local”), by whether they use any other functional approx-
imations such as a histogram binning or a neural network (“NN”), whether they
leverage matrix-element information (“|M|2”), and by the computational evalua-
tion cost. Derived from a table in [15].

Approximations

Method Estimates Summaries TF Local Functional |M|2 Comp. cost

Histograms p̂(v|θ) � binning curse of dim.
ABC θ ∼ p(θ|v) � ε-kernel curse of dim.

MEM p̂(x|θ) � integral � high (TF)
NDE p̂(x|θ) NN amortized
SCANDAL p̂(x|θ) NN � amortized
CARL r̂(x|θ) NN amortized
RASCAL etc r̂(x|θ) NN � amortized

OO t̂(x) � � integral � high (TF)
SALLY t̂(x) � NN � amortized
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2. Inference with Surrogates

The first class of methods that we discuss tackles the problem head-

on and constructs an estimator for the likelihood function p(x|θ) or
the closely related likelihood ratio function

r(x|θ) = p(x|θ)
pref(x)

, (4)

where the denominator is some reference distribution, for instance

using a reference value of the parameter points such as the Standard

Model, a model average of multiple parameter points, or uniform

phase space.

Once we have such an estimator, which we will denote p̂(x|θ)
or r̂(x|θ), we can immediately use it in the established statisti-

cal pipeline: we can find the maximum-likelihood estimator for

instance as

θ̂MLE = argmax
θ

Pois(n|Lσ(θ))
∏
i

r̂(xi|θ) (5)

and similarly construct exclusion limits based on asymptotic prop-

erties of the (profile) likelihood ratio [16]. Additionally, we can use

the resulting likelihood ratio test statistic together with toy Monte

Carlo to guarantee coverage, as discussed in Sec. 4.

2.1. An approximation: The matrix-element method

The matrix-element method (MEM) [17–32] approximates the likeli-

hood in Eq. (3) by replacing the precise model of the effects of shower

and detector with a simple, tractable transfer function p̂tf (x|zp).
This simplifies the marginal distribution that would involve integrat-

ing over a large number of microscopic interactions to a convenient

probability density such as a Gaussian. The MEM likelihood is given,

schematically, by

p̂MEM(x|θ) =
∫

dzp p̂tf (x|zp) p(zp|θ)

∼ 1

σ(θ)

∫
dzp p̂tf (x|zp) |M(zp|θ)|2, (6)
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where |M(zp|θ)|2 is the squared matrix element evaluated at a phase-

space point zp and parameters θ and for simplicity we have left out

parton densities as well as phase-space and efficiency factors. Since

the integrand is tractable and the integral is over a much lower-

dimensional space than the one in Eq. (3), it is feasible — though

expensive — to compute this approximate likelihood function.a

In some processes, particularly those involving only leptons and

photons, the MEM can give a reliable estimate of the true likeli-

hood. However, jets are less well modeled by transfer functions and

additional jet radiation is difficult to describe in this approach (with

challenges related to ME/PS matching, higher orders, etc.). Finally,

the MEM still requires a computationally expensive numerical inte-

gration for every event that is evaluated, which can be prohibitive.

2.2. Learning the likelihood

Rather than computing the integral in the likelihood for every event

to be evaluated, we can fit a surrogate model to data from the simu-

lator and then use that for inference. Such a surrogate model needs

to be flexible enough to accurately represent a complicated and mul-

timodal probability distribution, we have to fit it to limited training

data, and its likelihood function needs to be computed efficiently.

Kernel density estimation has been used in this context [37], but

it was limited to roughly five-dimensional data. Recently, several

machine learning models have been developed for this task, which

are effective for estimating distributions of high-dimensional data.

In particular, normalizing flows [38, 39] transform a random variable

with a tractable probability density through multiple learnable bijec-

tions so that the distribution of the output is given by the change-

of-variable formula. This defines a flexible probabilistic model with

a tractable likelihood function.

aThis approach has also been extended to include an explicit calculation of leading
parton-shower effects [33–36].
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Thus, lets us solve the problem of simulation-based inference in

three phases [40]:

(1) We run the usual simulator chain a number of times with different

input parameters θ and saving θ together with the simulated

events x ∼ p(x|θ).
(2) Next, a neural density estimator is trained to learn the con-

ditional probability density p(x|θ). We use a single model for

the whole parameter space (as opposed to individual models

for a number of points along a grid in the parameter space),

the parameter point θ to be evaluated is an additional input

to the model. Such a parameterized model [41, 42] can leverage

the smooth dependence on the parameter space, the probability

density at each parameter point can “borrow” information from

nearby points (see also Chapter 3).

(3) After training, we can evaluate this model for arbitrary obser-

vations x and parameter points θ and efficiently get an estima-

tor for the likelihood function p̂(x|θ). We can then use this to

define best-fit points and exclusion limits with the usual statis-

tical tools.

Two aspects of this approach are noteworthy. First, we can use

any state-of-the-art simulator in this approach, including shower and

detector effects. Unlike in the MEM, there is no need for any approx-

imations on the underlying physics. Second, the approach is amor-

tized : after an upfront simulation and training phase, we can evaluate

the approximate likelihood function very efficiently for a large num-

ber of events and parameter values.

Neural density estimators like normalizing flows have other useful

properties. They are generative models, i.e. one can sample from

the probability distributions they have learned. This is not only a

convenient cross check, but can also be used for event generation

(see Part III), to unfold reconstruction-level variables to the parton

level [43], and for anomaly detection [44] (see Chapter 4).
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2.3. Learning the likelihood ratio

Training a surrogate for the likelihood function actually solves a

harder problem then necessary for inference. To find the maximum-

likelihood parameter point and to construct exclusion limits we do

not actually need to know the likelihood function itself — the like-

lihood ratio r(x|θ) defined in Eq. (4) is in fact just as useful! As it

turns out, training a neural network to learn the likelihood ratio is

often easier than learning the likelihood function.

The key idea is known as the likelihood ratio trick : a binary

classifier trained to discriminate samples x ∼ p(x|θ) from sam-

ples x ∼ pref(x) will eventuallyb converge to the output ŝ(x|θ) →
pref(x)/[p(x|θ) + pref(x)], which is a monotonic function of the likeli-

hood ratio r(x|θ). In other words, we can transform the output of a

classifier ŝ(x|θ) into an estimator for the likelihood ratio function as

r̂(x|θ) = 1− ŝ(x|θ)
ŝ(x|θ) . (7)

We can use this in an inference algorithm similar to the one dis-

cussed in the previous section [41, 45–54]:

(1) We again start by running the simulator chain, generating one

set of events from a reference distribution pref(x) (e.g. the SM)

and a second set of events from various parameter points θ.

(2) Next, a neural classifier is trained to discriminate between these

two sets, using the binary cross-entropy as a loss function. Like

before, the classifier is parameterized: the parameters θ are used

as explicit inputs into the classifier.

(3) After training, we can transform the output of the classifier into

an estimator for the likelihood ratio function with Eq. (7) and

an optional calibration procedure. This surrogate model can then

be used to find the best-fit point and exclusion contours using

established statistical tools.

bIn the limit of a sufficiently expressive model, infinite training data, and efficient
minimization of the loss function.
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This method is known as CARL [41, 48, 55]. It again supports

arbitrary simulators without requiring approximations on the under-

lying physics and is amortized, allowing for an efficient evaluation

after an upfront simulation and training cost. Compared to learning

the likelihood function with a neural density estimator, the CARL

approach can be more sample efficient (saving computation time).

While a surrogate model for the likelihood ratio does not allow

us to generate samples, it can be used for reweighting. For the

simulation-based inference problem, this can be useful as a diag-

nostic tool. In other contexts, this ability can be used to reweight

events [47, 54, 55], tune shower and detector-simulation parameters

to data [54], for unfolding [56], and for anomaly detection [57], see

Chapter 4.

2.4. Integration and augmentation

Both inference techniques described above — training a neural den-

sity estimator to learn the likelihood function and training a classifier

to learn the likelihood ratio — treat the simulator chain as a black

box that takes parameters θ as input and outputs samples x ∼ p(x|θ).
In reality, though, we know more about the particle physics processes.

They consist of the separate pieces of parton-level generator, parton

shower, and detector simulation, as given by Eq. (3); typically only

the parton-level step explicitly depends on the theory parameters of

interest θ.

We can leverage this understanding of the simulated process to

extract more information from the simulator and use it to augment

the training data for the likelihood or likelihood ratio model.c In

particular, we can access the latent variables (or Monte-Carlo truth

record) z = (zp, zs, zd), while tools like MadGraph let us compute

matrix elements for arbitrary theory parameters. For each simulated

cThe extraction of the joint likelihood ratio and score is in fact more general and
can be realized for many simulators [58, 59]. However, the particular structure of
particle physics processes (especially, the factorization of the joint likelihood in
Eq. (1)) makes it easy to compute these quantities, which in this case are closely
linked to the squared matrix element.
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event we can thus compute two useful quantities: the joint likelihood

ratio [7, 58, 60]

r(x, z|θ) ≡ p(x, z|θ)
pref(x, z)

=
px(x|zd) pd(zd|zs) ps(zs|zp) pp(zp|θ)
px(x|zd) pd(zd|zs) ps(zs|zp) pp,ref(zp)

=
|M|2(zp|θ)
|M|2ref(zp)

σref
σ(θ)

(8)

and the joint score

t(x, z|θ) ≡ ∇θ log p(x, z|θ)

=
px(x|zd) pd(zd|zs) ps(zs|zp)∇θpp(zp|θ)
px(x|zd) pd(zd|zs) ps(zs|zp) pp(zp|θ)

=
∇θ|M|2(zp|θ)
|M|2(zp|θ) −

∇θσ(θ)

σ(θ)
. (9)

Here |M|2(zp|θ) and |M|2ref(zp) are the squared matrix elements for

parton-level phase space points zp for theory parameters θ and under

the reference distribution, respectively, while σ(θ) and σref are the

total cross-sections. The joint likelihood ratio and joint score quantify

how the probability of one simulated event — fixing all of the latent

variables in the simulation chain — changes if we change the theory

parameters θ.

How are these two quantities useful, especially given that they

depend on latent variables z that are only meaningful for simulated

events, but not for real measurements? It turns out that the joint

likelihood ratio r(x, z|θ) is an unbiased estimator of the likelihood

ratio r(x|θ) and the joint score provides unbiased gradient informa-

tion. This means that we can augment our training data with these

numbers and use them as labels in a supervised learning setup, as

illustrated in Fig. 2. This idea is realized in a few different algo-

rithms, which differ by the target and loss functions they use. In

the ROLR method [7, 58, 60] we directly regress on the likelihood

ratio by minimizing the squared error between the neural network

output and the joint likelihood ratio. The RASCAL [7, 58, 60] and
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Fig. 1. Illustration of a complete inference method using the RASCAL or
ALICES methods to train a surrogate for the likelihood ratio function. Figure
taken from [60].

ALICES [61] techniques further improve the training of neural surro-

gates of the likelihood ratio function by incorporating the joint score.

The SCANDAL method similarly uses the joint score to train neu-

ral surrogates for the likelihood function [58] more efficiently. After

training the surrogates for the likelihood or likelihood ratio, we are

again left with a neural network that can be evaluated for arbitrary

events and parameter points and allows for amortized inference as

before. The full workflow is schematically shown in Fig. 1.

Extracting the joint likelihood ratio and joint score during the

simulation stage and augmenting the training data with it adds mul-

tiple orthogonal pieces of information to the training, as we illustrate

in Fig. 2. In practice, this substantially reduces the number of sim-

ulated events that are necessary for a good performance—in some

cases by multiple orders of magnitude [7, 60]!

Some particle physics measurements have even more additional

structure, for instance when we are trying to constrain the Wilson

coefficients of an effective field theory and the squared matrix element

is a polynomial of these parameters. Incorporating this additional

structure in the inference workflow can improve the efficiency even

further [7, 62, 63].

2.5. Active learning

Active learning here describes a sequential workflow that alternates

simulation and inference stages. The theory parameters for which
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Fig. 2. Illustration of different approaches to train surrogates for the likelihood
ratio function and the role of joint likelihood ratio and joint score. Figures taken
from [7]. Top left: In the likelihood ratio trick and the CARL inference method,
a classifier decision function (red) has to be learned from binary labels that are
zero or one (green dots). Top right: The joint likelihood ratio provides noisy,
but unbiased labels (green) for the likelihood ratio function to be learned (red).
Bottom left: The joint score adds noisy, but unbiased gradient information
(arrows). Bottom right: The RASCAL and ALICES methods combine three
orthogonal pieces of information (dots with arrows), allowing a neural network to
learn the likelihood ratio function (surface) more efficiently.

more events are generated are chosen such that they are expected

to be most useful based on the observed data and the results of

past iterations. Different algorithms have been proposed, some of

which are based on neural surrogates for the likelihood [64, 65], while

others target the likelihood ratio [53, 66]. While active learning is
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often phrased in a Bayesian framework, these methods can be applied

equally well to frequentist inference [67–69].

Active learning maximizes sample efficiency for a particular

observed dataset. This is somewhat at odds with the goal of amor-

tization, which aims to train a surrogate model that works well for

multiple different datasets. While active learning can be very power-

ful in cases with few observed data points, it is less crucial in particle

physics use cases with a large number of expected or observed events.

3. Inference with Sufficient Summary Statistics

The methods discussed in the previous section tackle simulation-

based inference by learning the likelihood or likelihood ratio function

in the high-dimensional data space. While these methods are power-

ful, they require an analysis workflow that is substantially different

from the high-energy physics standards. This makes modifications to

the usual software pipeline, careful cross checks, and some changes to

the way that systematic uncertainties are handled necessary (more

on this later).

A more incremental change to the current analysis workflow is

to construct powerful summary statistics in a systematic way. After

the high-dimensional data x for an event is compressed to one or

a few of these summary statistics, it can be analyzed in the usual,

histogram-centric way described in Sec. 1.2. The analysis workflow

remains largely unchanged, except that instead of kinematic vari-

ables (like the transverse momentum of a jet) more complicated vari-

ables (like the output of a neural network) are analyzed. No essential

modifications to the software pipeline or the treatment of systematic

uncertainties are necessary in this approach.

So how do we find these optimal summary statistics? There are

two broad strategies. The first is to try to learn a summary statistic

as an intermediate step in the end-to-end analysis of the data where

the objective function is, for instance, an expected significance or

expected limit as in INFERNO [70] or neos [71]. This is connected

to the recent discussions around differentiable programming and is

discussed in Chapter 17. Optimizing an experiment-level objective
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is computationally expensive, and not actually necessary since the

data are independent and the likelihood factorizes as in Eq. (2).d

Alternatively, we can look for sufficient statistics that allow us

to approximate the per-event likelihood, and there are many advan-

tages to casting the learning problem in terms of individual events.

While our exposition will focus on the parameters of interest, one can

consider θ to also include nuisance parameters, and profiling the nui-

sance parameters would then happen down-stream in the statistical

inference pipeline and after the amortized learning stage described

below.

The key to learning optimal observables is to consider a local

approximation of the likelihood function in the parameter space. In

other words, assume that we are studying parameters θ that are

close to some chosen reference parameter point θref (imagine this, for

instance, to be the Standard Model). Then one can show [60, 73, 74]

that the most powerful observable for measuring θ is the score

t(x) = ∇θ log p(x|θ)|θref . (10)

This gradient vector contains one component per parameter of inter-

est. In the neighborhood of θref, the score components are the suffi-

cient statistics: analyzing just t(x) will yield just as much information

about θ than analyzing the high-dimensional data x. By using the

score as summary statistics, we are therefore not throwing away any

information, at least as long we focus on parameters close to θref.

Further away from the reference point, the score components may

no longer be sufficient and a histogram-based analysis will no longer

be optimal.

dIf we knew the full likelihood p(D|θ, ν) in Eq. (2), where θ are parameters of
interest and ν are nuisance parameters, the final test statistic we would target
would be the profile likelihood ratio λ(θ) = p(D|θ, ˆ̂ν)/p(D|θ̂, ν̂), where θ̂ and ν̂
are the maximum likelihood estimator (MLE) and ˆ̂ν is the conditional maximum
likelihood estimator (CMLE) [72]. The numerator and denominator of the likeli-
hood of the likelihood ratio factorize across experiments, but the values for the
MLE and CMLE couple all of the events in the dataset D. However, this coupling
of events through the MLE and CMLE can be postponed and based on a learned
surrogate for the per-event likelihood or likelihood ratio function as discussed in
the previous section.
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Unfortunately, like the likelihood function itself, the score is in

general intractable. In the following, we will present two methods

that allow us to estimate it.

3.1. An approximation: Parton-level optimal

observables

Remember that the matrix-element method approximated the likeli-

hood function by summarizing the effect of shower and detector with

a transfer function. Parton-level optimal observables (OO) [75–77]

use the same approximation to compute the score:

t̂OO(x) = ∇θ log

(∫
dzp p̂tf (x|zp) p(zp|θ)

)∣∣∣∣∣
θ=θref

=

∫
dzp p̂tf (x|zp)∇θp(zp|θref)∫
dzp p̂tf (x|zp) p(zp|θref)

. (11)

In practice, this method is usually applied to processes with easily

identifiable final-state particles like leptons and photons. In that case,

the reconstructed particle properties are simply identified with the

parton-level four-momenta, p̂(x|zp) =
∏

i δ
4(xi − zp i).

While this approach elegantly uses our knowledge of matrix

elements, it requires substantial approximations to the underlying

process, and taking into account shower or detector effects in the

observable detection leads to a large computational cost for each

analyzed event.

3.2. Learning the score

The SALLY method [7, 58, 60] trains a neural network to learn the

(intractable) score function t(x) including the full detector simula-

tion. As in the methods discussed in Sec. 2.4, the first step is run-

ning the simulator chain a number of times, now using the reference

parameter point θref as input. In addition to the observation x, the

joint score t(x, z|θref) defined in Eq. (9) is computed and stored for
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every simulated event. In a next step, a machine learning model

like a neural network t̂(x) is trained to minimize the mean squared

error |t̂(x) − t(x, z)|2. It can be shown that the neural network will

ultimately converge to the score function given in Eq. (10). After

training, the neural network thus defines the locally most powerful

observables for the measurement of θ and can be used in a standard

analysis pipeline.

In addition to defining locally optimal observables, neural score

estimators can also be used to compute the Fisher information, a

versatile tool for sensitivity forecasting, cut optimization, and feature

selection [78–80].

4. Diagnostics, Calibration, and Systematic

Uncertainties

The analysis methods described in the previous sections contain some

parts, in particular neural networks, that are not always easy to inter-

pret and can be harder to debug than a standard analysis based on

histograms of traditional observables. It is important to make sure

that we can trust the results and quantify any systematic uncertain-

ties. This is very similar to basing the downstream statistical analysis

on histograms of neural network outputs.

Mainly we have to correctly diagnose model misspecification.

Inference is always performed within the context of a statistical

model, but if that model is not correct for a task at hand, the infer-

ence results will be meaningless or misleading. In the simulation-

based inference methods we discuss, two types of models appear,

both of which are prone to misspecification: the simulator itself

and machine learning surrogates. This is similar to the distinction

between the full simulation and the use of an analytic function (sur-

rogate) to model a smooth mγγ spectrum in a H → γγ analysis.

Misspecification of the simulator occurs when MadGraph, Pythia,

Geant4, etc. do not model the physics of LHC collisions accurately

enough. This problem also plagues classical histogram-based analy-

ses, but may be easier to diagnose and calibrate when only a sin-

gle variable is studied than in the multivariate analysis methods
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described here [81]. It is usually addressed by varying the param-

eters of the simulator, which introduces nuisance parameters α with

unknown true values, and profiling over them in the statistical anal-

ysis. We can also use ideas from domain adaptation and algorithmic

fairness to make the neural network less sensitive to variations in the

nuisance parameters [70, 82, 83]. If possible, however, it is concep-

tually cleaner to explicitly include the effect of nuisance parameters

in the likelihood model p̂(x|θ, α) or r̂(x|θ, α) and to use well-defined

and established statistical procedures like profiling to take them into

account in the downstream statistical analysis. The treatment of nui-

sance parameters is discussed in more detail in Chapter 17.

Misspecification of the surrogate model occurs when the neural

network does not approximate the true likelihood or likelihood ratio

perfectly. This is analogous to a falling exponential for the mγγ spec-

trum not fitting the simulated data perfectly. Typical reasons are the

limited number of training samples, insufficient network capacity, or

an inefficient minimization of the loss function. A common issue is

that the classifier ŝ(x|θ) will be roughly one-to-one with the true

likelihood ratio, but not exactly. This can be fixed with the calibra-

tion procedure used in CARL and described in [41]. One can protect

against more severe deficiencies by calibrating the inference results

with toy simulations from the simulator: for every parameter point,

we can run the simulator to construct the distribution of the likeli-

hood or likelihood ratio. Ultimately this leads to confidence sets with

a coverage guarantee (assuming the simulator is accurate) as in the

Neyman Construction, i.e. that will never overly optimistic [7, 41].

This toy Monte Carlo approach can require a large number of simu-

lations, especially for high-dimensional parameter spaces. For an in-

depth discussion of calibration and the Neyman construction, see [7].

There are other, less computationally expensive tools to diag-

nose misspecification of the surrogate model. These include off-the-

shelf uncertainty quantification methods for neural networks such as

ensemble methods and Bayesian neural networks (see Chapter 18).

In addition, one can train classifiers to distinguish data from the

surrogate model and the true simulator [41], check certain expecta-

tion values of estimators of the likelihood, likelihood ratio, or score
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against a known true value [7], vary unphysical reference distribu-

tions that should leave the inference result invariant [41], and com-

pare the distribution of network outputs against known asymptotic

properties [72, 84, 85]. Passing these closure tests does not guarantee

that a model is correct, but failing them is an indication of an issue.

5. Probabilistic Programming

We will now switch gears and review probabilistic programming, a

set of methods that are related to, but different from the simulation-

based inference techniques discussed in the previous sections. Com-

puter programs that involve random numbers and do not have

deterministic input-output relationships can be thought of as speci-

fying a probability distribution p(output|input). It is natural to think

of simulators in this way, where the parameters of the simulator are

identified with θ and the output of the simulator is identified with x.

Furthermore, the values of the random variables and the other inter-

mediate quantities inside the computer program can be thought of

as latent variables z. The structure of the space of latent variables

can also be complex. Consider the simple example in Fig. 3, where

the list of latent variables is either (z1, z2t) or (z1, z2f, z3f)

and depends on the control flow of the program.

It can be useful to think of the latent space of such a program

as the space of its stack traces along with the values of all the vari-

ables. Take a moment to think about the complexity of the typical

simulation chain going from matrix elements to parton shower and

def s t o c h a s t i c f u n c t i o n ( ) :
z1 = rand ( )
i f z1 < 0 . 5 :

z2t = rand ( )
x = z1 + z2t

else :

return x

z2 f = rand ( )
z3 f = rand ( )
x = z1 + z2 f + z3 f

Fig. 3. Illustrative example of a stochastic function.
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hadronization through the detector simulation. These programs have

enormous, highly structured latent spaces. The probability that the

program returns x corresponds to integrating over all the possible

executions of the program that could return x; as we argued in the

introduction of this chapter, this is intractable for moderately com-

plicated programs.

We saw in Sec. 2 how we can use machine learning surrogates to

approximate the likelihood p(x|θ) or likelihood ratio r(x|θ), where the
dependence on z has been marginalized or integrated out. One of the

advantages of those approaches is that the surrogate models do not

attempt to capture the complexity of the latent state or the joint

distribution p(x, z|θ). But what if we also want to infer something

about the latent variables that describe what is going on inside the

simulator?

In HEP it is common to inspect the Monte Carlo truth record

(i.e. z) for some set of events that satisfy some cuts to gain insight

into why something happens. For instance, we might want to know

what happened inside the simulation of pp → jj events that led to

very large missing transverse energy, or why a jet faked a muon. To

study this, we often filter a large set of events (simulated with a

particular parameter setting θ), filter those events that satisfy the

cuts, and then look at histograms of some particular Monte Carlo

truth quantities f(z) (for example, to inspect if there was a semi-

leptonic b-decay or punch-through in the calorimeter). That familiar

procedure is approximating the posterior distribution of f(z) given

that the event generated with parameter θ passes the cuts, which

we can write symbolically as p(f |cuts(x) = True, θ). Similarly, the

unfiltered sample can be thought of as samples from the prior p(f |θ).
The problem with the traditional approach is that the filter effi-

ciency can be very low, and very few of the prior samples may survive

to estimate the posterior. This is similar to the inefficiency found

in approximate Bayesian computation, which asks for the simulator

to generate a simulated x close to the observed xobs. This moti-

vates an additional language construct that allows for conditioning

on random variables, which characterizes probabilistic programming.

Probabilistic programming languages (PPLs) extend general-purpose
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programming languages with constructs to do sampling and condi-

tioning of random variables [86, 87].e

The additional language constructs express the concept of sam-

pling and conditioning, but they do not necessarily specify how that is

implemented. It is best to decouple the model specification (the prob-

abilistic program or simulator code) from the inference algorithm —

much as we use a tool like HistFactory [88] to create a statistical

model and then use RooStats [89] to provide generic statistical

inference algorithms. Various inference engines have been developed

implementing different inference strategies such as Importance Sam-

pling [90] and specializations of Metropolis–Hastings [91] that are

compatible with the complex latent space structure associated to

stack traces. In general, the inference algorithms can be thought of

as hijacking the random sampling inside of the simulator code to

guide the simulator towards a certain output.

Early research in probabilistic programming required coding the

simulator in special-purpose languages, which is not an attractive

option for HEP as we have decades of work invested in our simulation

code bases. Recently, however, the Etalumis project developed PPX, a

cross-platform probabilistic execution protocol that allows an infer-

ence engine to control a simulator in a language-agnostic way [90, 92].

The Etalumis team integrated PPX into the SHERPA simulator and a

simplified calorimeter simulation to demonstrate probabilistic pro-

gramming with a real-world simulator (see Fig. 4).

The bulk of the probabilistic programming literature is phrased

in terms of Bayesian statistics. The posterior distribution p(z|x, θ)
is of no conceptual problem for an ardent, frequentist particle physi-

cists, because while z may be latent, it is a random variable and

eOften it is assumed that the quantity being conditioned on is directly sampled
from a distribution with a known likelihood (conditioned on the latent state of
the simulator at that point in the execution). Sometimes this is reasonable, but
sometimes this assumption is violated and we want to condition on some more
complicated function of the random variables with an intractable density. In that
setting, one typically needs to introduce some tolerance or kernel. In this way,
probabilistic programming can be seen as a more sophisticated and computation-
ally efficient way of implementing approximate Bayesian computation.
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Fig. 4. An illustration of a Python-based probabilistic programming system’s
inference engine controlling the SHERPA event generator through the PPX protocol.
Figure taken from [92].

the joint distribution p(x, z|θ) is perfectly well defined. However, if

one wanted to use probabilistic programming to infer the param-

eters of the simulation θ, then one would need to include a prior

p(θ) and sample from that distribution at the beginning of the pro-

gram. The result would be a probabilistic program for the joint

model p(x, z, θ) = p(x, z|θ)p(θ), and one would then condition on x

to obtain samples from the posterior p(θ, z|x) or the marginal p(θ|x).

6. Software and Computing

The methods described in this chapter are closely connected to the

software and computing challenges of high-energy physics, particu-

larly when we think about the high-luminosity LHC.

Initial results from phenomenological studies indicate that these

new machine-learning based approaches provide substantial improve-

ments in sensitivity to traditional approaches, but generating the

training data is computationally expensive. However, with some

additional work, the augmented data described in Sec. 2.4 can

reduce the amount of simulated data needed by orders of magnitude.

The Python library MadMiner [80] implements most of the machine
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learning–based algorithms discussed in Secs. 2 and 3. It wraps around

MadGraph, Pythia, and Delphes and thus automates the entire

pipeline for a typical phenomenological study.f The approach is com-

patible with a full simulation like Geant4 as the necessary infor-

mation can just be passed through the detector simulation similar

to the weights used to assess uncertainty in the parton distribution

functions. However, this still requires a modest investment in the

experiments’ simulation software.

The use of the learned likelihood ratio for reweighting event sam-

ples has the potential for a significant reduction in simulation costs

as the reweighting factor can often be learned on parton-level or

particle-level data without running the full simulation or reconstruc-

tion on large samples of simulated data with varied parameter set-

tings. The CARL technique is being explored within ATLAS and

integrated into the ATLAS software framework for this purpose [55].

Probabilistic programming also has the potential to address the

computational resources needed for simulation at the high-luminosity

LHC. Signs of new physics typically would hide in tails of background

distributions, which are computationally expensive to populate with

naive sampling approaches. HEP collaborations regularly use a form

of importance sampling where the parton-level phase space is sliced

(e.g. slices in the transverse momentum of outgoing partons to fill the

high-pT tail in the process pp→ jj). In this case, one merges several

individual samples of simulated events weighted by Ns/σs, where Ns

is the number of simulated samples and σs is total cross-section for

that slice. However, this approach does not work for efficiently sam-

pling regions of phase space that do not correspond to simple regions

in the parton phase space. For example, consider the case where we

want to populate the regions of phase space where standard QCD jets

fake a boosted top. For a tagger based on a deep neural network [94]

the fake rate is roughly 10−3 and much of the relevant fluctuations

happen in the parton shower and are not reflected in the parton-level

fThe sbi package [93] implements many simulation-based inference methods, in
particular for Bayesian inference, in a problem-agnostic way, but does not provide
any interface to particle physics simulators yet.
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phase space. Event generators instrumented with probabilitic pro-

gramming constructs offer the potential to efficiently sample these

complicated regions of phase space, which is being explored with a

simplified parton shower known as Ginkgo [95].

In the long term, we should not treat the simulation chain as a

black box, but open them and begin to integrate automatic differenti-

ation and probabilistic programming capabilities in them as that will

enable more powerful and sample-efficient inference algorithms [14].

7. Summary

Particle physicists have a suite of simulators at their disposal that

can model essentially all aspects of particle collisions with impressive

fidelity. These tools use Monte Carlo methods to generate events,

with the distribution of outputs depending on the parameters of

the physics model. However, we cannot use these tools directly for

inference because we cannot evaluate the probability of the simu-

lator to generate a specific observed event. Because the likelihood

is intractable, we cannot directly fit for the most likely parameter

points or calculate exclusion limits from observed data. Historically,

this challenge has been overcome by reducing the high-dimensional

event data to one or two kinematic variables and using histograms

or analytic functions to model the distribution of these observables.

This makes inference possible, but often degrades the sensitivity of

the analysis.

Here we reviewed simulation-based (or likelihood-free) inference

methods that allow us to infer parameters based on high-dimensional

event data. These methods are closely connected to other important

tasks in HEP and provide the ability to reweight events [47, 54, 55],

tune shower and detector-simulation parameters to data [54], unfold

distributions [56], and detect anomalies [57], see Chapter 4. An

important driver of these algorithms are the rapidly increasing capa-

bilities of machine learning, which let us analyze high-dimensional

data efficiently. In addition, extracting matrix-element information

from the simulator and using it to augment training data can drasti-

cally reduce the number of simulations we need to run. We presented
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algorithms based on these two ideas in which a neural network is

trained as a surrogate for the likelihood or the likelihood ratio func-

tion or defines optimal observables, which can then be used in a

traditional histogram-based analysis.

In first phenomenological LHC studies, these algorithms have

been applied to Higgs precision measurements in vector boson

fusion [7], in WH production [96], and in tt̄H production [80], as

well as ZW measurements [63] and the search for massive reso-

nances decaying into dijets [97]. The new machine learning-based

techniques consistently led to more sensitive analyses than tradi-

tional histogram-based approaches such as simplified template cross-

section measurements [96]. With a range of diagnostic tools and ideas

for uncertainty quantification available and software packages mak-

ing the application of these methods easier, the application of these

new simulation-based inference techniques to data collected at the

LHC experiments seems imminent.

Acknowledgments

We want to thank our collaborators Zubair Bhatti, Sally Dawson,

Irina Espejo, Joeri Hermans, Samuel Homiller, Felix Kling, Gilles

Louppe, Siddharth Mishra-Sharma, Juan Pavez, Sinclert Perez,

Tilman Plehn, and Markus Stoye. This work was supported by the

U.S. National Science Foundation (NSF) under the awards ACI-

1450310, OAC-1836650, and OAC-1841471. We are grateful for the

support of the Moore-Sloan data science environment at NYU.

References

[1] F. James and M. Roos, Minuit: A system for function minimization and
analysis of the parameter errors and correlations, Comput. Phys. Commun.
10 (1975) 343.

[2] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer,
H. S. Shao, T. Stelzer, P. Torrielli and M. Zaro, The automated computation
of tree-level and next-to-leading order differential cross sections, and their
matching to parton shower simulations, J. High Energy Phys. 2014 (2014)
79; arXiv:1405.0301 [hep-ph].

http://dx.doi.org/10.1016/0010-4655(75)90039-9
http://dx.doi.org/10.1007/JHEP07(2014)079
http://arxiv.org/abs/1405.0301


December 14, 2021 16:15 Artificial Intelligence for High Energy Physics 9in x 6in b4322-ch16 page 606

606 J. Brehmer & K. Cranmer

[3] T. Gleisberg, S. Hoeche, F. Krauss, M. Schonherr, S. Schumann, F. Siegert
and J. Winter, Event generation with SHERPA 1.1, J. High Energy Phys.
02 (2009) 7; arXiv:0811.4622 [hep-ph].
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In this chapter we consider the impact of nuisance parameters on the
effectiveness of machine learning in high-energy physics problems, and
discuss techniques that allow to include their effect and reduce their
impact in the search for optimal selection criteria and variable transfor-
mations. The introduction of nuisance parameters complicates the super-
vised learning task and its correspondence with the data analysis goal,
due to their contribution degrading model performances in real data, and
the necessary addition of uncertainties in the resulting statistical infer-
ence. The approaches discussed include nuisance-parameterized models,
modified or adversary losses, semi-supervised learning approaches, and
inference-aware techniques.

1. Introduction

As was demonstrated in previous chapters, particle physics offers

a variety of use cases for machine learning techniques. Of these,

probably the most common is the use of supervised classification to

construct low-dimensional event summaries, which allow to perform

statistical inference on the parameters of interest. The learned sum-

mary statistics — functions of the data that are informative about

the relevant properties of the data — can efficiently combine high-

dimensional information from each event into one or a few variables

which may be used as the basis of statistical inference. The informa-

tional source of this compression are simulated observations produced
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by a complex generative model; the latter reproduces the chain of

physical processes occurring in subnuclear collisions and the subse-

quent interaction of the produced final state particles with detection

elements.

The fidelity of the event description provided by the simulation

is usually limited, due to a variety of factors. These may include

imperfections in the modeling of the physical processes employed by

the simulation (such as the use of a leading order approximation

for the hard scattering process), limited precision in the descrip-

tion of detector response (usually due to imperfect knowledge of the

relevant calibration constants), uncertainty in fundamental physics

parameters liable to condition the observations (e.g., the mass of a

decaying particle), or simply a consequence of the finiteness of the

number of simulated observations in a given region of feature space.

To account for these “known unknowns”, commonly referred to as

nuisance parameters in statistics literature, the model needs to be

enlarged by the inclusion of corresponding variables which are not of

direct relevance, yet have to be considered during inference in order

to make calibrated statements about the parameters of interest.

Because simulated observations are also at the basis of the con-

struction of the likelihood function or any other estimator employed

for the extraction of the wanted information, either directly or

through intermediate summary statistics constructed with them, nui-

sance parameters must be directly included in the statistical model.

The inclusion of the effect of nuisances results in the enlargement of

confidence intervals on the parameters of interest; nuisance parame-

ters are correspondingly referred to as systematic uncertainties. The

effect is not exclusive to parameter estimation problems: it also com-

monly arises in hypothesis testing problems, such as when a test of

the presence of a new physics signal is performed on data otherwise

conforming to the Standard Model hypothesis. The presence of nui-

sance parameters then causes a reduction of the statistical power of

the test. Nuisance parameters are therefore one of main factors limit-

ing the precision and discovery reach of HEP analyses. However, it is
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worth stressing that they are not intrinsically problematic: they may

be viewed as a useful tool that allows us to model those uncertainties

associated to not having an exact model for the data.

The mentioned hindrances apply in the same manner to analyses

which employ machine learning algorithms to reduce the dimension-

ality of the data: the effect of nuisance parameters must be accounted

for in statistical inference based on summary statistics constructed

from the output of the summarizing function. Neither the training

loss nor the standard measures of performance for the learning task

itself are aligned with the inference goal when the simulated observa-

tions depend on additional modeling parameters that are unknown.

This chapter focuses on issues arising from the application of machine

learning techniques to problems where nuisance parameters are rel-

evant, and on different approaches that have been proposed to over-

come the resulting limitations.

1.1. Probabilistic classification as density

ratio estimation

Before delving into the subject matter, it is important to review the

relation between the learning tasks performed in HEP data analysis

and the statistical properties of training data. As introduced earlier,

machine-learning based data transformations in HEP are often based

on probabilistic classification models trained with samples from com-

puter simulations of the different processes. The simplest way to

understand a probabilistic classifier is in terms of probability density

ratios.

By training a probabilistic classification model (e.g., a neural net-

work optimizing binary cross entropy, BCE) to distinguish samples

of simulated signal (labeled by y = 1) and background (labeled by

y = 0), we are approximating the density ratio r(x) = p(x|y =

1)/p(x|y = 0) between the signal and background generating distri-

butions p(x|y = 1), p(x|y = 0). For example, when using BCE as a

loss function, the density ratio r(x) can be approximated using the
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classification output c(x) by virtue of the following relation:

c(x)

1− c(x) ≈
p(y = 1|x)
p(y = 0|x) =

p(x|y = 1)

p(x|y = 0)

p(y = 1)

p(y = 0)
= r(x)

p(y = 1)

p(y = 0)
,

(1)

where p(y = 1)/p(y = 0) is independent of x, and may be simply

estimated as the ratio between the total number of observations from

each category in the training dataset. The previous approximation

becomes an exact equality only for the best possible classifier, the

so-called Bayes optimal classifier, which is a function of the true and

generally unknown density ratio between the generating distributions

of signal and background in training data. In practice, good approx-

imations can be obtained given enough data, flexible models, and a

powerful learning rule. The previous relation is not unique for BCE-

based probabilistic classification models, as it also holds for other

approaches that minimize continuous relaxations of the zero-one loss

and could be generalized for the multi-class case.

Viewing probabilistic classifiers as probabilistic density ratio esti-

mators allows us to abstract away from the specific machine learning

techniques used to construct the model (e.g., gradient boosting or

neural networks trained by stochastic gradient descent), and also

provides a clear theoretical definition for the best possible classi-

fier: that is the one that minimises the risk or generalization error

of a classification problem as a function of the probability density

ratios between the data-generating distributions. Furthermore, den-

sity ratios can also be easily linked with the statistical inference goals

of data analysis and may effectively be used to study the limitations

of machine learning approaches.

We may explore the previous formulation in the case when the

generating distributions of data are not fully specified, but depend on

additional unknown nuisance parameters θ. A classifier distinguish-

ing samples from the data-generating distributions p(x|θ, y = 1) and

p(x|θ, y = 0) will still be approximating a function of the density

ratio

r(x;θ) =
p(x|θ, y = 1)

p(x|θ, y = 0)
(2)
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and hence will itself depend on the actual value of the parameters θ.

If we assume that the true value of the parameters is fixed but

unknown (which is the typical setting used for frequentist inference

in HEP), then the optimal classifier is not uniquely defined.a For

example, a classifier trained using simulated data generated for spe-

cific parameters θs might not be optimal at classifying experimental

data observations that correspond to the unknown parameter value

θd �= θs. This is the main issue with nuisance parameters from the

perspective of the machine learning performance.

1.2. Nuisance parameters in statistical inference

Another challenge with nuisance parameters, arguably the most rel-

evant one, is the way they affect our ability to extract useful infor-

mation about our models of nature from experimental data when

carrying out statistical inference in the form of hypothesis testing or

interval estimation. Nuisance parameters must be viewed as neces-

sary instruments to make unbiased and calibrated statistical infer-

ence statements when we do not have a perfectly known model of

the data. Their effect is not solely a complication for analyses based

on machine learning approaches, as it also applies to analysis based

on manual variable transformations; however, as will be discussed in

detail in Sec. 5, the presence of nuisance parameters can put into

question the role of supervised learning models in the context of

statistical inference, voiding them of the standard advantages that

otherwise make them so apt for dimensional reduction in physical

analyses.

The previous concerns are closely related to the misalignment

between the goal of particle physics analyses — to infer informa-

tion about our models of nature given the data — and the classifi-

cation and regression objectives of supervised learning approaches.

aIn a Bayesian setting, if the parameters are treated as random variables associ-
ated with a prior probability density distribution π(θ), then the optimal Bayes
classifier can be uniquely defined, because parameter sampling from π(θ) may
be considered part of the data generating procedure so the density ratio can be
implicitly marginalized.
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As reviewed in Sec. 5.1, probabilistic classification models offer

principled guarantees of optimality of the inference goal in infer-

ence problems based on mixture models where the mixture frac-

tion is the only parameter of interest in the absence of nuisance

parameters. In general terms, the supervised learning task can

be considered a proxy objective to obtain low-dimensional data

transformations that are still informative about the parameters of

interest.

In this context, it is worth introducing the concept of summary

statistic. For a set of n independent and identically distributed (i.i.d.)

observations or events D = {x0, . . . ,xn}, where each x ∈ X ⊆ R
d is a

d-dimensional representation of the event information at an arbitrary

representational level (e.g., raw detector readout, physical objects, or

a subset of columnar variables), a summary statistic of the data D is

simply a function of the data that reduces their dimensionality. An

infinite number of different summary statistics can be constructed

for a given set of data, but we are generally only interested in those

which are as low-dimensional as possible while preserving as much as

possible the information relevant for the statistical inference goal of

a given analysis. The low-dimensionality requirement is made neces-

sary by the curse of dimensionality, due to p(x|θ) not being known

analytically and having to be estimated from a finite number of sim-

ulated observations.

Most of the operations that reduce the dimensionality of experi-

mental data, either in terms of reducing the number of events (e.g.,

trigger and event selection) or its representation (reconstruction,

physical object selection, feature engineering, multivariate methods,

histograms) can be viewed through the lens of summary statistics

(see [1, Chapter 3]). Summary statistics used in high-energy physics

are thus often a composition of several transformations, yet for the

purpose of machine learning models we are usually interested the

final components of the type s(D) = {s(xi) | ∀xi ∈ D} that are

the product of the event-wise application of a function

s(x) : X ⊆ R
d −→ Y ⊆ R

b (3)
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reducing the dimensionality of each event from the original feature

space X ⊆ R
d, which could be already a transformation of the detec-

tor readout or set of engineered features, to a new low-dimensional

space Y ⊆ R
b. Such a transformation may be used to reduce the

data dimensionality from n × d to n × b. Since the observations are

assumed i.i.d, if b is very small we use simulated observations to

estimate the probability density p(s(x)|θ) by non-parametric means

to carry out the inference goal. Most commonly in HEP applica-

tions, even simpler sample-wise statistics are instead constructed

from s(D), such as the number of observations for which s(x) is

within a given range (in so-called cut-and-count analyses) or simply

a histogram of s(x). For these simpler statistics, sets of simulations

of each process produced with different values of the nuisance param-

eters are interpolated to model the effect of the nuisances, enabling

the construction of likelihoods based on the product of Poisson

terms.

The choice of the dimensionality reducing transformation deter-

mines the inference reach of a given analysis. Choosing a summary

statistic is not easy even in the absence of nuisance parameters,

since naive choices of data transformation can very easily lead to

a significant loss of useful information about the parameter of inter-

est. Machine learning models, in particular probabilistic classification

models trained to distinguish observations from different processes,

are increasingly being used as an automated way to obtain summary

statistic transformations. This is because the output of probabilis-

tic classifiers approximates density ratios as discussed in Sec. 1.1.

For simple hypothesis testing, density ratios are closely related to

the optimal likelihood ratio test statistic, in the case of parameter

estimation for the problem of inference of mixture fractions in the

absence of nuisance parameters, as discussed in detail in Sec. 5.1.

It is of benefit for the ensuing discussion to succinctly recall

how nuisance parameters can be “profiled away” from a likelihood

function in the extraction of confidence intervals on parameters of

interest; for a more general discussion of how the effect of nuisance

parameters is accounted for in physics measurements, see e.g. [2–4].
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We consider the measurement of a physical quantity in statistical

terms as a problem of parameter estimation, whose solution relies

on the specification of a statistical model wherein those quantities

appear as free parameters. Under the assumption that experimental

data conform to the specified model, the measurement may be carried

out by constructing suitable estimators for the parameters of interest,

which here we formulate through the specification of a likelihood

function. Letting θ identify the parameters of interest, α describe

systematic uncertainties affecting the model, and xi, i = 1, . . . , N ,

be the collected data, understood to be a set of N random i.i.d.

variables, the joint probability density can be written as p(x, θ, α).

This enables the construction of a likelihood function

L(θ, α) =
N∏
i=1

p(xi, θ, α). (4)

If nuisance parameters α were absent in the above formulation, one

would proceed directly to construct estimators of the parameters of

interest as

θ̂ = argmaxθ L(θ). (5)

The dependence on α can be dealt with by first obtaining the profile

of the likelihood function, PL(θ), by maximizing L as a function of

the nuisances,

PL(θ) = supαL(θ, α), (6)

and then proceeding as above. Uncertainties in the parameters of

interest may be extracted from the curvature of the profile likelihood

at its maximum exactly as is done with L in the general case [5, 6].

This “profile likelihood method” is conceptually simple and practi-

cal to implementb if the likelihood is differentiable with respect to

the parameters, but may meet with technical problems (e.g., a slow

bIn particle physics practice a widely used implementation is the MINUIT pack-
age [7], which offers profile likelihood evaluation through the MIGRAD routine.



December 14, 2021 16:15 Artificial Intelligence for High Energy Physics 9in x 6in b4322-ch17 page 621

Dealing with Nuisance Parameters 621

convergence) as well as intractability for high dimensional α. The

same issues affect in general the main alternative solution, which

consists in computing the marginalized likelihood Lm(θ) as

Lm(θ) =

∫
L(θ, α)p(α)dα. (7)

In both cases, knowledge of the PDF of nuisance parameters p(α) is

mandatory for a meaningful solution. In a Bayesian construction p

may be a subjective prior for the nuisance parameters; in general it

may be the result of an external constraint, such as an independent

measurement. Whatever the source, any imprecision in p(α) will in

general affect the parameter estimates with increases in bias and/or

variance.

1.3. Toward fully sufficient statistic summaries

The reduction of statistical uncertainty on the estimate of parame-

ters of interest is a common goal of machine learning applications

in experimental HEP. A suitable summary statistic may be obtained

by training a high-performance boosted decision tree or an artifi-

cial neural network on simulated sets of data. The summary enables

the extraction of the highest possible amount of information on the

unknown true values of the physical quantities under measurement,

conditional on the validity of the underlying physics model used to

generate the training samples, as well as of specific assumptions on

the value of relevant nuisance parameters. The crucial conditional

clause above is usually hard to get rid of, because of the complexity of

the problems, their high dimensionality, the typically unknown PDF

of nuisance parameters, and/or the effects those parameters have on

the physical model. When any one of the above effects play a role,

the obtained summary statistic cannot be sufficient: being oblivious

to a part of the feature space, it does not retain all the information

contained in the data relevant to the parameter estimation task, and

is therefore liable to be outperformed.

Notwithstanding the ubiquity of the above stated problem, the

adjective optimal is often employed when reporting physics anal-

ysis results, usually in connection with incremental advances over
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state-of-the-art of the employed techniques, for the common use case

of classification performance in signal vs. background discrimina-

tion problems. The classical justification for a claim that a chosen

algorithm or architecture and its output (a classification score) be

optimal for the measurement task at hand is based on examina-

tion of associated performance measures such as the integral of the

Receiver Output Characteristic curve (see Chapter 2), or on back-

ground acceptance estimates at fixed purity — or vice versa. In the

absence of nuisance parameters those figures of merit are generally

effective as a proxy to classification performance, when their maxi-

mization closely tracks the theoretical minimum value of the statisti-

cal uncertainty on the intermediate physical parameter to which the

classification algorithm is sensitive, such as, e.g., a signal fraction.

Yet they are blind to the more general problem connected with the

subsequent extraction of, say, the cross-section of a physical reac-

tion contributing to events labeled as signal, when uncertainties of

non-stochastic nature are included.

A simple toy example may help pointing out the typical issues.

Let us suppose that a dataset includes events originated from a sig-

nal process of interest S, in addition to ones coming from a known

background source B. The typical output of a classifier trained to

distinguish the event classes may be the one shown in Fig. 1 (left),

which we parameterized using exponential functions with normalized

density functions in the x ∈ [0, 1] range:

S(x) =
ex

e− 1
, (8)

B(x) =
αe−αx

1− e−α
. (9)

Above, we have included a nuisance parameter α in the definition

of the background PDF. While the variations described by α in this

example are very simple, the typical situation they mimic is a very

common one, as the background distribution in HEP analysis prob-

lems is usually affected by significant uncertainties on its shape;

α therefore describes what would be called a “background-shape
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Fig. 1. A simple toy classification model. Left: the PDF of a signal process (red)
is compared to the PDF of background for three values of the nuisance parame-
ter, α = 1.0, 1.5, 2.0; center: ROC curves corresponding to the three background
distributions; right: values of the AMS figure of merit (see text for details) as a
function of the selection cut value x∗. The location of maxima are shown by the
corresponding arrows.

systematic uncertainty”. If we define the true positive rate (TPR)

and false positive rate (FPR) of a selection criterion x > x∗ as

TPR(x∗) =
∫ 1

x∗
S(x)dx =

e− ex∗

e− 1
, (10)

FPR(x∗) =
∫ 1

x∗
B(x)dx =

e−αx∗ − e−α

1− e−α
, (11)

then with simple algebra we may derive the ROC curve as the func-

tional dependence of TPR on FPR:

TPR(FPR) =
e− [e−α + (1 + e−α)FPR]−1/α

e− 1
(12)

By examining the shape of ROC curves resulting from different values

of the nuisance parameter α (see Fig. 1, center), one may verify the

qualitative benefit of B(x) densities peaking more sharply at x = 0,

which correspond to larger values of α. The performance of a classifier

trained under a given hypothesis for the nuisance parameter (say,

α = 1.5) is then liable to be under- or over-estimated if the value of

α is uncertain; the choice of a critical region x > x∗ corresponding
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to a pre-defined FPR will similarly be affected, as will the resulting

value of TPR.

In the given example the fraction of data selected in the critical

region plays the role of our summary statistic, as we have assumed

that it is the only input to a subsequent extraction of signal fraction.

The fraction is of course affected by the unknown value of the nui-

sance parameter α, yet its value alone does not retain information

about it: the statistic is therefore not sufficient. A sufficient statistic

in this example would be the whole distribution of the classifier out-

put shown by the observed data; that choice however fails to reduce,

as desired, the dimensionality of the input, so it is not an effective

summary for the inference task.

To discuss how an optimal choice of x∗ based on the above den-

sities may be influenced by the presence of the nuisance parameter

α, we may consider the figure of merit called approximate median

significance (AMS) [8], already introduced in Chapter 2:

AMS =

√
2 ·
[
(Ns +Nb +Nr) ln

(
1 +

Ns

Nb +Nr

)
−Ns

]
. (13)

The AMS is a robust predictor of the statistical significance of an

excess of observed events if a signal of mean rate Ns contributes to

a data sample assumed to be only composed of background events

coming from a Poisson distribution of known mean Nb; the regular-

ization term Nr reduces the impact of Poisson fluctuations in low-

event-counts situations, preventing divergent behavior when Nb gets

too low. If we set, e.g. Nr = 10 and compute the AMS as a function

of the selection cut x∗ for the three considered values of α of our toy

model, and for a choice of Ns = 20, Nb = 400 in the data sample, we

obtain the curves shown in the right panel of Fig. 1. It can then be

observed, as expected, that the value of α affects both the peak value

of the figure of merit and the optimal value of x∗ which achieves it.

The above toy model exemplifies how not only do nuisance param-

eters have the power to modify the optimal working point of a ROC

curve, but they also in general affect the overall classification perfor-

mance, as well as the relative merit of different classifiers. For that

reason, standard supervised classification techniques may not reach
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optimality unless they more broadly address the conditionality issue

stated above, or prove to be decoupled from it.c

From a statistical point of view, in real-life situations “all models

are wrong”, hence strictly speaking sufficient statistics that model the

data may not exist! However, in most experimental situations approx-

imate sufficiency is achievable, provided that the relevant nuisance

parameters are included in the model and considered in the construc-

tion of the statistic. A number of brilliant ideas have been recently

proposed to achieve that goal, in some cases effectively exploiting

methods developed in Computer Science to endow learning algo-

rithms of domain adaptation capabilities — the flexibility to achieve

good results on data coming from one domain when trained with data

coming from a different one, such as, e.g., the capability of driving a

truck when trained to drive a car. In the context of point estimation

in experimental particle physics, the different domains may involve

a different relative importance of some of the features, the absence

of others, or imperfections in the training model.

The growing interest in the development of new techniques to

reduce or remove the effect of nuisance parameters in physics infer-

ence, powered by the availability of new machine learning tools and

larger computing resources, has brought the focus of experimentalists

on the central problem of how to achieve a true end-to-end optimiza-

tion of physics measurements, and highlighted the need to pay undi-

vided attention to the expected total uncertainty on the parameters

of interest already in the training phase of learning algorithms. Below

we provide an overview of methods developed to address those issues,

and discuss their merits, applicability, and potential extensions.

cIt must be noted here that a possible misalignment between the specification
of the classification task and the true objective of the analysis should always be
considered. In the given example we studied the AMS score as a robust proxy
of the significance of an excess of signal events: such is a good choice when the
objective of the analysts is the discovery of a yet hypothetical signal in the data.
If, however, their focus were rather the setting of the most stringent upper limit on
the signal rate — a common situation when the a priori sensitivity of a search does
not offer chances of a discovery — then the whole learning task and optimization
criteria would have to be revised.
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2. Nuisance-Parameterized Models

A direct way to account for the effect of nuisance parameters in the

construction of a summary statistic is to include them in the physical

model through a parameterization of their effect on the observable

event features. This requires the injection in the model of knowledge

of their PDF from an external prior, or from an ancillary measure-

ment, and may or may not be practical to implement depending on

the problem.

In the simplest situations, as, e.g., when the problem is low-

dimensional, a fully analytical solution may be sought. An example

is offered by the decorrelation of the “N -subjettiness ratio” variable

τ21 [9] designed in the context of searches for the two-body decay

of boosted resonances to reveal the resulting sub-structure in the

produced hadronic jets. The variable may be likened to a classifica-

tion score as it possesses large discrimination power against QCD

background jets, but a selection based on its value biases the distri-

bution of reconstructed “soft-drop” mass successively used for infer-

ence, because of its dependence on jet pT , which can be here seen

as a nuisance variable. As shown in [10], an analytical parameter-

ization of the dependence of τ21 on jet pT removes almost entirely

the distortions in the mass spectrum. In the same context of boosted

decay searches, similar results have been obtained for the observable

D2 [11].

In cases where experimental data are informative of the value of

nuisance parameters, one may try to exploit that dependence in the

construction of estimators for the parameters of interest. This situa-

tion was considered by Neal [12], who addressed the question of how

the extraction of a sufficient summary for the signal fraction θ with

a binary classifier is affected by unknown parameters α, when these

modify the PDF of signal ps(x, α) and background events pb(x, α).

The likelihood for N observations xi,

L(θ, α) =

N∏
i=1

[θps(xi, α) + (1− θ)pb(xi, α)], (14)
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may be rewritten as

L(θ, α) =

[
N∏
i=1

pb(xi, α)

]
·

N∏
i=1

[
θ
ps(xi, α)

pb(xi, α)
+ (1− θ)

]
. (15)

The first term in the right-hand side of the last expression is not a

constant when nuisance parameters are present: factoring it out of

the likelihood would therefore cause loss of information, since back-

ground events alone carry constraining power on the value of α. The

usual classifier task of learning the ratio of signal and background

PDFs ps(x)/pb(x) is then no longer sufficient to solve the problem as

it would be if no nuisances were present. The solution outlined in [12]

involves the construction of low-dimensional summaries for both the

nuisance parameters α and the observable event features x, using, e.g.,

a neural network. If good parametric models of the summaries can be

constructed one may use them for inference, exploiting the informa-

tive power of the data themselves to constrain nuisance parameters.

Approximate sufficiency can in principle be obtained with this recipe,

if the parameterizations do not cause significant loss of information.

In other cases of HEP interest no knowledge or constraints on a

nuisance parameter may be available, yet a parameterization of its

effect on the observations successfully solves the issue. The classical

example of this situation is the search for a new particle whose mass

Mtrue is unknown, when signal events exhibit smooth variations in

the momenta of the decay products as Mtrue changes.d A classifier

trained to distinguish the new particle from backgrounds using signal

events simulated assuming a mass M1 =Mtrue+α will consequently

suffer a progressive degradation in performance as |α| increases. This
was a common situation in early applications of binary classification

to new particle searches, which focused on a mass range of particular

interest, Mtrue �M1, and accepted the residual loss of power result-

ing for α �= 0. A more performant, yet CPU-consuming, solution

[13, 14] was to independently train a set of classifiers Ci using, in turn,

dA dependence of the particle branching fractions on Mtrue does not complicate
matters if the resulting acceptance variations are known.
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data simulated assuming different mass values Mi for the unknown

signal. This approach is still sub-optimal in a general sense, since it

does not fully exploit available resources (the simulated data). Each

classifier is ignorant about the information processed by the other

ones, as it only knows the precise mass hypothesis it corresponds to:

in general, it is not possible to interpolate the results of different

hypotheses.

A way to avoid the above shortcomings, first proposed in [15],

is to parameterize the effect of the nuisance parameter in the con-

struction of the classifier. This may be achieved by including the

unknown value of Mtrue within the set of features that describe sim-

ulated signal events; for background events an arbitrary mass value,

or one chosen at random for each different training event, is corre-

spondingly added. A suitable admixture of training data with signal

events corresponding to different Mi hypotheses spanning the range

of interest may then be used in the learning phase.e The benefit of

this procedure is that it yields an interpolated classification score

Ck even for events with mass values Mk never seen during training.

With this approach, a smoother dependence is often expected if the

classifier is a neural network rather than, e.g., a decision tree.

The effectiveness of this strategy was demonstrated [15] using

a simple neural network (NN) architecture for the discrimination

of a new particle X decaying to top–antitop quark pairs from

non-resonant tt̄ backgrounds in proton-proton collision data recon-

structed by the ATLAS detector as simulated by DELPHES [16]. It

was shown how for a given specific mass hypothesis M1 a parame-

terized NN performed similarly to a non-parameterized NN trained

with signal at the same mass, but it outperformed it for all other

masses (red curve in Fig. 2), even when the non-parameterized NN

was trained with an admixture of mass values (black curve).

The parameterization of the dependence of observable variables

on the latent features of the underlying physical model — which

eRegardless of the a priori choice of signal admixture employed in the training,
the resulting inference cannot be considered Bayesian, as the choice only affects
the power of the classifier.
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Fig. 2. Area under the ROC curve for binary classification in the search for
X → tt̄ on simulated ATLAS data as a function of the particle mass Mi of
test data. The parameterized NN (blue line) outperforms non-parameterized NN
trained at a single mass value (Mi = 1000 GeV, red dashed line) or trained with
a mixture of signal samples for different Mi values (black dotted line). Reprinted
with permission from [15].

include both interesting and nuisance parameters — has been more

generally considered [17] in the context of likelihood-free inference.

The proposed algorithm performs a dimensionality reduction of the

data through a parameterization that is monotonic with the likeli-

hood ratio, allowing optimal inference via a calibration of the output

of a binary classifier. We refer the reader to Sec. 5.2 for more detail

on this approach.

3. Feature Decorrelation, Penalized Methods,

and Adversary Losses

When a direct parameterization of the effect of nuisance parameters

on the summary statistic used for classification proves ineffective or

impractical to implement, there are several possible alternatives. In

a few specific applications it is sufficient to operate a suitable prepro-

cessing of training data that reduces or removes the dependence of

the classifier output on a variable sensitive to nuisance parameters.
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A second class of solutions aim to make the classifier score insensitive

to variations in the value of nuisances by engineering a robust opti-

mization objective for the classification task. Finally, a more radical

approach is to change the overall architecture of the algorithm used

in the search of the optimal solution, using adversarial techniques to

find the best compromise between signal discrimination and impact

of nuisances. Below we briefly discuss each of these approaches.

3.1. Mass decorrelation

The intensive search for new physics carried out by the ATLAS and

CMS experiments in final states dominated by QCD backgrounds

fostered, in the past decade, the development of a number of imagi-

native new methods to increase signal purity without modifying the

shape of the distribution of reconstructed mass, Mrec, of the hypo-

thetical new particle, which is commonly used at the end of the selec-

tion step to estimate or limit the signal contamination in the sample.

Since the QCD background is complex to model reliably, a selection

cut on the output of a well-trained classifier does not guarantee opti-

mal inference on the presence of any signal, because the background

retained by the cut is usually biased toward displaying a “signal-like”

mass distribution. In this situation Mrec is not in itself a nuisance

parameter; however, the reduction of its discrimination power caused

by the selection enhances the impact of background normalization

and shape uncertainties on the estimate of signal fraction. Further,

a reshaping of the background distribution complicates the applica-

tion of bump hunting techniques, for example by hindering the use

of data-driven background estimates based on mass sidebands.

The most straightforward way to reduce the dependence of a

classification score on Mrec (or any other specific observable of rel-

evance for inference downstream of the selection) is called “plan-

ing” [18, 19]. A simple way to implement planing is to pre-select

training samples for signal and background such that they have

the same marginal PDF in the variable one aims to decorrelate,

pS(Mrec)
sel = pB(Mrec)

sel. As the above corresponds to making lim-

ited use of available training data, it proves more effective to weight
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each event i by a mass-dependent value w(Mrec,i) derived from the

PDFs of the two training datasets, pS(Mrec)
train and pB(Mrec)

train,

w(Mrec,i) =

{
1/pS(Mrec,i)

train, i ∈ S
1/pB(Mrec,i)

train, i ∈ B

}
. (16)

The weights w(Mrec,i) enter directly the calculation of the loss func-

tion (e.g., binary cross-entropy) of the classifier in the training stage,

but are not used for validation and testing. Planing has been shown

to significantly reduce the dependence of classifier output on the

planed variable in specific situations, and due to the simplicity of its

implementation it may constitute a quite practical solution to the

problem; however, its effectiveness is limited when other event fea-

tures in one or both classes indirectly inform the classifier on the

value of the planed variable, if the latter — as is often the case —

carries discriminant power. In the context of searches for new physics

in boosted hadronic jets, a decorrelation of the output of a NN clas-

sifier from the mass of the boosted jet was instead achieved by fea-

ture preprocessing based on principal component analysis [18]. The

proposed method involved the PCA rotation and standardization

of 17 employed NN inputs (a basis set of N -subjettiness variables

τβN proposed in [20]) from trained data suitably binned in jet mass.

Besides avoiding the sculpting of the jet mass distribution of QCD

background events, the resulting classifier was shown to be effective

for signal discrimination also at signal masses for which it was not

trained.

3.2. Modified boosting and penalized loss methods

As mentioned above, a decorrelation of the classifier output from a

variable of interest x may be difficult to obtain with data prepro-

cessing techniques when other event features are informative of the

value of x, especially if x itself contains discriminant information.

The search for new low-mass resonances in Dalitz plots [21] or

with amplitude analysis provides strong motivation to achieve uni-

formity of a classifier selection as a function of kinematical variables

of interest, as systematic uncertainties may be greatly amplified by
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the unevenness of selection efficiency. The first algorithm developed

to explicitly target that use case was uBoost [22], which relies on

boosted decision trees to improve signal purity. The method builds

on the standard AdaBoost prescription [23] of increasing the weight

of training events misclassified by the decision tree built in the previ-

ous iteration of the BDT sequence, augmenting it by modifying the

weight of signal events depending on the disuniformity of the selec-

tion. If wn−1
i is the weight of event i at boosting iteration n− 1, the

new weight is computed as

wn
i = cni u

n
i w

n−1
i , (17)

where cni = exp(−γipn−1
i ) is the AdaBoost classification weight, with

γi = +1 (−1) for signal (background) events and where pi is the

prediction of the previous decision tree in the series.

The uniformity weight uni is defined as the inverse of the density of

signal in the proximity of event i, and is computed with the k-nearest-

neighbor algorithm; for background events ui is set to unity. Since it is

necessary to consider many different values of signal efficiency in the

construction of the final BDT score and to the use of kNN, the CPU

cost of training with uBoost is higher than that of a regular BDT,

although not prohibitive in practical applications. Tested on a Dalitz

analysis, the method was shown to achieve the wanted uniformity

with almost no loss in classification performance [22].

Following on the thread of uBoost, a number of interesting alter-

natives to achieve uniform selection efficiency of a BDT classifier were

introduced in [24], again targeting the use case of Dalitz plot analy-

sis. The algorithm called kNNAdaBoost achieves the uniformity goal

by modifying the AdaBoost weights to include information on the

classification probability of k nearest neighbors to each event,

wn
i = wn−1

i exp

⎡
⎣−γi∑

j

aijpj

⎤
⎦, (18)

where the aij matrix collects information on the density of events of

the same class around event i, by setting aij = 1/k if j is among the

k neighbors of i and = 0 otherwise. Other methods proposed in [24]
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involve the use of aij in the loss of the classifier, minimized with the

use of gradient boosting. These techniques are shown to improve over

uBoost by achieving better uniformity in specific use cases.

More recently, the issue of decorrelation from variables of inter-

est or, more generally, robustness to nuisance parameters has been

addressed by using neural network classifiers, adding suitable regu-

larizer terms to their loss function. An option discussed in [25] is to

use, for that purpose, a measure of the extent to which two sets of fea-

tures �x, �y are independent.f The proposed measure is dubbed DisCo

(”distance correlation”) [25], a function of the considered features

which can be constructed by first defining a distance covariance

dCov2(X,Y ) = 〈|X −X ′||Y − Y ′|〉+ 〈|X −X ′|〉〈|Y − Y ′|〉
− 2〈|X −X ′||Y − Y ′′|〉, (19)

where | · | is the Euclidean vector norm and (X,Y ), (X ′, Y ′) and

(X ′′, Y ′′) are i.i.d. pairs from the joint distribution of the two fea-

tures; brackets indicate taking averages. The distance correlation,

defined as

dCorr2(X,Y ) =
dCov2(X,Y )

dCov(X,X)dCov(Y, Y )
(20)

is then bound between 0 and 1, and is null only if x and y are fully

independent. dCorr2(X,Y ) is differentiable and can be computed

from batches of data samples; its value can be profitably added as a

penalty term to the loss of the classifier, once multiplied by a positive

hyperparameter λ controlling its strength. The multiplier allows to

gain control over the acceptable amount of interdependence of x and

y achieved by a minimization of the penalized loss. In the single-

dimensional application considered in [25] DisCo proves competitive

or advantageous over, e.g., adversarial setups (see below) or other

methods; further studies are needed to gauge its performance in more

complex situations.

fIn their work, Kasieczka and Shih discuss the classical single-dimensional case
when x = Mrec is the mass of a searched particle and y = c the output of the clas-
sifier itself, but the extension to multi-dimensional problems is straightforward.



December 14, 2021 16:15 Artificial Intelligence for High Energy Physics 9in x 6in b4322-ch17 page 634

634 T. Dorigo & P. de Castro Manzano

A similar approach is taken [26] in a study more explicitly aiming

at a reduction of the dependence of classifier score from nuisance

parameters α. In the proposed technique the n-bin histogrammed

distribution Nk of classifier output f(x) from input features x is

first made differentiable with the use of a Gaussian smoothing with

functions Gk,
Nk(f(x)) =

∑
b

Gk(f(x)), (21)

where k runs on the bins and b runs on the training events in a batch.

The usual loss L0 of the classifier can then be penalized by a term

derived from the difference in smoothed bin counts of the original

output f(x) and its nuisance-varied value f(x+ α),

L(λ) = L0 + λ
1

n

∑
k

(Nk(f(x))−Nk(f(x+ α))

Nk(f(x))

)2

. (22)

The modified loss effectively decouples the classifier output from the

value of α, both in a synthetic example and in the benchmark prob-

lem of H → ττ discrimination proposed in the ATLAS kaggle chal-

lenge [27], where the τ lepton momentum scale is considered as the

nuisance parameter.

3.3. Adversarial setups

The construction of an adversarial setup where two independent neu-

ral networks are pitched one against the other in the search for the

optimal working point in a constrained classification problem may

be considered an extension, if not the logical next step, of the penal-

ized loss methods discussed above. In fact, the global loss function

is still the combination of two parts, one of which is the usual clas-

sification loss (e.g., a BCE term) and the other is a penalization

contributed by the adversary, usually modulated by a regularization

multiplier λ. The difference is that adversarial architectures create

a conceptual symmetry between the classification task aiming at a

signal–background separation and the discrimination of different val-

ues of a nuisance parameter, putting the two minimization problems

on equal footing.
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The idea of using a classifier trained to discriminate between data

from different domains to constrain the error of a binary classifier

trained in one domain and applied to a different domain dates back to

early computer science research [28, 29]. These works provide foun-

dations to the more modern domain adversarial approaches which

formulate the domain adaptation approach through a min–max

learning objective. Applications in HEP arise when training and test

data come from different domains (a source and a target one), or

when training data are simulated by an imperfect model of real (test)

data. It was shown that robust classification can be achieved in such

situations if one can find a suitable representation of the data which

is maximally insensitive to their source. An adversarial neural net-

work is thus tasked to learn such a representation while competing

with one that tries to achieve maximal separation of labeled classes

of training data [30].

The first proposal of adversarial neural networks to achieve

robustness to systematic uncertainties in HEP problems was the one

of Louppe, Kagan and Cranmer [31], who showed the feasibility of

using adversarial techniques to make the classification score f(X; θf )

a “pivotal quantity” in the statistical sense [32], i.e. one whose distri-

bution is independent on the value of nuisance parameters z; above,

θf are the parameters of the classifier, and X denote the data. If one

further denotes the adversary, r, with parameters θr, whose task is

to discern values of z from the output value f(X, θf ) of the classi-

fier, the loss functions of the two networks may be succinctly written

Lf (θf ) and Lr(θf , θr), and a simultaneous training can be carried

out by using the value function

E(θf , θr) = Lf (θf )− Lr(θf , θr) (23)

which can be optimized by the minimax solution

θ̂f , θ̂r = argminθf max
θr

E(θf , θr). (24)

Convergence to the optimal solution cannot be guaranteed if the

nuisance parameters shape the decision boundary directly. In that

case a hyperparameter λ multiplying the adversary loss Lr may be

introduced in Eq. (23), and a search for approximate optimality must
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Fig. 3. AMS score as a function of classifier score for a binary classification task,
for different values of the hyperparameter λ modulating the loss penalization, and
for the case when no nuisance parameter is present. For λ = 10 an advantageous
tradeoff of classification accuracy and robustness to the nuisance is obtained at
high classification scores. Reprinted with permission from [31].

be performed. As an example, Louppe et al. consider both a synthetic

example and a HEP use case when the nuisance parameter Z is

categorical, describing the absence (Z = 0) or presence (Z = 1)

of pile-up in LHC collisions data. In the latter case they show (see

Fig. 3) how an effective compromise between the classification and

the pivotal tasks may be found by a tuning of λ.

The application of the above technique to the discrimination of

the decay of boosted heavy particles in a situation where background

systematics affect the inferential step downstream of the NN-based

selection was considered in [33]. In their work, authors showed how

the relevant utility function in the problem — the significance of

a resonant signal in the data, once systematic uncertainties were

accounted for — was indeed maximized by an adversarially trained

classifier, despite its slight degradation of separation power with

respect to a non-adversarial classifier.
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A further comparison of the effectiveness of the adversarial train-

ing proposed in [31] to alternatives based on data augmentation and

tangent propagation, for the goal of optimizing classification in pres-

ence of nuisance parameters, was produced in [34]. The considered

HEP problem was the one of H → ττ discrimination from back-

grounds proposed by the Higgs Kaggle Challenge [27], where an

uncertainty on the τ lepton energy scale was introduced and prop-

agated to the input features of signal and background. In addition

to a baseline, non-systematics-aware neural network classifier, they

employed in their comparison a data augmentation method based

on training datasets constructed so as to appropriately sample the

relevant range of values of the nuisance parameter. Finally, the tan-

gent propagation method consisted in modeling nuisance parameters

as coherent geometric transforms of the event features, operated by

differentiable functions; a regularization of the model was provided

through the derivative of the classifier score on the nuisance parame-

ter value, as introduced by Simard et al. [35]. The comparison showed

that adversarial learning had a minor advantage over data augmen-

tation, although further work was deemed necessary to achieve more

conclusive results on the matter. Tangent propagation was instead

shown to be unsuccessful on the specific problem considered, due

to large uncertainties introduced in the geometrical transformation

caused by the large class overlap in the feature space.

We conclude this survey of applications of adversarial techniques

to constrain the effect of nuisance parameters with a mention of two

very recent studies. The first, by Blance, Spannowsky, and Waite

[36], examines adversarial classification as a preliminary step to the

use of autoencoders for unsupervised classification, to verify their

effectiveness in reducing the dependence of the autoencoder task

on systematic uncertainties. They apply this idea to the search of

resonances decaying to semileptonic tt̄ final states, showing indepen-

dence of the resulting classification task on the considered smear-

ings of the input models. A second interesting study [37] attacks

the problem of theoretical uncertainties with adversarial networks.

Since uncertain theory parameters affect the data in a coherent way,

they can be controlled more effectively than experimental ones in
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machine learning applications. Authors consider the case of searches

for new physics in events with a Higgs boson and a high-momentum

jet, where renormalization and factorization scale variations heavily

affect the predictions of standard model backgrounds, making tradi-

tional discrimination methods unreliable. Sensitivity to new physics

can be retained by an adversarial technique which ensures robustness

to theoretical scale uncertainties, at the price of smaller discrimina-

tion power.

Overall, adversarial methods discussed in this section prove effec-

tive to achieve approximate independence of the classification from

the value of selected input features. In general, however, there is no

guarantee that the resulting equilibrium point between the two com-

peting tasks be optimal for the final goal of the analysis in which

they are embedded. For this reason, the hyperparameter λ governing

the tradeoff between the two losses must be optimized independently.

More direct ways to strive for a complete optimization of classifica-

tion in physics measurements and searches are examined in Sec. 5.

4. Semi-supervised Approaches

At the beginning of this chapter, nuisance parameters were intro-

duced as additional parameters that account for the limitations of

the description of the data and have to be considered when mak-

ing accurate statistical statements. Given that most machine learn-

ing models in HEP are usually trained using simulated observations,

the resulting models could only aspire to be optimal at the task at

hand (typically, classification or regression) for the specific configu-

ration of nuisance parameters used for data generation. The previous

sections discussed some solutions to this problem, such as parame-

terizing the model or decorrelating its output using additional loss

terms. In this section we review alternative approaches that are based

on using actual experimental data to complement or substitute simu-

lated samples in the model training procedure, focusing on how these

techniques could help to deal with nuisance parameters.

Experimental data are the source of information used to test

hypothesis or estimate parameters given a model. Models are usually
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based on detailed simulations of the underlying physical processes

and the detector response, providing, in general, a quite good

although not perfect description of the data. Oftentimes, experimen-

tal data from well-known processes are also used to cross-check the

accuracy of the description by the model and to estimate correc-

tion factors and associated uncertainties as necessary. These calibra-

tion procedures, which also constitute statistical inference analyses

in their own right, provide a mechanism to reduce mismodeling issues

and obtain data-based estimates for nuisance parameter constraints.

While general calibrations are typically performed experiment-wide,

more detailed calibrations are often carried out for specific anal-

ysis scenarios to improve their precision and discovery reach, for

example using an independent subset of data that is expected to

be well-modeled to further correct or constrain known unknowns at

the inference stage. In some cases, yet arguably not often in analy-

ses that use machine learning to reduce the dimensionality of their

summary statistics, known properties of experimental data allow

us to use a well-understood subset to model one of the mixture

components.

The interrelation between experimental data and the generative

model and its parameters in HEP is thus more involved than its

ideal depiction in statistical literature. When training supervised

machine learning models using simulated data, the expected perfor-

mance at the objective task in experimental data improve if training

and validation datasets are well calibrated and correspond to the

best estimates of the parameters of interest.g Leaving aside the issue

of whether the supervised learning task is a good proxy of the anal-

ysis inference goal when nuisance parameters are important, which

will be discussed in Sec. 5, we review here methodologies that use

experimental data during training to close the gap between the per-

formance at the inference task between real and simulated data.

gFor completeness, we note that even when the machine learning model is not
trained with the most accurate description of the data, it is still possible to
make calibrated statistical statements, as long as known unknowns are properly
accounted for in the statistical model used for inference.
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Many of the efforts to achieve the above goal are based on

innovations from weak supervision and semi-supervised learning,

that focus on the problem of learning useful models from partial,

non-standard, or noisy label information. In this context, when con-

sidering a classification task, simulated observations can be con-

sidered as fully labeled data that provide a possibly imperfect

description, while real data observations can be thought as unla-

beled or very sparsely labeled mixtures from different classes, which

however do not suffer from the same imperfection. For example,

Dery et al. [38] propose an approach based on learning from label

proportions (LLP), where a neural network is trained using a cus-

tom loss that is only based on the known class proportions for

given sets of training data. They validate the method on a quark

vs. gluon tagging example problem, finding that it can be used to

obtain a similar performance to that of a fully supervised classi-

fier, while being more robust to simulation mismodeling of the input

variables.

One of the potential advantages of approaches based on learn-

ing from label proportions (and weak supervision more generally) is

that in principle they could be extended to train the classifier directly

using data from the experiment. However, the LLP approach requires

at least knowledge of the label proportions in the mixed samples,

which might not be available at training time. To address this lim-

itation, Metodiev et al. [39] propose a new paradigm referred to as

classification without labels (CWoLA), where the classifier is trained

to distinguish between two mixed sample with different (and possi-

bly unknown) component fractions. This also simplifies the previous

approach because it is based on standard classification loss, where

the label is not the observation class but an identifier of the mixed

sample the event belongs to, as depicted in Fig. 4. Authors prove that

the optimal binary classifier (in the Bayes sense) for distinguishing

events from the mixed samples is a simple function of the density

ratio between the components. Furthermore, they demonstrate that

CWoLA as well as LLP perform similarly to a fully supervised classi-

fier on pure samples, using practical examples such as a quark/gluon

discrimination problem.
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Fig. 4. An illustration of the CWoLa framework. Figure and description by the
authors of CWoLA [39] and licensed under CC BY 4.0.

While CWoLA has a wider range of applicability than standard

LLP techniques, it also requires two (possibly smaller) mixed test

data samples with known fractions to establish operating points.

After its introduction, two other studies have applied variations of

CWoLa to sample use cases. Cohen et al. [40] applied weakly super-

vised neural networks to the search of gluino production using fast

simulation samples, demonstrating that weak supervision can per-

form similarly to full supervision and that it is robust to certain

types of mismodeling. Further work by Komiske et al. [41] has shown

that weak supervision approaches scale well to problems with high-

dimensional inputs and larger models, by successfully applying LLP

and CWoLa to the quark/gluon discrimination problem using a con-

volutional network model applied directly to jet images.

The most attractive feature of weak supervision techniques such

as LLP and CWoLa is that, in principle, they may enable the use

of real data during the training procedure. The use of experimen-

tal data for training with this family of techniques has however not

been demonstrated in HEP practice so far. In the best case scenario,
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a weakly supervised classifier trained with data could be used to

extract the optimal classifier (in the Bayes sense) between each of

the mixture components (e.g., signal and background). The output

of this classifier could then be used to select or construct a sum-

mary statistic to carry out the inference goal of the analysis. Yet

most likely, the model would have to be constructed using simulated

observations that are subjected to the effect of nuisance parame-

ters. Hence a potentially Bayes-optimal weakly supervised classifier

would suffer the same pitfalls as any other classifier in relation with

the analysis inference goal, as we discuss below in Sec. 5.

Additionally, we note that if experimental data are used during

training the model might be overfitted to the particular statistical

fluctuations of the dataset, so an experimental data splitting scheme,

or the use of experimental data from an independent subset, might

be needed to avoid biased estimations. If the data representing dif-

ferent mixture fractions are taken from different control regions, the

previous caveat may be avoided, however the density of the compo-

nents for each of the mixed samples would then not necessarily be

the same, invalidating the basic theoretical assumption of CWOLA

or LLP. The fundamental assumption also does not hold if the dis-

tributions in the control region exhibit different correlations than in

the signal region.

In conclusion, while weak supervision could be useful to build clas-

sifiers that might benefit the model classification performance, due

to their being more robust to certain types of mismodeling, existing

practical approaches do not fully address the issue of dealing with

nuisance parameters.

5. Inference-Aware Approaches

The approaches discussed so far use diverse methodologies in order

to overcome situations where the data generating process is not per-

fectly known and thus the performance of the supervised learning

task considered (typically classification) might be degraded once it is

applied on real data. However, recent work has shown that some of
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the innovations in the field of machine learning are flexible enough so

as to be re-purposed to deal more closely with the statistical inference

objective of HEP analyses.

The solutions discussed in this section move away from the overall

goal of optimizing models to become performant at proxy supervised

learning tasks such as classification, and attempt to frame the prob-

lem directly as one of statistical inference. This change of paradigm

is often referred to as likelihood-free or simulation-based inference,

and is a rapidly evolving line of research, with applications within

particle physics as well as in other scientific domains that heavily rely

on complex generative models, such as epidemiology or cosmology.

For a broader overview of the techniques proposed to deal with

this problem and their role in particle physics we refer to Chapter 16

and other general reviews [42]. In this section, we instead focus on

how some of these inference-aware approaches could be useful to deal

with nuisance parameters in the context of particle physics. Given

that most of these solutions already cast the problem in the form of

statistical inference on a set of parameters given the data, it is not

surprising that they allow nuisance parameters to be incorporated or

dealt with in a principled way.

5.1. Why are classification and regression

not enough?

Before delving into these new techniques, it is worth considering

the limitations of classification and regression as proxy supervised

tasks from the point of view of statistical inference. For simplicity,

let us consider the paradigmatic problem of inference about the mix-

ture coefficient in a two-component mixture model, which is often

the basis of cross section measurements or searches for new physics

processes:

p(x|μ,θ) = (1− μ)pb(x|θ) + μps(x|θ) (25)

where μ is a parameter corresponding to the signal mixture fraction,

x is the event feature space and θ are other parameters which the
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component distribution functions might depend on. For the problems

of relevance to machine learning techniques, we may assume that

the probability density functions for signal ps(x|θ) and background

pb(x|θ) are not known parametrically, yet we have access to random

samples from a simulator that is able to model them implicitly.

The relation between the density ratio approximations from

Eq. (1) and the typical problems of inference in HEP may be stud-

ied using two different statistical constructions: likelihood ratios or

summary statistics. Both approaches lead to equivalent conclusions

regarding the limitations of classification as a means of obtaining

useful transformations for statistical inference in the presence of nui-

sance parameters, but they are both relevant because they imply

ways of framing the problem which map very well to different fam-

ilies of new techniques built to address this issue which we discuss

later in this section.

Let us start with likelihood ratios, which can be generally defined

for a set of n data observations D = {x0, . . . ,xn} between two simple

hypotheses H0 and H1 as:

Λ(D;H0,H1) =
p(D|H0)

p(D|H1)
=
∏
x∈D

p(x|H0)

p(x|H1)
, (26)

where the last expansion requires independence between observa-

tions, and where we note that the quantity p(x|H0)/p(x|H1) is a

density ratio and could be approximated as discussed before by train-

ing a probabilistic classifier to distinguish samples generated under

each hypothesis. From the Neyman–Pearson lemma [43], we know

the likelihood ratio is the most powerful test statistic to distinguish

the two simple hypotheses H0 and H1 at given significance level

α = P (Λ(D;H0,H1) ≤ tcut), for any threshold tcut.

Going back to problems where hypotheses have a mixture struc-

ture like the one discussed in Eq. (25) and differ in their mixture

composition, this would mean training a classifier using samples gen-

erated from p(x|μ,θ) for the specific mixture fractions μ0 and μ1
that characterize each of the hypothesis p(x|H0) = p(x|μ0,θ) and
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p(x|H1) = p(x|μ1,θ). This would rapidly become cumbersome if we

were dealing with multiple tests for a set of different μ0 and μ1 val-

ues. Luckily, each factor in the likelihood ratio from Eq. (26) can be

expressed in the following manner:

p(x|H0)

p(x|H1)
=

(1− μ0)pb(x|θ) + μ0ps(x|θ)
(1− μ1)pb(x|θ) + μ1ps(x|θ) (27)

=

(
1− μ1
1− μ0 +

μ1
1− μ0

ps(x|θ)
pb(x|θ)

)−1

+

(
1− μ1
μ0

(
ps(x|θ)
pb(x|θ)

)−1

+
μ1
μ0

)−1

(28)

so for a given pair μ0 and μ1 the density ratio between hypothe-

ses in the likelihood ratio is a bijective function of the ratio

ps(x|θ)/pb(x|θ). The latter quantity can be approximated by train-

ing a probabilistic classifier to distinguish signal and background sim-

ulated samples, which is computationally more efficient and easier to

interpret intuitively than the likelihood ratio itself.

A likelihood ratio approximation can thus be obtained in the case

of two simple two-component mixture hypotheses that only differ in

the mixture fractions by plugging the output of a probabilistic clas-

sifier c(x) trained to distinguish signal and background observations

in Eq. (28) with the corresponding values of μ0 and μ1 in Eq. (26).

Oftentimes, the calculation of the likelihood ratio is not necessary

because the classifier output directly contains all the relevant infor-

mation about the ratio approximation. Hence the classifier output

can be used directly as a summary for inference with the help of his-

tograms or non-parametric density estimation techniques, with the

added advantage that it is typically a [0, 1] bounded variable and thus

easy to interpret. It is worth mentioning that the relation between

the likelihood ratio and the density ratios of the pair of mixture com-

ponents can also be useful in the multi-component mixture setting.

In that case, the likelihood ratio factor can be expressed in terms of

the density ratios that can be obtained for each pairwise component

classification problems [17].
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Within this framework, the usefulness of probabilistic classifiers

that distinguish signal and background observations is that they can

be used to approximate the likelihood ratio, which is the most power-

ful summary statistic for two simple hypothesis that differ only on the

the mixture fraction parameters. If the hypotheses are not fully spec-

ified, i.e. they depend on additional parameters (the dependence with

the mixture fractions can be factored out as discussed before), the

likelihood ratio as defined in Eq. (26) also depends on these param-

eters. The Neyman–Pearson lemma does not hold when parameters

are varied nor for composite generalizations such as the profile likeli-

hood ratio. Hence, when nuisance parameters are important, a fixed

probabilistic classifier, even if optimal in the Bayes sense, is not guar-

anteed to provide a transformation that is optimal for inference in

any statistically meaningful way.

An alternative formulation of the limitations of classification for

statistical inference is based on the sufficiency conditions required for

summary statistics, according to the Fisher–Neyman factorization

criterion. A summary statistic for a set of i.i.d. observations D =

{x0, . . . ,xn} is sufficient with respect to a statistical model and a set

of parameters θ if and only if the generating probability distribution

function of the data p(x|θ) can be factorized as follows:

p(x|θ) = q(x)r(s(x)|θ), (29)

where q(x) is a non-negative function that does not depend on the

parameters and r(x) is also a non-negative function for which the

dependence on the parameters x is a function of the summary statis-

tic s(x). Such a sufficient statistic contains all the information in

the observed sample useful for computing any estimate on the model

parameters, and no complementary statistic of the observed data can

add information about θ.

A trivial sufficient summary statistic according to the previous

definition is the identity function s(x) = x, yet typically we are

only interested in summaries that reduce the original data dimen-

sionality. If p(x|θ) is not known in closed form, as is often the case

in HEP analyses, the general task of finding a sufficient summary

statistic that reduces the dimensionality cannot be tackled directly
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by analytic means. An exception to this can be easily shown in the

case of a mixture model where the mixture fraction μ is the only

parameter. By both dividing and multiplying by the mixture distri-

bution function from Eq. (25) we easily obtain:

p(x|μ,θ) = pb(x|θ)
(
1− μ+ μ

ps(x|θ)
pb(x|θ)

)
(30)

from which we can already prove that the density ratio ss/b(x) =

ps(x|θ)/pb(x|θ) (or alternatively its inverse) is a sufficient sum-

mary statistic for the mixture coefficient parameter, according to the

Fisher–Neyman factorization criterion from Eq. (29). This quantity

could be efficiently approximated by considering the problem of prob-

abilistic classification between signal and background as discussed in

Eq. (1). Because any bijective function of a sufficient summary statis-

tic is also a sufficient summary statistic, the conditional probability

from the conditional output of a balanced classifier

c(x) = ss/(s+b)(x) =
ps(x|θ)

ps(x|θ) + pb(x|θ) (31)

can be used directly as a summary instead of ss/b(x), with the addi-

tional advantage that it is bounded between zero and one, a fact that

greatly simplifies visualization and calibration.

From this perspective, the utility of signal vs. background classi-

fication to obtain an approximately sufficient summary statistic with

respect to the mixture model and mixture fraction μ is evident. How-

ever, if the statistical model depends on additional nuisance parame-

ters, even Bayes optimal probabilistic classification does not provide

any sufficient guarantees. Thus, even for the best possible classifier

that can be constructed, useful information which can be used to con-

strain the parameters of interest might be lost if a low-dimensional

classification-based summary statistic is used in place of the original

data x.

Above we have reviewed from a statistical perspective the limita-

tions of signal vs. background classification models when the goal is

inference in the presence of nuisance parameters. In practice, classi-

fiers can be trained for the most probable likely value of the nuisance



December 14, 2021 16:15 Artificial Intelligence for High Energy Physics 9in x 6in b4322-ch17 page 648

648 T. Dorigo & P. de Castro Manzano

parameters and their effect can be adequately accounted for during

calibration, yet the resulting inference will be degraded even if the

classification is optimal. Alternative uses of classification and regres-

sion models such as particle identification and momentum or energy

regression can be understood as approximations of a subset of rel-

evant latent variables z of the generative model. This information

could be then be used to complement the reconstruction output for

each object and design better hand-crafted or classification-based

summary statistics, so at the end the final goal is inference, and the

previously mentioned shortcomings still apply.

5.2. Generalizing the likelihood ratio trick

The first known attempts to study the relation between statistical

inference in HEP with nuisance parameters and probabilistic clas-

sifiers were made by Neal [12]. In his seminal paper, in addition

to making explicit the problem of not being able to compute the

data generating likelihood in closed form, as well as clarifying the

useful relation between likelihood ratios and probabilistic classifiers

discussed in the previous subsection, he also acknowledges the limi-

tations of this approach in the presence of nuisance parameters and

suggests a few possible candidate solutions.

To ameliorate the problems of losing useful information when

reducing the dimensionality of the data with summary statistics, a

few variations over classical signal vs. background classifiers trained

with the best estimation of the nuisance parameters are proposed.

The first proposal foresees the training of a single robust classifier by

combining simulated observations of signal and background gener-

ated with different values of nuisance parameters, for example drawn

from their prior or from a reasonable distribution, to constrain the

nuisance parameters π(θ).

The drawbacks of such marginal classifier are similar to the con-

cerns about models trained for the most likely values of the nuisance

parameters: it might not be possible to accurately classify without

knowing θ, and even when that is possible the usefulness of the result-

ing score will be degraded when calibrated statistical inference is
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carried out. To address these concerns, the author suggests a gen-

eralization based on training a single classifier considering both the

observations x and the nuisance parameters θ as input. The resulting

model would be a nuisance-parameterized signal vs. background clas-

sifier, thus an early precedent for some of the approaches discussed

in Sec. 2. In order to use these parameterized classifiers on real data,

for which the correct values of θ are not known, Neal argues that

an additional per-event regression model for θ could be trained on

simulated observations.

The ideas developed by Neal [12] were not applied in practice

until they were generalized and extended by Cranmer et al. [17]. The

authors of the latter work identify the same problem regarding the

use of discriminative classifiers to approximate likelihood ratios with

nuisance parameters, and introduce a generic framework for infer-

ence using calibrated parameterized classifiers referred to asCarl. In

their more general formulation, they propose using a doubly param-

eterized classifier to approximate the likelihood ratio for all possible

pairs of relevant parameters θ0 and θ1 of a generative model p(x|θ)
as follows:

r̂(x;θ0,θ1) ≈ p(x|θ0)
p(x|θ1) , (32)

where the classifier output r̂(x;θ0,θ1) has a specific dependence on

the parameter vectors θ0 and θ1 and the approximation becomes an

equality only for a Bayes optimal classifier for each combination. In

order to train such classifiers in a data-efficient manner, they suggest

using smooth models such as neural networks and a single learning

stage based on a large dataset where each observation correspond to

an instantiation of the parameters θ0 and θ1 drawn from a reasonable

prior distribution π(θ) and where x is drawn from the generative

model using those parameters.

Given a flexible enough model and enough training data, the pro-

cedure described above could be used to learn a good approximation

of the quantity in Eq. (32). For problems where the underlying struc-

ture is a mixture model, Cranmer et al. also point out that is pos-

sible to obtain the quantity r̂(x;θ0,θ1) based on the parameterized
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output for each pairwise component classification problem which are

simpler learning tasks. Because, in practice, the approximation can-

not be assumed to be exact, the authors of [17] also propose to have

a second stage where generative model samples are used again to

calibrate all the relevant values of the parameters as well as a set of

diagnostic procedures. They successfully apply this methodology to

a set of example problems and discuss its potential usefulness in the

context of HEP analysis.

It is worth noting that the component of the vector parameters in

θ in Carl could include both nuisance parameters and parameters

of interests in the same manner. The nuisance parameters could also

be incorporated in the calibration and profiled or marginalized at

the inference stage. Once we have a well-calibrated approximation

of the likelihood ratio, we can directly use it to construct arbitrary

test statistics and confidence intervals for statistical inference. Hence,

with the caveats associated with a more involved training proce-

dure and parametric calibration procedure, this technique presents

the first principled and general solution for dealing with parame-

ters when using machine learning techniques in the context of HEP

inference.

5.3. Learning more efficiently from the simulator

As mentioned earlier, one of the caveats of the general applicability

of Carl is that the training and probabilistic calibrationh procedure

may potentially require a large amount of simulated data to approx-

imate accurately the likelihood ratio r(x;θ0,θ1) for all relevant θ0
and θ1 when the dimension of θ is large. This practical limitation

motivated Brehmer and the original authors of Carl to develop a

family of methods [44–46] to estimate the likelihood ratio and other

useful quantities for inference in a more data-efficient manner, by

augmenting training data with information from the simulator. The

hThrough this section by calibration we refer to the use of an independent set
of simulated data to transform the resulting estimator to ensure its expected
statistical properties. We refer to the calibration section of [44] for two different
approaches to obtain this type of transformations.
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source of the information from the simulations comes from the prop-

erties and structure of the data generating process:

p(x|θ) =
∫
p(x,z|θ)dz (33)

which are characterized by the the joint distribution function

p(x,z|θ)dz where z are all the latent variables of each observation.

In high-energy physics event generation, the joint probability dis-

tribution can be factorized in a series of conditional distributions

matching the various simulation steps and their dependencies:

p(x,z|θ) = p(x|zd)p(zd|zs)p(zs|zp)
K−1∑
j=0

p(zi = j|θth)p(zp|θth, zi = j),

(34)

where p(zi = j|θ) is the probability of a given type of process j

occurring, p(zp|θ, zi = j) is the conditional probability density of a

given set of parton-level four-momenta particles for a given process,

p(zs|zp) is the conditional density of a given parton-shower outcome,

p(zd|zs) is the conditional density of a set of detector interactions

and readout noise, and p(x|zd) is the conditional density of a given

detector readout. Note that all the factors could depend on additional

nuisance parameters; here only the theoretical parameters θth are

made explicit for notational simplicity because they are normally the

parameters of interest. Also note that the last factor gives rise to the

mixture structure mentioned in the last subsection. While p(x|θ) and
ratios of that quantity are typically intractable, the authors suitably

remark that the joint likelihood ratio

r(x,z|θ0,θ1) = p(x,z|θ0)
p(x,z|θ1) (35)

and the joint score

t(x,z|θ0) = ∇θ log p(x,z|θ)|θ0 (36)

can often be obtained exactly for a given simulated observation due

to its factorized structure. They propose two regression losses Lr and

Lb for each of the previous quantities, which may be used to obtain
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an approximation of the likelihood ratio r(x|θ0,θ1) and the score

t(x|θ0) by empirical risk minimization with various machine learn-

ing models such as neural networks. Based on these loss functions,

Brehmer et al. develop a family of new methods as well as extensions

of Carl to more efficiently approximate the parameterized likelihood

ratio r(x|θ0,θ1) and demonstrate their effectiveness in a few exam-

ple problems. Another practical innovation developed by the authors,

applicable to all the new parameterized likelihood ratio estimators

and also to Carl, is that the parameters of the reference hypoth-

esis in θ1 in Eq. (32) can be kept fixed at an arbitrary value, thus

simplifying the learning task significantly. Building upon this work,

Stoye and the previous authors [47] also developed two new methods

that can incorporate the joint likelihood ratio and the joint score to

a loss function based on the cross entropy, which reduces the vari-

ance during the learning tasks further improving sample efficiency

for obtaining accurate likelihood ratio approximations.

In addition to the efficient techniques for parameterized likelihood

ratio estimation discussed above, Brehmer et al. [44–46] also propose

a new class of methods referred to as Sally using the regressed score

approximation t̂(x|θref) at a single reference parameter point θref to

construct a summary statistic. The score t(x|θref), whose dimension-

ality is the same as that of the parameter vector θ, is a sufficient

statistic in the neighborhood of θref, so it is a very useful transforma-

tion. Because the dimensionality might still be high in problems with

a large number of parameters, they propose to use a one-dimensional

projection (i.e. Sallino) in the direction of parameter variation as

alternative lower-dimensional statistic. In the same work, the authors

also experiment with augmenting conditional neural density estima-

tors, such as density networks or normalizing flows, with a joint score

regression loss function. A calibrated estimation of the likelihood

p̂(x|θ) can be used as a basis for any statistical inference task but

its accurate approximation is challenging with a finite data sample,

yet many recent advances coming from the field of machine learning

in density estimation could eventually make this approach viable.

Similarly to Carl, all these improved techniques for the estima-

tion of likelihood ratios, likelihood scores or the conditional likelihood
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itself make no distinction between the statistical parameters in the

model. Hence, nuisance parameters can be incorporated in the vec-

tor of parameters θ, accounted for like any another parameter in

the calibration, and profiled or marginalized at the inference stage.

The challenge for their direct application in HEP, particularly for the

methods that use augmented data from the simulator, is to approx-

imate or model the effect of all relevant nuisance parameters in the

joint likelihood ratio and score. In a recent publication, Brehmer

et al. [48] presented a software library to simplify the application of

these techniques to LHC measurements and included the effect of nui-

sance parameters from scale and parton distribution function choices

by varying the weights associated to each simulated observations.

5.4. Inference-aware summary statistics

With the exception of Sally (and Sallino for a fixed projection),

the techniques previously discussed are directly based on calibrated

likelihood ratios or likelihood approximations, so they are at their

core a different form of inference from what is typically done in HEP:

they are designed to tackle the inference problem directly, rather than

to construct summary statistics. Such a strong paradigm change can

be very advantageous but also poses some challenges for its adoption.

In recent years, another complementary family of inference-aware

techniques has been proposed, whose objective is the construction of

machine learning-based summary statistics that are better aligned

with the statistical inference goal of HEP analysis, including nuisance

parameters. Once constructed, these summary statistics can be used

in place of simplified physical summaries or signal vs background

classification outputs.

A generic technique in this category, which has direct applicability

to HEP analyses, is inferno [49]. In that work, authors demonstrate

how nonlinear summary statistics can be constructed by minimiz-

ing inference-motivated losses via stochastic gradient descent spe-

cific for the analysis goal. For example, for an analysis focusing on

the measuring of a physical quantity such as a cross-section, the

proposed approach can be used to minimize directly, as a loss, an
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Fig. 5. Learning inference-aware summary statistics. Figure by the authors of
inferno [49] and licensed under CC BY 4.0.

approximation of the expected uncertainty on the parameter of inter-

est, fully accounting for the effect of relevant nuisance parameters.

In inferno and other similar approaches discussed later, the

parameters of a neural network are optimized by stochastic gradi-

ent descent within an automatic differentiation framework, where

the considered loss function accounts for the details of the statis-

tical model as well as the expected effect of nuisance parameters.

A graphical depiction of this technique is provided in Fig. 5. The

left-most block in the graph refers to sampling a differentiable sim-

ulator or approximating the effect of the parameters θ over exist-

ing simulated observations, including relevant nuisance parameters.

These observations go through a neural network that depends on a

set of parameters φ (second block from the left) and produces as

output a histogram-like summary statistics (third block from the

left). Still within the automatic differentiation framework, a syn-

thetic likelihood (e.g., a product of Poisson counts for a histogram-

like summary statistic) is constructed. A final inference-aware loss,

for example an approximation of the expected uncertainty for the

parameters of interest accounting for nuisance parameters, can then

be constructed based on the inverse Hessian matrix and used to opti-

mize the neural network parameters.

Note that the approximations used to make a differentiable loss

(e.g. continuous relaxation of a histogram) do not affect the rigor of
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the resulting statistical inference. Once the summary statistic trans-

formation has been learned with the procedure described above, it

can be used, e.g. using an argmax operator instead of a softmax

to compute the summary statistic if the approximation of Fig. 5 is

used, to carry out statistical inference with the with usual procedures

and tools as would be done for any other histogram-based summary

statistic. The main challenge of using this approach in HEP analy-

ses is that the effect of nuisance parameters has to be included in

the auto-differentiation framework, for example by transforming the

input features (e.g. momenta and energy calibration uncertainties),

by interpolating simulated observation weights (e.g. theoretical and

parton distribution function uncertainties) or by considering the

interpolation between histogram counts as a last resource. If those

challenges can be overcome (even just for part of the nuisance param-

eters), this method provides an alternative to perform dimensionality

reduction using directly an approximation of the inference objec-

tive of a given analysis, in contrast with a transformation based

on probabilistic classification or a physics-motivated feature. The

authors demonstrate the effectiveness of this technique in a multi-

dimensional synthetic example with up to three nuisance parameters,

where the inference-aware summary statistics outperform even opti-

mal classification-based summaries.

A technique with a similar reach, but that was developed instead

for tackling likelihood-free inference problems in astrophysical obser-

vations, was presented by Charnock et al. [50]. In their work, the

authors propose information-maximizing neural networks (imnn),

a machine learning technique to find nonlinear functionals of the

data that maximize the Fisher information. The Fisher informa-

tion during training is computed from the Fisher matrix determi-

nant, that it is itself calculated from the derivatives of the outputs

of the network with respect to the parameters of inference at fidu-

cial values by numerical differentiation or directly from the adjoint

gradient of a large number of simulations. The authors additionally

propose the inclusion of the determinant of the covariance matrix of

the neural network outputs in the loss to control the magnitude of

the summaries. While they do not consider the problem of nuisance
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parameters specifically, their approach will by design find transforma-

tions that are minimally affected by nuisance parameters while being

maximally sensitive to the parameters. On a related note, Alsing

et al. [51] develop a useful transformation that can be applied to

implicitly marginalize the summary statistics resulting from imnn or

score t(x|θ) = ∇θ log p(x|θ) approximations (e.g. Sally from the

previous subsection).

More recently, there has also been some recent work building

upon the ideas behind inferno that attempt to simplify its appli-

cation to high-energy physics analysis or extend its functionality.

For example, Wunsch et al. [52] suggest using a differentiable trans-

formation of a neural network with a single node to construct a

Poisson count likelihood instead of a softmax as the basis for the

inference-aware loss. Similarly to what was observed for inferno,

the authors demonstrate the usefulness of an inference-aware con-

struction in a synthetic example, and also using an extension of

the Higgs ML benchmark including nuisance parameters. Following

a different path, the authors of neos [53] use a technique referred

to as fixed-point differentiation to compute gradients of the profile

likelihood, thus avoiding the Hessian inverse approximation, and to

directly minimize the expected upper limits CLs. Both Wunsch et al.

and the authors of neos restrict the modeling of the effect of nuisance

parameters to histogram interpolation.

In addition to the mentioned approaches, it is worth noting other

alternatives with a more limited range of applicability but that could

be useful for certain use cases. Elwood et al. [54] propose using the

expected significance approximation formula for a single bin count

experiment, optionally including the effect of a single source of sys-

tematic uncertainty directly as a loss of a neural network. For a dif-

ferent type of model, Xia [55] develops a variation of boosted decision

tree training referred to as qbdt which targets directly the statis-

tical significance, and which can also include the effect of nuisance

parameters in its approximation. In both cases, authors demonstrate

with practical examples that the significance optimizing algorithms

outperform their classification counterparts.
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6. Outlook

The reduction of the effect of systematic uncertainties in parameter

estimation is a crucial problem in particle physics. In the past, the

problem was attacked by striving for redundancy of the measurement

apparata, robustness of the detection techniques, and the use of anal-

ysis methods aiming for inter-calibration, cross-validation, and lever-

aging as much as possible control datasets and measurements. In the

machine learning era, automated methods have become available that

may significantly further reduce the impact that imprecise knowl-

edge of latent features of the data have on physics measurements.

While already a significant arsenal of techniques has been amassed,

no catch-all procedure has emerged yet, so insight is still required

to discern the salient features of the problem to be solved and the

appropriate method to deploy. The most promising avenues for a gen-

eral procedure of handling nuisance parameters are those described

in Sec. 5, where the optimization objectives are more directly linked

to the inference goal.
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In recent times, neural networks have become a powerful tool for the
analysis of complex and abstract data models. However, their introduc-
tion intrinsically increases our uncertainty about which features of the
analysis are model-related and which are due to the neural network.
This means that predictions by neural networks have biases which can-
not be trivially distinguished from being due to the true nature of the
creation and observation of data or not. In order to attempt to address
such issues we discuss Bayesian neural networks: neural networks where
the uncertainty due to the network can be characterized. In particular,
we outline the Bayesian statistical framework which allows us to cat-
egorize uncertainty in terms of the ingrained randomness of observing
certain data and the uncertainty from our lack of knowledge about how
processes that are observed can occur. In presenting such techniques, we
show how uncertainties which arise in the predictions made by neural
networks can be characterized in principle. We provide descriptions of
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the two favored methods for analyzing such uncertainties. We will also
describe how both of these methods have substantial pitfalls when put
into practice, highlighting the need for other statistical techniques to
truly be able to do inference when using neural networks.

1. Introduction

In recent times, we have seen the power and ability that neural net-

works and deep learning methods can provide for fitting abstractly

complex data models. However, any prediction from a neural net-

work is necessarily and unknowably biased due to factors such as:

choices in network architecture; methods for fitting networks; cuts in

sets of training data; uncertainty in the distribution of realistic data;

and lack of knowledge about the physical processes which generate

such data. In this chapter, we elucidate ways in which one can learn

how to separate, as much as possible, the sources of error which are

due to intrinsic distribution of observed data and those that we have

introduced by modeling this distribution both with physical models

and by considering neural networks as statistical models.

1.1. The need for statistical modeling

Imagine that we walk into a room and there are ten, six-sided dice

whose result we observe. The dice are then taken away and we

are left to wonder how likely is it that we observed that particu-

lar roll. Because the dice have been taken away we cannot perform

any repeated experiments to make simple estimates of the probabil-

ity of what we assume is a random process based on counts. Instead,

we can build a model describing the dice roll and infer the values of

the parameters of this model based on how much evidence can be

obtained from the observation. We could assume that all the dice

were equally weighted and there were no external factors to affect

the roll and therefore suggest that the result of the dice roll follow

a multinomial distribution with equal probability for each of the six

possible results from each of the ten dice. However, what if we had

observed nine dice showing one and the other die showing six? It

would be very unlikely to observe such an event within this model,

in fact we can calculate the probability of this result in this model
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to be 0.000017%. We could instead decide that each dice is weighted

so that there is a 90% chance that they will land on one and a 10%

chance that they will land on six, in which case the probability of

observing this event is much higher at ∼38%. Or, we could decide

that nine of the dice are weighted so that there is a 100% chance that

they will land on one and the tenth die has a 100% chance that it

will land on six, and in which case the observed event is certain. The

problem is that we do not know about the state of the dice or the

processes by which different results can be obtained. Therefore, we

do not know the values of the parameters in the multinomial model

that we use to describe how likely any result is and so there is a

source of uncertainty in any prediction we make.

1.2. Aleatoric and epistemic uncertainty

Uncertainty can be categorized into two classes: aleatoric and epis-

temic. These two uncertainties explain, respectively, scatter from

what we cannot know and error due to lack of knowledge. For exam-

ple, we do not know how likely it is to have observed nine ones and

one six on ten six-sided dice when we do not have access to those

dice. This is an intrinsic uncertainty due to the random nature of

the way the observed event happens and the way we make observa-

tions. As such, we call this uncertainty aleatoric since it cannot be

reduced through greater understanding. On the other hand, when

we are trying to understand a particular set of observations there

are things we do not know but could, in principle, learn about: what

are the properties of a physical processes which are necessary to cre-

ate such data? what types of distribution could describe how likely

were we to see such an observation? and how certain are we that

such a model is supported by our data? For the dice roll example,

we do not know if the dice are weighted, or if weighted dice would

better fit the observed result, or if there is something that we are not

considering, like whether the dice were placed in a particular way

rather than thrown and being the result of a random process. By

addressing the above questions, we can narrow down on the possible

ways to describe the observation and learn about the state of how

the observation came to be through the use of the available data.
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For example, knowledge about the result observed on the rolled dice

can allow us to narrow down the possible values of the probabilities

in the multinomial model that could produce such an observation,

therefore reducing our uncertainty. We call this reducible uncertainty

epistemic.

Whilst a simple example, such as the rolling of dice, seems triv-

ial, it describes any way of learning about our surroundings using

the available data. Every experiment performed exists in a single

universe that has undergone epochs of evolution and its constituent

particles and forces have interacted to provide us with what we can

observe. There is therefore aleatoric uncertainty due to the fact that

we can only observe this one realization of our universe, and we can-

not observe other universes to increase our knowledge about how

likely our universe is to be the way it is. We can, though, make

models which describe the constituents of the universe, the way they

interact and the evolution to get what we see today. Although we do

not know how likely the observed data is, we can reduce our uncer-

tainty about the possible models, and its parameters values, which

are supported by the data. In fact, even repetitions within a sin-

gle experiment are taking place at different locations and times in

the same single universe — therefore, it is only an assumption of

the model for analyzing the repeated experiment that any observa-

tions are independent results and is not intrinsic to the data that we

observe.

The use of a neural network for the analysis of data modifies

our data model to include any effects that are introduced by the

network. There is, therefore, intrinsic (aleatoric) uncertainty due to

the stochastic nature of the data, and epistemic uncertainty now due

to both the lack of knowledge about process generating the data

as well as the design of the neural network, the way it is trained,

the choice of cost function, etc. Neural networks should therefore

be seen as an extended, extra-parameterized physical model for the

data, whose parameters can be inferred through the support of data.

This means, to be able to use networks to make scientifically relevant

predictions, the epistemic uncertainty must be well understood and

properly characterized.
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For the most part, estimates of how well a neural network gener-

alizes are obtained using large sets of validation and testing data. It

is then common to suggest a neural network “works” when there is

a strong, but handwavy, relative agreement. However, these neural

networks do not address the probability that any prediction coincides

with the truth. There is no separation between aleatoric and epis-

temic uncertainty and no knowledge of how likely (or well) a new

example of data is to provide a realistic prediction. It is possible,

though, to quantify this epistemic error caused by our lack of knowl-

edge about the properties of a neural network, and characterizing this

uncertainty can allow us to perform reasoned inference. In this chap-

ter, we will lay down the formalism for Bayesian neural networks:

treating neural networks as statistical models whose parameters are

attributed probabilities as a degree of belief which can be logically

updated under the support from data. In such a form, neural net-

works can be used to make statements of inference about how likely

we are to believe the outputs of neural networks, reducing the lack

of trust that is inherent in the standard deep learning setup. We

will also show some ways of practically implementing this Bayesian

formalism with examples from astronomy and cosmology.

2. Bayesian Neural Networks

In this section, we will show how one can use a Bayesian statistical

framework to assess both aleatoric and epistemic uncertainty in a

model which includes neural networks, and describe how epistemic

uncertainty can be reduced under the evidence of supporting data

using Bayesian inference.

2.1. Bayesian statistics

When speaking of uncertainty, we are really describing our lack of

knowledge about the truth. This uncertainty is subjective, in that

it is not an inherent property of a problem but rather the way we

construct the problem. If we are uncertain about the results of a par-

ticular experiment, we do not know exactly what the result of that



December 14, 2021 16:15 Artificial Intelligence for High Energy Physics 9in x 6in b4322-ch18 page 668

668 T. Charnock, L. Perreault-Levasseur & F. Lanusse

experiment will be. The Bayesian (or subjective) statistical frame-

work is a scientific viewpoint in which we admit that we do not (and

are not able to) know the truth about any particular hypothesis. Our

uncertainty, or our degree of belief in the truth, is attributed prob-

abilities, i.e. hypotheses we believe more strongly are described as

being more likely. Of course, in this construction, probabilities can

vary from person to person, since different beliefs can be held by dif-

ferent people. Without any prior knowledge, we are free to believe

what we will. However, by using Bayesian inference, we are able to

reduce epistemic uncertainty and update our a priori knowledge by

obtaining evidence, a posteriori. It is important to realize that, whilst

our a priori beliefs describe the epistemic uncertainty, this quantifi-

cation can be artificially small without the support of observations.

If our beliefs are not supported by the evidence, then the a posteriori

probability describing the state of our belief after obtaining evidence

will become more uncertain, which is a better characterization of the

state of our knowledge. Under repeated application of new evidence,

we can update our beliefs to hone in on the best supported result.

2.1.1. Statistical models

A Bayesian statistical framework is a natural setting to build models

with which we can infer the most likely distributions and under-

lying processes that generate some observable events. Observations

can be thought of as existing in measurable space of possible events,

(S, E,P). The first element is the sampling space, S, which describes

the set of all possible outcomes for a given problem.a Each outcome is

a random variable, d∈ S, whose value is a single measured observa-

tion or result. An event, D⊂ S, is defined as a subset of all possible

outcomes. The set of all events that can possibly occur is E. Refer-

ring back to Sec. 1.1, we can think of the sampling space, S, as the

set of any possible roll of a six-side dice and the value of any roll

as an outcome denoted by the value of d ∈ S. An event, D, could

then be a collection of different outcomes, such as the nine ones and

aFor a more in depth discussion of the measure theoretic definition of probability,
see works such as [1] or other graduate level texts.
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one six observed on the ten dice described in Sec. 1.1. A statistical

description of data also has a measure on the space of possible events,

P : D∈ E �→ P(D) ∈ [0, 1], which is a function that assigns a value

between 0 and 1 to every event, D ∈ E, describing how likely it is for

such an event to occur. This probability indicates that an event, D,

is impossible when P(D) = 0 and is certain when P(D) = 1. The

measure, P, of this measurable space is additive, so that it is certain

that any possible event can occur, P(E) = 1.

While we can observe some subset of all possible outcomes from

this probability space we do not necessarily know which particu-

lar outcomes we will observe from the random processes generating

any D. That is, given the value of some observed event D, sam-

pled from E with a probability P, i.e. from the measurable space

(S, E,P), we would not know which event would occur from the

distribution, P. Even if we knew exactly about the dice, how they

were weighted, how hard they were thrown, etc. we would still not

know exactly which result we would observe if the process had some

random aspect. The uncertainty due to the statistical nature of the

data generation cannot be reduced or learned about and is therefore

aleatoric uncertainty.

It is the endeavor of science to find models which allow us to

describe the things we observe and therefore be able to make pre-

dictions using these models. In practice, we cannot know the form

of P and as such we attempt to model the probability measure

using a statistical model (Sα, Eα,p). In a Bayesian context, Sα is

another sampling space of possible parameterized distributions with

an outcome, α ∈ Sα, representing all properties of a particular dis-

tribution, i.e. functional form, shape, as well as the possible values

of some unobservable random variables, ω ∈ Ωα, which generate

d ∈ S, etc. Any possible set of α ∈ Sα is an event in the space

of possible distributions, a ∈ Eα, which can model (S, E,P). Effec-

tively, any a ∈ Eα defines a model ((S,Ωa), (E, Eω),pa) of (S, E,P).

That is, any a ∈ Eα introduces a sampling space of unobservable

random variables, Ωa, whose values, ω ∈ Ωa, can generate out-

comes, d ∈ S. Eω then defines the set of all possible unobservable

random variables, w ⊂ Ωα, which can generate events, D ∈ E.
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Considering the dice rolling problem, a ∈ Eα could be the use of

a multinomial to model the probability of the distribution of pos-

sible results, D, from throwing 10 dice. In this case, one choice

of a could be that, say, there are six model parameters per die,

w ∈ Eω, which ascribe the probability that each side of each die

would land face up. Any a ∈ Eα also defines a probability measure,

pa : (D,w) ∈ (E, Eω) �→ pa(D,w) ∈ [0, 1], describing how likely

any observable-event-and-unobservable-parameter pairs are, i.e. how

likely any value of the parameters, w, is to give rise to some obser-

vation, D, is described by the value of the joint distribution of

observables and parameters, pa(D,w). The possible parameterized

statistical model characterizes what physical processes generate an

observable outcome, our assumption about the possible values of the

parameters of those physical processes, and how likely we are to

obtain any set of outcomes and physical parameters.

We assign a probabilistic degree of assumption about the possible

models from our prior knowledge, p : a ∈ Eα �→ p(a) ∈ [0, 1], that

any set of possible distributions, a ∈ Eα, encapsulates the underly-

ing probability measure, P, describing the probability of events, D,

occurring. For example, we might believe, thanks to our prior knowl-

edge of the problem, that a model, a∗ ∈ Eα, describing the probabil-

ity of outcomes of dice roll as a multinomial distribution with equal

parameter values is more likely to be correct than another model,

a† ∈ Eα, which uses, say, a Dirichlet distribution. In this case, we

would ascribe the probability of a∗ as being more likely than a†,
i.e. p(a∗) > p(a†). The lack of knowledge about the possible val-

ues of a is the source of epistemic uncertainty. Whilst we will never

know the exact distribution of data from (S, E,P), we can increase

our knowledge about how to model it with a ∈ Eα under the evi-

dence of observed events, D ∈ E, thereby reducing the epistemic

uncertainty.

Since the unobservable parameters, w ∈ Eω, generate possible

sets of observable outcomes, D ∈ E, we can write down how likely

we are to observe some event, D, given that the unobservable param-

eters, w, have a particular value,

pa(D,w) = L(D|w)pa(w). (1)
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We call L : (D,w) ∈ (E, Eω) �→ L(D|w) ∈ [0, 1] the likelihood of

some values of observables D, given the values of parameters, w,

and pa : w ∈ Eω �→ (w) ∈ [0, 1] is the a priori (or prior) distribu-

tion of parameters describing what we assume the values of w to be

based on our current knowledge. Therefore, some (but not all) of the

epistemic uncertainty is encapsulated by pa. The prior distribution,

pa, does not, however, describe the form of the parameterized joint

distribution, pa, modeling, (S, E,P), and so we must also consider

how likely is it that we assume our choice of possible distributions,

p(a), to properly characterize the epistemic uncertainty.

2.1.2. Bayesian inference

By observing events, D ∈ E, we can update our assumptions about

the values of any set of unobservable random variables, w ∈ Eω, and

distributions, a ∈ Eα, correctly modeling the probabilistic space,

(S, E,p), for some problem. This is how we can reduce our epistemic

uncertainty. The probability describing our choice of assumptions in

the possible values of w and a obtained after we have observed

an event, D, is called the a posteriori (or posterior) distribution,

ρ : (D,w) ∈ (E, Eω) �→ ρ(w|D) ∈ [0, 1] and can be derived by

expanding the joint distribution

pa(D,w)p(a) = L(D|w)pa(w)p(a)

= ρ(w|D)e(D)p(a), (2)

and equating both sides to get Bayes’ theorem

ρ(w|D) =
L(D|w)pa(w)

e(D)
. (3)

This equation tells us that, given a particular parameterized model,

a, the probability that some parameters, w, have a particular value

when some event, D, is observed is proportional to the likelihood

of the observation of such an event given a particular value of

the parameters, w, generating the event. The probability of those

parameter values is described by our belief in their value, pa(w).

The evidence, e : D ∈ E �→ e(D) ∈ [0, 1], that the parameterized
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distribution accurately describes the distribution of some event is

e(D) =

∫
Eω

dwL(D|w)pa(w). (4)

If the probability of D is small when the likelihood is integrated over

all possible sets of parameter values, w ∈ Eω, both of which are

defined by a, then there is little support for that choice of a value of

a ∈ Eα. This would suggest that we need to update our assumptions

about the parameterized distribution, p(a), being able to represent

the true model, (S, E,P).

Maximum likelihood estimation: In classical statistics, the

unobserved random variables, w ∈ Eω, are considered to be fixed

parameters of a particular statistical model, a ∈ Eα. The parame-

ters which best describes some event, D, can be found maximizing

the likelihood function

ŵ = argmax
w∈Eω

L(D|w). (5)

Although this point in parameter space maximizes the likelihood

and can be found fairly easily by various optimization schemes, it is

completely ignorant about the shape of the distribution, L(D|w).

Moreover, we do not even consider quantifying how likely we think

any particular value of w (and a) are. This means that the pos-

sible parameters values are degenerated to one point and absolute

certainty is ascribed to a choice of model and its parameters. Fur-

thermore, for skewed distributions, the mode of the likelihood can

be far away from the expectation value (or mean) of the distribu-

tion and therefore the maximum likelihood estimate might not even

be representative. Any epistemic uncertainty in the model is ignored

since we do not consider our degree of belief in the model parameters,

w, once they are fixed at the maximum of the likelihood, nor do we

quantify how confident we are about the particular statistical model

a considered.

Maximum a posteriori estimation: The simplest form of

Bayesian inference is finding the maximum a posteriori (MAP)

estimate, i.e. the mode of the posterior distribution for a given
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model, a, as

ŵ = argmax
w∈Ea

ρ(w|D)

= argmax
w∈Ea

L(D|w)pa(w). (6)

Note that, when we think that any values of the model parameters

are equally likely, i.e. the prior distribution, pa(w), is uniform, then

L(D|w) ∝ ρ(w|D) and MAP estimation is equivalent to maximum

likelihood estimation. So, whilst MAP estimation is Bayesian due to

the addition of our belief in possible parameter values, pa(w), this

form of inference suffers in exactly the same way that maximum like-

lihood estimation does: the mode of the posterior might also be far

from the expectation value and not be representative, and all infor-

mation about the epistemic uncertainty is underestimated because

knowledge about the distribution of parameters is ignored.

Bayesian posterior inference: To effectively characterize the

epistemic uncertainty, not only should we consider Bayes’ theorem

(3), one should work with the marginal distribution over the prior

probability of parameterized models

e(D) =

∫
Eα

dae(D)p(a),

=

∫
Eα

∫
Eω

dadwL(D|w)pa(w)p(a). (7)

Practically, the space of possible models, Eα, can be infinitely large,

although our belief in possible models, p(a), does not have to be.

Still, the integration over all possible models often makes the calcu-

lation of e(D) effectively intractable. In practice, we tend to choose

a particular model and, in the best case (where we have lots of time

and computational power) use empirical Bayes to calculate the mode

of the possible marginal distributions

â= argmax
a∈Eα

e(D)p(a),

= argmax
a∈Eα

∫
Eω

dwpa(D|w)pa(w)p(a). (8)
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As with the MAP estimate of the parameters, â describes the most

likely believed model that supports an event, D. However, again as

with the MAP estimate of the parameters, a model, a = â, might

have artificially small epistemic uncertainty due to discarding the rest

of the knowledge of the distribution. To be able to correctly estimate

this epistemic uncertainty, one must update, logically, the probability

of any possible models and parameters based on the acquisition of

knowledge.

2.2. Neural networks formulated

as statistical models

We can consider neural networks as part of a statistical model. In this

case, we usually think of an observable outcome as a pair of input

and target random variable pairs,b d= (x, y) ∈ S. An event is then

a subset of pairs D= (x, y) ∈ E with probability P(x, y). We can

then use a neural network as a parameterized, nonlinear function

r = fw,a(x) (9)

where r are considered the parameters of a distribution which models

the likelihood of targets given inputs, �(y|x,w) = L(x, y|w)/e(x).

The form of the function, i.e. the architecture, the number, value

and distribution of network parameters w ∈ Eω, initialization of

the network, etc. is described by some hyperparameters, a ∈ Eα.

The prescription for this likelihood, �(y|x,w), can range from being

defined as �(y|x,w) ∝ exp[−Λ(y, r)], where Λ(y, r) is an unreg-

ularized loss function measuring the similarity of the output of a

neural network, r, to some target,c y, to parametric distributions

such as a mixture of distributions or neural density estimators.

bAlthough we discuss pairs x and y suggesting inputs and targets, note that this
notation is generic. For example, for auto-encoders, we would consider the target
to be equivalent to the input, and for generative networks we would consider the
input to be some latent variables with which to generate some targets, etc.
cFor example, a classical mean squared loss corresponds to modeling the negative
logarithm of the likelihood as a simple standard unit variance diagonal (multi-
variate) Gaussian with a mean at the neural network output, r.
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When considering a neural network as an abstract function, it can

be possible to obtain virtually any value of r for a given input x at

any values of the network parameters, w, since the network parame-

ters are often unidentifiable [2] and the functional form of the possible

values of r is very likely infinite in extent and no statement about

convexity can be made. The reason why we use neural networks is

because we can carve out parts of useful parameter space which pro-

vide the function which describes how to best fit some known data,

(x, y), using the likelihood, �(y|x,w), as defined by the data itself.

We normally describe this set of known data which ascribes accept-

able regions of parameter space where the likelihood makes sense as a

training set, (x, y)train ∈ E. However, evaluating the neural network

to get r = fw,a(x) and assuming that the output, r, has sensible

values to correctly define the form of the likelihood of the sampling

distribution of targets will often be misleading.d This statement is

true for any value of the network parameters, w ∈ Eω, since most

values of w do not correspond to neural networks which perform the

desired function.

Having described neural networks as statistical models we can,

further, place them in a Bayesian context by associating a proba-

bilistic quantification of our assumptions, pa(w), to the values of

the network parameters, w ∈ Eω, for a network a ∈ Eα, which

we believe to be able to represent the true distribution of observed

events, P(x, y), with probability p(a). p(a) (and the associated

pa(w)) represent the epistemic uncertainty due to the neural net-

work, whilst the aleatoric uncertainty arises due to the fact that it

is not known exactly which (x, y) would arise from the statistical

model (S, E,P). We can use Bayesian statistics to update our beliefs

and obtain posterior predictive estimates of targets, y, based on this

dA sensible likelihood for network targets can be created by making the parame-
ters of the network identifiable. One such method is to use neural physical engines
[3], where neural networks are designed using physical motivation for the param-
eters. However, there is a trade-off with this identifiability which comes at the
expense of fitting far less complex functions than are usually considered when
using neural networks, but far less data and energy is needed to train such models.
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information via the posterior predictive distribution

p(y|x) =
∫
Eα

∫
Eω

dadw �(y|x,w)pa(w)p(a). (10)

By integrating over all possible parameters for all possible network

choices, we obtain a distribution describing how probable different

values of y are, from our model, which incorporates our lack of

knowledge.

The region where we assume that the parameters allow

the network to perform its intended purpose is described by,

ρ (w|(x, y)train). This is our first step in the Bayesian inference.

Bayes’ theorem tells us

ρ (w|(x, y)train) = � (ytrain|xtrain,w) pa(w)

e((x, y)train)
, (11)

so that updating our knowledge of the parameters given the presence

of a training set allows us to better characterize the probability of

obtaining y from x with a particular neural network

p (y|x, (x, y)train) =
∫
Eα

∫
Eω

dadw �(y|x,w)

× ρ (w|(x, y)train)p(a). (12)

To encapsulate the uncertainty in the network, we need to calcu-

late the posterior distribution of network parameters, w, as in (11),

which we can then use to calculate the distribution of possible y as

described by the predicted r from the network, as in (12). Attention

must be paid to the initial choice of pa(w) which still occurs in (11).e

eHistorically the choice of prior on the weights has normally been chosen to make
the gradients of the likelihood manageable, but this may not be the best justified.
Such a choice in prior could be made more meaningful by designing a model
where parameters having meaning (see footnote d). Another way to solve this
problem is not to consider Bayesian neural networks, but instead transfer the
prior distribution of network parameters to the prior distribution of data, P(x, y)
[4]. Note that, in any case, the prior distribution of data should be considered for
a fully Bayesian analysis.
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This description of Bayesian neural networks, therefore, refers

solely to networks which are part of a Bayesian model,f i.e. networks

where the epistemic uncertainty in the network parameters are char-

acterized by probability distributions, ρ(w|x, y), and thus we are

interested in the inference of w. There are several approaches which

are effective for characterizing distributions, but each of them have

their pros and cons. In Sec. 3, we present some numerically approxi-

mate schemes using the exact distributions and some exact schemes

using approximate distributions, these fall under the realms of Monte

Carlo methods and variational inference.

2.2.1. Limitations of the Bayesian neural network

formulation

The goal of a Bayesian neural network is to capture epistemic uncer-

tainties. In the absence of any data, the behavior of the model is only

controlled by the prior, and should produce large epistemic uncer-

tainties (high variance of the model outputs) for any given input.

We then expect that as we update the posterior of network parame-

ters with training data, the epistemic uncertainties should decrease

in the vicinity of these training points, as the model is now at least

somewhat constrained, but the variance should remain large for Out-

Of-Distribution (OOD) regions far from the training set. This is the

behaviour that one would expect, however, we want to highlight that

nothing in the BNN derivation presented in this section necessarily

implies this behaviour in practice.

As in any Bayesian model, the behavior of a Bayesian neural net-

work when data is not constraining is tightly coupled to the choice

of prior. However the priors typically used in BNNs are chosen based

on practicality and empirical observation rather than principled con-

siderations on the functional space spanned by the neural network.

fThere is a common misuse of the term Bayesian neural networks to mean net-
works which predict posterior distributions, say some variational distribution
characterized by a neural density estimator for targets, �(y|x,w), but these
networks are not providing the true posterior distribution of the target, rather
they are simply a fitted distribution approximating (to an unknown degree) the
posterior (see Sec. 2.2.2).
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There is indeed little guarantee that a Gaussian prior on the weights

of a deep dense neural network implies any meaningful uncertainties

away from the training distribution. In fact, it is easily shown [4]

that putting priors on weights can fail at properly capturing epis-

temic uncertainties, even on very simple examples.

2.2.2. Relation to classical neural networks

Since neural networks are, in general, able to fit arbitrarily complex

models when large enough, we might be able to justify a relatively

narrow prior on the hyperparameters, p(a) ≈ δ(a − â), meaning

that we think that an arbitrarily complex network can encapsu-

late the statistical model (S, E,P).g Marginalizing over the possible

hyperparameters gives us

p(x, y,w) =

∫
Eα

dapa(x, y,w)p(a)

=

∫
Eα

dapa(x, y,w)δ(a− â)

= pâ(x, y,w). (13)

This describes the probability of possible input-target pairs and net-

work parameters for any given choice of hyperparameters, from which

we can write

p (y|x, (x, y)train) =
∫
Eω

dw �̂(y|x,w)ρ̂ (w|(x, y)train), (14)

where �̂ = �|a=â and ρ̂ = ρ|a=â.

In a non-Bayesian context, having restricted the possible forms

of neural networks via fixing a= â, it is common to find the mode

of the distribution of neural network parameters, w, by maximizing

gIn assuming p(a) ≈ δ(a− â) we are of course neglecting a source of epistemic
uncertainty. One possible way that allows us to attempt to characterize the dis-
tribution of some subset of a is the use of Bayesian model averaging or ensemble
methods [5]. This could be used to sample randomly, for example, from the ini-
tialization values of network parameters or the order with which minibatches of
data are shuffled, all of which can affect the preferred region of network parameter
space which fits the intended function.
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the likelihoodh of observing some training set (x, y)train ∈ E when

given those parameters

ŵ = argmax
w∈Eω

�̂(ytrain|xtrain,w). (15)

Once an estimate for the network parameters is made, the pos-

terior distribution of parameter values, ρ̂ (w|(x, y)train), is usually

degenerated to a delta function at the maximum likelihood estimate

of the network parameters, ρ̂ (w|(x, y)train)⇒ δ(w−ŵ). The predic-

tion of a target, y, from an input, x, then occurs with a probability

equal to the likelihood evaluated at the maximum likelihood estimate

of the value of the network parameters

p (y|x, (x, y)train) =
∫
Eω

dw �̂(y|x,w)ρ̂ (w|(x, y)train)

=

∫
Eω

dw �̂(y|x,w)δ(w − ŵ)

= �̂(y|x, ŵ). (16)

Once optimized, the form of the distribution chosen to evaluate the

training samples, i.e. the loss function, is often ignored and the net-

work output, r, is assumed to coincide with the truth, y. Note, how-

ever, that the result of (16) is actually a distribution, characterized

by the loss function or a variational distribution, at w = ŵ, peaked

at whatever is dictated by the output of the neural network (and not

necessarily the true value of y). Therefore, even in the classical case,

we can make an estimation of how likely targets are by evaluating

the loss function for different y using frameworks such as Markov

methods (described in Sec. 3.1) or fitting the variational distribution

for p(y|x,w) (described in Sec. 3.2).

hAs described earlier, an unregularized loss function can be used to evaluate the
negative logarithm of likelihood. A regularization term on the network parameters
can be added describing our belief in how the weights should behave. In this
case the regularized loss is proportional to the negative logarithm of the posterior
distribution and maximizing the regularized loss is equivalent to MAP estimation.
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However, this form of Bayesian inference does not character-

ize the uncertainties due to the neural network. Using the maxi-

mum likelihood of the network parameters (and hyperparameters) as

degenerated prior distributions for calculating the posterior predic-

tive distribution,p (y|x, (x, y)train) completely ignores the epistemic

uncertainty introduced by the network by assuming that the likeli-

hood with such parameters exactly describes the distribution of y

given a value of x. Again, even though the value of w = ŵ that maxi-

mizes the likelihood can be found fairly easily by various optimization

schemes, information about the shape of the likelihood is discarded

and therefore may not be supported by the bulk of the probability.

To incorporate our lack of knowledge and build true Bayesian neural

networks, we have to revert back to (12).

3. Practical Implementations

The methods laid out in this chapter showcase some practical

ways for characterizing distributions. These distributions could

be, for example, the posterior distribution of network parameters,

ρ(w|x, y), necessary for performing inference with Bayesian neural

networks, or likewise, the predictive density of targets from inputs,

p(y|x), normally considered in model inference or, indeed, any other

distribution. For simplicity we will refer, abstractly, to the target dis-

tribution as

ρ(λ|χ) = L(χ|λ)p(λ)
e(χ)

(17)

for variables λ ∈ EΛ and observables χ ∈ EX .

3.1. Numerically approximate inference:

Monte Carlo methods

Monte Carlo methods define a class of solutions to probabilistic prob-

lems. One particularly important method is Markov chain Monte

Carlo (MCMC) in which a Markov chain of samples is constructed

with such properties that the samples can be attributed as belonging

to a target distribution.
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A Markov chain is a stochastic model of events where each

event depends on only one previous event. For example, labeling an

event as λi ∈ EΛ, the probability of transitioning to another event

λi+1 ∈ EΛ is given by a transition probability, t : {λi, λi+1} ∈ EΛ �→
t(λi+1|λi) ∈ [0, 1], where its value describes how likely λi+1 will be

transitioned to from λi. A chain consists of a set of events, called

samples, of the state, {λi| i ∈ [1, n]}, in which each consecutive sam-

ple is correlated with the next. Although the transition probability

is only conditional on the previous state, the chains are correlated

over long distances. Only states that are physically uncorrelated can

be kept as samples from some target distribution, ρ.

One property that a Markov chain must have to represent a set

of samples from a target distribution, is ergodicity. This means that

it is possible to move from any possible state to another in some

finite number of transitions from one state to the next and that no

long-term repeating cycles occur in the chain. The stationary distri-

bution of the chain, in the asymptotic limit of infinite samples, can

be denoted π : λ ∈ EΛ �→ π(λ) ∈ [0, 1]. Since an infinite number of

samples are needed to prove the stationary condition, MCMC tech-

niques can only be considered numerical approximations to the target

distribution. It should be noted that the initial steps in any Markov

chain tend to be out of equilibrium and as such those samples can be

out of distribution. All the samples until the stationary distribution

is reached are considered burn-in samples and need to be discarded

in order not to skew the approximated target distribution.

3.1.1. Metropolis–Hastings algorithm

The Metropolis–Hastings algorithm is a method which allows states

to be generated from a target distribution, ρ, by defining transition

probabilities between states such that the distribution of samples, π,

in a Markov chain is stationary and ergodic. This can be ensured

easily by invoking detailed balance, i.e. making the transition proba-

bility from state λi to λi+1 reversible such that the Markov chain is

necessarily in a steady state. Detailed balance can be written as

π(λi)t(λi+1|λi) = π(λi+1)t(λi|λi+1), (18)



December 14, 2021 16:15 Artificial Intelligence for High Energy Physics 9in x 6in b4322-ch18 page 682

682 T. Charnock, L. Perreault-Levasseur & F. Lanusse

i.e. the probability of being in state λi and transitioning to state λi+1

is equal to the probability of being in state λi+1 and transitioning to

state λi.

As described in Sec. 3, it can be effectively impossible to char-

acterize a distribution, ρ, since the integral necessary for calculating

the marginal for any observed data, e(χ), can often be intractable.

This isn’t a problem when using the Metropolis–Hastings algorithm,

thanks to detailed balance. First, substituting the target distribution,

π(λ) ≈ ρ(λ|χ), into the detailed balance equation and rearranging

gives

t(λi+1|λi)
t(λi|λi+1)

=
ρ(λi+1|χ)
ρ(λi|χ)

=
L(χ|λi+1)p(λi+1)/e(χ)

L(χ|λi)p(λi)/e(χ)

=
L(χ|λi+1)p(λi+1)

L(χ|λi)p(λi) . (19)

The intractable integral cancels out and as such we can work with

the unnormalized posterior,


(λ|χ) ≡ L(χ|λ)p(λ)
= ρ(λ|χ)e(χ)
= p(χ, λ), (20)

such that

t(λi+1|λi)
t(λi|λi+1)

=

(λi+1|χ)

(λi|χ) . (21)

The Metropolis–Hastings algorithm involves breaking the transition

probability into two steps, t(λi+1|λi) = a(λi+1, λi)s(λi+1|λi), with
a conditional distribution, s : (λi+1, λi) ∈ EΛ �→ s(λi+1|λi) ∈ [0, 1],

proposing a new sample and a probability, a(λi+1, λi), describing

whether the new sample is accepted as a valid proposal or not.
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Substituting these into the detailed balance equations gives

a(λi+1, λi)

a(λi, λi+1)
=

(λi+1|χ)s(λi|λi+1)


(λi|χ)s(λi+1|λi) . (22)

A reversible acceptance probability can then be identified as

a(λi+1, λi) = min

[
1,

(λi+1|χ)s(λi|λi+1)


(λi|χ)s(λi+1|λi)
]
, (23)

such that either a(λi+1, λi) = 1 or a(λi, λi+1) = 1.i

The algorithm itself has two free choices, the first is the number of

iterations needed to overcome the correlation of states in the chain

and properly approximate the target distribution, but in principle

it should approach infinity. The second is the choice of the proposal

distribution, s. It is often chosen to be a multivariate Gaussian whose

covariance can be optimized during burn-in to properly represent

useful step sizes in the direction of each element of a state. This

ensures that the Markov chain is a random walk. A poor choice of

proposal distribution can cause extremely inefficient sampling and as

such it should be chosen carefully.

Whilst, in principle, Metropolis–Hastings MCMC will work in

high dimensions, the rejection rate can be high and the correlation

length very long. Above a handful of parameters, the computational

time of Metropolis–Hastings becomes a limitation, meaning that it is

not efficient for sampling high-dimensional distributions such as the

posterior distribution of neural network parameters.

iWhilst a reversible Markov chain enforces stationarity, it also leads to a prob-
ability of rejecting samples, which can be inefficient. Although we will not go
into detail here, it is also possible to construct a continuous, directional Markov
process which is still ergodic. In this case every sample from the state will be
accepted making the algorithm more efficient for collecting samples — although
the computation could be more costly. One example of such a method is the
Bouncy Particle Sampler [6, 7] in which samples are obtained from the target dis-
tribution by picking a random direction in parameter space and sampling along
a piecewise-linear trajectory until the value of target distribution at that state
is less than or equal to the value of the target distribution at the initial state.
At this point there is a Poissonian probability of the trajectory bouncing back
along another randomized trajectory, drawing samples along the way. Such meth-
ods are state-of-the-art but mostly untested in the literature on sampling neural
networks.
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3.1.2. Hamiltonian Monte Carlo

One way of dealing with the large correlation between samples,

high rejection rate and small step sizes which occur in Metropolis–

Hastings is to introduce a new sampling proposal procedure based on

a Gibbs sampling step and a Metropolis–Hastings acceptance step. In

Hamiltonian Monte Carlo (HMC), we introduce an arbitrary momen-

tum vector, ν, with as many elements as λ has. We describe the

Markov process as a classical mechanical system with a total energy

(Hamiltonian)

H(λ, ν) = K(ν) + V(λ)

=
1

2
νTM−1ν − log 
(λ|χ). (24)

K(ν) is a kinetic energy with a “mass” matrix, M, describing the

strength of correlation between parameters. V(λ) is a potential

energy equal to the negative logarithm of the target distribution.

A state, z = (λ, ν), in the stationary distribution of the Markov

chain, π(λ, ν), is a sample from the distribution p(λ, ν|χ) =

exp[−H(λ, ν)], found by solving the ordinary differential equation

(ODE) derived from Hamiltonian dynamics

λ̇ = M−1ν, (25)

ν̇ = −∇V(λ), (26)

where the dots are derivatives with respect to some time-like variable,

which is introduced to define the dynamical system. The station-

ary distribution, π(λ, ν) ≈ H(λ, ν), of the Markov chain is separa-

ble, exp[−H(λ, ν)] = exp[−K(ν)] exp[−V(λ)], and so p(λ, ν|χ) ∝
ρ(λ|χ)p(ν). This means that a Gibbs sample of the ith momen-

tum can be drawn, νi ∼ p = N(0,M), and by evolving the state

zi = (λi, νi) using Hamilton’s equations, a proposed sample obtained,

zi+1 = (λi+1, νi+1) ∼ pχ, i.e. λi+1 and νi+1 are drawn with probabil-

ity p(λi+1, νi+1|χ). The acceptance condition for the detailed balance

is obtained by computing the difference in energies between the ith
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state and the proposed, (i+ 1)th, state

a(zi+1,zi) = min [1, exp(ΔH)] , (27)

where any loss in total energy ΔH= H(λi+1, νi+1)−H(λi, νi) arises

from the discretization of solving Hamilton’s equations. If the equa-

tions were solved exactly (the Hamiltonian is conserved), then every

single proposal would be accepted. It is typical to use ε-discretization

(the leapfrog method, see algorithm 1) to solve the ODE over a num-

ber of steps, L, where ε describes the step size of the integrator.

Smaller step sizes result in higher acceptance rate at the expense of

longer computational times of the integrator, whilst larger step sizes

result in shorter integration times, but lower acceptance. It is pos-

sible to allow for self-adaptation of ε using properties of the chain,

such as the average acceptance as a function of iteration, and a tar-

get acceptance rate, δ ∈ [0, 1]. It has been shown that, for HMC, the

optimal acceptance rate is δ ≈ 0.65 and so we can adapt ε to be of

this order [8]. Care has to be taken though, since the initial samples

in the Markov chain will be out of equilibrium and so adapting ε in

the early iterations can still lead to poor step size later on, and so

this adaptation should only be attempted after the burn-in phase.

A priori, it is not known how many steps to take in the integrator

and so multiple examples of the HMC may need to be run to tune

the value of L, which can be very expensive.j

No U-turn sampler [10]: A proposed extension to HMC to deal

with the unknown number of steps in the integrator is the No U-turn

jRecent work has been done using neural networks to approximate the gradient of
target distribution, ∇V(λ) [9]. Whilst this could lead to errors if trusted for the
whole process, the neural gradients are only used in the leapfrog steps to propose
new targets, at which point the true target distribution can be evaluated. In
this case, a poorly trained estimator of the gradient of the target distribution
proposes poor states, and as such the acceptance rate drops, but the samples
obtained are still evaluated from the actual target distribution and therefore it
is unbiased by the neural network. Furthermore, any rejected states could be
rerun numerically (rather than being estimated) and added to the training set to
further fit the estimator, potentially providing exponential speed up as samples
are drawn. Note, the gradient of the target distribution could be fit using efficient
methods described in Sec. 3.2.
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Algorithm 1: Leapfrog algorithm (ε-discretization)

Input: Initial state, z= (λ, ν); number of steps, L; step size,

ε; mass matrix, M;

Output: Proposed state, z= (λ, ν);

Calls: Gradient of target distribution, ∇V(λ);

ν ← ν − ε∇V(λ)/2;

for i← 1 to L do

λ← λ+ εM−1ν;

if i = L then

ν ← ν − ε∇V(λ);

end

end

ν ← ν − ε∇V(λ)/2;

sampler (NUTs). Here, the idea is to find a condition which describes

whether or not running more steps in the integrator would carry on

increasing the distance between the initial sample and a proposed

one. A simple choice of criterion is the derivative with respect to

Hamiltonian time of the half squared distance between the current

proposed and initial states

s=
d

dt

(λi+1 − λi) · (λi+1 − λi)
2

= (λi+1 − λi) · ν. (28)

If s= 0 then this indicates that the dynamical system is starting to

turn back on itself, i.e. making a U-turn, and further proposals can

be closer to the initial state. In practice, a balanced binary tree of

possible samples is created by running the leapfrog integrator either

forwards or backwards for a doubling number of steps (1, 2, 4, 8, . . .)

where each of these steps is a leaf of the tree, F= {(λL±, νL±)|L ∈
[1, 2, 4, . . .]}. When the furthest distance in the trajectory, λmaxL+−
λmaxL−, starts to decrease then the computation can be stopped and

we can sample from F via a detailed-balance preserving method.

Such an algorithm can greatly reduce the cost of tuning the number
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of steps in the integrator, L, in the HMC and is therefore highly

beneficial when attempting to characterize a target distribution.

Thanks to the high acceptance rate and the ability to take large

steps to efficiently obtain samples, HMC a is good proposition for

numerically approximating distributions such as the posterior of

neural network parameters. One severe limitation, though, is the

choice of the mass matrix, M. The mass matrix must be properly

defined since it defines the direction and size of steps and correlations

between parameters. It is not easy to choose its value a priori and a

poor choice can lead to very inefficient sampling. We present below

two methods which deal with the mass matrix.k

Quasi-Newtonian HMC [12]: With quasi-Newtonian HMC

(QNHMC) we make use of the second-order geometric information of

the target distribution as well as the gradient. The QNHMC modifies

Hamilton’s equations to

λ̇ = BM−1ν, (29)

ν̇ = −B∇V(λ), (30)

where B is an approximation to the inverse Hessian derived using

quasi-Newton methods, for more details see [12]. Obtaining this

approximation of the Hessian is extremely efficient because all the

necessary components are calculated when solving Hamilton’s equa-

tions using leapfrog methods as in Algorithm 1. Note that the approx-

imate inverse Hessian varies with proposal, but is kept constant

whilst solving Hamilton’s equations. The inverse Hessian effectively

rescales the momenta and parameters such that each dimension has

a similar scale and thus the movement around the target distribution

is more efficient with less correlated proposals. It is easiest to begin

kNote we are not going to discuss relativistic HMC [11], where the kinetic energy
is replaced with its relativistic form K(νj) =

∑dim λ
i=1 mic

2
i

√
(νj/mic)2 + 1. Whilst

this method is valid for preventing the run-away of particles on very glassy target
distributions thanks to an upper bound on the distance able to be traveled per
iteration, m and c are (in practice) needed for every momenta in the dimension
of λ. This makes it as difficult a problem as a priori knowing the mass matrix,
M, in the classical case.
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with an initial inverse Hessian, B0 = I, and allow the adaptation of

the Hessian to the geometry of the space. Note that the mass matrix,

M, is still present to set the dynamical time-like scales of Hamilton’s

equations along each direction, but the rescaling of the momenta via

B allows us to be fairly ambiguous about its value. The optimal mass

matrix for sampling is equal to the covariance of the target distri-

bution, but in practice, a diagonal mass matrix with approximately

correct variance values for the distribution works well.

Example: Inference of the halo mass distribution function:

To be able to extract cosmological information from the large scale-

structure distribution of matter in the universe, such as the mass,

location and clustering of galaxies, obtained by galaxy surveys, we

either have to summarize the data into statistical quantities (such

as the power spectrum, etc.) or learn about the placement of all the

objects in these surveys. Whilst the first method is (potentially very)

lossy, the complexity of the likelihood describing the distribution

of structures in the universe generally makes the second technique

intractable. With the goal of maximizing the cosmological informa-

tion extracted from galaxy surveys, the Aquila consortium has devel-

oped an algorithm for Bayesian origins reconstruction from galaxies

(BORG) [13–15] which assumes a Bayesian hierarchical model to

relate Gaussian initial conditions of the early universe to the com-

plex distribution of galaxies observed today. As part of this model,

one needs to relate observed galaxies to the underlying, and otherwise

invisible, dark matter field through a so-called bias model, which is

an effective description for extremely complex astrophysical effects.

Finding a flexible enough and yet tractable parameterization for this

model a priori is a difficult task.

Using physical considerations, such as locality and radial sym-

metry, to reduce the numbers of degrees of freedom, a very simple

mixture density network with 17 parameters was proposed to model

this bias [3]. This network, dubbed a neural physical engine due to

its physical inductive biases, is small enough that each parameter

is exactly identifiable, so that sensible priors could be defined for

those parameters. The ability to place these meaningful priors on
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Fig. 1. Schematic of the BORG algorithm with the neural bias model. Initial
conditions for the dark matter density field in Fourier space, δ̂ic, are drawn from
a prior given a cosmology wcosmo, P(δ̂ic|wcosmo). These are then evolved forward
using a deterministic prescription, in this example using Lagrangian perturbation
theory (LPT). The evolved field, δLPT, is then transformed further using a neural
physical engine, fwNPE,aNPE , whose form is described by aNPE and which requires

parameters wNPE which are drawn from a prior p(wNPE). This provides a field
ψ from which the halo mass distribution function can be described using a mix-
ture density network, whose hyperparemeters are aMDN, with parameters wMDN

drawn from a prior p(wMDN). This halo mass distribution function can be evalu-
ated at given halo masses to be compared to the masses of haloes Mobs from an
observed halo catalog via a Poissonian likelihood, V(w, δ̂ic,wcosmo,M

obs). The
initial phases of the dark matter distribution, δ̂ic, are sampled using HMC and the
parameters of the neural bias model made up of the neural physical engine and
the mixture of distributions, w = (wNPE,wMDN), are sampled using QNHMC.
Figure adapted from [3].

network parameters is well motivated for this physically motivated

problem, but may be more difficult to design for problems without

physical intuition.

Sampling from this model could also be integrated within the

larger hierarchical model of the BORG framework using QNHMC

(see Fig. 1 for a description of the BORG+neural bias model
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Fig. 2. The halo mass distribution function as a function of mass. The dia-
monds connected by a dashed line indicates the number density of haloes from
an observed halo catalog of a given mass, where the different colors represent the
value of the density environment for those haloes. The lines higher in number
density correspond to the more dense regions, i.e. there are more large haloes in
denser environments. The solid lines show the mean halo number density from
samples (taken from the Markov chain) from the neural bias model, with the
shaded bands as the 68% credible intervals of these samples. There is a very good
agreement between the observed halo number density and that obtained by the
neural bias model. Figure credit: Charnock et al. (2020) [3].

algorithm). Concretely, BORG was run in two blocks, first using

HMC to propose samples of the dark matter density field and then

using QNHMC to propose possible neural bias models. The target

distribution was assumed to be a Poissionian sampling of the num-

ber density of haloes in any particular environment as described

by a mixture density network, fwMDN,aMDN(ψ), evaluated at pos-

sible halo masses, m, and the summarized environmental proper-

ties, ψ = fwNPE,aNPE(δLPT), given by the neural physical engine.

The parameters in the target likelihood for the masses of haloes

in a halo catalog can be explicitly written in terms of the output

of the mixture density network, i.e. αι,ih(ψ(δLPT,ih ,w
NPE),wMDN),

μι,ih(ψ(δLPT,ih ,w
NPE),wMDN) and σι,ih(ψ(δLPT,ih ,w

NPE),wMDN)

where i labels the number of voxels in the simulator, h labels the

number of halos in the catalog and ι labels the number of Gaussians
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in the mixture. The Poissonian likelihood is then written as

V(w) =
∑

h∈catalog
log

⎡
⎣ N∑

ι

αι,ih√
2πσ2ι,ih

exp

[
−(log(mh)− μι,ih)2

2σ2ι,ih

]⎤
⎦

−V
∑

i∈voxels

N∑
ι

αι,i

2
exp

[
σ2ι,i
2

]

× erfc

⎡
⎣ log (mτ )− μι,i − σ2ι,i√

2σ2ι,i

⎤
⎦, (31)

where mh is the mass of halo h, mτ is a threshold on the minimum

mass of halos and V is the volume of a single voxel. Using this,

the exact joint posterior of both density field and network parame-

ters could be inferred under the observation of a mock halo catalog

from the velmass simulations [16]. Such inference was an example of

zero-shot training since there was no training data necessary. Because

quasi-Netwonian HMC was used then the correlation between all of

the network parameters, w = (wNPE,wMDN), could be assumed to

be negligible, i.e. M = I. Whilst this assumption is incorrect, the

approximately calculated Hessian, B, rescaled the parameters such

that their correlations were taken into account so that the proposed

samples in the HMC could successfully travel along preferred param-

eter directions. The methods presented here provide a way to con-

strain the initial phases of the dark matter distribution, conditional

on the observed data, without an exact physical description of how

the observed catalog trace the underlying dark matter distribution

today. This is possible since we can use the neural bias model to map

from the dark matter distribution to some unknown function that

describes how a catalog of observed halos traces the underlying dark

matter based on some physical principles. These physical principles

are built directly into the neural physical engine. Any uncertainty in

the form of this description can then be marginalized out since the

distribution of the parameters in the neural bias model is available

via the samples obtained in the QNHMC.
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Riemannian Manifold HMC [17]: Whilst we have so far

depended on a choice of mass matrix to set the time-like steps in

the integrator, it is possible to exploit the geometry of the Hamil-

tonian to adaptively avoid having to choose. Samples from the

Hamiltonian are effectively points in a Riemannian surface with

a metric defined by the Fisher information of the target distribu-

tion, I(λ) = 〈∇
(λ′|χ)(∇
(λ′|χ))T 〉λ. Since the Fisher information

describes the amount of information a random observable, χ, con-

tains about any model parameters λ, then the parameter space has

larger curvature wherever there is a lot of support from the data. In

essence, this metric is a position-dependent equivalent to the mass

matrix which we have so far considered, but since we have to calculate

∇
(λ|χ) in the integrator anyway, we can actually approximate the

Fisher information cheaply. However, to ensure that the Hamiltonian

is still the logarithm of a probability density it must be regularized

leaving the Hamiltonian as

H(λ, ν) = K(λ, ν) + V(λ)

=
1

2
νTI(λ)−1ν − log 
(λ|χ) + 1

2
log(2π)dim λ|I(λ)|. (32)

Here the kinetic term now involves a dependence on the parameters,

λ, and so the Hamiltonian is not separable, i.e. the momenta are

drawn from a parameter-dependent mass matrix, ν ∼ N(0,I(λ)).

The equations of motion in this case become

λ̇ = I(λ)−1ν, (33)

ν̇ = −∇V(λ) +
1

2
Trace

[
I(λ)−1∇I(λ)

]
−1

2
νTI(λ)−1∇I(λ)I(λ)−1ν. (34)

With such a change, the scaling of the momenta along each param-

eter direction becomes automatic, but the reversibility and volume

preserving evolution using the leapfrog integrator is broken and so

the proposed states do not adhere to detailed balance. Instead a

new symplectic integrator, i.e. an integrator for Hamiltonian sys-

tems, is required to make the volume preserving transformation of the
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momenta (by calculating the Jacobian of the inverse Fisher matrix)

such that Hamilton’s equations can be solved. Whilst this adds extra

complexity to the equations of motion, it is equivalent to only two

additional steps in the integrator since the Fisher information can

be approximated cheaply from the calculation of the gradient of the

potential energy. By using the RMHMC, we avoid the need to choose

a mass matrix (or approximate the Hessian). ε can be fixed to some

value as the adaptive matrix is able to overcome the step size, and

L, i.e. the number of steps in the integrator, can be chosen to tune

the acceptance rate.

Stochastic gradient HMC [18]: Whilst we can sample effec-

tively using Hamiltonian Monte Carlo, and its variants shown above,

we must also address the question of the size of the data we are

interested in. As so far presented, HMC requires an entire dataset,

χ ∈ EX , to evaluate the distribution. However, in modern times,

datasets can be extremely large (big data) and it may not be possi-

ble to evaluate it all simultaneously. Furthermore, we are more and

more likely to be in the regime where the data is obtained continually

and streamed for inference. For this reason, most optimization tech-

niques rely on stochastic estimation techniques over minibatches, χi

i.e. the union of all minibatches is the complete set,
⋃batches

i χi = χ.

This stochastic sampling of data can be considered as being equiv-

alent to adding a source of random noise, or scatter, around the

target distribution. For clarity, the gradient of the potential energy

for a minibatch becomes

∇V(λ) = − log 
(λ|χi)

→ − log 
(λ|χ) + γ, (35)

where γ ∼ Dist(λ) is a random variable drawn from the distribu-

tion of noise and whose shape is described by some diffusion matrix,

Q(λ). For large minibatch sizes, we can relatively safely assume this

distribution is Gaussianly distributed, γ ∼ N(0, εQ(λ)/2), due to

the central limit theorem where the diffusion matrix at any step

in the integration can be equated to the variance of the noise,
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εQ(λ) = 2Σ(λ). Note that we may not necessarily be in the regime

where we can make this assumption.

Making noisy estimates of the target distribution using mini-

batches breaks the Hamiltonian dynamics of the HMC and as such

extremely high rejection rates can occur. In particular, the addi-

tional noise term acts as force which can push the states far from the

target distribution. We can reduce this effect by taking further inspi-

ration from mechanical systems — we can use Langevin dynamics

to describe the macroscopic states of a statistical mechanical sys-

tem with a stochastic noise term describing the expected effect of

some ensemble of microscopic states. In particular, using second-

order Langevin equations is equivalent to including a friction term

which decreases the energy and, thus, counterbalances the effect of

the noise. Equations (25) and (26) therefore get promoted to

λ̇ = M−1ν, (36)

ν̇ = −∇V(λ)− Q(λ)M−1ν + γ. (37)

Solving these equations provides a stationary distribution, π(λ, ν) ≈
H(λ, ν), with the distribution of samples, λ ∼ ρχ, i.e. λ is drawn

with probability ρ(λ|χ). Of course, this method depends on know-

ing the distribution of the noise well, but for large minibatch sizes,

this approaches Gaussian. The stochastic gradient HMC, in this case,

provides a way to obtain samples from the target distribution even

when not using the entire dataset and therefore vastly reducing com-

putational expense and allowing for active collection and inference

of data.

3.2. Variational inference

Whilst a target probability distribution can be approximately char-

acterized by obtaining exact samples from the distribution via Monte

Carlo methods, it is often a very costly process. Instead we can use

variational inference, where a variational distribution, say qm(λ|χ),
is chosen to represent a very close approximation to the target



December 14, 2021 16:15 Artificial Intelligence for High Energy Physics 9in x 6in b4322-ch18 page 695

Bayesian Neural Networks 695

distribution, ρ(λ|χ). In general, qm(λ|χ) is a tractable distribution,

parameterized by some m, and via the optimization of these parame-

ters qm(λ|χ) can hopefully be made close to the target distribution,

ρ(λ|χ). Note, again, that if the target distribution is the posterior

predictive distribution of some model, p(y|x), then fitting a varia-

tional distribution to this is not a Bayesian procedure in the same

way that maximum likelihood estimation is not Bayesian.

To describe what is meant by close in the context of distributions,

we often consider the Kullback–Leibler (KL) divergence (or relative

entropy). In a statistical setting, the KL-divergence is a measure of

information lost when approximating a distribution ρ(λ|χ) with some

other qm(λ|χ),

KL(ρ||qm) =

∫
EΛ

dλ ρ(λ|χ) log ρ(λ|χ)
qm(λ|χ) . (38)

When KL(ρ||qm) = 0, there is no information loss and so ρ(λ|χ) and
qm(λ|χ) are equivalent. Values KL(ρ||qm) > 0 indicate the degree

of information lost. Note that the KL-divergence is not symmetric

and as such is not a real distance metric.

The form of (38) assumes the integral of ρ(λ|χ) to be tractable.

In fact, in the case that the expectation can be approximated well,

we can use the KL-divergence to perform expectation propagation.

However, if we are considering the approximation of the posterior

distribution of network parameters, as stated in Sec. 2, we can expect

the integral ofpa(w|x, y) to be intractable meaning that calculating

KL(pa||qm) would be necessarily hard. Instead we can consider the

reverse KL-divergence

KL(qm||ρ) =
∫
EΛ

dλqm(λ|χ) log qm(λ|χ)
ρ(λ|χ) . (39)

The choice of qm(λ|χ) is specified so that expectations are tractable.

However, evaluating ρ(λ|χ) would require calculating the evidence,

e(χ), which, although constant for different λ, remains intractable.

For convenience we can consider the unnormalized distribution (as
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we did for detailed balance in Sec. 3.1.1)


(λ|χ) = L(χ|λ)p(λ)
= ρ(λ|χ)e(χ)
= p(χ, λ), (40)

and calculate a new measure

ELBO(qm) = −
∫
EΛ

dλqm(λ|χ) log qm(λ|χ)

(λ|χ) . (41)

Note that this has the form of minus the reverse KL-divergence, but

is not equivalent since 
(λ|χ) is not normalized. By substitution, we

can see that

ELBO(qm) = −
∫
EΛ

dλqm(λ|χ) log qm(λ|χ)
ρ(λ|χ)e(χ)

= −
∫
EΛ

dλqm(λ|χ) log qm(λ|χ)
ρ(λ|χ) + log e(χ)

= −KL(qm||ρ) + log e(χ). (42)

Since log e(χ) is constant with respect to the parameters, λ, maxi-

mizing ELBO(qm) will force qm(λ|χ) close to the target distribution
ρ(λ|χ). The term ELBO comes from the fact that the KL-divergence

is non-negative and so ELBO(qm) defines a lower bound to the

evidence, e(χ).

3.2.1. Mean-field variation

One efficient way of parameterizing a distribution for approximating

a target, ρ(λ|χ), is to make it factorize along each dimension of the

parameters, i.e.

qm(λ|χ) =
dimλ∏
i=1

qm
i (λi|χ). (43)
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In doing such, the ELBO for any individual qm
j is

ELBO(qm
j ) =

∫
· · ·
∫

EΛ,j

dλj
∏
i

qm
i (λi|χ)

×
[
log 
(λ|χ)−

∑
k

log qm
k (λk|χ)

]

=

∫
EΛ,j

dλj q
m
j (λj |χ)

∫
· · ·
∫

EΛ,i�=j

dλi
∏
i �=j

qm
i (λi|χ)

×
[
log 
(λ|χ)−

∑
k

log qm
k (λk|χ)

]

=

∫
EΛ,j

dλj q
m
j (λj |χ)

×
[
E
i �=j

[log 
(λj |χ)]− log qm
j (λj |χ)

]
+ const,

(44)

where the constant is the expectation value of the factorized distribu-

tions, qm
i (λi|χ), in the dimensions where i = j and is unimportant

for the optimization of the distribution for the jth dimension since

it is independent of λj . Ei �=j[log 
(λj |χ)] is the expectation value of

the logarithm of the target distribution for every qm
i (λi|χ) where

i = j, and remains due to its dependence on λj . The optimal jth

distribution is the one that maximizes the ELBO which is equiva-

lent to optimizing each of the factorized distributions, qm
j (λj |χ), in

turn to obtain qm
j (λj |χ) = exp [Ei �=j [log 
(λj |χ)]]. This provides a

mean-field approximation of the target distribution.

3.2.2. Bayes by Backprop

Bayes by Backprop [19, 20] (a form of stochastic gradient variational

Bayes) provides a method for approximating a target distribution,

ρ(λ|χ), using differentiable functions such as neural networks. The

basic premise of Bayes by Backprop relies on a technique known as
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the reparameterization trick [21, 22]. The reparameterization trick

provides a method of drawing random samples, w, from a Gaussian

distribution, whilst allowing the samples to be differentiable with

respect to the parameters of the Gaussian distribution (mean and

standard deviation, m = (μ, σ)). This can be achieved by reparam-

eterizing N(μi, σi) in terms of an independent normally distributed

auxiliary variable, ε ∼N(0, 1), i.e.

w(mi) ∼ N(μi, σi)

= μi + σiεi. (45)

Here, we can view w(mi) as the ith random variable parameter

of a neural network with a total of nw network parameters where

w(m) = {w(mi)| i ∈ [1, nw]}. Any evaluation of the neural network

is a sample λ̂ ∼ qm
χ,w, i.e. λ̂ is drawn with probability qm(λ|χ,w).

Maximizing the ELBO (42), between qm(λ|χ,w) and an unnormal-

ized target distribution, 
(λ|χ), can now be done via backpropagation

since we can calculate

∂mELBO(qm) =

(
∂w(m)ELBO(qm) + ∂μELBO(qm)

(ε/σ)∂w(m)ELBO(qm) + ∂σELBO(qm)

)
(46)

and update the parameters using

m← m− η∂mELBO(qm), (47)

where η is a learning rate. Note that the ∂w(m)ELBO(qm) terms

in (47) are exactly the same as the gradients normally associated

with backpropagation in neural networks.

As originally presented, Bayes by Backprop was an attempt to

make Bayesian posterior predictions of targets, y, from inputs, x,

as in (12), where ρ(w|xtrain, ytrain) ≡
∏nw

i=1N(μi, σi). Here, the val-

ues of all μi and σi are fit using maximum likelihood estimation (or

maximum a posterior estimation) given data xtrain and ytrain. As

explained in Sec. 2.2, the distribution of weights, pa(w), is likely

to be extremely non-trivial, since most network parameters are non-

identifiable and highly degenerate with other parameters. Therefore,
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modeling this distribution as a Gaussian is unlikely to be very accu-

rate. This can, therefore, incorrectly conflate the epistemic uncer-

tainty for y from a particular network, a, with parameters, w, and

input, x, with the posterior prediction. In essence, Bayes by Back-

prop provides a way of sampling from a single choice of an (arbi-

trarily complex) approximation of a target distribution much more

efficiently than using numerical schemes such as Markov methods,

but there is little knowledge in how close this approximation is to

the desired target. By fitting the parameters, m, of the neural dis-

tribution rather than characterizing their distribution, p(m), the

characterization of the epistemic uncertainty is biased. As such, just

using Bayes by Backprop provides a network that is Bayesian in prin-

ciple, but with a limited choice of prior distribution which may fail

to capture our epistemic uncertainty.

Whilst Bayes by Backprop allows us to characterize the mean

and standard deviation of a Gaussian distribution from which we

can draw network parameters, it can be extremely expensive to draw

different parameters for each example of the data to perform the opti-

mization. Therefore, the data is often split into nbatches minibatches

of nelems elements and a single sample of each parameter drawn for

all nelems elements in each minibatch. This clearly does not represent

the variability of the distribution of parameters well and leads to

artificially high variance in the stochastic gradient calculation. Fur-

thermore, by sharing the same parameter values for all elements in a

minibatch, correlations between gradients prevent the high variance

from being eliminated.

Example: Classification of photometric light-curves: Because

Bayes by Backprop can be comparatively more expensive than other

practical techniques introduced below, there are a fairly limited

number of examples of applications in the physics literature. One

notable example however is the probabilistic classification of super-

nova lightcurves method SuperNNova [23]. The aim of that study is

to analyze time-series measuring the brightness of distant galaxies as

a function of time, and detect potential supernova type Ia events, of

particular interest for cosmology.
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(a) (b)

Fig. 3. (a) Illustration of the photometric lightcurve classification problem on
simulated supernova type Ia event. Top: Observed flux as a function of time, in
different bands (broad wavelength filters). Bottom: Classification probability out-
put from a recurrent neural network (RNN) as a function time. While uncertain
about the type of the event (Ia or CC) at the beginning of the event, the model
starts recognizing a Ia event and classifying it as such as the event unfolds. Figure
credit: Möller and de Boissiere (2019) [23] (b) Calibration of predicted class proba-
bilities for the supernova lightcurve classification problem. The BBB RNN (purple
triangle) exhibits better calibration than a vanilla RNN (orange dot) of matching
architecture but optimized by maximum likelihood. Figure credit: Möller and de
Boissiere (2019) [23].

Figure 3(a) illustrates the light curve classification problem on a

simulated supernova type Ia event. In that study, the authors aim

to compare the performance of a vanilla recurrent neural network

(RNN) classifier to a probabilistic model quantifying some uncer-

tainties. For that purpose the authors introduce a “Bayesian” recur-

rent neural network [24] (BRNN) based on a bidirectional LSTM, but

using a variational Gaussian distribution for the posterior of network

parameters, optimized by backpropagation. Following the approach

presented in this section, the loss function for this model becomes

Λ(m) = − E
w∼qm

[log �(ytrain|xtrain,w)] +KL(qm||ρ), (48)

which corresponds to the ELBO introduced in Eq. (42), and where

log �(ytrain|xtrain,w) is the log-likelihood of a categorical distribution
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with probabilities predicted by the neural network, and pa(w) is the

prior on the BRNN parameters.

With this approach, the authors attempt to distinguish between

aleatoric uncertainties which are uniquely determined by the categor-

ical probabilities predicted by the model for a given set of network

parameters w, and the epistemic uncertainties which are, this case,

characterized by the variational approximation to the posterior of

network parameters qm(w|(x, y)train) ≈ ρ(w|(x, y)train). As high-

lighted multiple times before, one should however always be careful in

interpreting these probabilities, and in that study the authors empir-

ically check the calibration of the mean posterior probabilities using

a reliability diagram [25] . The reliability diagram shows the fraction

of true positives in a binary classification problem as a function of

the probabilities predicted by the model. For a perfectly calibrated

classifier, only 10% of objects which received a detection probability

of 0.1 are true positives.

Figure 3(b) shows this calibration diagram for different classifiers,

but of particular interest are the curves for the baseline RNN and

BBB RNN, in both cases the actual neural network architecture is

identical, but the former is optimized to find the maximum likeli-

hood estimates of the network parameters, while the later is trained

by Bayes by Backprop. The BBB RNN predicted probabilities are

closer to the diagonal representing a more correct calibration than

the baseline RNN. In this example including a model for the epis-

temic uncertainties improves the model calibration.

3.2.3. Local reparameterization trick

Although for large numbers of network parameters, nw, characteriz-

ing the global uncertainty of the parameters using the reparameteri-

zation trick becomes computationally unfeasible for each element of

data and for each parameter in the network, a local noise approxima-

tion [26] can be made to transform the perturbation of parameters

to a perturbation of activation values

oljn ∼ N

(
dim l−1∑

i=1

μljia
l−1
in ,

dim l−1∑
i=1

(
σlji

)2 (
al−1
in

)2)
, (49)
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where aljn = f(oljn) is the activated output (with possibly nonlinear

activation function f) of the jth unit of the lth layer of a neural

network with nl layers, according to the nth element of the input

minibatch. As with the reparameterization trick, the sampling of the

activation value of any layer can be written as

oljn =
dim l−1∑

i=1

μljia
l−1
in + εljn

√(
σlji

)2 (
al−1
in

)2
, (50)

where εljn ∼ N(0, 1). Whilst the parameters ml
ji = (μlji, σ

l
ji) of the

Gaussian distribution describe the probabilistic model for a network

parameter, w(ml
ji), from unit i of layer l − 1 to unit j of layer l,

this model is never sampled, and only the activation values are sam-

pled. The dimensionality of the probabilistic interpretation of layer

outputs, i.e. the number of ε = {εlin| i ∈ [1,dim l], l ∈ [1, nl], n ∈
[1, nelems]} needed to be stored for computation of the gradient is

much lower than when considering the number of random draws

needed for every single network parameter and every element of data

in the minibatch. Furthermore, the variance of the gradient is much

less when using the local reparameterization trick than when assum-

ing a single random draw for each parameter being the same for all

of the elements of data in a minibatch.

3.2.4. Variational dropout

One limitation of the local reparameterization trick is that it only

applies to networks with no weight sharing, i.e. fully-connected neu-

ral networks. However, inspired by the local reparameterization trick,

a general method for approximating distributions using multiplica-

tive noise can be implemented. Variational dropout [27, 28] is another

way of approximating a target distribution, ρ(λ|χ) with qm(λ|χ,w).

In this case, the distribution is defined by the application of random

variables to the outputs of hidden layers in a neural network. Much

like the local reparameterization trick, the outputs of the nl layers

of a neural network are draws from some multiplicative noise model,

alin = εlinf(o
l
in), where o

l
in are the non-activated outputs of the lth

layer of a neural network at element n in the minibatch. Note that
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olin can be obtained using any function, i.e. fully connected, convo-

lutional, etc. f is some (possibly nonlinear) activation function and

εlin ∼ Dist(ml
in) is a random variable drawn from some distribu-

tion parameterized by some m = {ml
in| i ∈ [1,dim l], l ∈ [1, nl], n ∈

[1, nelems]}. Selecting some form for the distribution and values for

its parameters, m, provides a way of obtaining samples from the

neural network by running the network forward with many draws

of ε. This makes the network a model of a Bayesian neural network

rather than a Bayesian neural network itself — there is no sampling

of the parameters of the network, and no attempt to characterize

their uncertainty. Furthermore, the value of m cannot be fit using

Bayes by Backprop and it is an a priori choice for the sampling

distribution.l

Bernoulli dropout: One method of performing variational

dropout is by using ε ∼ Bernoulli(m), which amounts to feeding

forward an input to a network with dropout [29] with a keep rate m

for each of the outputs of each layer of the neural network multiple

times. The outputted samples can then be interpreted as the distri-

bution of possible targets which can be obtained using that network

(and the choice of the Bernoulli distribution with parameters m).

It is very common to set all values of ml
in ∈ m to the same value,

although it can be optimized via expectation maximization. The ease

with which this method can be implemented has made it very popu-

lar, and in the limit of large number of samples, the activated outputs

approach a Gaussian distribution thanks to the central limit theo-

rem. Note that the choice of a Bernoulli distribution changes the

expected output of any activation layer as 〈alin〉 = ml
in(1−ml

in)a
l
in,

therefore there is a scaling which needs to be taken into account.

Gaussian dropout: A second option is to draw the random vari-

able from a unit-mean Gaussian [26, 30], ε ∼ N(I,diag(m)), so that

the expectation value of the multiplication of the output of a unit of

a layer by the random variable remains, 〈alin〉 = alin the same since

lIt should be noted that the parameters, m, of any variational dropout distribu-
tion can be optimized via expectation maximization.
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〈ε〉 = 1. Furthermore, by calculating the variational objective the

value of m in the multiplicative noise distribution can be fit using

expectation maximization.

For both the Bernoulli, Gaussian or any other multiplicative

dropout distribution, by maximizing the ELBO(qm), we can get

qm(λ|χ,w) close to ρ(λ|χ) allowing us to make estimates of this

distribution. Again it should be stated that this is not Bayesian

in the sense that if the variational distribution provided by varia-

tional dropout is approximating the posterior predictive distribution,

p(y|x), there is no sense of certainty in how good that approxima-

tion is. There is no attempt to characterize our lack of knowledge

of the parameters of the network or the parameters of the distribu-

tions, m.m

3.2.5. Monte Carlo dropout

Very closely related to Bernoulli variational dropout, is the MC

Dropout model [27]. Similar to the previous section, MC Dropout

provides a Bayesian framework to interpret the effect of tradi-

tional dropout [29] on neural networks. A variational distribution

qm(w|χ, λ) assumed for the network parameter posterior can be

parameterized as w = M · diag([zj ]Jj=1) with zj ∼ Bernoulli(m), M

being a K × J weight matrix, and m being the dropout rate. Given

this formulation for the variational distribution it can be shown that a

KL divergence with respect to an implicit prior can be approximated

as a simple �2 regularisation term [27]. Training a neural network

under dropout and with �2 weight regularization therefore maximiz-

ing the ELBO(qm) and is performing proper variational inference

at no extra cost.

Example: Probabilistic classification of galaxy morphologies

and active learning: MC dropout is the most frequent solution

adopted for probabilistic modeling using neural networks, and was

mOf course, if considering a MAP estimate, then some characterization of our
lack of knowledge is taken into account, but the distribution is still neglected.
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the first such application in astrophysics [31], for a strong grav-

itational lensing parameter estimation problem. To illustrate the

method and its applications on a more recent example [32], we will

consider the problem of classifying galaxy types from cutout images.

In the context of modern large galaxy surveys, the challenge is to be

able to automatically determine galaxy morphological types without

(or with minimal) human visual inspection.

Such a study is based on the result of a large citizen science effort

asking volunteers to answer a series of questions to characterize the

type and morphology of a series of galaxy images. The task for the

neural network is to predict volunteer responses for some galaxy types

of particular interest, k. These answers are modeled using a binomial

distribution, Bin(r, N), where r is the probability of a volunteer pro-

viding a positive response, and N the number of volunteers asked to

answer the question. Based on this model, a probabilistic prediction

model can be built from a neural network estimating the parameter

r from a given image x:

Λ = − log Bin(k|x,w,a, N) + λ ‖ w ‖22 . (51)

Figure 4 illustrates the difference between posterior predictions

from the fitted model with and without sampling of network outputs

via MC dropout. For any given fixed realization (central column),

the distribution of predictions is generally over confident, leading to

apparent mis-calibration as two out of the seven examples appear

to give very low probability to the actual value (second and fifth

rows). On the contrary, after sampling from the multiplicative noise

distribution (right column), the mean model approximate posterior

(green) is significantly wider and also can exhibit more complex

shapes than a simple binomial distribution. The high variance on

the posterior predictions indicates that epistemic uncertainties are

more significant, and the authors further measure empirically a much

improved, but not perfect, calibration of the MC dropout posterior.

Recognizing that the uncertainties modeled by a choice in proba-

bilistic network are not perfect, the authors still propose an excellent

use case for them, in the form of active learning. In the active sce-

nario, approximate and fast inference is preferred over more exact,
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Fig. 4. Posterior distributions of number k of positive answers to the question
“Does this image contain a barred spiral galaxy?” for N votes. Left: Image cutouts
as presented to the citizen scientists and CNN. Center: Approximate posterior
distribution predicted by one model at fixed network parameters, i.e only mod-
eling aleatoric uncertainties, the red line represents the true observed number.
Right: Approximate posterior taking into account a model for both aleatoric and
epistemic uncertainties, i.e. obtained by sampling 30 realizations from the MC
dropout network. The full posterior distribution (green) is generally broader and
better calibrated than individual approximate posterior samples (black). Figure
credit: Walmsley et al. (2019) [32].
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but computationally and time expensive results. For this reason, the

authors propose a strategy to identify galaxies for which the model

uncertainies are largest, and preferentially ask human volunteers to

label those, as a way to selectively invest human resources where they

will be the most useful to help constrain the model.

In particular, the authors adopt the Bayesian Active Learning

by Disagreement [33] (BALD) strategy which is based on selecting

examples that maximize the mutual information I[k,w]. This quan-

tity measures, for a given galaxy x, how much information can be

gained on the parameters of the neural network w from knowing the

true label k of that galaxy. While estimating this mutual information

is in general a difficult task, a practical estimator can be derived in

the case of a MC dropout. In their experiments, it is found that for

some prediction tasks, as much as 60% fewer training galaxies are

necessary to reach a given testing score when selected through active

learning, compared to selected through a uniform random sampling.

3.2.6. Flipout

Flipout [34] is an alternative to the local reparameterization trick

(or variational dropout) that proposes an efficient way to gener-

ate (and store) pseudo-independent perturbations to decorrelate the

gradients with respect to parameters m = {(μi,Δwi)|i ∈ [1, nw]}
according to each of the nelems elements of data within a minibatch.

μi and Δwi are the mean and stochastic perturbation of some net-

work parameter w(mi). This method therefore is more closely akin

to stochastic gradient variational Bayes, where the distribution of

network parameters is fitted. Note that for Flipout, the requirement

on the distribution for each network parameter is that they are differ-

entiable with respect to the parameters m, that the distribution of

perturbations of the network parameters, Δwi, is symmetric about

zero (but not necessarily Gaussian) and the network parameters are

independent. With Δwi symmetric amount zero, the multiplication

by a random matrix of signs leaves it identically distributed. This

means that by choosing a single Δwi for each network parameter

(like Δwi = σiεi for the Gaussian case) somewhat decorrelated gra-

dients can be obtained for each element of a minibatch by identically
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distributing Δwi via random draws from two nelems — length vec-

tors, ji = {jin = 2bin − 1|bin ∼ Bernoulli(0.5), n ∈ [1, nelems]} and

ki = {kin = 2bin − 1|bin ∼ Bernoulli(0.5), n ∈ [1, nelems]}. Each

parameter of the network is then obtained, as with the reparameter-

ization trick, via

wn(mi) = μi +Δwijinkin. (52)

This can be performed very quickly using matrix multiplication,

affording a decrease in the variance of the stochastic gradient by a

factor of ∼1/nelems in comparison to using shared parameter values

for an entire minibatch for approximately twice the computational

cost, although due to parallelization this can be done in equal time.

Example: Cosmological parameter inference and uncer-

tainty calibration: The inference of cosmological parameter val-

ues from data, such as maps of the Cosmic Microwave Background

radiation, is an important task in these times of precision cosmol-

ogy. It is therefore useful to consider the comparison of several of

the variational inference methods to calibrate their performance [35].

The study uses two CNN architectures, AlexNet and VGG to pre-

dict, from an image of the CMB, a Gaussian posterior distribution

on a limited set of three cosmological parameters. The outputs of

these neural networks, parameterized with w, are therefore chosen

to be the mean, μ ≡ μ(x,w), and covariance, Σ ≡ Σ(x,w), of a

multivariate Gaussian distribution. The loss function used to train

these networks under a Flipout model is

Λ(m) = − E
w∼qm

[
1

2
(y− μ)TΣ−1(y− μ) + 1

2
log detΣ

]
+KL (qm ‖ ρ) . (53)

In this work, the authors perform a post-training re-calibration

of the models to ensure that some coverage properties are respected.

In practice, they adopt the Platt Scaling method [36], to empirically

adjust the posteriors as to make the reliability diagram of their cover-

age probability well calibrated. Note however that this simple scaling

cannot account for all deviations from the true posterior shape.
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Fig. 5. Left: Reliability diagrams for different models, before (solid) and after
(dashed) post-training re-calibratrion. Right: Approximate posteriors for cosmo-
logical parameters obtained after calibration of the models. This illustrates the
difficulty of obtaining well-calibrated probabilistic models from neural networks
directly out of the optimization procedure, but post-hoc calibration can correct
some of these biases. Figure credit: Hortua et al. (2019) [35].

The results of this procedure are illustrated on Fig. 5 where the

left plot shows the reliability diagrams of the various models before

and after calibration. The right plot illustrates the confidence con-

tours for the approximate posterior of cosmological parameters pre-

dicted by four different re-calibrated models on the same input data.

They are fairly similar in terms of sizes, but not identical, show-

ing that this re-calibration cannot account for complex departures in

posterior shapes.

One of the takeaways of this work is that overall Flipout appear

to be the best performing method in terms of calibration, training

speed, and accuracy, out of the four explored (reparameterization,

Flipout, MC Dropout, DropConnect).

3.2.7. Neutra

We can also use variational inference as part of a Markov chain

sampling scheme. Neutra [37] is a method which samples from a

normal distribution and then performs a bijective transformation,
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g : ε ∼ N(0, I) → λ ∼ ρχ, to a space approximating the target

distribution. In this way, it can be seen as an approximation to the

Riemannian manifold HMC (Sec. 3.1.2) where the metric is defined

by the bijective function, I(λ) = (JJT )−1, where the Jacobian is

J= ∂εg. Using neural networks (and particularly many of the mod-

ern density estimators such as inverse autoregressive flows, etc.) this

Jacobian is very easy to evaluate and therefore g can be arbitrarily

complex, fittable to the desired function by maximizing the ELBO

and quick to evaluate. Using HMC, samples can be obtained very

easily from the normal distribution and the bijected forward to get

samples from an approximation to the target distribution much more

efficiently than samples can be obtained by directly evaluating the

target distribution. It should be noted that this method, like all those

mentioned in this section, is not Bayesian in nature, since, in this

case, there is no quantification in how well the bijection is really per-

forming. Therefore, there is no way to tell if the samples, g(ε), actu-

ally coincide with samples λ ∼ ρχ, meaning the distribution could be

very different from that desired when addressing target distribution

using exact evaluations.

4. Concluding Remarks and Outlook

Despite impressive accuracy in supervised learning benchmarks, cur-

rent state-of-the-art neural networks are poor at quantifying pre-

dictive uncertainty, and as such are prone to produce overconfident

predictions and biases which are extremely difficult to disentangle

from true properties of the data. The fact that proper uncertainty

quantification is crucial for many practical applications justifies the

formulation of neural networks as statistical models as a first step

towards using them for inference.

While truly Bayesian neural networks have the capacity to fully

characterize the epistemic uncertainty introduced by the neural net-

work, in practice, exact Bayesian inference is intractable for neu-

ral networks. It is common to resort to either using numerically

approximated by exact samples of posterior distribution of network

parameters, that is, Monte Carlo methods, or to using approximate
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distributions as a proxy for the true Bayesian posterior, through

variational inference. The fact that, through the former method,

Bayesian neural networks are often harder to train and implement

than non-Bayesian neural networks means that, in the literature,

variational methods have gained a lot of popularity in the recent

years. However, as we have stressed in this chapter, those latter

approximate methods suffer from many pitfalls, in particular the lack

of guarantee that the approximate distribution is sufficiently close to

the desired target.

Because of these, other statistical tools and tests should be used

in concurrence with approximate Bayesian neural networks, such as

calibration and test of generalization of the predictive uncertainty to

domain shifts [38]. However, it is worth noting that Bayesian neural

networks are not necessarily the most useful for doing the best rea-

soned inference of network outputs. For this, other methods, such as

likelihood-free (simulation-based) inference, could be more efficient,

powerful, and easier to implement.
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Parton Distribution Functions
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We discuss the determination of the parton substructure of hadrons by
casting it as a peculiar form of pattern recognition problem in which
the pattern is a probability distribution, and we present the way this
problem has been tackled and solved. Specifically, we review the NNPDF
approach to PDF determination, which is based on the combination
of a Monte Carlo approach with neural networks as basic underlying
interpolators. We discuss the current NNPDF methodology, based on
genetic minimization, and its validation through closure testing. We then
present recent developments in which a hyperoptimized deep-learning
framework for PDF determination is being developed, optimized, and
tested.

1. Introduction

The determination of the parton substructure of the nucleon is essen-

tially a pattern recognition problem: given an unknown underlying

function that maps input instances to actually realized outcomes,

use a set of data to infer the function itself. However, the determina-

tion of parton distributions (PDFs, henceforth) differs from standard

pattern recognition problems (such as, say, face detection) in many

peculiar and perhaps unique relevant aspects. Also, whereas the first

PDF determinations have been performed around forty-five years

ago [1–6] it was only recognized less than twenty years ago [7–11]

that AI techniques could be used for PDF determination: see Fig. 1.
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Fig. 1. Timeline for the development of PDFs based on AI techniques.

In this section, we will first briefly review what the problem of

PDF determination consists of, in which sense it can be viewed as a

pattern recognition problem, and the peculiarities that characterize

it. We will then briefly summarize the NNPDF approach to PDF

determination, which is the only approach in which the problem has

been tackled using AI techniques.
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In Sec. 2, we will provide a more detailed discussion of the NNPDF

tool-set used for the determination of current published PDF sets, i.e.

up to NNPDF3.1 [12]. We will specifically discuss the use of neural

nets as PDF interpolants, PDF training using genetic minimization

and cross-validation, and the validation methodology based on clo-

sure testing. In Sec. 3, we will then turn to a methodology that is cur-

rently being developed for future PDF determinations, which updates

the standard AI tools used by NNPDF to more recent machine learn-

ing methods, relying on deterministic minimization, model optimiza-

tion (hyper-optimization) and more powerful and detailed validation

techniques.

1.1. PDF determination as an AI problem

PDFs encode the structure of strongly-interacting particles or nuclei,

as probed in high-energy collisions. A review of the underlying the-

ory is beyond the scope of this work, and the reader is referred to

standard textbooks [13], summer school lecture notes [14] and recent

specialized reviews [15, 16] for more detailed discussions. Here it

will suffice to say that a generic observable, such as the total cross-

section σX(s,M2
X) for a “hard” (i.e. perturbatively computable in

QCD) physical process in a collision between two hadrons (such as

two protons at the LHC) has the structure

σX(s,M2
X)

=
∑
a,b

∫ 1

xmin

dx1 dx2 fa/h1
(x1,M

2
X)fb/h2

(x2,M
2
X)σ̂ab→X(x1x2s,M

2
X).

(1)

Here s is the (square) center-of-mass energy of the collision (so

s = (13 TeV)2 at the LHC) and MX is the mass of the final state

(so MX = 125 GeV for Higgs production); σX is the measurable

cross-section, observed in proton–proton interactions (hadronic cross

section, henceforth), while σ̂ab→X is the computable cross-section,

determined in perturbation theory from the interaction of two incom-

ing partons, i.e. quarks and gluons a and b (partonic cross-section,

henceforth).
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In Eq. (1) fa/h1
, fb/h2

are the PDFs: they provide information

on the probability of extracting a parton of kind a, b (up quark, up

antiquark, etc.) from incoming hadrons h1, h2. Note that PDFs are

not quite probability densities, first because they are not functions

but rather distributions (like the Dirac delta), and also, they are not

positive definite. The PDFs are a universal property of the given

hadron: e.g. the proton PDFs are the same for any process with a

proton in the initial state. They depend on x, which can be viewed

as the fraction of the momentum of the incoming hadron carried

by the given parton, so 0 ≤ x ≤ 1, and on the scale M2
X . The

dependence on M2
X is computable in perturbation theory, just like

the partonic cross-section σ̂ab→X , and it is given as a set of integro-

differential equations, having as initial conditions the set of PDFs at

some reference scale Q0.

The dependence of the PDFs on x would be computable if one was

able to solve QCD in the non-perturbative domain, i.e. if it was pos-

sible to compute the proton wave function from first principles. This

is of course not the case, other than through lattice simulations [17].

Hence, in principle, PDFs for any given hadron at some reference

scale Q0 are a set of well-defined functions of x, namely fa/h(x,Q
2
0),

which depend on the single free parameter of the theory, the strong

coupling (and, for heavy quark PDFs, the heavy quark masses). We

know that these functions exist, but we do not know what they are:

at present, they can only be determined by comparing cross-sections

of the form Eq. (1) for a wide enough set of observables for which

the hadronic cross-section is measured with sufficient precision, and

the partonic cross-section is known with sufficient accuracy (i.e. to

high enough perturbative order in QCD, including electroweak cor-

rections, etc.).

The traditional way the problem has been approached is by pos-

tulating a particular functional form for the x dependence of the

PDFs at a reference scale Q0, given in terms of a set of free param-

eters; determining the PDFs at all other scales Q by solving pertur-

bative evolution equations; and determining the free parameters by

fitting to the data. The standard choice, adopted since the very first
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attempts [1] is

fi = xαi(1− x)βi , (2)

where now i collectively indicates the type of parton and of parent

hadron. This functional form is suggested by theory arguments (or

perhaps prejudice) implying that PDFs should display power-like

behavior as x → 0 and as x → 1 (see e.g. [18]). Note that, even

if this were true, there is no reason to believe that this behavior

should hold for all x, and thus, given that only a finite range in

x is experimentally accessible (currently roughly 10−4 � x � 0.5),

it is unclear that this functional form should apply at all in the

observable region. Furthermore, from the equations which govern the

Q2 dependence of the PDFs, it is easy to see that even if the PDF

takes the form of Eq. (2) at some scale, this form is not preserved as

the scale is varied: specifically, it is corrected by lnx terms as x→ 0,

and by ln(1− x) terms as x→ 1.

The fact that the simple functional form Eq. (2) is too restrictive

has been rapidly recognized, and more and more elaborate functional

forms have been adopted in more recent PDF determinations. For

example, the gluon PDF of the proton was parameterized in the

CTEQ5 [19] PDF set as

xg(x,Q2
0) = A0x

A1(1− x)A2(1 +A3x
A4) (3)

and in the CT18 PDF set [20] as

g(x,Q = Q0) = xa1−1(1− x)a2 [a3(1− y)3

+ a43y(1− y)2 + a53y
2(1− y) + y3],

y =
√
x, a5 = (3 + 2a1)/3. (4)

Issues related to postulating a fixed functional form for PDFs were

made apparent when a determination of the uncertainties on the

PDFs was first attempted [21–23]. Namely, uncertainties on the fit

parameters determined by least-squares and standard error propaga-

tion turned out to be smaller by about one order of magnitude than

one might reasonably expect by looking at the fluctuation of best-fit
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values as the underlying dataset was varied. This led to the pecu-

liar concept of “tolerance”, namely, an a-posteriori rescaling factor

of uncertainties. It is debatable how much of the need for such a

rescaling is related to the bias introduced by the choice of a partic-

ular functional form. However, a not uncommon occurrence is that

addition of new data, leading to a more extended parameterization

(such as Eq. (4) in comparison to Eq. (3)) would lead to an increase

in uncertainties. This suggests that the more restrictive parameteri-

zation might well be biased.

In 2002 it was first suggested [7] that these difficulties may be over-

come by addressing the problem of PDF determination by means of

a standard AI tool, neural networks. The basic underlying intuition

is that neural networks provide a universal interpolating function,

and that by choosing a sufficiently redundant architecture any func-

tional form can be accommodated in a bias-free way, while avoiding

overtraining through suitable training methods, as we will discuss in

Secs. 2.2.2 and 3.4.1 below. This first suggestion was gradually devel-

oped into a systematic methodology for PDF determination through

a series of intermediate steps (see Fig. 1) involving, on the method-

ological side, a number of subsequent improvements, to be discussed

below, and a set of validation and testing techniques. The more recent

successors NNPDF3.0 [24] and NNPDF3.1 [12] of the first PDF set

developed using this methodology (NNPDF1.0 [10]) are currently the

most widely cited PDF sets.

It should now be clear in which sense PDF determination can

be viewed as a pattern recognition problem, and what are its pecu-

liar features. As in standard pattern recognition, the main goal is to

determine a set of unknown underlying functions from data instances,

with almost no knowledge of their functional form (other than loose

constraints of integrability with an appropriate measure, smoothness,

etc.). Unlike in the simplest pattern recognition problems, the func-

tions provide continuous output (i.e. the features to be recognized

are continuous), and data are not directly instances of the functions

to be determined. Hence, one cannot associate an input–output pair

to an individual data point. Rather, as apparent from Eq. (1), each

datapoint provides an output which depends in a nonlinear way on
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the full set of functions evaluated at all input values, which are inte-

grated over from some minimum xmin (depending on the particular

observable and the values of s and M2
X). This is of course common

to more complex pattern recognition problems, such as in computer

vision.

There are however two peculiarities in PDF determination which

set it apart from most or perhaps all other applications of AI. The

first is that the quantities which one is trying to determine, the PDFs,

are probability distributions of observables, rather than being observ-

ables themselves. This follows from the fact that, due to the quantum

nature of fundamental interactions, individual events (i.e. measure-

ment outcomes) are stochastic, not deterministic. Even if the PDF

were known exactly to absolute accuracy, the cross-section would

just express the probability of the observation of an event, to be

determined through repeated measurements. The PDFs are accord-

ingly probability distributions. The goal of PDF determination is

to determine the probability distribution of PDFs: hence, in PDF

determination one determines a probability distributions of proba-

bility distributions, i.e. a probability functional.

The second peculiarity is that in order for a PDF determination

to be useful as an input to physics predictions, full knowledge of

PDF correlations is needed. In fact, PDF uncertainties are typically

a dominant source of uncertainty in predictions for current and future

high-energy experiments [25]. But the uncertainty on each particular

PDF at a given x value, fi(x,Q
2
0) is correlated to the uncertainty on

any other PDF at a different x value fj(x
′, Q2

0), and this correlation

must be accounted for in order to reliably estimate PDF uncertain-

ties [26]. Hence, PDF determination also requires the determination

a covariance matrix of uncertainties in the space of probability dis-

tributions: namely, a covariance matrix functional.

The NNPDF approach to PDF determination tackles this problem

using AI tools, as we discuss in the next section.

1.2. The NNPDF approach

As seen in Sec. 1.1 the NNPDF methodology has the goal of deter-

mining the probability distribution of a set of functions, which in turn
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Fig. 2. Schematic representation of the NNPDF methodology.

are related to the probability distributions of quantum events (the

emission of a parton from a parent hadron) that provide the input

to the computation of predictions for (discrete) experimental mea-

surements. The methodology is based on two distinct ingredients: the

use of a Monte Carlo representation for the probability distributions,

and the use of neural networks as unbiased underlying interpolating

functions. It is schematically represented in Fig. 2.

The Monte Carlo representation provides a way of breaking down

the problem of determining a probability in a space of functions into

an (in principle infinite) set of problems in which a unique best-fit set

of functions is determined. The basic idea is to turn the input prob-

ability distribution of data into a Monte Carlo representation. This

means that the input data and correlated uncertainties are viewed as

a probability distribution (typically, but not necessarily, a multigaus-

sian) in the space of data, such that the central experimental values

correspond to the mean and the correlated uncertainties correspond

to the covariance of any two data. The Monte Carlo representation



December 14, 2021 17:23 Artificial Intelligence for High Energy Physics 9in x 6in b4322-ch19 page 723

Parton Distribution Functions 723

is obtained by extracting a set of replica instances from this proba-

bility distribution, in such a way that, in the limit of infinite number

of replicas, the mean and and covariance over the replica sample

reproduce the mean and covariance of the underlying distributions.

In practice the number of replicas can be determined a posteriori by

verifying that mean and covariance are reproduced to a given target

accuracy.

A best-fit PDF (or rather, PDF set: i.e. one function fi(x,Q
2
0)

for each distinct type of parton i) is then determined for each data

replica, by minimization of a suitable figure of merit. Neural networks

are used to represent the PDFs, with the value of x as input, and

the value of the PDF as an output (one for each PDF). Note that

the fact that the data only depend indirectly on the input functions

to be determined (the PDFs) is immaterial from the point of view of

the general methodology. Indeed, the problem has been reduced to

that of determining the optimal PDFs for each input data replica,

namely, to standard training of neural networks. However, the fact

that the PDF is not trained to the data directly will have significant

implications on the nature of PDF uncertainties, on their validation,

and on the optimization of PDF training, as we will discuss more

extensively in Secs. 2.3, 3.1 and 3.2.

The output of the process is a set of PDF replicas, one for each

data replica. These provide the desired representation of the proba-

bility density in the space of PDFs. Specifically, central values, uncer-

tainties and correlations can be computed doing statistics over the

space of PDF replicas: the best-fit PDF is the mean over the set of

replicas, the uncertainty on any PDF for given x can be found from

the variance over the replica sample, and the correlation from the

covariance.

The remaining methodological problems are how to determine the

optimal neural network parameterization, how to determine the opti-

mal PDF for each replica (i.e. the optimal neural network training)

and how to validate the results. The way these issues are addressed

in the current NNPDF methodology will be discussed in Sec. 2, while

current work towards improving and hyperoptimizing the methodol-

ogy are discussed in Sec. 3.



December 14, 2021 17:23 Artificial Intelligence for High Energy Physics 9in x 6in b4322-ch19 page 724

724 S. Forte & S. Carrazza

2. The State of the Art

The NNPDF methodology, presented in Sec. 1.2, combines a Monte

Carlo approach representation of probability distributions with neu-

ral networks as basic interpolants. Here we discuss first, the archi-

tecture of the neural networks, then their training, which is achieved

by combining genetic minimization with stopping based on cross-

validation, and finally the validation of results through closure

testing.

2.1. Neural networks for PDFs

In all NNPDF determinations, starting with the proof-of-concept

determination of a single PDF (isotriplet combination) in [9], up to

and including the most recent global PDF set, NNPDF3.1 [12] the

PDF architecture has been unchanged. Namely, PDFs are param-

eterized at a reference scale Q0 and expressed in terms of a set of

independent neural networks multiplied by a preprocessing factor.

Each of these neural networks consists of a fixed-size feed-forward

multi-layer perceptron with architecture 2-5-3-1 (see Fig. 3). The

only change in subsequent releases is in the number of indepen-

dently parameterized PDFs (or PDF combinations), and thus of

Fig. 3. Architecture of the neural networks used for PDF parameterization in
all available NNPDF sets. Each PDF is parameterized by a preprocessed neural
network, according to Eq. (5). The values of x and lnx are taken as input, and the
value of the PDF is given as output. The number of independently parameterized
PDFs has increased over time but the architecture has remained the same.
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independent neural networks: one in the proof-of-concept [9], five

in NNPDF1.0 [10] (up and down quarks and antiquarks and the

gluon), seven from NNPDF1.1 [27], eight in NNPDF3.1 [12] (up,

down, strange quarks and antiquarks; total charm; gluon).

The PDF momentum fraction x enters the input layer nodes as

(x, log(x)), in order to account for the fact that the physical behavior

of PDFs typically has two different regimes in the physically acces-

sible 10−4 � x � 0.5 region: a linear regime in the region 0.03 � x �
0.5 and a logarithmic regime in the region 10−4 � x � 0.03. The next

two hidden layers, with 5 and 3 nodes respectively, use the sigmoid

activation function while the output node is linear. This particu-

lar choice of architecture was originally selected through systematic

manual scans, as being sufficiently redundant to accommodate the

PDF shape in an unbiased way .

The fact that it was never necessary to update this initial choice

has validated the robustness of this analysis. Furthermore, in [10], it

was explicitly checked that results would be unchanged if the number

or nodes in the first hidden layer was reduced from 5 to 4. In [24],

within a closure test (see Sec. 2.3 below), it was checked that results

were unchanged if the number of the nodes in the intermediate layers

was increased respectively from 5 to 20 and from 3 to 15, which

corresponds to an increase of the number of free parameters of the

neural net by more than one order of magnitude.

The parameterization for each PDF (or independent combination

of PDFs) is

xfi(x,Q0) = Aix
−αi+1(1− x)βiNNi(x), (5)

where NNi is the neural network corresponding to a given combi-

nation i. The quantities which are independently parameterized are

the linear combination of light quark and gluon PDFs which corre-

spond to eigenvectors of the PDF Q2 evolution equations, and charm:

{g, Σ, V, V3, V8, T3, T8, c+} (see [12, 14] for the precise definition).

Ai is an overall normalization constant which enforces sum rules

(such as the fact that the total momentum fractions carried by all

partons must add up to one) and x−αi(1 − x)βi is a preprocessing

factor which controls the PDF behavior at small and large x.
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The preprocessing exponents αi and βi were initially (NNPDF1.0

[10]) chosen to be fixed, while checking that no strong dependence

of results was observed upon their variation. As the accuracy of the

PDF determination improved, starting with NNPDF1.2 [28], in order

to ensure unbiased results, the exponents were varied. Namely, the

values of αi, βi were randomly selected for each PDF in each replica,

with uniform distribution within a range fixed for each PDF, and

kept fixed during the minimization of the replica. Effectively, with

reference to Fig. 2, this means that for each PDF replicas the PDF

parameterization is different, because the preprocessing function of

each PDF is different. The range for each type of PDF (gluon, up

quark, etc) was initially determined by requiring stability of the

fit results, which, starting with NNPDF2.0 [11] was quantitatively

determined by computing the correlation coefficient between the fig-

ure of merit χ2 (see Eq. (6) below) and verifying that it remained

small. Starting with NNPDF3.0 [24], the range is now determined

self-consistently: the effective exponents are computed for each inde-

pendent combination of PDFs and for each PDF replica, the 68%

confidence level range is determined for each combination, the fit

is repeated with the exponents varied in a range taken equal to

twice this range, and the procedure is iterated until the range stops

changing.

As already mentioned, unlike in many standard regression prob-

lems, in which during the optimization procedure the model is com-

pared directly to the training input data, in PDF fits the data are

compared to theoretical predictions for physical observables of the

form of Eq. (1), in which the PDFs fi(x,Q
2) are in turn obtained

by solving a set of integro-differential equations from the PDFs

fi(x,Q0), parameterized at the initial scale. Hence, the observable

depends on the PDF through a number of convolution integrals,

between the PDFs at scale Q0, the evolution factors that take them

to scale Q and the partonic cross-sections of Eq. (1). In practice, the

convolutions are turned into multiplication of pre-computed tables

(FastKernel or FK-tables) by projecting on suitable basis functions,

as discussed in [11, 29], see also Sec. 3.1 below.
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2.2. The minimization procedure

The optimization procedure implemented in NNPDF consists in min-

imizing the loss function

χ2 =

Ndat∑
i,j

(D − P )iσ−1
ij (D − P )j , (6)

where Di is the ith data point, Pi is the convolution product between

the FastKernel tables for point i and the PDF model, and σij is the

covariance matrix between data points i and j. The covariance matrix

includes both uncorrelated and correlated experimental statistical

and systematic uncertainties, as given by the experimental collab-

orations. Multiplicative uncertainties (such as normalization uncer-

tainties), for which the uncertainty is proportional to the observable,

must be handled through a dedicated method in order to avoid fit-

ting bias: the t0 method has been developed [30] to this purpose, and

adopted from NNPDF2.0 [11] onward. Theory uncertainties (such as

missing higher order uncertainties) could also be included as dis-

cussed in [31, 32] but this has only been done in preliminary PDF

sets so far. Once again, we stress that input data are not provided

for the neural networks, but rather for a complicated functional of

the neural network output.

2.2.1. Genetic minimization

The minimization implemented in NNPDF3.1 and earlier releases is

based on genetic algorithms (GA). Given that each PDF replica is

completely independent from each other, the minimization procedure

can be trivially parallelized. Genetic minimization was chosen for a

number of reason. On the one hand, it was felt that that a determinis-

tic minimization might run the risk of ending up in a local minimum

related to the specific network architecture. Also, no efficient way

of determining the derivative of the observables with respect to the

parameters of the neural network was available then. In fact, mod-

ern, efficient deterministic minimization methods [33, 34] were not
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yet available at the time. As we will discuss in Sec. 3.1 below, these

motivations are no longer valid and deterministic minimization is

now more desirable.

The GA algorithm consists of three main steps: mutation, evalu-

ation and selection. These steps are performed subsequently through

a fixed number of iterations. The procedure starts with the initial-

ization of the neural network weights for each PDF flavor using a

random Gaussian distribution. From this initial network, a number

of copies is produced, for which the weights are then mutated with a

suitable rule. The mutations with lowest values of the figure of merit

are selected and the procedure is iterated.

The GA initially adopted was based on point change mutations, in

which individual weights or thresholds in the networks were mutated

at random, according to a rule of the form

wi → wi + ηiri, (7)

where wi is the ith neural network weight or threshold, ηi is a muta-

tion rate size, ri is a uniform random number within [−1, 1]. A fixed

number of randomly chosen parameters are then mutated for each

PDF, thereby producing a given number of mutants for each gen-

eration. The GA is fully specified by assigning: (i) the number of

mutations for each PDFs; (ii) the mutation rates for each muta-

tion and for each PDF; (iii) the number of mutants for each genera-

tion; (iv) the maximum number of generations. The mutation rates

were dynamically adjusted as a function of the number of iterations

according to

ηi =
η
(0)
i

Np
ite

. (8)

Several subsequent versions of this GA have been adopted. In

a first version (NNPDF1.0 [10]), a fixed value of the number of

mutations (two per PDF), of the number of mutants (Nmut = 120)

and of the exponent p (p = 1/3) of Eq. (8) were adopted, with a

small maximum number of generations (Nmax = 5000). At a later

stage (NNPDF2.0 [11]) the minimization was divided in two epochs,
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with a transition at Nite = 2500 generations, and a larger number

(Nmut = 80) of mutants in the first epoch, substantially decreased

(Nmut = 10) in the second epoch; also, the exponent p was now

randomly varied between 0 and 1 at each generation and the maxi-

mum number of generations was greatly increased (Nmax = 30000).

At a yet later stage (NNPDF2.3 [35]) the number of mutations was

increased to three for several PDFs.

Subsequent versions of the GA also involved various reweighting

procedures, in which the contribution of different datasets to the

figure of merit Eq. (6) was assigned a varying weight during the

training, in order to speed up the training in the early stages. In

a first implementation [10], these weights were computed as a ratio

of the χ2 per datapoint for the given dataset, compared to the χ2

per datapoint of the worst-fitted datasets, so that best-fitted dataset

would get less weight. Weights were then switched off when the value

of the figure of merit fell below a given threshold. In a subsequent

implementation [11], the weights were computed as ratios of the χ2

to a target χ2 value for the given dataset (determined from a previ-

ous fit) and only assigned to datasets for which the fit quality was

worse than the target. Weights were only applied in a first training

epoch.

Starting with NNPDF3.0 [24], a GA based on nodal mutation

has been adopted. In nodal mutation, each node in each network is

assigned an independent probability of being mutated. If a node is

selected, its threshold and all of the weights are mutated according to

Eqs. (7) and (8), with now η fixed, and p a random number between

0 and 1 shared by all of the weights. The values η = 15 and muta-

tion probability 15% per node have been selected as optimal based

on closure tests (see Sec. 2.3 below). This algorithm proved to be

significantly more efficient (see Fig. 4 below) than the previous point

mutation: in particular, reweighting was no longer necessary and it

was no longer necessary to have different training epochs.

2.2.2. Stopping criterion

The GA presented in Sec. 2.2 can lead to overfitting, in which not

only the underlying law is fitted, but also statistical noise which



December 14, 2021 17:23 Artificial Intelligence for High Energy Physics 9in x 6in b4322-ch19 page 730

730 S. Forte & S. Carrazza

is superposed to it. In order to avoid this, a stopping criterion is

required. This was implemented since NNPDF1.0 through cross-

validation. Namely, the data are separated in a training set, which

is fitted, and a validation set, which is not fitted. The GA minimizes

the χ2 of the training set, while the χ2 of the validation set is mon-

itored along the minimization, and the optimal fit is achieved when

the validation χ2 stops improving. This means that the fit optimizes

the validation χ2, which is not fitted. Because statistical noise is

uncorrelated between the training and validation sets, this guaran-

tees that overfitting of the statistical noise is avoided. Note that more

subtle forms of overfitting are possible, due to remaining correlations

between training and validation sets: this, and the way to avoid it,

will be discussed in Sec. 3.3 below.

In PDF fits before NNPDF3.0 [24] this stopping criterion was

implemented by monitoring a moving average of the training and

validation χ2, and stopping when the validation moving average

increased while the training moving average decreased by an amount

which exceeded suitably chosen threshold values. This was necessary

in order to avoid stopping on a local fluctuation, and it required the

tuning of the moving average and of the threshold values, which was

done by studying the typical fluctuations of the figure of merit. This

clearly introduced a certain arbitrariness.

Since NNPDF3.0 [24], the previous stopping criterion has been

replaced by the so-called look-back method. In this method, the PDF

parameterization is stored for the iteration where the fit reaches the

absolute minimum of the validation χ2 within a given maximum

number of generations. This guarantees that the absolute minimum

of the validation χ2 within the given maximum number of iterations is

achieved. The method reduces the level of arbitrariness introduced in

the previous strategy, but it requires reaching the maximum number

of iterations for all replicas, out of which the absolute minimum is

determined. This maximum must be chosen to be large enough that

the absolute minimum is always reached, and it therefore leads on

average to longer training. Adoption of this new stopping has been

made possible thanks to greater computing efficiency.
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2.3. Closure tests

As mentioned in Sec. 1 a critical issue in PDF determination is mak-

ing sure that PDF uncertainties are faithful. Therefore, the valida-

tion of a PDF set chiefly consists of verifying that PDF uncertainties

accurately reproduce the knowledge of the underlying true PDFs

which has been learnt and stored, together with its uncertainty, in

the Monte Carlo replica set through the training procedure. Because

the true PDFs are not known, this can only be done through closure

testing [36]. Namely, a particular underlying truth is assumed (in our

case: a specific form for the true underlying PDFs); data are then

generated based on this underlying truth; the methodology is applied

to this data; results are finally compared to the underlying truth.

This exercise was performed for the NNPDF3.0 PDF set [24];

since the subsequent NNPDF3.1 PDF set [12] is based on the same

methodology, this provides a validation of the current NNPDF PDF

sets. In this section, we will briefly review the closure testing method-

ology and results of [24], while the ongoing validation of the new

methodology of Sec. 3 will be discussed in Sec. 3.4 below.

In this closure test, data were generated by assuming that the

underlying PDF has the form of the MSTW08 PDF set [37], and

then generating a dataset identical to that used for the NNPDF3.0

PDF determination (about 4000 data points) but computing the

hadronic cross-sections using Eq. (1) with these PDFs adopted as

input and the partonic cross-sections determined using NLO QCD

theory. Clearly, the exact form of the theory is immaterial if the same

theory is used to generate the data and then to fit them, in such a

way that only the fitting methodology is being tested. The indepen-

dence of result on the particular choice of underlying truth can be

explicitly tested by repeating the procedure with a different choice

for the underlying PDF.

Besides providing a validation of the NNPDF methodology, the

closure test also allows for an investigation of the sources of PDF

uncertainty in a controlled setting. To this purpose, three sets of clo-

sure testing data were generated in [24]. The first set (“level 0”) con-

sists of data generated with no uncertainties. This would correspond
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to a hypothetical case in which there are no experimental statistical

or systematic uncertainties, so all data correspond to the “truth”,

with vanishing uncertainty. A second set of data (“level 1”) is gen-

erated by assuming the probability distribution which corresponds

to the published experimental covariance matrix. These data corre-

spond to a hypothetical set of experimental results for which the

experimental covariance matrix is exactly correct. A final set of data

(“level 2”) is generated by taking the level 1 data as if they were

actual experimental data, and then applying to them the standard

NNPDF methodology, which, as discussed in Sec. 1.2 (see Fig. 2) is

based on producing a set of Monte Carlo replicas of the experimental

data: the level 2 data are then the Monte Carlo replicas produced

out of the level 1 data, as if the latter were actual experimental data.

A first very simple test consists of fitting level 0 data, and com-

puting the figure of merit (χ2 per datapoint) as the training proceeds.

Because these data have no uncertainty, a perfect fit with χ2 is in

principle possible. Results are shown in Fig. 4 for the two implemen-

tations of the minimization algorithm adopted in [35] (NNPDF2.3)

Number of Generations

310 410 510

2

-410

-310

-210

-110
Old (2.3) genetic algorithm

New genetic algorithm

Effectiveness of Genetic Algorithm in Level 0 Closure Tests

Fig. 4. The normalized figure of merit computed for the average over PDF
replicas vs. the number of generations of the genetic algorithm for two differ-
ent GA implementations, in a test case in which the figure of merit vanishes
asymptotically.
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and [24] (NNPDF3.0) and discussed in Sec. 2.2. Two sets of conclu-

sions may be drawn from his plot. First, it is clear that the method-

ology is general and powerful enough to reproduce the underlying

data: the figure of merit can be made arbitrarily small, which means

that with vanishing experimental uncertainties, the data can be fitted

with arbitrarily high accuracy. Second, it is possible to determine the

dependence of the figure of merit on the training length, and specifi-

cally compare different minimization algorithms. Interestingly, Fig. 4

shows that for the two GAs of Sec. 2.2 the figure of merit follows a

power law: χ2 ∼ 1
Nλ . Furthermore, it is clear that the value of λ

is rather larger (faster convergence) for the NNPDF3.0 GA, based

on nodal mutation (recall Sec. 2.2), in comparison to the previous

NNPDF2.3 GA implementation.

A second test compares the uncertainty on PDFs which is found

when fitting respectively to level 0, level 1 and level 2 data. Results

are shown for the gluon in Fig. 5: 68% confidence levels are shown

for fits to level 0, level 1 and level 2 data. The plot has various impli-

cations. The first observation is that, as discussed in Sec. 1 the data

constrain the PDFs only in a limited 10−2 � x � 0.5 range (“data

region”, henceforth). Outside that range the uncertainty grows very

large, and in the absence of experimental information it is essentially

arbitrary.
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Fig. 5. The 68% confidence level uncertainty bands for the gluon PDF deter-
mined using level 0, level 1 and level 2 closure test data (see text). Results are
shown vs. x at the PDF parameterization scale on a logarithmic (left) and linear
(right) scale.
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Coming now to the region where the experimental information

is concentrated, note that when fitting level 0 and level 1 data the

same datapoints are fitted over and over again, yet a spread of results

is found. In the case of level 0 data we know from Fig. 4 that the

figure of merit on datapoints essentially vanishes (i.e. the fit goes

through all datapoints with zero uncertainty). This then means that

this unique minimum at the level of data does not correspond to

a unique minimum at the level of PDFs: the datapoints are mea-

surements of the hadronic cross-section σ (see Eq. (1)), which only

indirectly depends on the PDFs fi. There is then a population of

PDFs which lead to the same optimal fit because of the need to effec-

tively interpolate between datapoints (“interpolation uncertainty”).

Namely, even though at the data level there is a unique best fit, this

does not correspond to a unique best-fit set of underlying PDFs.

At level 1 the datapoints are fluctuated about their true values,

so the best-fit value of figure of merit on datapoints is now of order of

χ2 ∼ 1 per datapoint. The uncertainty is correspondingly increased

because now there may be several PDF configurations which all lead

to values of the figure of merit of the same order, possibly correspond-

ing to different underlying functional forms for the PDFs (“func-

tional uncertainty”). In other words, now the prediction is no longer

uniquely determined even at the data level. Finally, at level 2, corre-

sponding to a realistic situation, the data themselves fluctuate about

the true value thereby inducing a “data uncertainty” on the PDFs.

Figure 4 shows that for the gluon in the data region these three

components of the uncertainty are roughly of similar size. Note that,

if a fixed functional form was fitted to the data by least-squares,

both the level 0 and level 1 uncertainties would necessarily vanish.

Hence, to the extent that the final level 2 uncertainty is faithful, a

methodology based on a fixed functional form, for which level 0 and

level 1 uncertainties vanish, necessarily leads to uncertainty under-

estimation.

This begs the question of checking whether indeed the level 2

uncertainties, namely, the uncertainties found with standard NNPDF

methodology are faithful. A first qualitative check can be done by

simply comparing the final result to the underlying truth, which in a
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Fig. 6. The best fit gluon compared to the underlying truth, shown vs. x at
the PDF parameterization scale on a logarithmic (left) and linear (right) scale.
The green band is the one-σ uncertainty and the result is shown as a ratio to the
underlying truth.

closure test is known. This is done for the gluon in Fig. 6. It is clear

that the result appears to be broadly consistent: the truth is mostly

within the one-σ band, though not always, which is as it should be,

given that the one-σ band is supposed to be a 68% confidence level.

Note, however, that PDF values at neighboring points in x are highly

correlated: this is already true at the level of single replicas, but even

more for the final PDF, obtained averaging over replicas, and it is of

course as it should be — after all, if we were able to compute the PDF

from first principles, it would be given by a unique functional form,

most likely infinitely differentiable in the 0 < x < 1 physical range.

Hence, a confidence level cannot be computed by simply counting

how many point in x space fall within the one-σ band.

Rather, a quantitative check that the confidence level is correctly

determined requires repeating the whole procedure several times.

Namely, we need to check that if we regenerate a set of (level 1)

experimental values, and then refit them, in 68% of cases for each

PDF at each point fi(x) the true value falls within the one-σ uncer-

tainty. More in general, the validation of the PDF determination

requires first, computing PDFs and uncertainties from a given set

of level 2 data, so the PDF and uncertainty are obtained by taking

mean and covariance over replicas. Next, repeating the determina-

tion for different sets of level 2 data obtained from different primary

level 1 data: for each fit one will obtain a different best-fit PDF set
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and corresponding uncertainties. Finally, computing the distribution

of best-fit PDFs about the true value, and comparing this actual dis-

tribution of results about the truth with their nominal uncertainty.

In practice, the procedure is quite costly as it requires producing

a large enough number of fits that confidence levels can be reliably

computed, each containing a large enough set of PDF replicas that

the PDF uncertainty can be reliably determined: for example, 100

sets of 100 PDF replicas each. In [24], this was done by introduc-

ing two approximations. First, the distribution of averages of level 2

replicas, each from a different set of level 1 data, was approximated

with the distribution of fits of a single replica to unfluctuated level 1

data. Second, the uncertainty was assumed to be stable between dif-

ferent fits and was thus determined from a single 100-replica set to

a particular set of level 2 data. The validity of these approximations

will be further discussed in Sec. 3.4.2 below.

This procedure was used in [24] to compute the deviation of best-

fit PDFs from the truth for all fitted PDFs evaluated at three x

values: x = 0.05, x = 0.1 and x = 0.2, and respective uncertainties.

The histogram of normalized deviations is compared to a univariate

Gaussian in Fig. 7. The deviation between the predicted and observed
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Fig. 7. Distribution of deviation between the PDF and the underlying truth
normalized to its nominal uncertainty, compared to a univariate Gaussian. Results
are obtained sampling all fitted PDFs at three points in x.
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probability distribution are small: for instance, the one-σ confidence

level is 69.9%, to be compared to the expected 68.3%. It is clear that

the validation is successful.

The availability of closure test data allows performing a variety

of further tests, all of which were done in Ref. [24]. On the one hand,

it is possible to compare to the truth various features of the distri-

bution of fitted PDFs, such as for example their arc-lengths, or the

behavior of their probability distribution upon updating via Bayes’

theorem. On the other hand, it is possible to test the stability of

results upon a number of variations of the methodology, such as the

choice of architecture of the neural nets, the choice of GA and its

parameters, the choice of PDF parameterization basis, the parame-

ters of the cross-validation. Indeed, as mentioned in Sec. 2.1 it has

been possible to check stability upon enlarging the architecture of the

neural net, as mentioned in Sec. 2.2 the method was used in order to

optimize the parameters of the GA, and as mentioned above, it has

been used to check the stability with respect to different choices of

underlying truth.

3. The Future of PDFs in a Deep Learning Framework

The AI-based approach to PDF determination described in Sec. 2

largely eliminates potential sources of bias, specifically those related

to the choice of a functional form, as discussed in Sec. 1.1, thanks

to the universal nature of neural networks [38]. However, neural net-

works themselves are not unique, and the algorithms used for their

training even less so. The methodology discussed in Sec. 2 has been

developed over the years through a long series of improvements, as

described in Secs. 2.1 and 2.2. These were based on trial and error,

and on the experience accumulated in solving a problem of increasing

complexity. The human intervention involved in these choices might

in turn be a source of bias. A way of checking whether this is the case,

and then improving on the current methodology, is through hyperop-

timization, namely, automatic optimization of the methodology itself.

This goal was recently accomplished, but it required as a prerequisite

a redesign of the NNPDF codebase, and specifically the replacement
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of the GA with deterministic minimization. Here we will discuss first,

this code redesign, next the hyperoptimization procedure, then qual-

ity control, which plays a role analogous to cross-validation but now

at the hyperoptimization level, and finally, the set of validation tests

that ensure the reliability of the final hyperoptimized methodology.

3.1. A new approach based on deterministic

minimization

The NNPDF methodology presented in Sec. 2 was implemented by

the NNPDF collaboration as an in-house software framework relying

on few external libraries. There are two major drawbacks of such

an approach. First, the in-house implementation greatly complicates

the study of novel architectures and the introduction of the modern

machine learning techniques developed during the last decade. Sec-

ond, the computational performance of GA minimization algorithms

is a significant limitation, and it drastically reduces the possibility of

performing hyperparameter scans systematically.

In order to overcome these problems the code has been redesigned

using an object-oriented approach that provides the required func-

tionality to modify and study each aspect of the methodology sep-

arately, and a regression model has been implemented from scratch

in a modular object-oriented approach based on external libraries.

Keras [39] and TensorFlow [40] have been chosen as back-ends for

neural network and optimization algorithms. This code design pro-

vides an abstract interface for the implementation of other machine

learning oriented technologies, that simplifies maintainability and

opens the possibility to new physics studies.

The new framework implements gradient descent (GD) methods

to replace the previously used GA described in Sec. 2.2. Thanks to

state-of-the art tools, this change reduces the computing cost of a fit

while achieving similar or better goodness-of-fit. The GD methods

produce more stable fits than their GA counterparts, and, thanks to

the back-ends, the computation of the gradient of the loss function

is efficient even when including the convolution with the FastKer-

nel tables discussed in Sec. 2.1. Given the possibility of performing
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hyperoptimization scans, there is no longer a risk of ending up in

architecture-dependent local minima.

In terms of neural networks, the new code uses just one single

densely connected network as opposed to a separate network for each

flavor. As previously done, we fix the first layer to split the input

x into the pair (x, log(x)). We also fix eight output nodes (one per

flavor) with linear activation functions. Connecting all different PDFs

we can directly study cross-correlation between the different PDFs

not captured by the previous methodology.

As we change both the optimizer and the architecture of the net-

work, the optimal setup must be re-tuned from scratch. To this pur-

pose, we have implemented the hyperopt library [41], which allow us

to systematically scan over many different combinations of hyperpa-

rameters finding the optimal configuration for the neural network.

Therefore, the neural network architecture no longer has the form

shown in Fig. 3: first, rather than a neural net per PDF, there is

now a single neural net with as many outputs as are the independent

PDFs, and second, the architecture (number of intermediate layers

and number of nodes per layer) is now hyperoptimized, rather than

being fixed.

In Fig. 8, we show a graphical representation of the full new

methodology which will be referred to as n3fit in the sequel. The

xgrid1, . . . , xgridn are vectors containing the x-inputs of the neural
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Fig. 8. Diagrammatic view of the n3fit code (from [42]).
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network for each of the datasets entering the fit. These values of

x are used to compute both the value of the neural network and

the preprocessing factor, thus determining the unnormalized PDF.

The normalization constants Ai (see Eq. (5)) are computed at every

step of the fitting using the xgridint points. Recall from Sec. 2.1

that the PDFs are parameterized in a basis of linear combina-

tions {g, Σ, V, V3, V8, T3, T8, c+}: individual PDFs for the quark fla-

vors, antiflavors and the gluon, {s̄, ū, d̄, g, d, u, s, c(c̄)}, are obtained

through a rotation. This procedure concludes the necessary opera-

tions to compute the value of the PDF for any flavor at the reference

scale Q0.

All PDF parameters are stored in two blocks, the first named NN,

namely the neural network of Eq. (5), and the preprocessing α and

β. Given that each block is completely independent, we can swap

them at any point, allowing us to study how the different choices

affect the quality of the fit. All the hyperparameters of the frame-

work are also abstracted and exposed. This specifically allows us to

study several architectures hitherto unexplored in the context of PDF

determination.

As repeatedly discussed in Secs. 1 and 2, the PDFs are not

compared directly to the data, but rather, predictions are obtained

through a convolution over the neural networks. This, as mentioned

in Sec. 2.1, is performed through the FastKernel method, which pro-

duces a set of observables O1 . . .On from which the χ2 Eq. (6) can be

computed. For this purpose, the first step is generation of a rank-4

luminosity tensor

Liαjβ = fiαfjβ, (9)

where (i, j) are flavor indices while (α, β) label the index on the

respective x grids. Typical grids have of order of a hundred points

in x for each PDF, spaced linearly in x at large x > 0.1, and log-

arithmically at small x; the grids are benchmarked and optimized

in order to guarantee better than percent accuracy with high com-

putational efficiency [11, 12, 29]. The physical observable, e.g. an

inclusive cross-section or differential distribution, is then computed

by contracting the luminosity tensor with the rank-5 FastKernel table
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for each separate dataset,

On = FKn
iαjβLiαjβ, (10)

where n corresponds to the index of the experimental data point

within the dataset. This stage of the model is the most computation-

ally intensive.

As discussed in Sec. 2.2.2, the optimal fit is determined through

cross-validation. The cross-validation split, which takes the output

and creates a mask for the training and validation sets, is introduced

as a final layer. As mentioned, the training set is used for updat-

ing the parameters of the network during the fit while the valida-

tion set is monitored during the fit and only used for early stopping

purposes. In Fig. 9, we present a schematic view of the stopping

algorithm implemented in n3fit. The training is performed until

the validation stops improving, from that point onward we enable

a patience algorithm which waits for a number of iterations before

raising the stopping action. For post-processing purposes we only

accept stopping points for which the PDF produces positive predic-

tions for a subset of pseudo data which tests the predictions for mul-

tiple processes in different kinematic ranges, see [12, 24] for further

details.

The loss function Eq. (6) is minimized using gradient descent.

Faster convergence and stability are found using algorithms with

training step
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χ2
val < best χ2
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valbest χ2 = χ2
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Fig. 9. Flowchart describing the patience algorithm of the n3fit code (from [42]).
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adaptive moment, in which the learning rate of the weights is dynam-

ically modified, such as Adadelta [33], Adam [34] and RMSprop [43].

These three optimizers adopt similar gradient descent strategies, but

differ in the prescription for weight update.

This approach has been applied to the baseline setup of the

NNPDF3.1 NNLO PDF determination [12]: specifically, adopting the

same dataset and cuts, together with the same fraction of validation

data for cross-validation, though now the stopping criterion is differ-

ent (Fig. 9). This setup, henceforth referred to as “global”, includes

all datasets used in NNPDF3.1 NNLO, with 4285 data points. We

also studied a reduced dataset which only includes data from deep-

inelastic scattering (DIS), which is computationally less intensive, in

particular because DIS is an electroproduction process, so the inte-

gral in Eq. (1) only involves a single PDF. This setup, called “DIS”,

includes 3092 data points, and it facilitates the process of bench-

marking and validation, since it leads to computationally very light

fits, which allow us to extensively explore the parameter space.

In summary, the new methodology considerably improves the

computational efficiency of PDF minimization, in particular because

GD methods improve the stability of the fits, producing fewer bad

replicas which need to be discarded, than theirs GA counterparts.

This translates in a much smaller computing time. The old and new

algorithms are compared in Table 1: we find a factor of 20 improve-

ment with respect to the old methodology and near to a factor of 1.5

in the percentage of accepted replicas for a global fit setup. In terms

of memory, in the old methodology usage is driven by the APFEL [44]

Table 1. Comparison of the average computing resources con-
sumed by the old and new methodologies for the DIS and Global
setups.

DIS fit CPU h. Mem. Usage (GB) Good replicas

n3fit (new) 0.2 2 95%
nnfit (old) 4 4 70%

Global fit CPU h. Mem. Usage (GB) Good replicas
n3fit (new) 1.5 4 95%
nnfit (old) 30 5 70%



December 14, 2021 17:23 Artificial Intelligence for High Energy Physics 9in x 6in b4322-ch19 page 743

Parton Distribution Functions 743

code used in order to solve PDF evolution equations, which does not

depend on the set of experiments being used. In the new code, evolu-

tion is never called during the fit (it is pre-computed in the fktables

and then the final PDFs are evolved to all scales offline), so mem-

ory consumption is driven by the TensorFlow optimization strategy

which in the case of hadronic data requires the implementation of

Eq. (10) and its gradient. This difference translates to an important

decrease on the memory usage of n3fit.

3.2. Optimized model selection

The main motivation for the development of the new optimized code

discussed in Sec. 3.1 is the possibility of performing systematic explo-

rations of the methodology through hyperoptimization. Firstly, the

new design of the n3fit code exposes all parameters of the fit includ-

ing the neural network architecture. This is of key importance for a

proper hyperparameter scan where everything is potentially intercon-

nected. Furthermore, the new methodology has such a smaller impact

on computing resources that many more fits can be performed, with

a difference by several orders of magnitude: for each fit using the old

methodology hundreds of setups can now be tested.

The hyperparameter scan procedure has been implemented

through the hyperopt framework [41], which systematically scans

over a selection of parameter using Bayesian optimization [45], and

measures model performance to select the best architecture. Table 2

displays an example of selection of scan parameters, subdivided into

those which determine the Neural Network architecture, and those

which control the minimization.

Hyperparameter scans have been performed both in global and

DIS setups. The best model configuration has been searched for,

using as input data the original experimental values, rather than

the data replicas which are then used for PDF determination (recall

Sec. 1.2). Optimization has been performed using a combination

of the best validation χ2 and stability of the fits: specifically,

the architecture which produces the lowest validation χ2 has been

selected after having trimmed combinations which displayed unsta-

ble behavior.
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Table 2. Parameters on which the hyperparameter
scan is performed from [42].

Neural network Fit options

Number of layers Optimizer
Size of each layer Initial learning rate
Dropout Maximum number of epochs
Activation functions Stopping Patience
Initialization functions Positivity multiplier

An example of scan for some of the parameters shown in Table 2,

based the DIS setup, is shown in Fig. 10. The results of this scan

can be summarized as follows. The Adadelta optimizer, for which no

learning rate is used, is found to be more stable, and to systemati-

cally produce better results than RMSprop and Adam with a wide

choice of learning rates. The initializers, once unstable options such

as a random uniform initialization have been removed, seem to pro-

vide similar qualities with a slight preference for the “glorot normal”

initialization procedure described in [46]. Concerning the parameters

related to stopping criteria, when the number of epochs is very small

the fit can be unstable, however after a certain threshold no big dif-

ferences are observed. The stopping patience shows a very similar

pattern: stopping too early can be disadvantageous but stopping too

late does not seem to make a big difference. The positivity multi-

plier, however, shows a clear preference for bigger values. Finally,

concerning the neural network architecture, a small number of lay-

ers seems to produce slightly better absolute results, however, one

single hidden layer seems to lead to poor results. Concerning the

activation functions, the hyperbolic tangent seems to be slightly pre-

ferred over the sigmoid. Once an acceptable hyperparameter setup

has been achieved, a final fine tuning was performed, as some of the

choices could have been biased by a bad combination of the other

parameters.

Clearly, the result of the hyperoptimization depends on the under-

lying dataset: for instance, we have verified that hyperoptimization

on a very large global dataset prefers a larger architecture. Therefore,
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Fig. 10. Graphical representation of a hyperparameter scan for a DIS only fit
with 2000 trials (from [42]). The loss function presented in the y-axis is an average
of the validation and testing χ2. The shape of the violin plots represent a visual aid
on the behavior of the fit as a function of the free parameter. Fatter plots represent
better stability, i.e. configurations which are less likely to produce outliers.

the reliability and stability of the hyperoptimized methodology have

to be checked a posteriori, as we will discuss in Sec. 3.4.

In summary, hyperoptimization has been implemented as a

semi-automatic methodology, that is capable of finding the best
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hyperparameter combination as the setup changes, e.g. with new

experimental data, new algorithms or technologies.

3.3. Quality control

The hyperoptimization presented in Sec. 3.2 can be viewed as a meta-

optimization in which the object of optimization is the methodology.

This immediately raises the issue of quality control. In the fitting

procedure, this is taken care by cross-validation, in which quality

control is provided by the validation set. A similar quality control is

now needed at the hyperoptimization level.

Indeed, if hyperoptimization is run by just optimizing on the val-

idation figure of merit, a typical result is shown in Fig. 11, in which

replicas for the up quark PDF for a hyperoptimized DIS fit are shown.

It is clear that an unstable behavior is seen, characteristic of over-

training. This can also be verified quantitatively: for example the

value of the training χ2 is much lower than that of the validation

χ2. This may appear to be surprising, given that the hyperopti-

mization is performed on the validation χ2, while the training χ2 is

minimized in the fitting procedure. However, there inevitably exist

correlations between the training and validation sets, for example

Fig. 11. Comparison of replicas for the up quark PDF obtained by hyperop-
timized n3fit methodology without (green) and with (orange) quality control
(from [42]).
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through correlated theoretical and experimental uncertainties. Due

to these correlations, hyperoptimization without quality control leads

to overlearning.

The problem can be solved by introducing a testing set, which

tests the generalization power of the model. The testing set is made

out of datasets which are uncorrelated to the training and validation

data, and none of which is used in the fitting either for training

or validation. The test set plays the role of quality control for the

hyperoptimization, as schematically summarized in Fig. 12.

Defining the best appropriate test dataset for PDF fits is partic-

ularly challenging due to the nature of the model regression through

convolutions. Indeed, the choice of prescription for the test set

presents a certain level of arbitrariness. For a first exploration, the

test set has been constructed by utilizing datasets for which several

experiments exist for the same process, and picking the experiment

with smallest kinematic range. The corresponding data have been

removed from training and validation, and used as a test set. A more

refined option, which validates this first choice, will be discussed in

Sec. 3.4.1 below.

We have applied this procedure both to DIS and global fits. The

best models found in each case are compared in Table 3. For the

global setup deeper networks are allowed without leading to over-

fitting. The hyperbolic tangent and the sigmoid functions are found

to perform similarly. The initializer of the weights of the network,

Fig. 12. Schematic overview of the hyperparameter quality control methodology.
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Table 3. Best models found by our hyperparameter
scan for the DIS and global setups using the new
n3fit methodology.

Parameter DIS only Global

Hidden layers 2 3
Architecture 35-25-8 50-35-25-8
Activation tanh sigmoid
Initializer glorot normal glorot normal
Dropout 0.0 0.006
Optimizer Adadelta Adadelta
Max epochs 40000 50000
Stopping patience 30% 30%

Table 4. Comparison of the total χ2 of
the fit for both a DIS only and global
fits found using the previous NNPDF3.1
and the new n3fit methodology.

DIS only Global

n3fit (new) 1.10 1.15
NNPDF3.1 (old) 1.13 1.16

however, carries some importance for the stability of the fits, with

preference for the Glorot normal initialization method [46, 47] as

implemented in Keras. Furthermore, adding a small dropout rate [48]

to the hidden layers in the global fit reduces the chance of overlearn-

ing introduced by the deeper network, thus achieving more stable

results. As expected, the bigger network shows a certain preference

for greater waiting times (which also increases the stopping patience

as is set to be a % of the maximum number of epochs). In actual

fact, the maximum number of epochs is rarely reached and very few

replicas are wasted.

Turning now to fit results, despite the significant difference in size

and complexity of the dataset, the DIS and global fits perform sim-

ilarly in describing the experimental data, as demonstrated by the

χ2 values presented in Table 4. It is interesting to compare results to
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Fig. 13. Comparison of PDFs found using the previous NNPDF3.1 and the new
n3fit methodology: for a DIS fit (top) the gluon (left) and up quark (right) are
shown; for a global fit (bottom) the gluon (left) and down quark (right) are shown.
(from [42]).

those obtained using the previous NNPDF3.1 methodology. The total

χ2 values are compared in Table 4: even though the new methodol-

ogy leads to a slightly better fit, differences are small. PDF replicas

obtained with either methodology (for the gluon and the up quark)

are compared Fig. 13, both for the DIS and global fits. It is clear

that the best-fit PDF, i.e. the average over replicas, is not much

affected by the change in methodology (though somewhat smoother

for nnfit).

A significant difference however is seen at the level of individual

replicas: replicas found with the new methodology are rather more

stable, i.e. they fluctuate rather less. This leads to slightly smaller

uncertainties, and, more significantly, with the new methodology a

smaller number of replicas is necessary in order to arrive to a sta-

ble average. The greater stability of the new methodology also leads

to somewhat smaller uncertainties in the far extrapolation, i.e. in

regions where there is no information and thus uncertainties are

large: this is seen in Fig. 13 for the gluon distribution for x � 10−4.
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Fig. 14. Comparison of PDF arc-lengths found using the previous NNPDF3.1
and the new n3fit methodology in the DIS (left) and global (right) case. The
mean and one-σ interval computed from a set of PDF replicas for each PDF is
shown.

This raises the question of how to reliably assess uncertainties in

extrapolation: we will return to this in Sec. 3.4.3 below.

A particularly transparent way of seeing this greater stability is to

compare PDF arc-lengths. Because a PDF is a function of 0 < x < 1,

one may define the length of the curve traced by the PDF as x varies

in this interval. A smoother PDF then has smaller arc-length. In

Fig. 14, the mean and one-σ values of arclengths computed from a

set of replicas with the new and old methodology are compared, both

for the DIS and global fits. It is clear that, with the new methodology,

the arc-length mean values are smaller, but especially the fluctuation

of arc-length values between replicas is much smaller.

In summary, we conclude that the new hyperoptimized n3fit

methodology leads to results which are in broad agreement with the

current NNPDF3.1 methodology, thereby confirming that the latter

is faithful and unbiased, as expected based on the closure tests of

Sec. 2.3. However, thanks to code redesign and deterministic min-

imization it is possible to achieve greater computational efficiency,

and thanks to the hyperoptimization it is possible to obtain, based on

the same underlying datasets, more stable results (i.e. a smaller num-

ber of replicas is sufficient to achieve good accuracy) and somewhat

smaller uncertainties. In short, the new n3fit methodology, while

providing a validation of the current NNPDF methodology, displays

greater computational efficiency, greater stability and greater preci-

sion without loss of accuracy. This in turn calls for more detailed

validation and testing, as we now discuss.
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3.4. Validation and testing

The n3fit methodology motivates and enables more detailed stud-

ies of fit quality. It enables them because thanks to its much greater

computational efficiency it is now possible to perform rather more

detailed explorations than it was possible with the previous slower

methodology. It motivates them, because the goal of the new method-

ology is to allow for greater precision without loss of accuracy,

namely, to extract more efficiently the information contained in a

given dataset. It is then mandatory to make sure that no new sources

of arbitrariness are introduced by the new methodology. Also, the

new methodology is claimed to be more precise without loss of accu-

racy, i.e. to produce results which are more stable and have smaller

uncertainty than the previous methodology given the same input.

It is then crucial to perform validation tests which are sufficiently

detailed that the validity of this claim can be tested: in practice, this

means tests that are sufficiently detailed that the two methodologies

can be distinguished, and that impose more stringent requirements

on the methodology itself.

We will first discuss the new issue of robustness of the test-set

methodology introduced in Sec. 3.3, then turn to a more detailed

set of closure tests, similar to those of Sec. 2.3 but now exploiting

the new methodology, and finally discuss a new kind of test of the

generalization power of the methodology: “future testing”.

3.4.1. Test-set stability

One new source of ambiguity in the n3fit methodology is the choice

of an appropriate test set. Indeed, the setup discussed in Sec. 3.3

was based on a particular choice of test set, but one would like to

avoid as much as possible this kind of potentially biased subjective

choice. Also, in that setup one has to discard some data from the

dataset used for fitting and only include them in the test set. This

contrasts with the desire to keep data in the training set as much

as possible, in order to exploit as much as possible the (necessarily

limited) dataset in order to determine the wide variety of features of

the underlying PDFs.
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Fig. 15. Comparison between the best models from k-fold cross-validation
(green) and manual selection (red)[49].

These goals can be achieved through a k-fold cross-validation. In

this algorithm, data are subdivided into k partitions, each of which

reproduces the broad features of the full dataset. Each of the parti-

tions then plays in turn the role of the test set, by being excluded

from the fit. A variety of figures of merit can then be chosen for

hyperparameter optimization, such as the mean value of the loss

over excluded partitions, or the best worst value of the validation

loss of the excluded partition.

This k-folding procedure has been implemented, and stability

upon different choices of hyperoptimization figure of merit has been

explicitly checked. Results are shown in Fig. 15, where the best PDF

models estimated using k-folding are compared to those obtained

through the simple test-set procedure of Sec. 3.3. Similar results are

found using either method. While confirming the reliability of the

manually selected method of Sec. 3.3, this allows us to replace it

with the more robust and unbiased k-folding method.

3.4.2. Closure testing

We now turn to closure testing, as presented in Sec. 2.3 in the context

of NNPDF3.0 [24]. We have applied the closure testing methodology

of Sec. 2.3, but now using the n3fit methodology and the more

recent and wider NNPDF3.1 [12] dataset and theory settings. Hence,

level 2 data are now in one-to-one correspondence with data in the

NNPDF3.1 dataset, and, more importantly, we can take advantage

of the greater computational efficiency of n3fit.
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A first example of this is that it is now possible to perform con-

fidence level tests based on actual full reruns. Indeed, recall from

Sec. 2.3 that a computation of a closure test confidence level requires

producing several independent fits, each with a sufficiently large num-

ber of replicas, so that the population of central values and uncer-

tainties in each fit can be compared to an underlying truth. Thanks

to the use of n3fit, it has now been possible to perform 30 differ-

ent closure test level 2 fits, each with 40 replicas [50]. Results are

then further enhanced and stabilized by using bootstrapping, i.e. by

drawing random subsets of fits and random subsets of replicas from

each fit and computing the various estimators for the resample of fits

and replicas. It has been possible to check in this way that results

are essentially stable with at least 10 fits with at least 25 replicas

each, in that increasing the number of fits and replicas results are

unchanged. All numbers quoted below refer to results obtained with

the largest numbers of fits and replicas. The fact that such a rela-

tively small number of replicas is sufficient to achieve stable result

is a reflection of the greater stability of n3fit replicas discussed in

Sec. 3.4.

As a first test, we recompute the histogram of deviations of Fig. 7,

but now using NNPDF3.1 data. We can now compare the histogram

actually computed using 30 fits with 40 replicas each, with the his-

togram approximately determined using a single 100 replica level 2

fit and 100 single-replica level 1 fits, as it was done for Fig. 7 (labeled

“NNPDF3.1 methodology”). The result is shown in Fig. 16. It is clear

that the validation is successful also for the (rather wider) NNPDF3.1

dataset: the one-σ confidence level is now equal to 65%, and the

mean of the histogram is now essentially unbiased, unlike in Fig. 7

were a small bias was present. Also the approximate method used in

Sec. 2.3 and [24] is reasonably accurate: specifically, the true value

65% is reasonably well approximated by the value 71% found using

the approximate method.

We can now proceed to more detailed closure tests by computing

confidence levels more extensively. A useful tool in this context is the

bias-variance ratio. This, for Gaussian distributions, contains exactly

the same information as the one-σ confidence level of predicted values
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Fig. 16. Same as Fig. 7, but now using NNPDF3.1 data and methodology,
and comparing results obtained using the approximate methodology of Sec. 2.3
(NNPDF3.1 methodology) and the exact methodology (n3fit methodology)[50].

with respect to the underlying truth considered in Sec. 2.3. For uncor-

related data, the bias-variance ratio is defined as the mean square

deviation of the prediction from the truth (bias), divided by the

expected one-σ uncertainty (variance). The square-root of the bias-

variance ratio

Rbv =

√√√√ 1

Ndat

Ndat∑
i=1

(di − d(0)i )2

σ2i
(11)

(where di, σi and d
(0)
i are respectively the prediction, uncertainty and

true value for the ith datapoint) is the ratio between observed and

predicted uncertainties, and thus it should be equal to one for a per-

fect fit. The generalization to the correlated case is straightforwardly

obtained by expressing the numerator and denominator under the

square root in Eq. (11) in terms of the covariance matrix. We have

verified explicitly that the value of the one-σ confidence level interval

computed using the measured bias-variance ratio coincides with the

measured confidence level, within statistical accuracy, so either can

be equivalently used.

We can now turn to more detailed comparisons. First, the com-

parison can be done for each PDF individually, rather than for all

PDFs lumped together. Second, the comparison can also be done at
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the level of experimental data: namely, instead of determining the

deviation between the fitted and true PDF we determine the devia-

tion between the prediction obtained using the best-fit PDF and the

true PDF for each of the datapoints in the NNPDF3.1 dataset.

It should be noted that, of course, the predictions for individ-

ual datapoints are correlated due to the use of common underlying

PDFs, with correlations becoming very high for datapoints which

are kinematically close, so that the integral Eq. (1) is almost the

same. These correlations can be simply determined by computing the

covariance matrix between all datapoints induced by the use of the

underlying PDFs, which in turn is done by determining covariances

over the PDF replica sample. Confidence levels are then determined

along eigenvectors of this covariance matrix, and can be compared

to the bias-variance ratio, either by using its general form in the

non-diagonal data basis, or equivalently, using Eq. (11), but with

the sum running not on the original datapoints, but rather over the

eigenvectors of the covariance matrix.

Of course, the PDFs themselves are also correlated. The his-

tograms in Figs. 7 and 16 were computed by sampling each PDF

at three widely spaced points in x so as to minimize this correlation,

but of course computing a histogram of deviations with correlations

neglected is still an approximation. When performing comparisons

in PDF space we have now therefore also computed the covariance

between PDFs over the replica sample, and determined confidence

intervals along its eigenvectors, and the corresponding bias-variance

ratio values with correlations kept into account.

A first comparison has been performed by computing the bias-

variance ratio at the data level. This leads to an interesting result.

Recall from Sec. 2.3 and Fig. 5 that the total PDF uncertainty con-

sists of three components of comparable side, the first of which is due

to the need to interpolate between data. Clearly, this latter compo-

nent is absent if one compares the prediction to the same data which

have been used to produce the PDF set. Indeed, we find that the

square root of the bias-variance ratio computed for the NNPDF3.1

dataset (more than 4000 datapoints) is Rbv = 0.74. If we compute

the same ratio for a new wide dataset including about 1300 HERA,
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LHCB, ATLAS and CMS data not used in the fit we find that the

value is Rbv = 0.9. The difference between these two values can

be understood as an indication of the fact that in the former case

the bias does not include the level 1 uncertainty, while the variance

(which should be used for new prediction) does. The value Rbv = 0.9

means that PDF uncertainties on predictions are accurate to 10%

(and somewhat overestimated).

We next computed both the bias-variance ratio and the one-sigma

confidence level at the PDF level. PDFs have been sampled at four

points for each PDF, in a region in x corresponding to the data

region, and the covariance matrix has been subsequently diagonalized

as discussed above. Results are shown in Table 5 for individual PDF

combinations. It is clear that, especially for the PDF combinations

that are known with greater accuracy, such as the quark singlet Σ and

the gluon g, uncertainties are faithful: only the combination T8 which

measures the total strangeness shows a certain amount of uncertainty

underestimation, by about 30%.

Table 5. The bias-variance
ratio Rbv (Eq. (11)) and the
one-sigma confidence level
for individual PDFs, com-
puted using four points in x
space per PDF along eigen-
vectors of the covariance
matrix [50].

PDF Rbv one-σ c.l.

Σ 0.9 70%
gluon 0.9 69%
V 1.0 66%
V3 1.0 93%
V8 0.9 71%
T3 0.6 89%
T8 1.3 46%

total 0.9 0.71
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3.4.3. Chronological future tests

The closure tests essentially verify the reliability of results in the

data region. A much more difficult task is to verify the power of gen-

eralization of the methodology: namely, whether PDFs determined

with a subset of data are able to correctly predict the behavior of

new data, including those that extend the kinematic domain used

for PDF determination. In practice, this means testing whether PDF

uncertainties are reliable also in regions in which they start growing

significantly because of lack of information.

This is done by “chronological” or “future” tests. Namely, we

consider an existing (or hypothetical) past dataset, we train PDFs

based on it, and we compare the best-fit results with later data

which extend the kinematic region. A first test of this kind has been

performed only including data which predated the HERA electron–

proton collider, and which thus approximately correspond to the

information on PDFs available around 1995. This is especially inter-

esting since it is well known (see e.g. [51]) that the best-fit gluon

shape substantially changed after the advent of HERA data, as pre-

HERA data impose only very loose constraints on the gluon PDF.

We have thus produced a PDF determination using n3fit

methodology, but only including pre-HERA data, and now perform-

ing a dedicated hyperparameter optimization based on this restricted

dataset. The best-fit gluon determined in this way is compared to the

current best-fit gluon in Fig. 17. Some subsequent data which are

sensitive to the gluon, specifically the proton structure function F2,

which is sensitive to the gluon at small x, and top-pair production

at the LHC, which is sensitive to the gluon at medium-high x, are

compared to predictions obtained using this PDF set in Fig. 18.

It is clear that the test is successful. In the region x � 0.15, where

the gluon is currently known accurately thanks to HERA data, but

it is extrapolated when only using pre-HERA data, the uncertainty

grows very large, yet the two fits are compatible within these large

uncertainties, and the new data are within the uncertainty of the

extrapolated prediction. This is a highly non-trivial test of the gen-

eralizing power of the hyperoptimized n3fit methodology. Note also



December 14, 2021 17:23 Artificial Intelligence for High Energy Physics 9in x 6in b4322-ch19 page 758

758 S. Forte & S. Carrazza

Fig. 17. The gluon PDF determined used pre-HERA data (green) compared to
the current best-fit (orange) [49].

Fig. 18. Data for the proton structure function f2 measured at HERA (left) and
top-pair production measured at the LHC (right) compared to a prediction based
on PDFs determined from a fit to pre-HERA data [49].

that this provides us with a test of the stability of the hyperoptimized

methodology, in that it means that a methodology hyperoptimized

to the much larger current dataset leads to reliable results even when

used on the much more restrictive past dataset.

The optimization of the generalization power of our methodol-

ogy is at the frontier of our current understanding and remains a

challenging open problem.

3.5. Outlook

The n3fit methodology will be used in the construction of future

PDF releases, starting with the forthcoming NNPDF4.0 PDF set.
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The greater efficiency of this methodology will be instrumental in

dealing with an ever increasing dataset, while its greater accuracy

will be instrumental in reaching the percent-level uncertainty goal

which is likely required for discovery at the HL-LHC [25]. Avenues

of research for future methodological developments which are cur-

rently under consideration include the possibility of an integrated

reinforcement learning framework for the development of an optimal

PDF methodology, the exploration of machine learning tools alterna-

tive to neural networks, such as Gaussian processes, the exploration

of inference tools, such as transfer learning, for the modeling of theo-

retical uncertainties, and a deeper understanding of the generalizing

power of the methodology outside the data region.
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A number of scientific competitions have been organized in the last few
years with the objective of discovering innovative techniques to perform
typical high-energy physics tasks, like event reconstruction, classification
and new physics discovery. Four of these competitions are summarized in
this chapter, from which guidelines on organizing such events are derived.
In addition, a choice of competition platforms and available datasets are
described.

1. Introduction

Competitions play an important role in the development of Machine

Learning algorithms. The 2012 breakthrough of a Convolutional Neu-

ral Network [1] in the ImageNet Large Scale Visual Recognition Chal-

lenge (ILSVRC) competition on labeling objects in the ImageNet

dataset is often indicated to be the start of the “Deep Learning rev-

olution”. The ImageNet dataset itself is considered as a standard

candle in countless papers, as well as for teaching and training.

Competitions in high-energy physics are much less part of the

culture. One explanation for this is that sharing data has not been the
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norm, although this is changing. Collaborations of scientists usually

analyze the data from the experiment they have built and share the

result of the analyses but not the data itself.

For a specific task, e.g. particle identification or event classifica-

tion, one can find papers on algorithm A applied on dataset alpha;

algorithm B applied on dataset beta. The metric used will be simi-

lar, at best, identical. However, suppose one sees better result on one

side. In that case, it is difficult to infer if algorithm A is intrinsically

better than algorithm B or that dataset alpha makes the task easier.

If one wants to find a better algorithm, one would gather papers, go

to workshops, talk to experts to have suggestions of better algorithms

that one would have to re-implement to apply on one’s dataset. The

difficulty is not just about acquiring the software but also the accom-

panying expertise.

Scientific competitions are an alternative approach structured

around so-called Common Task Framework (CTF) [2] that involves:

(1) A publicly available training dataset involving, for each obser-

vation, a list of feature measurements, and a class label for that

observation;

(2) A set of enrolled competitors whose common task is to infer a

class prediction rule from the training data;

(3) A scoring referee, to which competitors can submit their pre-

diction rule. The referee runs the prediction rule against a test-

ing dataset which is sequestered behind a screen. The referee

objectively and automatically reports the score (e.g. prediction

accuracy) achieved by the submitted rule.

In reality, the scoring might be quite complicated as translation

between domain challenge requirements to a straightforward com-

putational form requires both fluent speaking and understanding

potential flaws of both: the domain and machine learning languages.

The objective of this chapter is to look under the hood of scientific

competitions and encourage participation and foster the organization

of future competitions.

The chapter is organized as follows. Section 2–5 give a summary

of four physics competitions and related datasets: Sec. 2 HiggsML on
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event classification, Sec. 3 Flavor of Physics on event classification in

the presence of mismodelings, Sec. 4 TrackML on pattern recognition,

Sec. 5 LHC-Olympics on anomaly detection. Section 6 lists available

competition platforms and Sec. 7 lists available open datasets. Sec-

tion 8 indicates general guidelines for scientific competition organiz-

ers, based on the experience organizing such competitions. Section 9

is the conclusion.

2. HiggsML

The Higgs Boson Machine Learning challenge (HiggsML in short)a

took place on the Kaggle platform in 2014. At the time, Machine

Learning was already used at the LHC experiments (see [3] although

some of the results quoted there are post-2014) but in most cases,

this was Boosted Decision Trees, while the Deep Learning revolution

had already started elsewhere. Some breakthrough papers (in par-

ticular [4], see also Chapter 3) were indicating a potential for Deep

Learning for final analysis. The motivation for the HiggsML challenge

was to reach out to the Computer Science community to explore the

possibilities of modern Machine Learning algorithms for a classifi-

cation problem pertaining to Higgs boson physics at the LHC. The

HiggsML challenge is described in details in [5], which is the docu-

ment accompanying the final release of the dataset [6] on the CERN

Open Data Portal; lessons derived from the challenge are described

in [7] with more details in the write-up of contributions of the dedi-

cated HEPML workshop which has taken place at NeurIPS 2014 [8].

Only a summary is given here.

2.1. Dataset and score

A dataset of 250,000 events (out of an original dataset of about 800k

events, the complement being held out for evaluation) was provided,

each event providing 30 features, measurements from simulation pro-

ton collision, which had been used by the ATLAS experiment for its

first paper on the specific topic [9]. The events were either from Higgs

ahttps://higgsml.lal.in2p3.fr.

https://higgsml.lal.in2p3.fr
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boson decay into a tau–lepton pair (the signal) or from other pro-

cesses, Z-boson decaying into a tau-lepton pair as well, top pairs

and W. There were two classes of features, the primary and the

derived ones. The primary ones were essentially the 3-momentum

of key event particles: an electron or muon, a τ hadron decay, the

missing transverse energy which is a 2D pseudo-particle, and the pos-

sible leading and subleading jets. The derived parameters are features

(which could be recomputed from the primary ones) defined in the

same ATLAS paper [9], that offer a good separation between signal

and background. These derived features had been crafted by physi-

cists to maximize the separation between signal and background. It

should be noted that not all events have two jets (some have zero,

some have one) so that the jet quantities (primary or derived) might

be absent for some events. For training, in addition to the label “S”

for signal or “B” for background, a weight is also given, which allows

computing the expected number of signal and background events (for

2012 LHC luminosity).

A non-standard (for Machine Learning) figure of merit was used

to rank the criterion, the Approximate Median Significance (AMS),

which quantify (in number of standard deviations) the expected dis-

covery significance of an experiment. It is obtained with the following

formula where s (respectively, b) is the number of expected signal

(respectively background) events:

AMS =
√
2
√

(s+ b+ 10) log(1 + s/(b+ 10)) − s, (1)

where s (respectively, b) is the sum of the weights of signal (respec-

tively, background) events passing the selection in the test sample.

This is the usual (for physicists) so-called Asimov formula [10], except

that 10 is added to b as a regularization term, to avoid nonphysically

large significance in the very strong selection regime, where b can

be less than 1. The impact of using this figure of merit compared

to, e.g. a more classical ROC-AUC or accuracy criteria is that more

importance is given to the part of the ROC curve with large back-

ground rejection and small signal efficiency (large True Negative and

small True Positive), see Sec. 3.3.3 for a different means to achieve

the same goal.
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2.2. Competition

The participation was large with close to 2000 participants, a record

at the time for Kaggle challenges. The ranking among the top 10

was tight, with some rank changes when the private leaderboard

(established on a preserved dataset) was revealed. Subsequent stud-

ies with a bootstrap technique showed that number 1 (Gabor Melis)

rank was solid, while number 2 (Tim Salimans) and number 3

(nhlx5haze) could have exchanged places, but where well separated

from number 4 and beyond (see Fig. 1). Figure 2 shows the AMS per-

formance for some top participants. Particularly, interesting curves

are the ones from Lubos Motl’s Team who was number 1 on the

public leaderboard but fell to number 8 on the final leaderboard.

A sharp peak on the public test curve (with no counterpart on the

private test curve) is due to public leaderboard overfitting as the team

has claimed to “play” the public leaderboard, adjusting parameters

in a semi-automatic fashion to improve their public score.

One key feature provided was DER mass MMC, which is an esti-

mator of the mass of the τ+τ− pair obtained through a complex

MCMC estimation. Although all the inputs to do this calculation

Fig. 1. p-Values of the pairwise Wilcoxon rank sum test (from [7]).
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were available, the software to compute it has not been released.

Nevertheless, kesterlester, a physicist, has released the result of a

similar computation under name Cake.b It improved significantly the

results of most participants, but the top ones did not see any improve-

ments using it, most likely because their classifiers were already able

to extract sufficient information from the features they had built.

The number 1 Gabor Melis used an ensemble of dense neural net-

work with three hidden layers; however, from his assessment, he got

an edge through careful use of nested Cross-Validation. Figure 2(a)

shows his AMS performance on the public test set to be relatively

flat compared to others, while Fig. 2(d) shows it is clearly above

(a) (b)

(c) (d)

Fig. 2. AMS curves for some participants comparing performance between the
public and private test sample (a)–(c) and for several participants on the pri-
vate test sample (d). The horizontal axis is the weighted proportion of selected
background events (from [7]).

bhttps://www.kaggle.com/c/higgs-boson/discussion/10329.

https://www.kaggle.com/c/higgs-boson/discussion/10329.
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the others almost everywhere. Number 2 Tim Salimans has used an

ensemble of Regularized Gready Forest and number 3 nhlx5haze

an ensemble of neural networks. Tianqi Chen and Bing Xu (team

crowwork) have reached a modest rank 45, however, they got the

special Hep ML prize from the jury, for they have released early in

the competition their new Boosted Decision Tree algorithm XGBoost

[11] and supported its use. XGBoost was used by many participants

including top 10. XGBoost popularity has grown ever since and has

been one of the primary tools used in Kaggle competitions [12]. Its

usage is also growing in high-energy physics publications (e.g. [13]),

given its high speed and classification performance.

2.3. Follow-up studies

The complete HiggsML dataset has been released on the CERN Open

Data portal [6]. The full 818,238 events dataset has been released.

The team has hesitated to release it completely, without holding a

reserve test set. The benefit is that future users have the largest

statistics (compared to the 250,000 Kaggle participants had). The

downside is that there is no possibility for independent check for

overfitting.

The HiggsML dataset (either from Kaggle or from CERN ODP)

has been used extensively since the competition for various tutorials

(e.g. [14]), courses (e.g. [15]), blog posts (e.g. [16]), PhD disserta-

tions (e.g. [17]) and papers (see later in this section). While most

are informative, some common mistakes have been seen, especially

concerning the weight:

• as the weights are such that events are normalized to 2012 Large

Hadron Collider data taking, an event weight reflects the way it

was generated so that the weight is an almost certain give away of

the signal or background label of the event. For this reason, during

the Kaggle competition, it was only provided for the training sam-

ple, not the test sample. However, in some follow-up studies, some

people have used the weight as a regular feature (although being

strongly advised against it through the accompanying document)

which give them extremely good performances. Since many people
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do not read the documentation, probably the weight should have

been renamed weight DO NOT USE IN TRAINING

• in contrast with AUC or accuracy, the AMS does depend on the

total weight of each sampling (in a trivial way AMS� s√
b
, so simply

using half of the dataset divides AMS by
√
2). The dataset docu-

mentation does specify that whenever a subsample of the dataset

is used for evaluation, weights should be scaled up by the inverse of

the fractional size of the subsample (so a factor 2 for a subsample

of 1
2). This was not done correctly in some follow-up studies.

Besides, claims for AMS well above 3.81 reached by the winner of

the competition are most likely due to overtraining.

A recent thorough post-challenge analysis was done [18], where

the author has studied data augmentation, learning rate and momen-

tum scheduling, (advanced) ensembling in both model-space and

weight-space, and alternative architectures and connection methods,

using a modern NN library. He reaches the same 3.81 AMS although

with considerably faster training time.

Beyond classification, a python script allows introducing system-

atic effects (miscalibration or poorly known backgrounds) [19] and

has been used to investigate how to deal with systematic effects

[20–23], see also Chapter 17 in this book.

3. Flavor of Physics

3.1. Introduction

Offline data analysis in particle physics has many challenges that

can provoke communications between the physics and data science

communities. In addition to sensitivity increase, there are questions

of (a) training ML algorithms using the mixture of real and sim-

ulated samples (see Sec. 3.3.1) and (b) reducing the impact of so-

called nuisance parameters that affect the likelihood and posterior

distributions non-systematically (see Sec 3.3.2). LHCb collaborationc

cMain contributors: Thomas Blake, Marc-Olivier Bettler, Marcin Chrzaszcz,
Francesco Dettori, Andrey Ustyuzhanin and Tatiana Likhomanenko.
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prepared a competition to address those challenges via a competition

on Kaggle platformd that was active for three months in 2015.

3.1.1. The challenge goal

The main goal of this challenge is to gain sensitivity in the search for

τ− → μ−μ−μ+ decays. That is achieved by improving the discrimi-

nating power between signal events (where the decay did occur) and

background events (where it did not). LHCb collaboration provides

signal and background samples for training and testing. The evalu-

ation happens in three steps: firstly, the classifier is checked not to

depend too strongly on the discrepancies between real data and sim-

ulation. Then it checks if the classifier output is decorrelated with

the τ mass. Finally, the comparison of the classifiers is performed

using the weighted area under the ROC curve.

3.1.2. Physics motivation

The search for decays that do not conserve primary particle flavor

quantities started in the late 1930s with the discovery of the muon

(μ). It was believed that muons were an excited electron state in

which case one would expect to observe a decay μ− → e−γ, where
a photon with predictable energy would be emitted. No such pro-

cess has ever been observed. The muon decays instead through the

process μ− → e−νμν̄e, with the emission of a muon neutrino and

an electron anti-neutrino to preserve the total electronic and muonic

lepton numbers. Similarly, in the 1970s an even heavier lepton was

discovered as product of e+e− annihilation: the tau (τ) lepton, with a

mass equivalent to about 3500 electrons. Typical decays of the τ lep-

tons are τ− → e−ντ ν̄e and τ− → μ−ντ ν̄μ, that conserve the various

lepton numbers involved. However, if lepton flavor is not a perfectly

conserved quantity in nature, and various explanations of the mat-

ter asymmetry in the universe require this, then the τ lepton can

also decay into three muons though the reaction τ− → μ− μ− μ+,

forbidden instead in the Standard Model.

dhttps://www.kaggle.com/c/flavours-of-physics/.

https://www.kaggle.com/c/flavours-of-physics/
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The discovery of such a reaction would therefore be a break-

through on the laws of nature and a sign of long-sought new physics.

Search for those decays performed by LHCb collaboration at that

time is described in [24].

3.2. Data description

In this competition, participants were given a list of collision events

and their properties. They had to predict whether a τ → 3μ decay

happened in this collision. This τ → 3μ is currently assumed by

scientists not to occur, and the goal of this competition is to dis-

cover τ → 3μ happening more frequently than scientists now can

understand.

3.2.1. Signal channel

Different mechanisms can produce tau leptons (mass of τ equals to

1776.86 MeV/c2). At LHCb, taus are produced in the decay of heavy

flavored particles (containing a c or a b quark), which are listed

in Table 1. They are mainly produced in the decays of D−
s or D−

particles, such as D− → τη. In the simulation samples provided,

the correct proportions of the different tau production mechanisms

are respected, and the feature production identifies the production

mechanism.

Table 1. Production mechanisms and their proportions for tau lep-
tons at LHCb, according to the centre-of-mass energy. Xb denotes
any particle containing a beauty (b) quark. production is a label
that denotes the production mechanism of τ for simulated decays.
In the data, this label is set to –99.

Mode 7TeV 8TeV Production

Prompt D−
s → τ 71.1 ± 3.0% 72.4 ± 2.7% 1

Prompt D− → τ 4.1± 0.8% 4.2± 0.7% 2
Non-prompt D−

s → τ 9.0± 2.0% 8.5± 1.7% 5
Non-prompt D− → τ 0.18± 0.04% 0.17 ± 0.04% 6
Xb → τ 15.5 ± 2.7% 14.7 ± 2.3% 4
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3.2.2. Background

The background for τ− → μ−μ−μ+ decay can be divided into two

categories. The first one consists of decays with one or more light

hadrons (pion or kaon) is wrongly identified as a muon. The main

process in this category is D+ → K−π+π+. The invariant mass

distributions for this process are shown in Fig. 3. These two mass

distributions differ because of the mass assigned to the final states

and thus used when computing the mass of the initial state. On the

left-hand side, the muon mass (105.66MeV) is assigned to all final

states, while, on the right-hand side, the correct masses for kaons

and pions (139.57MeV for π± and 493.68 for K±) are used. Hence

the misidentification results in a shift in the mass of the initial state.

The second dangerous backgroundDs → η (→ μ+μ−γ)μ−νμ orig-

inates from the decay in which there are three real muons that

can mimic the signal signature. This background can be effectively

removed requiring all mass combinations of two muons of opposite

sign to be greater than 450 MeV.

3.2.3. Additional data

Training of a classifier that is capable of discriminating the signal

from the background is a delicate procedure since one can induce

unwanted systematic biases that would affect the physics estimations

Fig. 3. D meson invariant mass distribution in D+ → K−π+π+ decays as
observed in data. On the left-hand side, all hadrons have been assigned muon
mass hypothesis before computing the mass of the mother particle, on the right-
hand side, the correct mass hypotheses have been used.
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in unpredictable ways. Additional datasets described in the following

subsection were supplied to mitigate the risk.

3.3. Evaluation procedure

3.3.1. Verification of the agreement

Participants have trained classifier models on simulation data for

the signal and real data side-bands for the background, so it is pos-

sible to reach a high performance by picking features that are not

perfectly modeled in the simulation (min ANNmuon is an example of

such feature). Organizers demand the classifiers not to have large

discrepancy when applied to data and simulation. To estimate the

discrepancy a control channel, D+
s → φ (→ μ−μ+) π+, is used. It has

a similar topology as the signal decay. Organizers provide both data

and simulation samples for this decay in the check agreement.csv

dataset. The Kolmogorov–Smirnov (KS) test is used to evaluate the

differences between the classifier distributions on both datasets. The

evaluation constraint was that the KS-value on the test dataset has

to be smaller than 0.09.

The cumulative distribution (CDF) functions are computed

for simulated data predictions, and real data predictions and

Kolmogorov–Smirnov metric is calculated:

KS = max |Fsimulation − Freal| ,

where Fsimulation and Freal are cumulative distribution functions for

Monte Carlo data and real data, respectively.

3.3.2. Verification of the correlation

Correlation of classifier output with the τ mass are unfavorable

for data analysis, since those correlations can cause an artificial

signal-like mass peak or lead to incorrect background estimations.

To prevent cheating, organizers have introduced the Cramer–von

Mises (CvM) test [25] to estimate the degree of correlation between

the prediction and the mass. The CvM-value of the test has to

be smaller than 0.002. Organizers have included the script for
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computing the CvM-value, so participants could verify own models

on check correlation.csv. CvM metric for the whole dataset pre-

dictions CDF is compared to a local (in some mass range) predictions

CDF. After that, all intervals are averaged:

CvMinterval =

∫
(Fglobal − Finterval )

2 dFglobal,

CvM = 〈CvMinterval〉interval,
(2)

where Fglobal and Finterval are predictions cumulative distribution

functions for all the data and data in a given local mass range.

3.3.3. Figure of merit

The calculation of the final figure of merit is performed only if the two

above tests are passed on test.csv with success and is calculated

only using events with min ANNmuon � 0.04.

Initially, the LHCb used the CLS[26] method to determine the

upper limit. This method, unfortunately, is computationally expen-

sive and cannot be used in this challenge. Instead, organizers pro-

posed a much simpler metric, which is the weighted area under the

ROC curve. The regions and their weights are illustrated by Fig. 4.

Fig. 4. Weights assigned to the different segments of the ROC curve for the
purpose of submission evaluation. The x -axis is the False Positive Rate (FPR),
while the y-axis is True Positive Rate (TPR).
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The reason to assign different weights to different bins of signal

efficiency is that the sensitivity to a given process is not a linear

function of expected background events. Most of the sensitivity is

obtained when the number of expected background events is O(1)
(see Sec. 2.1 for a different means to achieve the same goal). For

example see [27, Table 208].

3.3.4. Competition datasets

All the competition data is provided in the following files:

(1) training.csv is a labeled dataset (the signal being 1 for signal

events, 0 for background events) to use for training the classifier.

Background events come from real data mass side-bands and

from the simulation.

(2) check agreement.csv is a labelled dataset (the signal being 1

for simulated data, 0 for real data) with the same features as in

the training.csv. This dataset is used to check the agreement

between simulated and real data as described in Sec. 3.3.1.

(3) check correlation.csv is a dataset with the same features as

the training.csv, to check correlation of the classifier with the

τ mass as described in Sec. 3.3.2 before submission.

(4) test.csv is a non-labeled (signal and background are mixed)

dataset, containing (a) simulated signal events and real back-

ground data, (b) simulated events and real data for the control

channel.

The setup for the challenge was unusually complicated. The cor-

relation and agreement checks was introduced specifically to match

the intuition of physics checks with Kaggle platform requirements.

So the organizers have prepared special kind of prizes to the commu-

nity to mitigate the risk that smart participants find a way to bypass

those checks.

3.4. Prizes and participation statistics

The competition was running for three months and has attracted

673 teams. Participants submitted more than 10 thousand differ-

ent solutions. The main prize allocation for the competitors was:
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USD 15,000 as judged by official Kaggle leaderboard. Additionally, a

special Physics Prize that was awarded to teams that, as judged by

the LHCb collaboration members, create a model that is most useful

from the physical perspective. The main motivation for the special

prize was that the challenge setup was quite tricky for regular Kag-

gle challenge. So it could provide an incentive for the participants

to find workarounds to bypass the checks and produce meaningless

solutions from the Physics perspective. Figure 5 shows the private

leaderboard statistics. One can see that the top teams have reached

the ideal score of 1.0, which turned out to be a clever way to bypass

additional checks while still introducing unwanted selection proper-

ties. Indeed, the trick of exponentiatione allowed to get a rather high

score in the leaderboard. Organizers have scrutinized solutions by

Fig. 5. Top private “Flavor of Physics” leaderboard score evolution.

ehttps://www.kaggle.com/rakhlin/abcde/code.

https://www.kaggle.com/rakhlin/abcde/code
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top 20 participants and have identified several solutions that avoided

unphysical score overfitting (see Sec. 3.5).

3.5. Physics prize and follow-up workshop

The Heavy Flavor Data Mining workshop was organized at the Uni-

versity of Zurich in February 2016f to wrap-up the results of the com-

petition and to award the physics prizes. The recipients were Vicens

Gaitan and Alexander Rakhlin. The main ideas of their approaches

are highlighted below.

3.5.1. Data doping by Vicens Gaitan

The idea is to “dope” (in the semiconductor meaning) the training

set with a small number of Monte Carlo events from the control

channel but labeled as background. It disallows the classifier to pick

features discriminating data and Monte Carlo. Figure 6 illustrates

the doping procedure.

Such a procedure involves two parameters that regularize the

learning: (a) The number of “doping” events and (b) the complexity

of the classifier (for instance number of trees). Those can be tuned

depending on the problem and data at hand.

Fig. 6. Data doping: the training set with a small number of Monte Carlo events
from the control channel, but labeled as background.

fhttps://indico.cern.ch/event/433556/.



December 14, 2021 16:15 Artificial Intelligence for High Energy Physics 9in x 6in b4322-ch20 page 781

ML Scientific Competitions and Datasets 781

3.5.2. Transfer learning by Alexander Rakhlin

The network is trained in the two-stage process.

(1) create a strong model for the signal channel using all available

features. This model is based on an ensemble of 20 feed-forward

fully connected neural nets.

(2) transfer this model to control channel. The model’s output is

stacked with original features and cascaded to additional “trans-

ductive” neural network of similar configuration. The purpose of

the second net is to track the first model’s output on the sig-

nal channel with minimal and controlled adaptation to control

channel.

All three metrics (AUC, KS, CVM) are global and not analytically

differentiable. It makes gradient descent generally impossible. So the

procedure is the following. Initial weights of the transductive network

are set to reproduce the output of the original model; this is accom-

plished after 1–3 epochs of standard GD with cross-entropy loss on

the signal channel. Adaptation of weights is made with stochastic

optimizer using Powell’s method. Loss function incorporates AUC,

KS, CVM metrics and allows controlling them during optimization.

As a result, it obtains best of the two worlds: performance on signal

channel preserved as much as possible (slightly drops only in the

3rd decimal place), the tests on control channel passed. To keep

the model as physically sound, one can control its performance on

the signal channel during optimization. Furthermore, it is possible to

restrict the transductive network from excessive deviation from its

original state (weights) or implement any other regularizer.g

3.6. Conclusion

The Flavors of Physics challenge was aiming at an ambitious goal of

finding a way to deal with nuisance parameters and MC/real data

ghttps://github.com/alexander-rakhlin/flavours-of-physics.

https://github.com/alexander-rakhlin/flavours-of-physics.
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discrepancies happening in particle physics analyses. In real-life set-

tings, all the checks are performed by professionals with physical intu-

ition that helps them to keep solutions under meaningful constraints.

Translation of those constraints to the competition platform implies

taking the risks of (a) simplifying of the limitations and (b) giving

incentive to the participants to hack the metric. It has happened

to the challenge, and one can follow the details on Kaggle forum.

Nevertheless, special prizes allocated by the organizers, which had

to be awarded by the domain scientist committee has allowed moti-

vating development of physically-sound solutions that were outlined

above.

4. TrackML

4.1. Introduction

The Tracking Machine Learning (TrackML) challengeh took place

mainly in two phases, an Accuracy phase [28] in 2018 on the Kaggle

platform,i and a Throughput phase [29] (combining accuracy and

speed) in 2018–2019 on Codalab,j preceded by a limited scope 2D

prototype competition in April 2017 [30]. The challenge is described

in details in the papers referenced above, only a summary is given

here, focusing more on the lessons (see also [31]).

The analysis pipelines of the proton collisions at the Large Hadron

Collider (or events) rely on a first step, the reconstruction of the tra-

jectories of the particles within the innermost parts of the detector.

The time to reconstruct the trajectories — in a constant magnetic

field these would follow a helical path — from the measurements (3D

points) is expected to increase faster than the projected computing

resources. New approaches to pattern recognition are thus searched

for to exploit fully the discovery potential of the High Luminosity

Large Hadron Collider. A typical event for ATLAS or CMS detec-

tor at HL-LHC design luminosity would have about 100,000 points

hhttps://sites.google.com/site/trackmlparticle/.
ihttps://www.kaggle.com.
jhttps://competitions.codalab.org.

https://sites.google.com/site/trackmlparticle/
https://www.kaggle.com
https://competitions.codalab.org
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Fig. 7. TrackML detector (one sector of the detector has been etched out). White
dots are the measured points, while the red lines are the trajectories of the par-
ticles (from [28]).

to be associated into 10,000 trajectories (see Fig. 7). The state of

the art was about 10s per event on a modern CPU when the chal-

lenge was designed. Given that 10–100 billions such collisions need

to be treated each year, the importance of a significant increase of

the reconstruction throughput becomes evident.

The goal of the TrackML challenge was to expose the problem

of fast particle tracking to the wide Computing Science community.

Since designing new algorithms and writing fast software require sep-

arate expertise, it was decided early to split the competition into

two phases: the first phase (Accuracy) would only be about algo-

rithm accuracy, while the second (Throughput) would be about fast

software with a good compromise on accuracy.

While for the Accuracy phase, participants had to upload a solu-

tion file to Kaggle platform indicating how the points are clustered

into tracks, for the Throughput phase participants had to upload

their software directly to the Codalab platform, on which it was exe-

cuted in a controlled environment. By doing so, the resource usage

was measured in a standardized way, and the Throughput score was

then derived from the accuracy and the speed.
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4.2. Dataset and score

A dataset consisting of an accurate simulation [32] of an LHC-like

experiment has been created, listing for each event the measured 3D

points, and the list of 3D points associated to a true track.

The detector simulated is a full Silicon detector organized in cylin-

ders and disks sharing the same axis of symmetry z; the origin of

the axis is at the centre of symmetry. An approximately solenoidal

magnetic field of the same axis bends the particles so that their tra-

jectories are approximate arc of helices. Most, but not all particles,

start from close to the origin.

The participants to the challenge should find the tracks, meaning

building the list of 3D points belonging to each track, in an additional

test dataset without the ground truth.

Detailed algorithm performance studies usually involve in-depth

analysis of hundreds of histograms. Yet, as usual for a competition,

algorithms should be ranked from a single score number to be max-

imized. The Accuracy score was chosen to be “the weighted frac-

tion of points correctly assigned”, which is computed from the point

association inferred by the participants. This choice for an Accuracy

score based on points was somewhat counter-intuitive, as it is much

more usual in the community to evaluate the performances in term

of found tracks, examining the tracking efficiency (fraction of tracks

found) and quality (precision of the reconstructed track parameters).

The post-competition in-depth analysis of the algorithms submitted

has shown that this choice has been correct, as the best algorithms

in terms of the score also had the best performances when analyzed

in depth. It should be noted that this score is non-standard and

required specific development by the Kaggle Data Scientist in charge

of the competition.

For the Throughput competition, the simulation has been slightly

adjusted. An ad-hoc score combining the Accuracy and the speed has

been devised. The iso-score lines appear, Fig. 8, pushing participants

to arrive closest to the bottom right corner, with the largest Accu-

racy score and smallest per-event time. Participants got a non-zero

score only if their submission could achieve more than 50% accuracy
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Fig. 8. TrackML Throughput-phase participants score evolution. The horizontal
axis is the mean accuracy over the 50 test events, and the vertical axis is the aver-
age computation speed per event. The total score, function of both variables, is
displayed in gray contours. Each color/marker type corresponds to a contributor,
the lines help to follow the score evolution (from [29]).

(to avoid poor but super-fast algorithm) in less than 600 s per event

(to avoid straining the resources dedicated to the challenge).

The Throughput evaluation required a reliable measurement of

the inference time on well-defined resources, which was not possible

(at least at the time) on Kaggle. It was then chosen to have the

Throughput phase on Codalab which offers this possibility. It meant

developing the code which would run the submitted software in a

Docker environment with resources limited to 2 CPU and 4GB of

total memory, and the code evaluating the Accuracy score (for the

Accuracy phase this was done by the Kaggle Data Scientist relying for
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a large part on existing internal Kaggle code). The participant code

is embedded in a skeleton taking care in particular of the reading of

the event data and writing out the solution so that the time measured

is purely the one of the inference. Several issues were uncovered and

solved:

• the time measurement was found to be reproducible only within

2%, which could have lead to a change of ranks in case of many

participants. Hence it was decided to measure the time after the

end of the competition by averaging multiple (10) runs on a new

dataset. This was done after the end of the competition and the

updated time measurements were very close to the one provided

online.

• it could have been the case that participants write in the log file

useful information about the test dataset, and then use it in a later

submission. To avoid this, logging was completely disabled.

• it was expected (but not enforced) that participants would sub-

mit their source code which would be compiled on the plat-

form. Uploading additional libraries was allowed given it was not

expected the Docker environment to be complete with all possible

utilities. However, some participants chose to upload their code

directly as a library, which prevented the organizers to see their

code during the competition.

• all sophisticated hacks could not be excluded; instead of multiple

safety measures, for which the organizers had no time nor exper-

tise, hacking was forbidden in the rules of the challenge, and the

submission of the software required to win any price was expected

to deter hacking effectively. No sign of hacking was detected after

the competition.

4.3. Competitions

The TrackML Accuracy phase has run on Kaggle 1st May 2018 to

10th August 2018. The TrackML Throughput competition opened

a few weeks later, the 3rd September 2018. It was initially due to

end 18th October 2018, but given the lack of competitors, it was

extended till 15th March 2019.
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Fig. 9. Evolution of the best score of each team as a function of time (from [29]).

The Accuracy phase was well attended, with a total of 656 partic-

ipants. Figure 9 shows the evolution of the leader scores throughout

the competition. There is initially a large cluster of candidates achiev-

ing a score of 20% to 25%, which corresponds to the 22% performance

of the DBSCAN starting kit. After around 30 days, public kernels

achieving a performance greater than 50% (still based on DBSCAN)

were posted on the public forum by some participants, which leads to

a second group of candidates reaching a performance of 50% to 60%

after 40 days of competition. Finally, a score of more than 90% was

only reached in the last days of the competition. Front runners are

well separated from the pack and from each other, which is a clear

indication of the complexity of the competition (if this had been a

Tour de France stage, it would have been a mountain stage rather

than a peloton finish in a flat stage).

The competition forum has been very active with participants

posting visualization notebooks and algorithm kernels. The accompa-

nying documentation provided minimal information on existing HEP

tracking algorithms in order to not bias the competition towards

existing solutions. However, participants know how to google and

have searched and found and posted in the forum technical papers

on tracking, courses and even the Ph.D. dissertation of one of the

organizer.
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The post-competition analysis has uncovered that a variety of

approaches was used, among which:

• DBScan is a popular (in ML) clustering algorithm, to build clusters

of nearby points in a space of n-dimension. The points belonging to

a track are on an arc of helix, they are not close in 3D geometrical

space. However, they can be brought to be close after suitable

transformations. A simple example was provided to all participants

as a starting kit, which allowed to give non-random results with

a few lines of a code. Somewhat to the surprise of the organizers,

the algorithm was further refined by many participants and all the

way up to rank #9 by CPMP who was given one jury prize.

• Hough transform, a classical (in HEP) algorithm mapping the geo-

metric space to the track parameters space where the clustering

is done was used by some participants and brought to rank #7

by Yuval and Trian using several tricks to make it work in this

situation.

• More innovative, the finnies have used Recurrent Neural Network

to do the track following reaching rank #12.

• The most astonishing algorithm was from outrunner rank #2 with

a combination of a Neural Network and brute force: it first trains

a NN to regress the probability that any pair of points belong to

the same track. Then at the inference stage, it builds the large

100k×100k matrix with the probability of all possible pairs of

point. And finally, it builds the tracks by picking one by one the

most likely pairs. It does work but is very compute-intensive, about

one full day per event, which makes it unpractical.

• The post-challenge performance analysis has revealed somewhat

accidentally that diogo, rank #100 was the only one able to reach

high efficiency for rare abnormal tracks coming far from the origin.

This was achieved with an algorithm keeping track of connection

between large voxels. It is unpractical as soon as there is some

density of similar tracks but it is quite interesting for abnormal

track finding.

• The classical (in HEP) track following algorithm has been

improved with non-classical techniques by top performers, in

particular Top Quarks rank #1, Sergey Gorbunov rank #3,
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demelian rank #4, they will play an important role in the

Throughput phase detailed now.

It was hoped that many participants (or new ones) will carry on

in the Throughput phase. This did not really happen, despite the

extension of the deadline from October 2018 to March 2019. Only

seven participants got a non-zero score. In hindsight, this can be

understood to come from a combination of factors:

• the lesser popularity of Codalab compared to Kaggle, where people

can earn points across competitions;

• the complexity of the problem;

• the necessity to write C++ code, when a typical Kaggle participant

is more used to python;

• given the threshold at less than 600 s per event and more than

50% efficiency, it was already non-trivial to have a non-zero score;

• despite all the efforts to document and streamline the procedure

to submit a solution, it still required a larger commitment than

for a typical Kaggle competition. Also, the fact that log files were

hidden to participants made debugging more difficult for them.

Nevertheless, the small number of participants has been more

than compensated by the high quality of the top three participants

(see Fig. 8), who have all reached above 90% accuracy with a time

up to 0.5 s, while the original goal was around 10 s per event.

The original idea was that algorithms developed in the Accuracy

phase would be optimized and adapted to the second phase, possibly

not by the same participants. This was not enforced in any way but

in fact, it happened:

• Sergey Gorbunov (pseudo sgorbunov) rank 1 in Throughput phase

had obtained rank 3 in the Accuracy phase;

• Dmitry Emliyanov (pseudo fastrack) rank 2 in the Throughput

phase had obtained rank 4 in the Accuracy phase (with pseudo

demelian);

• Marcel Kunze (pseudo cloudkitchen rank 3 in Throughput phase)

used as a starting point the algorithm of TopQuark, rank 1 in the

Accuracy phase, and has largely augmented it.
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4.4. Scientific conclusion

It is not possible to compare directly to in-house algorithms which

would need to be adapted to this specific dataset. Also, they usu-

ally ignore the numerous tracks with pT less than 400 MeV (the

tracks with the highest curvature) while algorithms presented here

can reconstruct tracks down to 150 MeV. It can be estimated that

in-house algorithms are not faster than 10 s per event on one CPU

core, so one order of magnitude slower than Mikado from Sergey

Gorbunov (a.k.a. sgorbuno), 0.5s on two CPU cores. On the other

hand, several simplifications were done in the dataset (in particular

neglecting the sharing of points between tracks) so that it remains to

be seen whether the new algorithms can live up to expectations when

used in the ATLAS and CMS experiment context. The community

is now in the process of doing this exercise.

In the end, Machine Learning was not at the core of the three

best Throughput algorithms. Nevertheless, after extended discus-

sions between the three winners and experts in the field, a consensus

appears that there are two likely avenues for the use of Machine

Learning in such problems (i) combine ML with classical discrete

optimization, for example using a classifier to select early and quickly

the best candidates as done by Marcel Kunze a.k.a. cloudkitchen

(ii) use ML to automatize the lengthy tuning of the internal param-

eters of the algorithms (circa 10,000 in the case of Mikado by Sergey

Gorbunov).

4.5. Organization conclusion

The organization of the TrackML challenge was a long process, the

main elements of the timeline are indicated below:

• March 2015 Berkeley Initial discussion Connecting The Dots work-

shop;k

• March 2016 Vienna More discussion Connecting The Dots work-

shop,l team is being set up;

khttps://indico.physics.lbl.gov/event/149/.
lhttps://indico.hephy.oeaw.ac.at/event/86/.

https://indico.physics.lbl.gov/event/149/
https://indico.hephy.oeaw.ac.at/event/86/
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• April 2017 2D hackathon Orsay Connecting The Dots workshop.m

Follow up paper released end 2017 [30];

• May 2017 first contacts with Kaggle;

• March 2018 Connecting The Dots workshop Seattlen 3D

hackathon, feedback on almost final dataset and score;

• May–August 2018 Accuracy challenge on Kaggle,o follow-up paper

released early 2019 [28];

• December 2018: NeurIPS competition workshop, with top partici-

pants invited;

• Oct 2018–Mar 2019: Throughput challenge on Codalab;p

• July 2019: CERN Grand finale workshopq with top participants

invited;

• October 2019: Université Paris-Saclay Institut Pascal Advanced

Pattern Recognition workshopr with top participants invited for

two weeks;

• May 2021: final paper release [29].

Also, there were more than 40 presentations at physics conferences

(ICHEP, CHEP, EPS, etc.), Machine Learning conferences (WCCI,

NeurIPS CiML and Competition workshops), seminars in physics

departments, python meetup (Paris, Genève) by all members of the

team.

As can be seen, as the challenge develops, several events were

organized to get feedback from the wide tracking experts community.

These were important to exercise and adjust the mechanics of the

challenge and discuss the conclusion and long term impact.

In particular, after the first round of initial discussions, a proto-

type has been the organization of a challenge [30] on the RAMPs

platform during the Connecting The Dots workshopt (a workshop

mhttps://ctdwit2017.lal.in2p3.fr.
nhttps://indico.cern.ch/event/658267/.
ohttps://www.kaggle.com/c/trackml-particle-identification.
phttps://competitions.codalab.org/competitions/20112.
qhttps://indico.cern.ch/event/813759/.
rhttps://indico.cern.ch/event/847626.
shttps://paris-saclay-cds.github.io/ramp-docs/.
thttps://ctdwit2017.lal.in2p3.fr.

https://ctdwit2017.lal.in2p3.fr
https://indico.cern.ch/event/658267/
https://www.kaggle.com/c/trackml-particle-identification
https://competitions.codalab.org/competitions/20112
https://indico.cern.ch/event/813759/
https://indico.cern.ch/event/847626
https://paris-saclay-cds.github.io/ramp-docs/
https://ctdwit2017.lal.in2p3.fr


December 14, 2021 16:15 Artificial Intelligence for High Energy Physics 9in x 6in b4322-ch20 page 792

792 D. Rousseau & A. Ustyuzhanin

for experts in pattern recognition) held at IJCLab in Orsay in

March 2017. The problem was essentially the same as the one exposed

here but very much simplified to be a 2D problem with just 20 tracks

per event (instead of 10,000 in 3D). There was no speed constraint.

The same accuracy score was used for the first time. This 2D chal-

lenge has already yielded a variety of algorithms (not directly appli-

cable in 3D though) and demonstrated that the accuracy score was

indeed selecting the best algorithms. Its success set a green light to

launch the full project.

The team comprised 19 people, senior scientists with expertise

in the field of tracking or Machine Learning, post-docs and stu-

dents, all of them part-time. The total effort can be estimated to

be 3 Full-Time Equivalent year. The main tasks were: preparing

the dataset, the accompanying documentation, helper library and

starter kit for the 4 hackathons and competitions organized, interact-

ing with Kaggle, implementing the competition in Codalab, searching

for sponsors, running the competition, organizing the different associ-

ated workshops, doing the post-competition analysis and writing the

papers.

Sponsoring was needed for the prizes ($30k and 1 NVidia V100

for the Accuracy phase, 15k euros and 1 NVidia V100 for the

Throughput phase) and for the invitations to NeurIPS 2018 Compe-

tition workshop (Accuracy phase) and CERN July 2019 (Throughput

workshop).

4.6. Follow-up studies

Separately, the availability of the TrackML dataset has been

extremely useful to facilitate the collaboration of experts which are

usually working on their own data within their own experimental

team. It has been used for new studies like investigating tracking

with simulated annealing on a D-Wave quantum computer [33], or

with graph networks [34] (see also Chapter 12 in this book). Some-

what unexpectedly, the dataset has also been used to explore the

usage of Augmented Reality to visualize scientific data [35, 36]. The

datasets have been released on Zenodo [47, 48].
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5. LHC Olympics

5.1. Introduction

Despite an impressive and extensive effort by the Large Hadron

Collider (LHC) collaborations, there is currently no convincing evi-

dence for new particles produced in high-energy collisions. LHC

Olympics 2020 Anomaly Detection Challenge challenge was aimed at

exploring the capabilities of machine learning to enhance the poten-

tial signal of Beyond Standard Models (BSM) using all of the avail-

able information.

5.1.1. The challenge goal

The challenge goal was to ensure that the LHC search program is

sufficiently well-rounded to capture “all” rare and complex signals.

Different stages of the competition are focused on different volumes

of the phase space since potential BSM parameter space is vast.

5.1.2. Challenge setup

The LHC Olympics 2020 setup is aligned with the first LHC

Olympics organized in 2005–2006.u Participants are provided with

two types of data:

• “Monte Carlo Simulation Background”: This is a simulated sample

that does not have a signal. Be warned that both the physics and

the detector modeling for this simulation may not exactly reflect

the “Data”.

• “Data”: These samples contain a mixture of background with some

new signal(s). Three unique samples referred-to as black boxes have

been released during LHCO 2020 challenge. All the samples had

become available in November 2019. The first sample has been

unveiled mid-January, during winter part of the LHC Olympics,

and the remaining two has been unveiled during the LHC Olympics

summer workshop.

uhttps://public-archive.web.cern.ch/en/Spotlight/SpotlightOlympics-en.html
and https://www.kitp.ucsb.edu/activities/lhco-c06.

https://public-archive.web.cern.ch/en/Spotlight/SpotlightOlympics-en.html
https://www.kitp.ucsb.edu/activities/lhco-c06
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Both the “Simulation” an “Data” have the same event selection cri-

teria (see Sec. 5.2). Participants had to find signals of BSM in “Data”

samples and to report various metrics that estimate the confidence of

those findings. There were two workshops during 2020 focused on the

discussion of multiple techniques and intermediate challenge results.

The organizational committee of the LHC Olympics 2020 coincides

with the one of those workshops.v

5.2. Data description

For both background and black box data, events supposed to have

the form of X → hadrons, where X is a new massive particle with

an O(TeV) mass. Events are selected after a single trigger of anti-kt
R = 1.0 jet [37] with pseudorapidity |η| < 2.5 and the transverse

momentum pt > 1.2 TeV. Number of events per data sample is the

same and equals to 1M.

These events are stored as pandas DataFrames saved to com-

pressed HDF5 format. For each event, all reconstructed particles are

assumed to be massless and are recorded in detector coordinates

(pt, η, φ). More detailed information, such as particle charge or type,

is not included. Events are zero-padded to constant size arrays of 700

particles. The array format is therefore (1M, 2100).

5.2.1. Background

The background sample of 1M events consists of QCD dijet events

simulated using Pythia8 and Delphes 3.4.1. Both the physics and the

detector modeling for this simulation are not guaranteed to precisely

reflect the signal “data”.

5.2.2. Signal

The signal dataset is split into three files, referred to black boxes. Each

“black box” contains 1M events meant to be representative of actual

LHC data. These events may include BSM signal(s), i.e. it contains

either mixture of some signal and background or just background.

vGregor Kasieczka, Benjamin Nachman and David Shih.
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(a) Box1 (b) Box3

Fig. 10. The new-physics modes hidden in the black boxes.

The signal in the former case represents a kind of new physics simu-

lated by the same software packages as the background. Figure 10(a)

represents the process hidden in the first box. There were 834 events

of this kind. The second black box did not contain any signal and

was filled with the same QCD background events to check the partic-

ipant’s algorithm false positive rate at the boundaries of the phase

space. The most complicated case was hidden in the third box. It

required to stack together two decay modes depicted at Fig. 10(b)

with mX = 4.2 TeV, mY = 2.2 TeV, BR(X → qq) = 1 − BR(X →
Yg) = 0.375. Work [38] inspires this physics, i.e. simple extensions of

RS motivated by LHC Run I null results and little hierarchy prob-

lem, where X represents Kaluza–Klein gluon and Y–IR radion. The

total number of signals in the third box was equal to 3200.

The competition datasets are published at Zenodo archive [39].

5.3. Evaluation procedure

Participants should report:

• a p-value associated with the dataset having no new particles (null

hypothesis);

• a description of the new physics, as complete as possible. For exam-

ple the masses and decay modes of all new particles (and uncer-

tainties on those parameters);
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• number of signal events (+uncertainty) in the dataset (before any

selection criteria).

Outcomes will be judged based on (a) the optimality of the p-values

and (b) the accuracy of the new physics characterization:

• optimality corresponds to the “best” p-value will be the lowest

reported p-value that is above the fully optimal p-value (as deter-

mined with a fully supervised deep learning classifier);

• accuracy is computed by the number of sigmas from the right

answer is used wherever applicable. Number of sigmas is estimated

as |(predicted − true)/predicted uncertainty|.
Organizers prepared the competition starting kitw with scripts that

read in the data and perform exploratory data analysis with it.

5.4. Prizes and participation statistics

There was no money prize associated with the competition and, per-

haps, it was mainly meant for particle physicists since the entry

required some understanding of basic QCD models and new physics

models. Thus, it has attracted a couple of dozens of participants

during 2020 mostly from physics departments. It was also relatively

lightweight in terms of evaluation tools; competitors had to sub-

mit all the metrics via a google form. Such form allowed to col-

lected extended feedback like a description of the new physics a

participant was aiming for. The organizers put together two work-

shops during the winterx and the summery of 2020. Every workshop

has many relevant contributions to the inclusive search for the new

physics. Detailed workshop outcome analysis is available as a work-

shop contributions.z

whttps://github.com/lhcolympics2020/parsingscripts.
xhttps://indico.cern.ch/event/809820.
yhttps://indico.desy.de/event/25341.
zhttps://indico.cern.ch/event/809820/contributions/3708303/attachments/1971
116/3347225/SummaryTalk.pdf, https://indico.desy.de/event/25341/contributi
ons/56822/attachments/36777/45997/SummaryAnomalyDetectionWorkshopJuly
2020.pdf.

https://github.com/lhcolympics2020/parsingscripts
https://indico.cern.ch/event/809820
https://indico.desy.de/event/25341
https://indico.cern.ch/event/809820/contributions/3708303/attachments/1971116/3347225/SummaryTalk.pdf
https://indico.cern.ch/event/809820/contributions/3708303/attachments/1971116/3347225/SummaryTalk.pdf
https://indico.desy.de/event/25341/contributions/56822/attachments/36777/45997/SummaryAnomalyDetectionWorkshopJuly2020.pdf
https://indico.desy.de/event/25341/contributions/56822/attachments/36777/45997/SummaryAnomalyDetectionWorkshopJuly2020.pdf
https://indico.desy.de/event/25341/contributions/56822/attachments/36777/45997/SummaryAnomalyDetectionWorkshopJuly2020.pdf
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5.5. Conclusion

The LHC Olympics presents a charming and successful format for

running a competition in sustainable and cost-saving mode. It is

more focused on the physic-oriented results rather than attracting

a broader data-science audience. The main page of the challengeaa

includes references to several papers describing participant’s contri-

butions. Also, there is a community whitepaper on the competition

outcomes scheduled to be published. It welcomes every participant

for the co-authorship. LHC Olympics organizers invite new BSM

black boxes from the community for the future runs of the challenge.

6. Competitions Platforms

6.1. Platforms for data challenges

There is a dozen of platforms that allow hosting data challenges.

These differ significantly in terms of flexibility, functionality and com-

munity factors. As it was mentioned in the previous sections, chal-

lenges requirements can be quite diverse and demanding. This section

gives an overview of the leading players and alternative approaches

that can be used to run a new challenge. A platform for hosting a

data challenge is a service that is provided by a company or institu-

tion behind it. Those services usually follow the so-called Common

Task Framework (CTF) (see Sec. 1 and paper [2] for details).

Historically different groups started to develop such services

around different challenges; thus, its functionality may differ. Any-

way, since those follow the common competition protocol, every plat-

form allows to upload a dataset, describe challenge condition, setup

evaluation procedure and invite the community to a new challenge.

However, some platforms are better for dealing with human-in-the-

loop evaluations; some give better flexibility in terms of metric spec-

ification; some can deal with private data. We are going to overview

the features of the following platforms:

aahttps://lhco2020.github.io/homepage/.

https://lhco2020.github.io/homepage/
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• AICrowdbb by EPFL, AICrowd,

• CodaLabcc by Chalearn and Université Paris-Saclay,

• CrowdAnalytiXdd by CrowdAnalytiX,

• EvalAIee by CloudCV,

• Kaggleff by Alphabet Inc,

• RAMPgg by Université Paris-Saclay Center for Data Science,

• Tianchihh by Alibaba,

• TopCoderii by TopCoder.

The list is not meant to be comprehensive, as it is focused on active

platforms with broad communities as of the end of 2020, i.e. with

more than ten competitions started during 2020 using publicly avail-

able information. Also, there are platforms like Grand Challengejj

that are focused on some narrow scientific domain. We have identi-

fied the following criteria for comparing the platforms above that are

relevant for HEP-related competitions.

6.1.1. Criteria

We outline the main characteristics that we use for the comparison.

Those criteria are sorted by order of relevance to the competitions

described in this book chapter.

Code sharing, reproducibility: challenge participants are not

always motivated by getting the highest score. Instead, they might

want to explore new things or to get praised by the community. Thus,

the ability to share and discuss their code with other participants

becomes a crucial feature for new complicated challenges like the

bbhttps://www.aicrowd.com/.
cchttps://competitions.codalab.org/.
ddhttps://www.crowdanalytix.com/.
eehttps://eval.ai/.
ffhttps://www.kaggle.com/competitions.
gghttps://ramp.studio/.
hhhttps://tianchi.aliyun.com/competition/.
iihttps://www.topcoder.com/challenges?tracks[DS]=true.
jjhttps://grand-challenge.org/.

https://www.aicrowd.com/
https://competitions.codalab.org/
https://www.crowdanalytix.com/
https://eval.ai/
https://www.kaggle.com/competitions
https://ramp.studio/
https://tianchi.aliyun.com/competition/
https://www.topcoder.com/challenges?tracks[DS]=true
https://grand-challenge.org/
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HEP ones. Sometimes code-sharing is available right within the plat-

form, like at Kaggle, or sometimes participants can link their solution

to github repository/commit, so other participants can reproduce

and play with it. Such feature adds greatly to the reproducibility of

the winning solutions making it much more scientific.

Code submission: accuracy metrics are not enough to evaluate the

dynamic aspects of a participant’s code. In some cases like tracking

or triggering, one may be interested in comparing the accuracy of an

algorithm only if certain execution speed/resource consumption con-

straints are met. Thus, some platforms support code as a submission

to evaluate a solution to the full extent.

Community activity: it is a cumulative estimation that takes into

account the total number of challenges organized, number of chal-

lenges in 2020, the maximum number of participants per challenge

and estimated size of the community.

Custom metrics: the ability to implement custom metrics is cru-

cial for some non-trivial cases that wish to compare algorithm per-

formance for non-usual challenges like it was for Flavor of Physics.

Sometimes it is needed to make a trade-off between accuracy and

performance like it was for TrackML. Some platforms allow choos-

ing just one among many predefined metrics; some allow for custom

implementations. Some platforms charge an additional cost for imple-

menting non-standard metric.

Staged challenges: sometimes challenges might look too weird at

the beginning, so it helps to split it in smaller chunks. Thus, it is

possible to mitigate risks of data leakage by adding a preliminary

stage and testing the competition settings. It will help people to

keep the context between stages and smoothly transfer knowledge of

the best solutions.

Private challenge evaluation: data privacy is a serious issue even

in fundamental science, so some platforms allow running participant’s

solutions evaluation using an organizer’s dedicated machines, thus

one setup a challenge without the need to share restricted datasets.
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Open-source: in usual scenarios, a platform operates as a ser-

vice and challenge organizers do not care much about tweaking its

functionality. However, open-source gives the ability to evaluate the

project activity, check the details of platform evaluation mechanics

or run own instance of the service for some local events with private

datasets, for example.

Human-evaluation: some challenges do not have ground-truth

labels in the data. For example, evaluation of a dialog bot requires

communication with a living person, or images of galaxies labeled by

an agent may require extra human validation. Some platforms allow

connecting to human-evaluation platforms such as Amazon Mechan-

ical Turk (see below) or alike.

Reinforcement-Learning (RL) evaluation: agents designed to

operate in a dedicated environment present another challenging task

for a fair evaluation for a couple of reasons: (a) environments can be

very diverse, (b) each agent may require considerable computational

resources the platform needs to account for, (c) each agent operates

in randomized environments thus it may require several evaluations

to get a statistically-sound score.

Run for free: many platforms allow setting up money prizes to

the competition winners, so they charge for running those settings.

Some platforms still allow to run a challenge almost for free — if

the problem is not computationally heavy, it is possible to run it

using the service infrastructure. Sometimes it is possible to connect

the organizer’s computational resources to the service, thus avoiding

extra charges.

6.2. Comparison

Overview of the platforms concerning the criteria above is presented

in Table 2. In addition to the overall comparison, it is worth men-

tioning individual features that are difficult to fit into a generic table.

RAMP: Rapid Analytics & Model Prototyping is a service that is

mainly used by the Université Paris-Saclay Center for Data Science

to support own events like hackathons or datacamps. Remarkably,
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Table 2. Platform overview.

Criteria AICrowd CodaLab CrowdAnalytiX EvalAI Kaggle RAMP Tianchi TopCoder

Code-sharing ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✗

Code submission ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓

Active community ★★ ★★★ ★ ★★ ★★★★ ★ ★★★ ★★

Custom metrics ✓ ✓ ✓ ✓ ✓ ✓ ? ✗

Staged challenge ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✗

Private evaluation ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗

Open-source ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✗

Human evaluation ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗

RL-friendly ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗

Run for free ✗ ✓ ✗ ✓ ✓ ✗ ? ✗
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RAMP involves two phases of each event — competition and col-

laboration. During competition phase participants, try to design

their algorithms, while upon collaboration stage, they share their

approaches and team up for the sake of a better solution. RAMP

is published under BSD-3 license,kk so it may come handy for a

lightweight setup of an event at own premises.

Kaggle: allows to run a competition entirely free for non-commercial

purposes in so-called InClass mode: (a) so Kaggle does not adver-

tise it to the community and (b) gives a limited setup flexibility, i.e.

one cannot evaluate submissions against anything but the set of pre-

defined straightforward metrics like RMSE or ROC AUC. Also, such

competitions do not award any Kaggle ranking points to the par-

ticipants, which reduces the incentive to join it significantly. Once a

company/university decides to run a full-fledged public challenge, it

is possible to implement a custom metric, but it may turn out to be

quite expensive.

Tianchi: despite a relatively young age, it is a top-rated service in

China with very similar to Kaggle functionality that includes run-

ning kernels and ranking points. Challenges quickly can gain several

thousand participants. However, most of the audience is Chinese, so

communication skills in Chinese would come handy.

TopCoder: is one of the oldest and biggest worldwide platforms for

outsourcing coding tasks. Thus the audience is huge — 1.5 million

of users. However, it added machine learning tasks in 2018, so only

a fraction of the total users is relevant for addressing data-driven

challenges.

6.3. Alternative approaches

The platforms from the comparison above implement challenges

along Common Task Framework [2]. However, it is not the only

option. Below is a list of platforms that rely on different assump-

tions and implement peculiar interaction protocols.

kkhttps://github.com/paris-saclay-cds/ramp-board/.

https://github.com/paris-saclay-cds/ramp-board/
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Amazon Mechanical Turk (AMT)ll: is a marketplace for com-

pletion of virtual tasks that require human intelligence. A business

or academics typically use it to label data that later on can be used

for training ML algorithms. AMT has been around for more than

15 years. Major companies like Google and Microsoft have similar

versions of such marketplaces.

Zooniversemm: While AMT focuses on pretty generic tasks like

reading labels from images, captcha translation, listening compre-

hension, tagging inappropriate images, etc. Zooniverse builds a com-

munity of people that are interested in contributing their efforts and

intelligence to scientific research advances. It provides participants

with unlabeled datasets from a wide variety of scientific branches:

biology, climate, history, physics, etc. Those datasets require human

intelligence not only for labeling but also for understanding the scien-

tific assumptions of the domain and phenomena presented. Participa-

tion in real-science research can motivate people quite significantly.

There are cases when discussions between scientists and Zooniverse

participants lead to new scientific discoveries [40].

OpenMLnn: is an online machine learning platform for sharing

and organizing data, machine learning algorithms and experiments.

Founders of the platform are passionate about the comparison of dif-

ferent ML methods. Thus they have created the service that allows

to run an algorithm across different datasets and systematically com-

pare its performance. While there are no private leaderboards, every

check is performed via system API and protocol systematically. Thus

new experiments are immediately compared to state of the art with-

out always having to rerun other people’s experiments. The recent

development of OpenML involves the design of AutoML evaluation

framework for a broad spectrum of datasets.

PapersWithCode (PwC)oo: organizes access to technical papers

that also provide the software used to create the paper’s findings,

llhttps://www.mturk.com/.
mmhttps://www.zooniverse.org/.
nnhttps://www.openml.org/.
oohttps://paperswithcode.com/.

https://www.mturk.com/
https://www.zooniverse.org/
https://www.openml.org/
https://paperswithcode.com/
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has grown immensely in the past few years. With the help of this

platform, one can find the most current state of the art to the problem

of the interest and read details of the method in the linked paper from

arXiv.

InnoCentivepp: is an innovative hub for a new kind of problem-

solving. It describes the framework of “Challenge Driven Innovation”

(CDI) that helps to reformulate a task at hand into a series of mod-

ules or challenges that are addressed later either by a network of

so-called solvers or internal company members. CDI have examples

of different kind of challenges, including idea, validation, proof of con-

cept, prototype, and production. So it is not specific to data labeling

or algorithm development.

Seasonal events: there are many yearly data analysis events orga-

nized around the world. Usually, those are hosted by universities

and attract quite a significant number of participants. International

Data Analysis Olympiad (IDAO)qq is just a single example among

many.rr,ss IDAO has engaged more than 2500 participants across

83 countries in 2020. Interesting and unique challenges might fit such

events very well, and in that case, organizers will alleviate the burden

of preparing and running the challenge quite significantly.

Other: There are many different venues for interactions between sci-

ence and citizens. Michael Nielsen gives a good overview in his book

“Reinventing Discovery: The New Era of Networked Science” [41].

A remarkable example of such interaction is the design of a network

of micro-prediction agents that follow specific question-answering

protocol. Authors of those agents get rewards for providing correct

answers. Such protocol gives incentive to the participants to come

up with better algorithms and suitable external data sources [42].

A broader list of citizen-science projects is, of course, available at

Wikipedia [43].

pphttps://innocentive.wazoku.com/.
qqhttps://idao.world.
rrData Mining Cup, https://www.data-mining-cup.com/.
ssASEAN Data Science Explorershttps://www.aseandse.org/.

https://innocentive.wazoku.com/
https://idao.world
https://www.data-mining-cup.com/
https://www.aseandse.org/
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7. Open Datasets and Responsitories

Several datasets prepared for challenges are listed in the following. In

addition, the LHC experiments have released some fraction of their

data with corresponding simulated events (with ground truth) but

there are no associated metrics. Also, authors of papers on the appli-

cation of Machine Learning techniques to High Energy Physics are

often willing to share their datasets on request, even if not formally

released.

• HiggsML dataset is available on the CERN Open Data portal [6]

with accompanying documentation [5]. All 818,238 events have

been released including ground truth, while only a subset of

250,000 events is available on Kaggle.tt For each event, it lists 17

low-level features and 13 high-level features for two classes. Beyond

classification, a python script allows to introduce systematic effects

[19, 21].

• Flavor of Physics challenge dataset.uu

• Datasets for the TrackML challenge: (i) the Kaggle one [47] used

for the Accuracy phasevv (ii) the Codalab one [48] used for the

Throughput phase.ww Compared to the Accuracy one, a few fea-

tures were corrected (iii) the CERN Open Data Portal final release

in preparation.

• LHC Olympics-2020 dataset [39].

• LHCb Muon Identification challenge datasetxx was published

within International Data Analysis Olympiad-2019.yy

• LHCb PID compression challenge,zz with baseline solution.aaa

• MiniBooNE Particle Identification dataset.bbb

tthttps://www.kaggle.com/c/higgs-boson.
uuhttps://www.kaggle.com/c/flavours-of-physics/data.
vvhttps://www.kaggle.com/c/trackml-particle-identification.
wwhttps://competitions.codalab.org/competitions/20112.
xxhttps://www.kaggle.com/kazeev/idao2019muonid.
yyhttps://idao.world/history/#idao-2019.
zzhttps://zenodo.org/record/1231531.
aaahttps://github.com/weissercn/LHCb PID Compression.
bbbhttps://www.kaggle.com/ukveteran/miniboone-particle-identification.

https://www.kaggle.com/c/higgs-boson
https://www.kaggle.com/c/flavours-of-physics/data
https://www.kaggle.com/c/trackml-particle-identification
https://competitions.codalab.org/competitions/20112
https://www.kaggle.com/kazeev/idao2019muonid
https://idao.world/history/#idao-2019
https://zenodo.org/record/1231531
https://github.com/weissercn/LHCb_PID_Compression
https://www.kaggle.com/ukveteran/miniboone-particle-identification
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• LArTPC 2D/3D Simulation for Particle Segmentation &

Clustering.ccc

• Particle Identification from Detector Responses, a simplified

dataset of a GEANT-based simulation of electron–proton inelastic

scattering measured by a particle detector system.ddd

• The top tagger dataseteee has been used for extensive studies of

top quark tagging [44].

There are several catalogs that reference HEP-related dataset,

which can be handy for adding a published dataset to increase its

visibility:

• CERN Open Data Portalfff hosts a collection of datasets from all

large LHC experiments as well as from OPERA experiment.

• The Durham High-Energy Physics Database.ggg It hosts the data

points from plots and tables related to several thousand publica-

tions including those from the LHC collaborations. It does not hold

any event datasets unlike the CERN ODP.

• UCI ML HEP portalhhh hosts a variety of HEP datasets associated

with published papers, in particular the HIGGS UCI dataset [45]

produced for the study [4] (see also Chapter 3).

• Inter-Experimental LHC Machine Learning (IML) Working Group

datasets.iii

8. Guidelines for New Competition Organizers

As for a movie or a novel, there are no rules which would guarantee

the success of a scientific challenge. However, a set of guidelines can

be derived from the experience gathered from the challenges summa-

rized in this chapter, which does not pretend to be exhaustive.

ccchttps://osf.io/vruzp/.
dddhttps://www.kaggle.com/naharrison/particle-identification-from-detector-
responses.
eeeTop tagging sample, https://desycloud.desy.de/index.php/s/llbX3zpLhazg
PJ6, for more information and citation please use [46].
fffhttps://opendata.cern.ch.
ggghttps://www.hepdata.net/.
hhhhttp://mlphysics.ics.uci.edu.
iiihttps://iml.web.cern.ch/public-datasets.

https://osf.io/vruzp/
https://www.kaggle.com/naharrison/particle-identification-from-detector-responses
https://www.kaggle.com/naharrison/particle-identification-from-detector-responses
https://desycloud.desy.de/index.php/s/llbX3zpLhazgPJ6
https://desycloud.desy.de/index.php/s/llbX3zpLhazgPJ6
https://opendata.cern.ch
https://www.hepdata.net/
http://mlphysics.ics.uci.edu
https://iml.web.cern.ch/public-datasets
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The overarching goal of a Machine Learning challenge is the sci-

entific issue. It should be compelling both for experts of the domain

(High-Energy Physicists), for experts in Machine Learning, and non-

experts. It should be possible to pitch it to someone with little scien-

tific background. At the same time, it should appear complex enough

to be interesting, and non-physicists should feel they can contribute

without a big disadvantage compared to physicists. It is important

to focus on just one issue. For example, for an event classification

problem like HiggsML or Flavor of Physics, one would provide par-

ticle 4-vectors and hide all the complexity of accurate calibration of

the detector.

The centerpiece of a challenge is the dataset. It will have a life well

beyond that of the challenge. In some sense, a challenge can be seen

just as a way to advertise a dataset. The dataset should be curated

and prepared to be easily understood and handled by non-experts,

preferably with no need for non-standard tools. It should still retain

some richness has the same dataset can be used later on for other

challenges, tutorials, benchmarks. The preparation of the dataset is

probably the more time-consuming part of a challenge preparation.

Since a challenge is by nature a competition, there should be a

unique score to rank the participants. Domain experts are not used

to ranking techniques based on a single number as they would typi-

cally like to see in-depth studies (with many curves and histograms)

concerning various merit of a technique. Yet, there should be a single

score, defined before the competition. Participants will optimize for

this score, and the organizers bet that at the end of the competition

the best algorithms from the point of view of the score, will also be

the best algorithms for domain experts. Besides, the score should be

sufficiently simple to be understood by the non-experts and stimulate

their creativity (not a black box), robust against possible “hacks”,

and, with limited luck factor when used in a challenge context. For

example, in the HiggsML competition, the AMS (Eq. (1)) was chosen

as it was much more relevant for a typical HEP classification prob-

lem (which are very unbalanced) than the usual ROC-AUC, and the

regularization term 10 allowed to reduce the statistical uncertainty

on the evaluation. Defining the score is probably the most difficult

part of a challenge preparation.
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Running a prototype of the challenge as part of an expert work-

shop or grad student school allows debugging many issues, from mis-

leading documentation to the mechanics of the challenge platform.

Finally, challenges are a competitive market. Successful partici-

pants will spend months on a particular challenge, but they decide

in little time in which competition they will enter. Without going

into any details, this drives much of the effort in relying on an estab-

lished challenge platform, on streamlining the challenge documenta-

tion (which should be readable by any scientific undergraduate and

at the same time open up to more complex knowledge) and starting

kit. In particular, submitting a first “hello world” solution should be

possible in less than an hour. Public Relations is also important, as

well as foreseeing incentives for participation. Money incentives are

good but their role should not be over-emphasized. Invitations to

participate in workshops at Machine Learning conferences or major

HEP laboratories like CERN are valued by participants.

It can never be expected that the outcome of a challenge will be

a piece of software ready to be plugged in. It is rather a smorgasbord

of algorithms, well documented or not, forum posts or blogs.

Post-challenge workshops have the merit to keep some partici-

pants engaged in a collaboration with physicists (others will immedi-

ately move on to another competition). Special “jury” prizes set aside

for algorithms judged on their overall merit (not the absolute best

score, but also novelty, usability,...) allow keeping these participants

engaged. Offering them the possibility to contribute to post-challenge

papers is another means. The post-challenge phase is particularly

interesting when it allows real collaboration, combining several good

ideas, compared to the competition phase which is, well, a compe-

tition: discussion on the forum happens, notebooks are exchanged,

but the best competitors are often silent until the end.

9. Conclusion

In this chapter, four quite different high-energy physics scientific

competitions have been summarized. In all cases, new approaches

have emerged, in addition to the optimization of existing ones. In all
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cases, the formal end of the competition is actually the beginning of a

new effort to sift through the wealth of information generated. Also,

a long-lasting impact of the competitions is the dataset released with

accompanying metric. High-energy physics boasts diversity and com-

plexity of data structure and a variety of scientific questions raising

interest well beyond its perimeter. It offers a wide range of future

competition topics. Hopefully, resources, services and guidelines out-

lined in this chapter will help to pave the way for the design and

organization of new fascinating challenges.
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sequential clustering algorithms, 547
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significance, 16
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softmax activation, 340

softmax function, 344
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top jets, 559
top tagging, 458

track reconstruction, 407
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