Dark Matter Part II

Ningqiang Song

Institute of Theoretical Physics, Chinese Academy of Sciences January 8-9, 2025

2025 Winter Institute of New Physics in Elementary Particle Physics

Outline

- Direct detection of dark matter
 - Introduction to dark matter scattering rate
 - Inelastic dark matter
 - Strongly interacting dark matter
 - Boosted dark matter
 - Atmospheric dark matter
 - Electron recoil
 - Wavelike dark matter
- Astrophysical probes of dark matter
 - Introduction to indirect detection
 - Primordial black hole dark matter
 - Axion-photon conversion
 - Dark matter capture

Eilers *et al.*, 1810.09466

波动类暗物质

Dark Matter Detection

暗物质相互作用

Dark Matter Detection

暗物质相互作用

Dark Matter Direct Detection

Constraints on WIMP Dark Matter

Rotation curves of spiral galaxies

Rubin et al, Atrophy's. J. 1980

Persic et al MNRAS 1996

11

Persic et al MNRAS 1996

Persic et al MNRAS 1996

13

Boltzmann equation of the phase space

Boltzmann equation of the phase space

 $\mathbf{L}[f] = \mathbf{C}[f]$ $\frac{\partial f}{\partial t} + \dot{\mathbf{x}} \frac{\partial f}{\partial \mathbf{x}} + \dot{\mathbf{v}} \frac{\partial f}{\partial \mathbf{v}} = 0$

Jeans theorem Any steady-state solution of the collisionless Boltzmann equation depends on the phase-space coordinates only through integrals of motion in the given potential, and any function of the integrals yields a steady-state solution of the collisionless Boltzmann equation.

Let's guess!

Binney, Galactic Dynamics

 $f(\mathbf{x}, \mathbf{v}) = f(\mathcal{E})$ $\mathcal{E} = \Psi - \frac{1}{2}v^2$ $f(\mathcal{E}) \propto e^{\mathcal{E}}$

Boltzmann equation of the phase space

 $\mathbf{L}[f] = \mathbf{C}[f] \qquad \qquad f(\mathbf{x}$

$$\frac{\partial f}{\partial t} + \dot{\mathbf{x}} \, \frac{\partial f}{\partial \mathbf{x}} + \dot{\mathbf{v}} \, \frac{\partial f}{\partial \mathbf{v}} = 0$$

$$\rho \propto \int_0^\infty dv \, v^2 f(v) = \int_0^\infty dv \, v^2$$

f(x, v) = $f(\mathcal{E})$ $\mathcal{E} = \Psi - \frac{1}{2}v^2$ $f(\mathcal{E}) \propto e^{\mathcal{E}}$

 $\int dv v^2 \exp\left(\frac{\Psi - v^2/2}{\sigma^2}\right) \propto e^{\Psi/\sigma^2}$

Boltzmann equation of the phase space

 $\mathbf{L}[f] = \mathbf{C}[f] \qquad \qquad f(\mathbf{x}$

$$\rho \propto \int_0^\infty dv \, v^2 f(v) = \int_0^\infty dv \, v^2 \, \exp\left(\frac{\Psi - v^2/2}{\sigma^2}\right) \propto e^{\Psi/\sigma^2}$$

$$\nabla^2 \Psi = -4\pi G\rho \longrightarrow \rho(r) = \frac{\sigma^2}{2\pi Gr^2}$$

for phase space $f(\mathbf{x},\mathbf{v}) = f(\mathcal{E})$ $\mathcal{E} = \Psi - \frac{1}{2}v^2$

 $f(\mathcal{E}) \propto e^{\mathcal{E}}$

 $ho(r) \propto 1/r^2$

$$\rho \propto \int_0^\infty dv \, v^2 f(v) = \int_0^\infty dv \, v^2 \, \exp\left(\frac{\Psi - v^2/2}{\sigma^2}\right) \propto e^{\Psi/\sigma^2}$$
$$\nabla^2 \Psi = -4\pi G \rho \longrightarrow \rho(r) = \frac{\sigma^2}{2\pi G r^2} \qquad \rho(r) \propto 1/r^2$$

$$M(r) = \frac{2\sigma^2 r}{G}$$

Maxwell-Boltzmann distribution

$$v_0 = v_c = \sqrt{2}\sigma$$

$$f \sim \frac{1}{(\pi v_0)^{3/2}} e^{-v^2/v_0^2}$$

Navarro-Frenk-White (NFW) $ho_{
m NFW}$

Einasto

 $ho_{
m Ein}(r)$

Burkert

Cohen et al, 1307. 4082

$$\rho_{\rm NFW}(r) = \frac{\rho_0}{r/r_s(1+r/r_s)^2}$$
$$\rho_{\rm Ein}(r) = \rho_0 \exp\left[-\frac{2}{\gamma}\left(\left(\frac{r}{r_s}\right)^{\gamma} - 1\right)\right]$$
$$\rho_{\rm Burk}(r) = \frac{\rho_0}{(1+r/r_s)(1+(r/r_s)^2)}$$

Exercise: Kinematics

Recoil energy of the nucleus?

$$p_i = m_{\chi} v$$

$$q = 2\mu_{\chi N} v \cos \theta$$

 $v \sim 300 \text{ km/s} \sim 10^{-3}c$

Dark Matter Scattering Cross Section

Dark matter scatters though the Z boson mediator

$$\sigma_{\chi N} = \frac{g^4 m_{\chi}^2 m_N^2}{4\pi (m_{\chi} + m_N)^2} \frac{(Zf_p + (A_p)^2)^2}{m_{\chi p}^2} \frac{(Zf_p + (A_p)^2)^2}{m_{\chi p}^2} \frac{g^4 m_{\chi}^2 m_p^2}{4\pi (m_{\chi} + m_p)^2} \frac{1}{m_Z^4} \frac{1}{m_Z^4} \frac{g^4 m_{\chi N}^2 (Zf_p + (A_p - Z)f_p)^2}{m_Z^2} \frac{g^2 m_{\chi p}^2 (Zf_p + (A_p - Z)f_p)^2}{f_p^2} \frac{g^2 m_{\chi p}^2}{m_{\chi p}^2} \frac{g^2 m_{\chi p}^2 (Zf_p + (A_p - Z)f_p)^2}{f_p^2}$$

 $\frac{(A-Z)f_n)^2}{m_Z^4}F^2(E_R)$

form factor

 $\frac{f_n^2}{f_n^2} \swarrow F^2(E_R) \sim A^4 \sigma_{\chi}$

The Form Factors

$$\sigma_{\chi N} = \sigma_{\chi p} \frac{\mu_{\chi N}^2}{\mu_{\chi p}^2} \frac{(Zf_p + (A - Z)f_n)^2}{f_p^2} F^2$$

$$F(q) = \frac{1}{M} \int \rho_{\text{mass}}(r) e^{-i\mathbf{q}\cdot\mathbf{r}} dr$$

$$\rho_U(r) = \begin{cases} \frac{3Ze}{4\pi R^3}, & r < R, \\ 0, & r > R, \end{cases}$$

$$F(q) = \frac{3j_1(qR)}{qR}e^{-(qs)^2/2}$$

assuming constant nucleon density distribution

$$j_1(x) = \frac{\sin x}{x^2} - \frac{\cos x}{x}$$

The Form Factors

The form factor measures how coherent it is to scatter with the nucleons in the nucleus

Duda et al, hep-ph/0608035

Spin-dependent Form Factors

Spin-independent

Spin-dependent

$$\sigma_{j,0}^{\rm SD} = \left(\frac{\mu_{A_j}}{\mu_N}\right)^2 S_{J_j} \left(a_p \langle S_p \rangle + \right)$$

 $S_A(q) = a_0^2 S_{00}(q) + a_0 a_1 S_{01}(q) + a_1^2 S_{11}(q)$

$$S_A(0) = \frac{(2J+1)(J+1)}{4\pi J} \times |(a_0 + a'_1)\langle \mathbf{S}_{\mathbf{p}} \rangle + \frac{(2J+1)(J+1)}{4\pi J} |(a_0 + a'_1)| \langle \mathbf{S}_{\mathbf{p}} \rangle + \frac{(2J+1)(J+1)}{4\pi J} |(a_0 + a'_1)| \langle \mathbf{S}_{\mathbf{p}} \rangle + \frac{(2J+1)(J+1)}{4\pi J} |(a_0 + a'_1)| \langle \mathbf{S}_{\mathbf{p}} \rangle + \frac{(2J+1)(J+1)}{4\pi J} |(a_0 + a'_1)| \langle \mathbf{S}_{\mathbf{p}} \rangle + \frac{(2J+1)(J+1)}{4\pi J} |(a_0 + a'_1)| \langle \mathbf{S}_{\mathbf{p}} \rangle + \frac{(2J+1)(J+1)}{4\pi J} |(a_0 + a'_1)| \langle \mathbf{S}_{\mathbf{p}} \rangle + \frac{(2J+1)(J+1)}{4\pi J} |(a_0 + a'_1)| \langle \mathbf{S}_{\mathbf{p}} \rangle + \frac{(2J+1)(J+1)}{4\pi J} |(a_0 + a'_1)| \langle \mathbf{S}_{\mathbf{p}} \rangle + \frac{(2J+1)(J+1)}{4\pi J} |(a_0 + a'_1)| \langle \mathbf{S}_{\mathbf{p}} \rangle + \frac{(2J+1)(J+1)}{4\pi J} |(a_0 + a'_1)| \langle \mathbf{S}_{\mathbf{p}} \rangle + \frac{(2J+1)(J+1)}{4\pi J} |(a_0 + a'_1)| \langle \mathbf{S}_{\mathbf{p}} \rangle + \frac{(2J+1)(J+1)}{4\pi J} |(a_0 + a'_1)| \langle \mathbf{S}_{\mathbf{p}} \rangle + \frac{(2J+1)(J+1)}{4\pi J} |(a_0 + a'_1)| \langle \mathbf{S}_{\mathbf{p}} \rangle + \frac{(2J+1)(J+1)}{4\pi J} |(a_0 + a'_1)| \langle \mathbf{S}_{\mathbf{p}} \rangle + \frac{(2J+1)(J+1)}{4\pi J} |(a_0 + a'_1)| \langle \mathbf{S}_{\mathbf{p}} \rangle + \frac{(2J+1)(J+1)(J+1)}{4\pi J} |(a_0 + a'_1)| \langle \mathbf{S}_{\mathbf{p}} \rangle + \frac{(2J+1)(J+1)(J+1)}{4\pi J} |(a_0 + a'_1)| \langle \mathbf{S}_{\mathbf{p}} \rangle + \frac{(2J+1)(J+1)(J+1)(J+1)}{4\pi J} |(a_0 + a'_1)| \langle \mathbf{S}_{\mathbf{p}} \rangle + \frac{(2J+1)(J+1)(J+1)(J+1)}{4\pi J} |(a_0 + a'_1)| \langle \mathbf{S}_{\mathbf{p}} \rangle + \frac{(2J+1)(J+1)(J+1)(J+1)(J+1)}{4\pi J} |(a_0 + a'_1)| \langle \mathbf{S}_{\mathbf{p}} \rangle + \frac{(2J+1)(J+1)(J+1)(J+1)(J+1)(J+1)}{4\pi J} |(a_0 + a'_1)| \langle \mathbf{S}_{\mathbf{p}} \rangle + \frac{(2J+1)(J+1)(J+1)(J+1)(J+1)(J+1)(J+1)}{4\pi J} |(a_0 + a'_1)| \langle \mathbf{S}_{\mathbf{p}} \rangle + \frac{(2J+1)(J+1)(J+1)(J+1)(J+1)(J+1)(J+1)}{4\pi J} |(a_0 + a'_1)| \langle \mathbf{S}_{\mathbf{p}} \rangle + \frac{(2J+1)(J+1)(J+1)(J+1)(J+1)(J+1)(J+1)}{4\pi J} |(a_0 + a'_1)| \langle \mathbf{S}_{\mathbf{p}} \rangle + \frac{(2J+1)(J+1)(J+1)(J+1)(J+1)(J+1)}{4\pi J} |(a_0 + a'_1)| \langle \mathbf{S}_{\mathbf{p}} \rangle + \frac{(2J+1)(J+1)(J+1)(J+1)(J+1)(J+1)(J+1)}{4\pi J} |(a_0 + a'_1)| \langle \mathbf{S}_{\mathbf{p}} \rangle + \frac{(2J+1)(J+1)(J+1)(J+1)(J+1)(J+1)(J+1)}{4\pi J} |(a_0 + a'_1)| \langle \mathbf{S}_{\mathbf{p}} \rangle + \frac{(2J+1)(J+1)(J+1)(J+1)(J+1)(J+1)(J+1)}{4\pi J} |(a_0 + a'_1)| \langle \mathbf{S}_{\mathbf{p}} \rangle + \frac{(2J+1)(J+1)(J+1)(J+1)(J+1)(J+1)(J+1)}{4\pi J} |(a_0 + a'_1)| \langle \mathbf{S}_{\mathbf{p}} \rangle + \frac{(2J+1)(J+1)(J+1)(J+1)(J+1)(J+1)(J+1)}{4\pi J} |(a_0 + a'_1)| \langle \mathbf{S}_{\mathbf{p}} \rangle + \frac{(2J+1)(J+1)(J+1)(J+1)(J+1)(J+1)(J+1)}{4\pi J} |(a_0 + a'_1)| \langle \mathbf{S}_{\mathbf{p}} \rangle$$

 $\sigma_{\chi A}^{SD} \sim A^2 \sigma_{\chi p}^{SD}$

- $\mathcal{O}_{SI} = (\bar{\chi}\gamma_{\mu}\chi)(\bar{q}\gamma^{\mu}q)$
- $\mathcal{O}_{SD} = (\bar{\chi}\gamma_{\mu}\gamma_{5}\chi)(\bar{q}\gamma^{\mu}\gamma_{5}q)$
 - $\vdash a_n \langle S_n \rangle)^2 \, \sigma_{\chi N}^{\text{SD}} \qquad N = n, p$

- $+(a_0-a_1')\langle \mathbf{S}_n\rangle|^2$

Spin-dependent Form Factors

$$S_A(q) = a_0^2 S_{00}(q) + a_0 a_1 S_{01}(q) + a_1^2 S_{11}$$
$$S_A(0) = \frac{(2J+1)(J+1)}{4\pi J}$$
$$\times |(a_0 + a_1')\langle \mathbf{S}_{\mathbf{p}} \rangle + (a_0 - a_1')$$

	¹²⁹ Xe		$^{131}\mathrm{Xe}$		127 I		$^{73}\mathrm{Ge}$		$^{29}\mathrm{Si}$	
	$\langle {f S}_n angle$	$\langle {f S}_p angle$	$\langle {f S}_n angle$	$\langle {f S}_p angle$	$\langle {f S}_n angle$	$\langle {f S}_p angle$	$\langle {f S}_n angle$	$\langle {f S}_p angle$	$\langle {f S}_n angle$	$\langle {f S}_p angle$
This work	0.329	0.010	-0.272	-0.009	0.031	0.342	0.439	0.031	0.156	0.016
(Int. 1)							0.450	0.006		
[20] (Bonn A)	0.359	0.028	-0.227	-0.009	0.075	0.309				
[20] (Nijm. II)	0.300	0.013	-0.217	-0.012	0.064	0.354				
[18]										
[17]							0.468	0.011	0.13	-0.002
[19]							0.378	0.030		
[23]	0.273	-0.002	-0.125	-7.10^{-4}	0.030	0.418				
[22]					0.038	0.330	0.407	0.005		
[21]									0.133	-0.002
[13]	0.248	0.007	-0.199	-0.005	0.066	0.264	0.475	0.008		

Klos et al, 1304.7684

Xenon Experiments

- Particle interacts and produces the prompt scintillation signal (S1), and the electrons drifted to the top generate the delayed scintillation signal (S2)
- The ratio of S1 and S2 can be used to distinguish different particles, or electron vs nuclear recoil

The PANDAX Experiment

Ge - Counting station

Storage Cylinderss with Gas Xenon

Xe - Detector

Tireless Collaborator

dark matter velocity distribution

detection efficiency

 $N_{\rm exp} = \sum_{i} N_i T \frac{\rho_{\chi}}{m_{\chi}} \int u_f f(u_f) du_f \int \frac{d\sigma_i}{dE_R} \epsilon(E_R) dE_R$

Constraints on WIMP Dark Matter

How???

Inelastic Dark Matter

The WIMP Miracle?

- Dark matter with weak interactions freezes out to the correct relic abundance
- Dark matter scatters though the Z boson mediator

$$\sigma_{\chi p} = \frac{g^4 m_{\chi}^2 m_p^2}{4\pi (m_{\chi} + m_p)^2} \frac{1}{m_Z^4} \sim 10^{-39} \text{ cm}$$

Are there ways around?

Feb 22, 2019, 02:00am EST | 57,704 views

The 'WIMP Miracle' Hope For Dark **Matter Is Dead**

Ethan Siegel Senior Contributor Starts With A Bang Contributor Group ① Science The Universe is out there, waiting for you to discover it.

WIMPs on Death Row

Posted on July 21, 2016 by woit

One of the main arguments given for the idea of supersymmetric extensions of the standard model has been what SUSY enthusiasts call the "WIMP Miracle" (WIMP=Weakly Interacting Massive Particle). This is the claim that such SUSY models include a stable very massive weakly interacting particle that could provide an explanation for dark matter.

Inelastic Dark Matter

• Off-diagonal mass term $\begin{pmatrix} M & v \\ v & M \end{pmatrix}$

• After diagonalization $M_{\chi_1} = M + v$,

•
$$\delta \equiv M_{\chi_2} - M_{\chi_1} \ll M_{\chi}$$

• Example: dark photon-mediated DM

$$\mathcal{L} \supset \bar{\psi}(iD_{\mu}\gamma^{\mu} - m_{\psi})\psi + (y\phi\bar{\psi}^{T}C^{-1}\psi + h.c.)$$

Bramante, **NS**, PRL/2006.14089 Batell, Pospelov, Ritz, 0903.3396

Neutralino DM, see Bramante et al, 1510.03460, 1412.4789

$$M_{\chi_2} = M - v$$

Inelastic Dark Matter

• Off-diagonal mass term $\begin{pmatrix} M & v \\ v & M \end{pmatrix}$

• After diagonalization $M_{\chi_1} = M + v, M_{\chi_2} = M - v$

•
$$\delta \equiv M_{\chi_2} - M_{\chi_1} \ll M_{\chi}$$

Example: dark photon-mediated DM

$$\mathcal{L} \supset \bar{\psi}(iD_{\mu}\gamma^{\mu} - m_{\psi})\psi + (y\phi\bar{\psi}^{T}C^{-1}\psi)\psi + (y\phi\bar{\psi}$$

Bramante, NS, PRL/2006.14089 Batell, Pospelov, Ritz, 0903.3396

Neutralino DM, see Bramante et al, 1510.03460, 1412.4789

 $\mu + h.c.$)

Homework Exercise: Kinematics in Nuclear Recoil

 $\delta \equiv M_{\chi_2} - M_{\chi_1}$

Why not XENON

- Xenon not heavy enough
- Xenon experiments only sensitive to low energy deposition $(E_R \lesssim 40 \text{ keV})$

shutterstock.com · 1808704210

Two Criteria

- Heavy nuclear target $\delta_{\max} = \frac{1}{2} \mu_{\chi A} (v_e + v_{esc})^2$
- High energy deposition acceptance

$$E_{accept} > E_R^{\min} \sim \mathrm{MeV}$$

Target nuclei with $A \sim 200$

Scintillating Bolometers

 Simultaneous double readout of heat (H) and scintillation light (L)

Scintillating Bolometers

- Simultaneous double readout of heat (H) and scintillation light (L)
- Fraction of the deposited energy is converted into a scintillation (up to 25%)
- effective discrimination of e/γ from a events/DM by the difference in L/H ratio

CaWO₄ Scintillating Bolometer

- Simultaneous double readout of heat (H) and scintillation light (L)
- Fraction of the deposited energy is converted into a scintillation (up to 25%)
- Effective discrimination of e/γ from a events/DM by the difference in L/H ratio

Detector module with CaWO₄ 300 g \emptyset 40×40 mm³

Credit: CRESST Collaboration

90.1 kg·days

Munster et al., arXiv:1403.5114

Nuclear Recoil with Scintillating Bolometer

NS, Nagorny, Vincent, PRD/2104.09517

Strongly Interacting Dark Matter

Are the above all excluded???

Overburden

 $N_{\exp} = \sum_{i} N_{i} T \frac{\rho_{\chi}}{m_{\chi}} \int u_{f} f(u_{f}) du_{f} \int \frac{d\sigma_{i}}{dE_{R}} \epsilon(E_{R}) dE_{R}$

dark matter velocity distribution

Dark matter velocity distribution at the underground detector could be different from the halo

Overburden

$$\begin{split} \tilde{f}(\mathbf{v}_f) \, \mathrm{d}^3 \mathbf{v}_f &= f(\mathbf{v}_i) \, \mathrm{d}^3 \mathbf{v}_i \\ \Rightarrow \tilde{f}(\mathbf{v}_f) v_f^2 \, \mathrm{d}v_f \, \mathrm{d}\hat{\mathbf{v}}_f^2 &= f(\mathbf{v}_i) v_i^2 \, \mathrm{d}v_i \, \mathrm{d}\hat{\mathbf{v}}_f^2 \\ \Rightarrow \tilde{f}(\mathbf{v}_f) &= f(\mathbf{v}_i) \left(\frac{v_i^2}{v_f^2}\right) \, \frac{\mathrm{d}v_i}{\mathrm{d}v_f} \,, \end{split}$$

$$\frac{\mathrm{d}\langle E_{\chi}\rangle}{\mathrm{d}t} = -\sum_{i} n_{i}(\mathbf{r}) \langle E_{R}\rangle_{i} \sigma_{i}(v) v, \qquad \langle E_{R}\rangle_{i} = \frac{1}{\sigma_{i}(v)} \int_{0}^{E_{i}^{\mathrm{max}}} E_{R} \frac{\mathrm{d}\sigma_{i}}{\mathrm{d}E_{R}} \mathrm{d}E_{R}.$$

$$N_{\rm scat} = \sum_{i} n_i \sigma_i L \approx 500 \left(\frac{\sigma_p^{\rm S1}}{10^{-28} \,{\rm cm}^2} \right) \left(\frac{D}{{\rm m}} \right)$$

$$\frac{\mathrm{d}v}{\mathrm{d}D} = -\frac{v}{m_{\chi}\mu_{\chi p}^2} \sigma_p^{\mathrm{SI}} \sum_{i}^{\mathrm{species}} n_i(\mathbf{r}) \frac{\mu_{\chi i}^4}{m_i} A_i^2 C_i(m_{\chi}, v)$$

$$\approx -m_p v \left(\frac{\sigma_p^{\rm SI}}{m_\chi}\right) \sum_{i}^{\rm species} n_i(\mathbf{r}) A_i^5 C_i(m_\chi \to \infty, v) \,,$$

Overburden

$$\hat{n}_i(\mathbf{r}) rac{\mu_{\chi i}^4}{m_i} A_i^2 C_i(m_\chi,v)$$

$$\sum n_i(\mathbf{r}) A_i^5 C_i(m_\chi \to \infty, v),$$

Kavanagh, arXiv:1712.04901

Overburden

$$\hat{S}n_i(\mathbf{r})rac{\mu_{\chi i}^4}{m_i}A_i^2C_i(m_\chi,v)$$

$$\sum n_i(\mathbf{r}) A_i^5 C_i(m_\chi \to \infty, v) \,,$$

Kavanagh, arXiv:1712.04901

Overburden

$$)du_f \int \frac{d\sigma_i}{dE_R} \epsilon(E_R) dE_R$$

Skylab and Ohyia

Etching holes

Skylab and Ohyia

	Skylab	Ohya
Area A	$1.17 m^2$	$2442 m^2$
Duration t	0.70 yr	2.1 yr
Zenith cutoff angle	$\theta_D = 60^{\circ}$	$\theta_D = 18.4^{\circ}$
Detector material	0.25 mm thick Lexan $\times 32$ sheets	1.59 mm thick CR-39 $\times 4 \text{ sheets}$
Detector density	$1.2~{ m g~cm^{-3}~Lexan}$	$1.3 { m g cm^{-3} CR-39}$
Detector length at θ_D	$1.6 \mathrm{~cm}$	$0.66~\mathrm{cm}$
Overburden density	2.7 g cm^{-3} Aluminum	$2.7~{ m g~cm^{-3}~Rock}$
Over burden length at θ_D	0.74 cm	39 m

Constraints on Multiple Scattering Dark Matter

Bhoonah, Bramante, Courtman, NS, PRD/2012.13406

Constraints on Multiple Scattering Dark Matter

Multiple Scatter Dark Matter

$$\frac{d\sigma_{\mathrm{T}\chi}}{dE_R} = \frac{d\sigma_{\mathrm{n}\chi}}{dE_R} |F_{\mathrm{T}}(q)|^2$$

$$\begin{split} \frac{d\sigma_{\mathrm{T}\chi}}{dE_R} &= \frac{d\sigma_{\mathrm{n}\chi}}{dE_R} \left(\frac{\mu_{T\chi}}{\mu_{n\chi}}\right)^2 A^2 |F_{\mathrm{T}}(q)|^2 \\ &\simeq \frac{d\sigma_{\mathrm{n}\chi}}{dE_R} A^4 |F_{\mathrm{T}}(q)|^2, \end{split}$$

Dark matter may even scatter multiple times in the detector!

DEAP collaboration, arXiv:2108.09405

Isospin-violating Dark Matter

Isospin-independent interaction

Isospin-violating interaction

 $\sigma_j \simeq \frac{\mu_{A_j}^2}{\mu_N^2} A^2 \sigma_0$

 $\sigma_j \simeq \frac{\mu_{A_j}^2}{\mu_N^2} f_{\rm IV}^2 \sigma_0 \qquad f_{\rm IV} \equiv f_p Z_j + f_n (A_j - Z_j)$

Reduced Detector Response

Reduced Overburden

Constraints on Isospin-violating Dark Matter

Coupling to protons

Isospin conserving

Kumar, Marfatia, **NS**, 2312.11365

Daily Modulation

DM Wind

Emken, Kouvaris 1706.02249

Daily Modulation

Daily Modulation

time after 15.02.2016, 0:0 UT [h]

Emken, Kouvaris 1706.02249

Annual Modulation

Freese et al., arXiv:1209.3339

The DAMA Experiment

Freese *et al.*, arXiv:1209.3339

The COSINE-100 Experiment

COSINE-100 Full Dataset Challenges the Annual Modulation Signal of DAMA/LIBRA

For over 25 years, the DAMA/LIBRA collaboration has claimed to observe an annual modulation signal, suggesting the existence of dark matter interactions. However, no other experiments have replicated their result using different detector materials. To address this puzzle, the COSINE-100 collaboration conducted a model-independent test using 106 kg of sodium iodide as detectors, the same target material as DAMA/LIBRA. Analyzing data collected over 6.4 years, with improved energy calibration and time-dependent background description, we found no evidence of an annual modulation signal, challenging the DAMA/LIBRA result with a confidence level greater than 3σ . This finding represents a significant step toward resolving the long-standing debate surrounding DAMA/LIBRA's dark matter claim, indicating that the observed modulation is unlikely to be caused by dark matter interactions.

The COSINE-100 Experiment

COSINE-100 collaboration, arXiv:2409.13226

Constraints on WIMP Dark Matter

How to overcome the detection threshold?

Boosted Dark Matter

Cosmic Rays

Credit: Joshua Berger

Cosmic Ray Boosted Dark Matter: Kinematics

 $T_{\chi} =$

Kinematics:

$$= T_{\chi}^{\max} \frac{1 - \cos \theta}{2} , \ T_{\chi}^{\max} = \frac{T_i^2 + 2m_i T_i}{T_i + (m_i + m_{\chi})^2 / (2m_{\chi})}$$
$$T_i^{\min} = \left(\frac{T_{\chi}}{2} - m_i\right) \left[1 \pm \sqrt{1 + \frac{2T_{\chi}}{m_{\chi}} \frac{(m_i + m_{\chi})^2}{(2m_i - T_{\chi})^2}}\right],$$

Cosmic Ray Boosted Dark Matter: Boost

$$T_{\chi} = T_{\chi}^{\max} \frac{1 - \cos \theta}{2} , \ T_{\chi}^{\max} = \frac{T_i^2 + 2m_i T_i}{T_i + (m_i + m_{\chi})^2 / (2m_{\chi})}$$

Kinematics:

$$T_{i}^{\min} = \left(\frac{T_{\chi}}{2} - m_{i}\right) \left[1 \pm \sqrt{1 + \frac{2T_{\chi}}{m_{\chi}} \frac{(m_{i} + m_{\chi})^{2}}{(2m_{i} - T_{\chi})^{2}}}\right],$$

$$d\Gamma_{\mathrm{CR}_i \to \chi} = \sigma_{\chi i} \times \frac{\rho_{\chi}}{m_{\chi}} \frac{d\Phi_i^{LIS}}{dT_i} dT_i dV$$

$$\frac{d\Phi_{\chi}}{dT_{i}} = \int \frac{d\Omega}{4\pi} \int_{l.o.s.} d\ell \,\sigma_{\chi i} \frac{\rho_{\chi}}{m_{\chi}} \frac{d\Phi_{i}}{dT_{i}} \equiv \sigma_{\chi i} \frac{\rho_{\chi}^{\text{local}}}{m_{\chi}} \frac{d\Phi_{i}^{LIS}}{dT_{i}} D_{\text{eff}}$$

$$\frac{d\Phi_{\chi}}{dT_{\chi}} = \int_0^\infty dT_i \frac{d\Phi_{\chi}}{dt}$$

 $\frac{d\Phi_{\chi}}{dT_{i}} \frac{1}{T_{\chi}^{\max}(T_{i})} \Theta \left[T_{\chi}^{\max}(T_{i}) - T_{\chi} \right]$

Cosmic Ray Boosted Dark Matter: Boost

$$T_{\chi} = T_{\chi}^{\max} \frac{1 - \cos \theta}{2} , \ T_{\chi}^{\max} = \frac{T_i^2 + 2m_i T_i}{T_i + (m_i + m_{\chi})^2 / (2m_{\chi})}$$

Kinematics:

$$T_{i}^{\min} = \left(\frac{T_{\chi}}{2} - m_{i}\right) \left[1 \pm \sqrt{1 + \frac{2T_{\chi}}{m_{\chi}} \frac{(m_{i} + m_{\chi})^{2}}{(2m_{i} - T_{\chi})^{2}}}\right],$$

$$d\Gamma_{\mathrm{CR}_i \to \chi} = \sigma_{\chi i} \times \frac{\rho_{\chi}}{m_{\chi}} \frac{d\Phi_i^{LIS}}{dT_i} dT_i dV$$

$$\frac{d\Phi_{\chi}}{dT_{i}} = \int \frac{d\Omega}{4\pi} \int_{l.o.s.} d\ell \,\sigma_{\chi i} \frac{\rho_{\chi}}{m_{\chi}} \frac{d\Phi_{i}}{dT_{i}} \equiv \sigma_{\chi i} \frac{\rho_{\chi}^{\text{local}}}{m_{\chi}} \frac{d\Phi_{i}^{LIS}}{dT_{i}} D_{\text{eff}}$$

$$\frac{d\Phi_{\chi}}{dT_{\chi}} = \int_0^\infty dT_i \frac{d\Phi_{\chi}}{dT_i} \frac{1}{T_{\chi}^{\max}(T_i)} \Theta \left[T_{\chi}^{\max}(T_i) - T_{\chi} \right]$$

Hadronic elastic scattering form factor

 $G_i(Q^2) = 1/(1 +$

$$-Q^2/\Lambda_i^2)^2$$
, $\frac{d\sigma_{\chi i}}{d\Omega} = \left. \frac{d\sigma_{\chi i}}{d\Omega} \right|_{Q^2=0} G_i^2(2m_\chi T_\chi)$

Cosmic Ray Boosted Dark Matter: Spectrum

 $imes \sum_i \sigma^0_{\chi i} \, G_i^2(2m_\chi T_\chi) \int_{T_i^{\min}}^\infty dT_i \, rac{d\Phi_i^{LIS}/dT_i}{T_\chi^{\max}(T_i)}$

Bringmann et al, arXiv:1810.10543

Cosmic Ray Boosted Dark Matter: Detection

Attenuation

 $\frac{dT_{DM}}{dx} = -\sum_{N} n_{N}$

Detection

 $\frac{d\Gamma_N}{dT_N} = \sigma^0_{\chi N} G_N^2 (2r)$

$$\int_{0}^{T_r^{\max}} \frac{d\sigma_{\chi N}}{dT_r} T_r dT_r$$

$$m_N T_N) \int_{T_{\chi}(T_{\chi}^{z,\min})}^{\infty} \frac{dT_{\chi}}{T_{r,N}^{\max}(T_{\chi}^z)} \frac{d\Phi_{\chi}}{dT_{\chi}}$$

Bringmann et al, arXiv:1810.10543

Cosmic Ray Boosted Dark Matter: Constraints

Bringmann et al, arXiv:1810.10543

Blazar Boosted Dark Matter

Gao et al, Nature Astronomy, 2019

$$p + \gamma \rightarrow \Delta^+ \rightarrow \pi^+ + n$$

A Dark Matter Spike?

Lacroix, arXiv: 1801.01308

$$\rho(r) = \begin{cases} 0 & r < 2R_{\rm S} \\ \rho_{\rm halo}(R_{\rm sp}) \left(\frac{r}{R_{\rm sp}}\right)^{-\gamma_{\rm sp}} & 2R_{\rm S} \leq r < R_{\rm sp} \\ \rho_{\rm halo}(r) & r \geq R_{\rm sp}, \end{cases}$$

$$\rho_{\rm halo}(r) = \rho_{\rm s} \left(\frac{r}{r_{\rm s}}\right)^{-\gamma} \left(1 + \frac{r}{r_{\rm s}}\right)^{\gamma-3},$$

Spike inside, NFW outside

Blazar Boosted Dark Matter

Wang et al, arXiv: 2111.13644

ശ
ഹ
0
+
ဖ
0
ഹ
0
TXS

Solar Reflected Dark Matter

Need dedicated simulations!

Emken, arXiv: 2102.12483

Solar Reflected Dark Matter

Heavy mediator

Emken, arXiv: 2102.12483

Light mediator

An et al, arXiv: 2108.10332

Supernova Neutrino Boosted Dark Matter

Janka et al, arXiv: astro-ph/0612072

Supernova Neutrino Boosted Dark Matter

Supernova Neutrino Boosted Dark Matter

Lin et al, arXiv: 2206.06864

See also Lin et al, arXiv: 2404.08528

Atmospheric Dark Matter

Boosted Dark Matter from Cosmic Rays in the Atmosphere

- Hadrophilic dark matter
- Axion-like particles
- Long-lived neutralinos
- Monopoles
- Dark photon
- Millicharged particles

Dark Photon Kinetic Mixing

Extra U(1)? $SU(3)_c \times SU(2)_L \times U(1)_V \times U(1)'$

$$\mathscr{L} = -\frac{1}{4} (F_{\mu\nu}F^{\mu\nu} - 2\epsilon F$$

Pospelov' 2008 Ackerman, Buckley, Carrol, Kamionkowsk' 2008 Arkani-Hame, Finkbeine, Slatyer, Weiner' 2008

 $F_{\mu\nu}F'^{\mu\nu}+F'_{\mu\nu}F'^{\mu\nu})-J^{\mu}A_{\mu}$

Millicharge Particles

Massless dark photon $\mathcal{L}_0 = -\frac{1}{4}F_{a\mu\nu}F_a^{\mu\nu} - \frac{1}{4}$

$$\begin{pmatrix} A_a^{\mu} \\ A_b^{\mu} \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{1-\varepsilon^2}} & 0 \\ -\frac{\varepsilon}{\sqrt{1-\varepsilon^2}} & 1 \end{pmatrix} \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} A'^{\mu} \\ A^{\mu} \end{pmatrix}$$

$$\mathcal{L}' = \left[\frac{e'\cos\theta}{\sqrt{1-\varepsilon^2}}J'_{\mu} + e\left(\sin\theta - \frac{\varepsilon\cos\theta}{\sqrt{1-\varepsilon^2}}\right)J_{\mu}\right]A'^{\mu} \\ + \left[-\frac{e'\sin\theta}{\sqrt{1-\varepsilon^2}}J'_{\mu} + e\left(\cos\theta + \frac{\varepsilon\sin\theta}{\sqrt{1-\varepsilon^2}}\right)J_{\mu}\right]A^{\mu}$$

$$\left[\mathcal{L}' = e' J'_{\mu} A'^{\mu} + \left[-\frac{e'\varepsilon}{\sqrt{1-\varepsilon^2}} J'_{\mu} + \frac{e}{\sqrt{1-\varepsilon^2}} J_{\mu} \right] A^{\mu} \right]$$

Fabbrichesi et al arXiv: 2005.01515

$$\frac{1}{4}F_{b\mu\nu}F_b^{\mu\nu} - \frac{\varepsilon}{2}F_{a\mu\nu}F_b^{\mu\nu} \qquad \qquad \mathcal{L} = e\,J_\mu A_b^\mu + e'J'_\mu A_b^\mu$$

Millicharge Particles from Light Meson Decay

$$\Phi_{\mathfrak{m}}(\gamma_{\mathfrak{m}}) = \Omega_{\text{eff}} \int \mathcal{I}_{\text{CR}}(\gamma_{\text{cm}}) \frac{\sigma_{\mathfrak{m}}(\gamma_{\text{cm}})}{\sigma_{\text{in}}(\gamma_{\text{cm}})} P(\gamma_{\mathfrak{m}}|\gamma_{\text{cm}}) \, \mathrm{d}\gamma_{\text{cm}}$$
$$\gamma_{\text{cm}} = \frac{1}{2} \sqrt{s} / m_p$$
$$P(\gamma_{\mathfrak{m}}|\gamma_{\text{cm}}) \approx \sum_{\alpha} \frac{1}{\sigma_{\mathfrak{m}}} \times \frac{\mathrm{d}\sigma_{\mathfrak{m}}}{\mathrm{d}x_F} \times \frac{\mathrm{d}x_F^{(\alpha)}}{\mathrm{d}\gamma_{\mathfrak{m}}}$$

Plestid et al PRD/2002.11732

Millicharge Particles from Upsilon Meson Decay

Pythia8 simulations

Wu, Hardy, **NS**, PRD/2406.01668

Millicharge Particles from Proton Bremsstrahlung

Fermi-Weizsacker-Williams (FWW) approximation with the splitting-kernel approach

Du et al arXiv: 2211.11469 Du et al arXiv: 2308.05607

Millicharge Particles from Drell-Yan Process

Madgraph simulations

Wu, Hardy, NS, PRD/2406.01668

Millicharge Particles Flux

Meson decay+Proton Bremsstrahlung+Drell-Yan

Wu, Hardy, **NS**, PRD/2406.01668

Earth Attenuation

For $\epsilon^2 \gtrsim 10^{-2}$, the down-going flux becomes significantly attenuated

Wu, Hardy, NS, PRD/2406.01668

Single Scatter Constraint

Assuming JUNO 10 MeV threshold+170 kton·yr exposure

Wu, Hardy, **NS**, PRD/2406.01668

Arguelles et al JHEP/2104.13924

Multiple Scatter Constraint

Single scatter probability $P_1 =$

Multiple scatter probability $P_{n\geq 2}$

Number of observed events N_{multiple}

$$N_{\text{single}}\left(m_{\chi},\epsilon\right) = N_{e}T \int_{E_{i,\min}}^{E_{i,\max}} dE_{r}\epsilon_{D}(E_{r}) \times \int dE_{\chi}d\Omega \Phi_{\chi}^{D}\left(E_{\chi},\Omega\right) \frac{d\sigma_{\chi e}}{dE_{r}}$$

$$1 - \exp\left(-\frac{L_D}{\lambda(T_{\min})}\right)$$
$$(T_{\min}) = 1 - \exp\left(-\frac{L_D}{\lambda}\right)\left(1 + \frac{L_D}{\lambda}\right)$$

$$_{\text{ti}} = N_{\text{single}} P_{n \ge 2} (T_{\min, \text{multi}}) / P_1 (T_{\min, \text{single}})$$

Multiple Scatter Constraint

Assuming JUNO 170 kton·yr exposure

Wu, Hardy, **NS**, PRD/2406.01668

Contributions from Inelastic Scattering

Elastic scattering $\chi + A \rightarrow \chi + A$

Quasi-elastic scattering $\chi + A \rightarrow \chi + (A - 1) + n/p$

$$\frac{\mathrm{d}\sigma_{\mathrm{QE}}}{\mathrm{d}E'_{\chi}\mathrm{d}\Omega} = \frac{\bar{\sigma}_{\mathrm{n}}m_{S}^{4}}{16\pi\mu_{\mathrm{n}}^{2}}\frac{\left|\vec{k}'\right|}{\left|\vec{k}\right|}\frac{\mathcal{X}_{S}W_{S}}{\left(Q^{2}+m_{S}^{2}\right)}$$

Deep inelastic scattering $\chi + A \rightarrow \chi + X$ $d\sigma_{\text{DIS}} = \frac{d\nu dQ^2}{64\pi m_A^2 \nu (E_\chi^2 - m_\chi^2)} \int_0^1 \frac{f(\xi)}{\xi} d\xi \overline{|\mathcal{M}(\xi)|^2} \delta(\xi - x)$ $= \sum_q \frac{g_\chi^2 g_q^2 (4m_\chi^2 + Q^2) (4m_q^2 + Q^2) d\nu dQ^2}{32\pi m_A Q^2 (E_\chi^2 - m_\chi^2) (Q^2 + m_S^2)^2} f_{q/A}(x, Q^2),$

-

Contributions from Inelastic Scattering

Su et al, arXiv: 2212.02286

New Limits from PandaX

Constraints on WIMP Dark Matter

How to overcome the detection threshold?

- **Boosted dark matter**
- Atmospheric dark matter

For sub-GeV dark matter, $m_{\chi} \ll m_N$

$$q_{\rm max} = 2m_{\chi}v \sim {\rm MeV}$$

 $E_{R,\max} \sim 10 \text{ eV}$

 $E_{R,\max} \ll E_{k,\chi}$

Detecting sub-GeV dark matter using nuclear recoil is difficult!

$v \sim 300 \text{ km/s} \sim 10^{-3} c$

for $m_{\gamma} = 300$ MeV scattering on oxygen

Kinematics of Light Dark Matter

Trickle et al, arXiv: 1910.08092

- The maximum dark matter energy deposition depends on its mass
- The energy deposition reduces for lower mass dark matter

$$\omega_{oldsymbol{q}} = rac{1}{2}m_{\chi}v^2 - rac{(m_{\chi}oldsymbol{v} - oldsymbol{q})^2}{2m_{\chi}} = oldsymbol{q} \cdot oldsymbol{v} - rac{q^2}{2m_{\chi}}$$

 $\omega \leq E_k \sim m_{\rm DM} v^2 \sim 10^{-6} m_{\rm DM}$

Look for electron recoil instead!

Electron Recoil

$$v > v_{min} = \frac{\Delta E_B + E_R}{q} + \frac{q}{2m_{\chi}}$$

$$\overline{\sigma}_e = \frac{16\pi\mu_{\chi e}^2 \alpha \epsilon^2 \alpha_D}{(m_{A'}^2 + \alpha^2 m_e^2)^2} \simeq \begin{cases} \frac{16\pi\mu_{\chi e}^2 \alpha \epsilon^2 \alpha_D}{m_{A'}^4} \\ \frac{16\pi\mu_{\chi e}^2 \alpha \epsilon^2 \alpha_D}{(\alpha m_e)^4} \end{cases}$$

$$F_{DM}(q) = \frac{m_{A'}^2 + \alpha^2 m_e^2}{m_{A'}^2 + q^2} \simeq \begin{cases} 1, & m_{A'} \gg \alpha m_e \\ \frac{\alpha^2 m_e^2}{q^2}, & m_{A'} \ll \alpha m_e \end{cases}$$

Essig et al, arXiv: 1509.01598

Essig et al, arXiv: 1108.5383

Electron Recoil

$$v > v_{min} = rac{\Delta E_B + E_R}{q} + rac{1}{2r}$$
 $\overline{\sigma}_e \equiv rac{\mu_{\chi e}^2}{16\pi m_{\chi}^2 m_e^2} \overline{\left|\mathcal{M}_{\chi e}(q)
ight|^2}\Big|_q$
 $\overline{\left|\mathcal{M}_{\chi e}(q)
ight|^2} = rac{1}{\left|\mathcal{M}_{\chi e}(q)
ight|^2}\Big|_{q^2 = lpha^2 m_e^2} imes |i|$

$$\frac{a\langle\sigma_{ion}^{\circ}v\rangle}{d\ln E_R} = \frac{\sigma_e}{8\mu_{\chi e}^2} \int q \, dq \big| f_{ion}^i(k',q)$$

Essig et al, arXiv: 1509.01598

Essig et al, arXiv: 1108.5383

 $rac{q}{m_{\chi}}$

 $\left. egin{array}{l} & g^2 = lpha^2 m_e^2 \ & F_{
m DM}(q)
ight|^2 \end{array}$

 $\left| f \right|^2 \left| F_{\rm DM}(q) \right|^2 \eta(v_{\rm min})$

Electron Recoil

Credit: Paolo Privitera

The Form Factors for Electron Recoil

Liquid noble

$$\left|f_{ion}^{i}(k',q)\right|^{2} = \frac{2k'^{3}}{(2\pi)^{3}} \sum_{\substack{\text{degen.}\\\text{states}}} \left|\int d^{3}x \,\tilde{\psi}_{k'l'm'}^{*}(\mathbf{x})\psi_{i}(\mathbf{x})e^{i\mathbf{q}\cdot\mathbf{x}}\right|$$

-1

The Form Factors for Electron Recoil

Semiconductor

$$\begin{split} \psi_{i\vec{k}}(\vec{x}) &= \frac{1}{\sqrt{V}} \sum_{\vec{a}} u_i (\vec{k} + \vec{G}) e^{i(\vec{k} + \vec{G}) \cdot \vec{x}} \\ |f_{\text{crystal}}(q, E_e)|^2 &= \frac{2\pi^2 (\alpha m_e^2 V_{\text{cell}})^{-1}}{E_e} \sum_{ii'} \int_{\text{BZ}} \frac{V_{\text{cell}}}{(2\pi)^2} \\ & E_e \ \delta(E_e - E_{i'\vec{k}'} + E_{i\vec{k}}) \sum_{\vec{a}} q \ \delta(E_e - E_{i'\vec{k}'} + E_{i'\vec{k}}) \sum_{\vec{a}} q \ \delta(E_e - E_{i'\vec{k}} + E_{i'\vec{k}}) \sum_{\vec{a}} q \ \delta(E_e - E_{i'\vec{k}} + E_{i'\vec{k}}) \sum_{\vec{a}} q \ \delta(E_e - E_{i'\vec{k}} + E_{i'\vec{$$

Essig et al, arXiv: 1509.01598

An Alternative Way

$$\operatorname{Im}\left(-\frac{1}{\epsilon(\mathbf{q},\omega)}\right) = \frac{\pi e^2}{q^2} \sum_{f} \left|\langle f|\hat{\rho}(\mathbf{q})|0\rangle\right|^2 \delta(\omega_f - \frac{1}{\epsilon(\mathbf{q},\omega)}) \left|\langle f|\hat{\rho}(\mathbf{q},\omega)|0\rangle\right|^2 \delta(\omega_f - \frac{$$

$$R = \frac{1}{\rho_T} \frac{\rho_{\chi}}{m_{\chi}} \frac{\bar{\sigma}_e}{\mu_{\chi e}^2} \frac{\pi}{\alpha_{em}} \int d^3 v \, f_{\chi}(v) \int \frac{d^3 \mathbf{k}}{(2\pi)^3} k^2 |F_{DM}(k)|^2 \int \frac{d\omega}{2\pi} \, \frac{1}{1 - e^{-\beta\omega}} \, \mathrm{Im}\left[\frac{-1}{\epsilon_L(\omega, \mathbf{k})}\right] \delta\left(\omega + \frac{k^2}{2m_{\chi}} - \mathbf{k} \cdot \mathbf{v}\right)$$

- Dark matter that couples to charge density is similar to light
- Including the contribution from plasmons
- Can be determined experimentally with light response

 $-\omega)$

Hochberg et al, arXiv: 2101.08263 Knapen et al, arXiv: 2101.08275

The Dielectric Function

$$\operatorname{Im}\left(-\frac{1}{\epsilon(\mathbf{q},\omega)}\right) = \frac{\pi e^2}{q^2} \sum_{f} \left|\langle f|\hat{\rho}(\mathbf{q})|0\rangle\right|^2 \delta(\omega_f - \omega_f)$$

$$R = \frac{1}{\rho_T} \frac{\rho_{\chi}}{m_{\chi}} \frac{\bar{\sigma}_e}{\mu_{\chi e}^2} \frac{\pi}{\alpha_{em}} \int d^3 v \, f_{\chi}(v) \int \frac{d^3 \mathbf{k}}{(2\pi)^3} k^2 |F_{DM}(k)|^2 \int \frac{d\omega}{2\pi} \, \frac{1}{1 - e^{-\beta\omega}} \, \mathrm{Im}\left[\frac{-1}{\epsilon_L(\omega, \mathbf{k})}\right] \delta\left(\omega + \frac{k^2}{2m_{\chi}} - \mathbf{k} \cdot \mathbf{v}\right)$$

Hochberg et al, arXiv: 2101.08263 Knapen et al, arXiv: 2101.08275

Liang et al, arXiv: 2401.11971

SENSEI/CDEX

Yonit Hochberg

Electron-hole pair from ionization Charge only

SENSEI@SNOLAB

 $E_{\rm th} \sim {\rm eV}$ 2312.13342

Migdal Effect

The nuclear gets recoil, but the electron cloud is left behind

Dolan et al, arXiv: 1711.09906

110

Migdal Effect

The nuclear gets recoil, but the electron cloud is left behind

 $\frac{\mathrm{d}^3 R_{\mathrm{ion}}}{\mathrm{d}E_{\mathrm{R}} \,\mathrm{d}E_e \,\mathrm{d}v} = \frac{\mathrm{d}^2 R_{\mathrm{nr}}}{\mathrm{d}E_{\mathrm{R}} \,\mathrm{d}v} \times |Z_{\mathrm{ion}}(E_{\mathrm{R}}, E_e)|^2$

$$|Z_{\rm ion}(E_R, E_e)|^2 = \sum_{nl} \frac{1}{2\pi} \frac{\mathrm{d}p_{q_e}^c(nl \to E_e)}{\mathrm{d}E_e}$$

Dolan et al, arXiv: 1711.09906

111

The nuclear gets recoil, but the electron cloud is left behind

CDEX collaboration, arXiv: 1905.00354

Constraints on WIMP Dark Matter

How to overcome the detection threshold?

- **Boosted dark matter**
- Atmospheric dark matter
- **Electron recoil** \bullet
- Migdal effect lacksquare

Kinematics of Light Dark Matter

Trickle et al, arXiv: 1910.08092

- The maximum dark matter energy deposition depends on its mass
- The energy deposition reduces for lower mass dark matter

$$\omega_{oldsymbol{q}} = rac{1}{2}m_{\chi}v^2 - rac{(m_{\chi}oldsymbol{v} - oldsymbol{q})^2}{2m_{\chi}} = oldsymbol{q} \cdot oldsymbol{v} - rac{q^2}{2m_{\chi}}$$

 $\omega \leq E_k \sim m_{\rm DM} v^2 \sim 10^{-6} m_{\rm DM}$

Look for phonon excitation!

114

从传统探测到低阈值轻暗物质探测 新一代量子传感器 □ 半导体+转变边缘探测器(TES) 液氙闪烁探测器(LXe) ▶ 即时信号+延时信号 > 电荷信号+温度信号 > 超导准粒子信号 热沉 GXe 20 mK 弱热连接(G) LXe Counter electrode Base 传感器(△T) electrode 吸收体 Ground plane particle graphene 能量沉积(ΔE) 优点: 探测器质量极大、粒子分 优点: 粒子分辨能力较强, 适合 能量阈值低、能量分辨率高 辨能力强,探测WIMP极为灵敏 探测较轻的暗物质 能量阈值较高(eV),不适合 低阈值(meV)、便于高度集 能量阈值高(keV),不适合探 成,适合探测质量MeV以下轻 探测MeV以下轻暗物质, 测轻暗物质 探 暗物质 测器质量较小

SuperCDMS

PRD 104,032010 2021

The Phonons

dark matter

The Phonons

Phonon momentum

Dark Matter Scattering Rate

See also: 1910.08092, 2009.13534

Sensitivity to Light Dark Matter

Heavy mediator $F_{\text{med}} = 1$

波动类暗物质

Wave-like Dark Matter

The QCD theta-term $\mathscr{L} =$

The QCD theta-term $\mathscr{L} =$

- E: even under time reversal (T/CP)
- B: odd under time reversal (T/CP)
 - $G\tilde{G}$ violates CP conservation

 $G\tilde{G}$ violates CP conservation Theoretical prediction of neutron EDM $d_n \approx \bar{\theta} e m_\pi^2 / m_N^3 \approx 10^{-16} \,\bar{\theta} \, e \, \mathrm{cm}.$ Experimental measurement $|d_n| \lesssim 1.8 \ 10^{-26} e \,\mathrm{cm}$

 $g_{\pi NN}$

Pospelov et al, arXiv: hep-ph/9908508 Crewther et al, 1979

 $g_{\pi NN}$

Theoretical prediction of neutron EDM $d_n \approx \bar{\theta} e m_\pi^2 / m_N^3 \approx 10^{-16} \bar{\theta} e \, \mathrm{cm}.$ Promote θ to a dynamical field Experimental measurement $|d_n| \lesssim 1.8 \ 10^{-26} e \,\mathrm{cm}$

The QCD theta-term $\mathscr{L} = \mathscr{L}_{SM} - \theta \frac{g_s^2}{32\pi^2} G^a_{\mu\nu} \tilde{G}^a_{\mu\nu}$

$$\mathcal{L}_{\text{eff}} \supset \frac{1}{2} \partial^{\mu} a \,\partial_{\mu} a + \frac{\alpha_s}{8\pi}$$

Di Vecchia et al, 1980 Leutwyler et al, 1992]

$$V(\theta) = m_{\pi}^2 f_{\pi}^2 \left(1 - \frac{\sqrt{1 + z^2 + 2z \cos \theta}}{1 + z} \right)$$
$$z \equiv m_u/m_d \approx$$

Promote θ to a dynamical field

Credit: Ringwald

$$\mathcal{L}_{\text{eff}} \supset \frac{1}{2} \partial^{\mu} a \,\partial_{\mu} a + \frac{\alpha_s}{8\pi}$$

$$V(\theta) = m_{\pi}^2 f_{\pi}^2 \left(1 - \frac{\sqrt{1 + z^2 + 2z \cos \theta}}{1 + z} \right)$$
$$z \equiv m_u/m_d \approx$$

$\langle \theta(x) \rangle = 0 \Rightarrow$ nEDM vanishes

$$\mathcal{L}_{\text{eff}} \supset \frac{1}{2} \partial^{\mu} a \,\partial_{\mu} a + \frac{\alpha_s}{8\pi}$$

$$V(\theta) = m_{\pi}^2 f_{\pi}^2 \left(1 - \frac{\sqrt{1 + z^2 + 2z \cos \theta}}{1 + z} \right)$$
$$z \equiv m_u/m_d \approx$$

$$m_a = \frac{\sqrt{V''(0)}}{v_{\rm PQ}} = \frac{\sqrt{z}}{1+z} \frac{\eta}{1+z}$$

The Effective Axion Coupling

$\mathcal{L} \supset -\frac{1}{2}m_a^2 a^2 - \frac{i}{2}\frac{eC_{\text{NEDM}}}{f_a}a\overline{\psi}_N\sigma_{\mu\nu}\gamma_5\psi_N F^{\mu\nu} + C_{a\gamma}\frac{\alpha}{8\pi}\frac{a}{f_a}F_{\mu\nu}\tilde{F}^{\mu\nu} + \frac{1}{2}C_{af}\frac{\partial_{\mu}a}{f_a}\overline{\psi}_f\gamma^{\mu}\gamma_5\psi_f$ axion-fermion coupling axion-photon coupling

The Effective Axion Coupling

$$\mathcal{L} \supset -\frac{1}{2}m_a^2 a^2 - \frac{i}{2}\frac{eC_{\text{NEDM}}}{f_a} a \overline{\psi}_N \sigma_{\mu\nu} \gamma_5 \psi_N F'$$

$$g_{a\gamma\gamma} \equiv \frac{\alpha}{2\pi f_a} C_{a\gamma} \simeq \frac{\alpha}{2\pi f_\pi} \frac{m_a}{m_\pi} \frac{1+z}{\sqrt{z}} \left(\frac{E_Q}{N_Q} - \frac{z}{z}\right)$$

Kaplan, 1985 Srednicki et al, 1985

The QCD axion mass and coupling is tightly coupled

$\Gamma^{\mu\nu} + C_{a\gamma} \frac{\alpha}{8\pi} \frac{a}{f_a} F_{\mu\nu} \tilde{F}^{\mu\nu} + \frac{1}{2} C_{af} \frac{\partial_{\mu}a}{f_a} \overline{\psi}_f \gamma^{\mu} \gamma_5 \psi_f$

The Axion Experiments

A simple real scalar field

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \frac{1}{2} m_{\phi}^{2} \phi^{2} + \mathcal{L}_{I}$$

$$S = \int d^4 x \sqrt{-g} (rac{1}{2} g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_
u \phi \partial_
u \phi g + g^{\mu
u} \partial_
u \phi \partial_
u \phi g + g^{\mu
u} \partial_
u \phi \partial_
u \phi g + g^{\mu
u} \partial_
u \phi g + g^{\mu
u} \partial_
u \phi \partial_
u \phi g + g^{\mu
u} \partial_
u \phi \partial_
u \phi g + g^{\mu
u} \partial_
u \phi \partial_
u \phi g + g^{\mu
u} \partial_
u \phi \partial_
u \phi g + g^{\mu
u} \partial_
u \phi \partial_
u \phi g + g^{\mu
u} \partial_
u \phi \partial_
u \phi g + g^{\mu
u} \partial_
u \phi g + g^{\mu
u} \partial_
u \phi \partial_
u \phi g + g^{\mu
u} \partial_
u \phi \partial_
u \phi g + g^{\mu
u} \partial_
u \phi \partial_
u \phi g + g^{\mu
u} \partial_
u \phi \partial_
u \phi g + g^{\mu
u} \partial_
u \phi \partial_
u \phi g + g^{\mu
u} \partial_
u \phi \partial_
u \phi g + g^{\mu
u} \partial_
u \phi \partial_
u \phi g + g^{\mu
u} \partial_
u \phi \partial$$

 $\ddot{\phi} + 3H\dot{\phi} + m_{\phi}^2\phi = 0.$

$-V(\phi))$

A simple real scalar field

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \frac{1}{2} m_{\phi}^{2} \phi^{2} + \mathcal{L}_{I}$$

$$S = \int d^4 x \sqrt{-g} (rac{1}{2} g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_\mu \phi \partial_
u \phi g + g^{\mu
u} \partial_
u \phi \partial_
u \phi g + g^{\mu
u} \partial_
u \phi \partial_
u \phi g + g^{\mu
u} \partial_
u \phi \partial_
u \phi g + g^{\mu
u} \partial_
u \phi g + g^{\mu
u} \partial_
u \phi \partial_
u \phi g + g^{\mu
u} \partial_
u \phi \partial_
u \phi g + g^{\mu
u} \partial_
u \phi \partial_
u \phi g + g^{\mu
u} \partial_
u \phi \partial_
u \phi g + g^{\mu
u} \partial_
u \phi \partial_
u \phi g + g^{\mu
u} \partial_
u \phi \partial_
u \phi g + g^{\mu
u} \partial_
u \phi g + g^{\mu
u} \partial_
u \phi \partial_
u \phi g + g^{\mu
u} \partial_
u \phi \partial_
u \phi g + g^{\mu
u} \partial_
u \phi \partial_
u \phi g + g^{\mu
u} \partial_
u \phi \partial_
u \phi g + g^{\mu
u} \partial_
u \phi \partial_
u \phi g + g^{\mu
u} \partial_
u \phi \partial_
u \phi g + g^{\mu
u} \partial_
u \phi \partial_
u \phi g + g^{\mu
u} \partial_
u \phi \partial$$

 $\ddot{\phi} + 3H\dot{\phi} + m_{\phi}^2\phi = 0.$

 $H \gg m_{\phi}$, the field is frozen

A simple real scalar field

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \frac{1}{2} m_{\phi}^{2} \phi^{2} + \mathcal{L}_{I}$$

$$S = \int d^4 x \sqrt{-g} (rac{1}{2} g^{\mu
u} \partial_\mu \phi \partial_
u \phi g \, \cdot$$

$$\ddot{\phi} + 3H\dot{\phi} + m_{\phi}^2\phi = 0.$$

$$H \ll m_{\phi} \quad \phi \simeq \phi_1 \left(\frac{m_1 a_1^3}{m_{\phi} a^3}\right)^{1/2} \cos\left(\int_{t_1}^t dt dt \right) dt dt$$

 $H \gg m_{\phi}$, the field is frozen

 $H \ll m_{\phi}$, the field oscillates

 $m_{\phi}\,dt$

$$H \ll m_{\phi} \ \phi \simeq \phi_1 \left(\frac{m_1 a_1^3}{m_{\phi} a^3}\right)^{1/2} \cos\left(\int_{t_1}^t m_{\phi} a^3\right)^{1/2} \cos\left(\int_{$$

$$H \ll m_{\phi} \quad \phi \simeq \phi_1 \left(\frac{m_1 a_1^3}{m_{\phi} a^3}\right)^{1/2} \cos\left(\int_{t_1}^t m_{\phi} a^3\right)^{1/2} \\ \mathcal{A}(t) = \dot{\phi}_1 (m_1 a_1^3 / m_{\phi} a^3)^{1/2} \\ \rho_{\phi} = \frac{1}{2} \dot{\phi}^2 + \frac{1}{2} m_{\phi}^2 \phi^2 = \frac{1}{2} m_{\phi}^2 \mathcal{A}^2 + \dots \\ p_{\phi} = \frac{1}{2} \dot{\phi}^2 - \frac{1}{2} m_{\phi}^2 \phi^2 = -\frac{1}{2} m_{\phi}^2 \mathcal{A}^2 \cos(2\alpha) - \mathcal{A}\dot{\mathcal{A}}m_{\phi} \sin(2\alpha) \\ \langle p_{\phi} \rangle = \langle \dot{\mathcal{A}}^2 \cos^2(\alpha) \rangle = \frac{1}{2} \dot{\mathcal{A}}^2 \\ w = \langle p \rangle / \langle \rho \rangle \simeq 0$$

The oscillating field behaves like matter

 $H \gg m_{\phi}$, the field is frozen

 $H \ll m_{\phi}$, the field oscillates

$$\begin{aligned} H \ll m_{\phi} \quad \phi \simeq \phi_1 \left(\frac{m_1 a_1^3}{m_{\phi} a^3}\right)^{1/2} \cos\left(\int_{t_1}^t m_{\phi} dt^2\right) \\ \mathcal{A}(t) &= \dot{\phi}_1 (m_1 a_1^3 / m_{\phi} a^3)^{1/2} \\ \rho_{\phi} &= \frac{1}{2} \dot{\phi}^2 + \frac{1}{2} m_{\phi}^2 \phi^2 = \frac{1}{2} m_{\phi}^2 \mathcal{A}^2 + \dots \\ N &= \rho a^3 / m_{\phi} = \frac{1}{2} m_1 a_1^3 \phi_1^2 \\ \rho_{\phi}(t_0) &= m_0 \frac{N}{a_0^3} \simeq \frac{1}{2} m_0 m_1 \phi_1^2 \left(\frac{a_1}{a_0}\right)^3 \end{aligned}$$

The oscillating field behaves like matter

 $H \gg m_{\phi}$, the field is frozen

$H \ll m_{\phi}$, the field oscillates

See e.g. Arias et al, arXiv: 1201.5902

The Axion Haloscope

Axion could convert to photons in the cavity when applying strong magnetic field

Irastorza, Nature, 2021

The Axion Haloscope

Axion could convert to photons in the cavity when applying strong magnetic field

Dark Matter Haloscopes

https://raw.githubusercontent.com/cajohare/AxionLimits

Future Dark Matter Haloscopes

https://raw.githubusercontent.com/cajohare/AxionLimits

The Gamma Signal

The Gamma Signal

$\frac{dN_{\gamma}}{dEdtd\Omega} = \frac{A}{4\pi} \left(\frac{dN_{\gamma}}{dE}\right)_{0} \times \begin{cases} \frac{\langle \sigma v_{\rm rel} \rangle}{2m_{\rm DM}^{2}} \int_{0}^{\infty} \frac{1}{m_{\rm DM}\tau} \int_{0}$

Integrate along the line of sight

$$rac{\langle \sigma v_{
m rel}
angle}{2m_{
m DM}^2} \int_0^\infty
ho(ec{r})^2 dr \quad {
m annihilation} \ rac{1}{m_{
m DM} au} \int_0^\infty dr
ho(ec{r}) \quad {
m decay}$$

The Gamma Signal

$\frac{dN_{\gamma}}{dEdt} = \frac{A}{4\pi} \left(\frac{dN_{\gamma}}{dE}\right)_{0} \times \begin{cases} \frac{\langle \sigma v_{\rm rel} \rangle}{2m_{\rm DM}^{2}} \int dr d\Omega \rho(\vec{r})^{2} & \text{annihilation} \\ \frac{1}{m_{\rm DM}} \int_{0}^{\infty} dr d\Omega \rho(\vec{r}) & \text{decay} \end{cases}$

Integrate over the solid angle

The Gamma Signal

only particle physics

only dark matter distribution

Homework Exercise: J factor for the Milky Way

$$J_{\rm ann} \equiv \frac{1}{8\pi} \int dr d\Omega \rho(\vec{r})^2$$

Navarro-Frenk-White (NFW)

Einasto

Burkert

 $J \sim 10^{22} \text{ GeV}^2/\text{cm}^5$ within 1 degree of the galactic center using NFW

$$\rho_{\rm NFW}(r) = \frac{\rho_0}{r/r_s(1+r/r_s)^2}$$
$$\rho_{\rm Ein}(r) = \rho_0 \exp\left[-\frac{2}{\gamma}\left(\left(\frac{r}{r_s}\right)^{\gamma} - 1\right)\right]$$
$$\rho_{\rm Burk}(r) = \frac{\rho_0}{(1+r/r_s)(1+(r/r_s)^2)}$$

Exercise: J factor for the Milky Way

$$J_{\rm ann} \equiv \frac{1}{8\pi} \int dt$$

Navarro-Frenk-White (NFW)

Einasto

Burkert

$dr d\Omega ho(ec{r})^2$

$$\rho_{\rm NFW}(r) = \frac{\rho_0}{r/r_s(1+r/r_s)^2}$$

$$\rho_{\rm Ein}(r) = \rho_0 \exp\left[-\frac{2}{\gamma}\left(\left(\frac{r}{r_s}\right)^{\gamma} - 1\right)\right]$$

$$\rho_0$$

$$\rho_{\rm Burk}(r) = \frac{\rho_0}{(1 + r/r_s)(1 + (r/r_s)^2)}$$

$\frac{dN}{dEdV_0} = \int_{\infty}^{0} dz \frac{dt}{dz} \frac{dN_{\gamma}}{dE}$ $\frac{dN}{dEdV_0} = \int_0^\infty dz \frac{(1+z)^3}{H(z)} \rho(z=0)^2 \left[\left(\frac{dN_\gamma}{dE'} \right)_0 \right|_{E'=E(1+z)} \frac{\langle \sigma v_{\rm rel} \rangle}{2m_{\rm DM}^2} \right]$

$$rac{\gamma(z)}{E} rac{\langle \sigma v_{
m rel}
angle}{2} n(z)^2 rac{dV_z}{dV_0}$$

 $D)^2 \left[\left(rac{dN_\gamma}{dE'}
ight)_0
ight|_{E'=E(1+z)} rac{\langle \sigma v_{
m rel}}{2m_{
m DN}^2}$

$$\frac{dN}{dEdV_0} = \int_{\infty}^{0} dz \frac{dt}{dz} \frac{dN_{\gamma}(z)}{dE} \frac{\langle \sigma v_{\rm rel} \rangle}{2} n(z)^2 \frac{dV_z}{dV_0}$$

$$\frac{dN}{dEdV_0} = \int_{0}^{\infty} dz \frac{(1+z)^3}{H(z)} \rho(z=0)^2 \left[\left(\frac{dN_{\gamma}}{dE'} \right)_0 \Big|_{E'=E(1+z)} \frac{\langle \sigma v_{\rm rel} \rangle}{2m_{\rm DM}^2} \right]$$

$$\frac{dN_{\gamma}}{dEdAdt} = \int \frac{d\Omega}{4\pi} \int dz \left(\frac{dN_{\gamma}}{dE'} \right)_0 \Big|_{E'=E(1+z)} \frac{1}{H(z)(1+z)^3} \times \begin{cases} \frac{\langle \sigma v_{\rm rel} \rangle}{2m_{\rm DM}^2} \rho(z,\theta,\phi)^2 & \text{annihilation} \\ \frac{1}{m_{\rm DM}\tau} \rho(z,\theta,\phi) & \text{decay} \end{cases}$$

More rigorously,

$$rac{d\Phi_{\mathrm{EG}\gamma}}{dE_{\gamma}}(E_{\gamma}) = crac{1}{E_{\gamma}}\int\limits_{0}^{\infty}dz'rac{H(z')}{H(z')}$$

$$j_{\rm EG\gamma}^{\rm prompt}(E_{\gamma}',z') = E_{\gamma}' \begin{cases} \frac{1}{2}B(z')\left(\frac{\bar{\rho}(z')}{M_{\rm DM}}\right)^2 \sum_{f} \langle \sigma v \rangle_f \frac{dN_{\gamma}^f}{dE_{\gamma}}(E_{\gamma}') & \text{(annihilation)} \\ \frac{\bar{\rho}(z')}{M_{\rm DM}} \sum_{f} \Gamma_f \frac{dN_{\gamma}^f}{dE_{\gamma}}(E_{\gamma}') & \text{(decay)} \end{cases}$$

Clustering effect $B(z, M_{\min}) = 1 + \frac{\Delta_c}{3\bar{
ho}_{m,0}} \int$

$$\int_{M_{\min}}^{\infty} dM \, M rac{dn}{dM} (M,z) \, f \left[c(M,z)
ight]$$

Cirelli et al, arXiv: 1012.4515

Cirelli et al, arXiv: 1012.4515

 Primordial perturbations reenter the horizon, if the overdensity is larger than the critical value, $\delta > \delta_c$, the overdense regions may collapse into black holes

 $M_{\rm PBH}(k) = \gamma \frac{4}{c}$

 $M_{\rm PBH}(k) \sim 5 \times 10^{15} {
m g}$

• Primordial perturbations reenter the horizon, if the overdensity is larger than the critical value, $\delta > \delta_c$, the overdense regions may collapse into black holes

$$\left.\frac{4\pi}{3}\rho H^{-3}\right|_{k=aH}$$

$$\left(rac{g_{\star,0}}{g_{\star,i}}
ight)^rac{1}{6} \left(rac{10^{15}~\mathrm{Mpc}^{-1}}{k}
ight)^2$$

• Primordial perturbations reenter the horizon, if the overdensity is larger than the critical value, $\delta > \delta_c$, the overdense regions may collapse into black holes

$$M_{\rm PBH}(k) \sim 5 \times 10^{15} {
m g} \, \left(rac{g_{\star,0}}{g_{\star,i}}
ight)^{rac{1}{6}} \left(rac{10^{15} \ {
m Mpc}^{-1}}{k}
ight)^2$$

Initial BH fraction $\beta(M_{\rm PBH})$

$$\beta(M_{\rm PBH}) = \frac{\Omega_{\rm PBH,0}(M_{\rm PBH})}{\Omega_{r,0}^{\frac{3}{4}} \gamma^{\frac{1}{2}}} \left(\frac{g}{g}\right)$$
$$f_{\rm PBH} = \frac{\beta(M_{\rm PBH})\Omega_{r,0}^{\frac{3}{4}} \gamma^{\frac{1}{2}}}{\Omega_{\rm CDM,0}} \left(\frac{g_{\star,i}}{g_{\star,0}}\right)$$

• Primordial perturbations reenter the horizon, if the overdensity is larger than the critical value, $\delta > \delta_c$, the overdense regions may collapse into black holes

$$M_{\rm PBH}(k) \sim 5 \times 10^{15} {
m g} \, \left(rac{g_{\star,0}}{g_{\star,i}}
ight)^{rac{1}{6}} \left(rac{10^{15} \ {
m Mpc}^{-1}}{k}
ight)^{2}$$

Initial BF

H fraction
$$\beta(M_{\text{PBH}}) = \frac{\rho_{\text{PBH},i}}{\rho_{\text{total},i}}$$

 $\beta(M_{\text{PBH}}) = \text{Erfc}\left(\frac{\delta_c}{\sqrt{2}\sigma(R)}\right)$
 $\sigma^2(R) = \int \tilde{W}^2(kR)\mathcal{P}_{\delta}(k)\frac{dk}{k}$
 $\mathcal{P}_{\delta}(k) = 4\left(\frac{1+w}{2\pi}\right)^2\mathcal{P}_{\mathcal{R}}(k)$

H fraction
$$\beta(M_{\text{PBH}}) = \frac{\rho_{\text{PBH}}}{\rho_{\text{total}}}$$

 $\beta(M_{\text{PBH}}) = \text{Erfc}\left(\frac{\delta_c}{\sqrt{2}\sigma(R)}\right)$
 $\sigma^2(R) = \int \tilde{W}^2(kR)\mathcal{P}_{\delta}(k)\frac{dk}{k}$
 $\mathcal{P}_{\delta}(k) = 4\left(\frac{1+w}{5+3w}\right)^2\mathcal{P}_{\mathcal{R}}(k)$

 $M_{ ext{PBH}}(k) \sim 5 imes 10^{15} ext{g} \left(rac{g_{\star,0}}{g_{\star,i}}
ight)^{rac{1}{6}} \left(rac{10^{15} ext{ Mpc}^{-1}}{k}
ight)^{2} \qquad \mathcal{P}_{\mathcal{R}}(k) \sim \sigma^{2} rac{10^{21} ext{ 10}^{15} ext{ 10}^{9} ext{ 10}^{3} ext{ 10}^{-9} ext{ 10}^{-15}}{10^{-9} ext{ 10}^{-15}}$ Initial BH fraction $\beta(M_{\text{PBH}}) = \frac{\rho_{\text{PBH},i}}{\rho_{\text{total},i}}$ $\beta(M_{\text{PBH}}) = \text{Erfc}\left(\frac{\delta_c}{\sqrt{2}\sigma(R)}\right)$

At $k \sim 0.05 \text{ Mpc}^{-1}$, $P_R \sim 2.1 \times 10^{-9}$, much less than the requirement $\mathcal{O}(10^{-2})$, curvature perturbation needed!

See e.g. arXiv:2208.14279

Primordial perturbations reenter the horizon, if the overdensity is larger than the critical value, $\delta > \delta_c$, the overdense regions may collapse into black holes

Constraints on PBH Dark Matter

Carr, Kohri, Sendouda, Yokoyama, arXiv:2002.12778 M/M_{\odot}

M[g]

Galactic Gamma Ray

$$\frac{d\Phi_{\gamma}}{dEd\Omega} = \frac{1}{4\pi} \frac{dN}{dEdt} \frac{f_{\bullet,0}}{M} \frac{1}{\Delta\Omega} \mathcal{D}(\Omega),$$

$$\mathcal{D}(\Omega) \equiv \int_{1.o.s.\Delta\Omega} \rho_{DM}(\vec{x}) d\Omega dx,$$

$$\frac{d\Phi_{511}}{d\Omega} = 2(1 - 0.75f_P)\frac{dN_{e^+}}{dt}\frac{1}{4\pi}\frac{1}{M}\frac{1}{\Delta\Omega}\mathcal{D}(\Omega)$$

fraction of positronium

 10^{0}

 10^{-1}

 10^{-1}

 10^{-3}

 10^{-4}

Fraction of dark matter today $f_{\bullet,0}$

25% annihilation to 2 gamma, 75% to 3 gamma

Black hole mass today [g]

Friedlander, Mack, NS, Schon, Vincent, PRD/2201.11761

Isotropic Gamma Ray Background

Isotropic Gamma Ray Background

Friedlander, Mack, NS, Schon, Vincent, PRD/2201.11761

A Snapshot of 4D BH Constraints

Axion-photon Conversion

Axion-photon Conversion

• CP conserved in QCD \Rightarrow axion

•
$$\mathscr{L}_{a\gamma\gamma} = \frac{1}{4} g_{a\gamma\gamma} a F_{\mu\nu} \tilde{F}^{\mu\nu}$$

Resonant conversion from axion to photon in plasma when $m_a \sim \omega_p$

Axion Conversion in Neutron Star

Magnetized neutron star atmosphere – magnetosphere •

$$n_{\rm GJ}(\mathbf{r}_{\rm NS}) = \frac{2\mathbf{\Omega} \cdot \mathbf{B}_{\rm NS}}{e} \frac{1}{1 - \Omega^2 r^2 \sin^2 \theta_{\rm NS}}$$

$$B_z = \frac{B_0}{2} \left(\frac{r_0}{r}\right)^3 \left[3\cos\theta\,\mathbf{\hat{m}}\cdot\mathbf{\hat{r}} - \cos\theta_m\right]$$

Witte et al 2104.07670

Homework Exercise: Axion Conversion in Neutron Star

$$-\partial_t^2 a + \nabla^2 a = m_a^2 a - g_{a\gamma\gamma} \mathbf{E} \cdot \mathbf{B},$$

 $-\nabla^2 \mathbf{E} + \nabla (\nabla \cdot \mathbf{E}) = \omega^2 \mathbf{D} + \omega^2 g_{a\gamma\gamma} a \mathbf{B},$

$$\begin{bmatrix} -i\frac{d}{dr} + \frac{1}{2k} \begin{pmatrix} m_a^2 - \xi \, \omega_p^2 & \Delta_B \\ \Delta_B & 0 \end{pmatrix} \end{bmatrix} \begin{pmatrix} \tilde{A}_{\parallel} \\ \tilde{a} \end{pmatrix}$$

$$\xi = \frac{\sin^2 \tilde{\theta}}{1 - \frac{\omega_p^2}{\omega^2} \cos^2 \tilde{\theta}}, \quad \Delta_B = B g_{a\gamma\gamma} m_a \frac{\xi}{\sin \tilde{\theta}},$$

$$p^{\infty}_{a\gamma} \approx \frac{1}{2v_c} g^2_{a\gamma\gamma} B(r_c)^2 L^2$$

$$\frac{d\mathcal{P}(\theta,\theta_m t)}{d\Omega} \approx 2 \times p^\infty_{a\gamma} \, \rho^{r_c}_{\rm DM} v_c r_c^2 \,,$$

$$n_{
m GJ}(\mathbf{r}_{
m NS}) = rac{2\mathbf{\Omega} \cdot \mathbf{B}_{
m NS}}{e} rac{1}{1 - \Omega^2 r^2 \sin^2 heta_{
m NS}}$$

$$B_z = \frac{B_0}{2} \left(\frac{r_0}{r}\right)^3 \left[3\cos\theta\,\mathbf{\hat{m}}\cdot\mathbf{\hat{r}} - \cos\theta_m\right]$$

$$\mathbf{D} = R^{yz}_{\tilde{\theta}} \cdot \begin{pmatrix} \epsilon & ig & 0 \\ -ig & \epsilon & 0 \\ 0 & 0 & \eta \end{pmatrix} \cdot R^{yz}_{-\tilde{\theta}} \cdot \begin{pmatrix} E_x \\ E_y \\ E_z \end{pmatrix},$$

$$-\partial_z^2 \begin{pmatrix} E_y \\ a \end{pmatrix} = \begin{pmatrix} \frac{\omega^2 - \omega_p^2}{1 - \frac{\omega_p^2}{\omega^2} \cos^2 \tilde{\theta}} & \frac{g_{a\gamma\gamma} B_t \omega^2}{1 - \frac{\omega_p^2}{\omega^2} \cos^2 \tilde{\theta}} \\ \frac{g_{a\gamma\gamma} B_t}{1 - \frac{\omega_p^2}{\omega^2} \cos^2 \tilde{\theta}} & \omega^2 - m_a^2 \end{pmatrix} \cdot \begin{pmatrix} E_y \\ a \end{pmatrix},$$

$$\rho_{\rm DM}^{r_c} = \rho_{\rm DM}^\infty \frac{2}{\sqrt{\pi}} \frac{1}{v_0} \sqrt{\frac{2GM_{\rm NS}}{r_c}} + \cdots \,. \label{eq:rc_def}$$

Hook et al 1804.03145 Millar et al 2107.07399 Witte et al 2104.07670

=0,

Radio Observation Constraint

Radio flux limit from the galactic center

Foster et al 2202.08274

Optical Polarization Signal

CP conserved in QCD \Rightarrow axion

Photon only converts to axion in the direction parallel to magnetic field, \bullet inducing polarization signals

Optical Polarization Signal

- Photon only converts to axion in the direction parallel to magnetic field, inducing polarization signals
- Resonant conversion occurs when vacuum polarization matches plasma

unpolarized light

NS, Liangliang Su, Lei Wu, arXiv: 2402.15144

Optical Polarization Signal

- polarization signals

Photon only converts to axion in the direction parallel to magnetic field, inducing

Optical polarization signals from neutron stars could place the most stringent limits

NS, Liangliang Su, Lei Wu, arXiv: 2402.15144

Dark Matter Capture

Earth Heating

 Dark matter scatters with Earth matter, slows down and gets trapped

DM capture $v_f < v_{escape} \sim 11 \text{ km/s}$

Earth Heating

- Dark matter scatters with Earth matter, slows down and gets trapped
- Dark matter scatters with thermal nuclei and escapes from the Earth

Earth Heating

- Dark matter scatters with Earth matter, slows down and gets trapped
- Dark matter scatters with thermal nuclei and escapes from the Earth
- Dark matter annihilate to Standard Model particles, heating the Earth

DM Heating \leq 44 TW

Kamland, Borexino geoneutrino observation

Annihilation

Monte Carlo

DaMaSCUS_EarthCapture https://github.com/songningqiang/DaMaSCUS-EarthCapture

See also DaMaSCUS https://github.com/temken/DaMaSCUS

Monte Carlo

DaMaSCUS_EarthCapture https://github.com/songningqiang/DaMaSCUS-EarthCapture

Capture Fraction

DaMaSCUS_EarthCapture https://github.com/songningqiang/DaMaSCUS-EarthCapture

10^{0} Normalized evaporation rate $E_{\oplus}/N_C[s^{-1}]$ 10^{-5} $egin{aligned} & -- \sigma_{\chi N} = 10^{-36} { m cm}^2 \ & -- \sigma_{\chi N} = 10^{-34} { m cm}^2 \ & -- \sigma_{\chi N} = 10^{-32} { m cm}^2 \ & -- \sigma_{\chi N} = 10^{-30} { m cm}^2 \ & -- \sigma_{\chi N} = 10^{-28} { m cm}^2 \end{aligned}$ 10^{-10} [10^{-15} , -20 10^{-6} 10^{-5} 10^{-4} 10^{-3} 10^{-2} 10^{-1} 10^{0} 10^{1} 10^{2} $m_{\chi}[{ m GeV}]$ Dark matter mass

Dark Matter Evaporation

Dark Matter Annihilation

Assuming dark matter annihilates to SM final states

 $A_{\oplus} = \frac{\langle \sigma v_{\mu} \rangle}{2\pi^{c_{\mu}}}$ Normalized annihilation rate

Total annihilation rate

$$\frac{\partial \lambda_{\chi\chi}}{V_C^2} \int_0^{R_{\oplus,\mathrm{atm}}} n_\chi^2 4\pi r^2 dr$$

 $\langle \sigma v \rangle_{\chi\chi} \simeq 3 \times 10^{-26} \text{ cm}^3/\text{s}$

Capture Evaporation Annihilation

Earth Heating Constraints

Spin-Independent 100%

Dark matter mass

Bramante, Kumar, Mohlabeng, NS, 2210.01812

DM Heating \leq 44 TW Spin-Independent 5%

Less than 10% DM annihilation when drifting down to Earth crust

Heating Constraints - Spin-Dependent

Spin-Dependent 100%

Bramante, Kumar, Mohlabeng, NS, 2210.01812

Spin-Dependent 5%

Summary

- Direct detection of dark matter
 - Introduction to dark matter scattering rate
 - Inelastic dark matter
 - Strongly interacting dark matter
 - Boosted dark matter
 - Atmospheric dark matter
 - Electron recoil
 - ✤ Wavelike dark matter
- Astrophysical probes of dark matter
 - Introduction to indirect detection
 - Primordial black hole dark matter
 - Axion-photon conversion
 - Dark matter capture

Phonon Structure of Sapphire

 Al_2O_3

Constraints from CMB

$$\frac{d^{2}E}{dVdt}\Big|_{inj} = \frac{f_{\bullet}f_{e.m.}\rho_{c}\Omega_{CDM}(1+z)^{3}}{M_{i}}\frac{dM}{dt}$$
Fraction of BH energy
injection as e^{\pm} and γ

$$\frac{d^{2}E}{dVdt}\Big|_{dep,c}(z) = h_{c}(z)\left.\frac{d^{2}E}{dVdt}\right|_{inj}(z)$$

The injected energy is then deposited at different redshift z, in the form of ionization, excitation of the Lyman- α transition and heating of the intergalactic medium

Constraints from CMB

- BH evaporation during and after recombination leads to high energy electrons and photons, which rescatter CMB photons, suppressing the angular power spectrum on small scales
- Polarized Thomson scattering enhances EE power spectrum at lower multiples

Planck 2018 high-*l* TT,TE, EE+low-*l* TT, EE+Planck lensing

Friedlander, Mack, NS, Schon, Vincent, PRD/2201.11761

Axion Conversion in Neutron Star

Magnetized neutron star atmosphere — magnetosphere lacksquare

$$n_{
m GJ}({f r}_{
m NS}) = rac{2{f \Omega}\cdot{f B}_{
m NS}}{e}rac{1}{1-\Omega^2r^2\sin^2}$$

Conversion probability •

$$p = \frac{g_{a\gamma\gamma}^2 B^2}{2k |\omega_p'|} \frac{\pi m_a^5}{(k^2 + m_a^2 \sin^2 \theta)^2} \sin^2 \theta$$

Millar et al 2107.07399

Hook et al 1804.03145

Witte et al 2104.07670

Signals from the Galactic Centre

$$S_{\rm sig} = \frac{1}{\mathscr{B}d^2} \frac{dP}{d\Omega} > S_{\rm min}$$

Signals from a single star $\delta f/f \sim v^2 \sim 10^{-6}$

Signals from stellar population $\delta f/f \sim v \sim 10^{-3}$

$$\omega_{\text{obs}} = \omega_{\sqrt{\frac{1 - v_{\text{l.o.s}}}{1 + v_{\text{l.o.s}}}}}$$

Doppler shift can be important!

Safdi et al 1811.01020

Greybody spectra

Monte Carlo vs Single Scatter

Monte Carlo vs Multi Scatter

Dark Matter Distribution

$$= \left(\frac{T_{\oplus}(r)}{T_{\oplus}(0)}\right)^{3/2} \exp\left(-\int_{0}^{r} \left[\alpha(r')\frac{dT_{\oplus}(r')}{dr'} + m_{\chi}\frac{d\phi(r')}{dr'}\right]T$$

When $\sigma_{\chi N}^{\rm SI} \gtrsim 10^{-36} {\rm ~cm^2}$, dark matter thermalizes with local environment due to frequent scattering

Garani 1702.02768

Heavier dark matter sinks down, lighter dark matter float

Dark Photon

Extra U(1)? $SU(3)_c \times SU(2)_L \times U$

$$\mathscr{L} = -\frac{1}{4}(F_{\mu\nu}F^{\mu\nu} - 2\kappa F_{\mu\nu}F^{'\mu\nu} + F_{\mu\nu}'F^{'\mu\nu}) + \frac{m_{A'}^2}{2}A_{\mu}'A^{'\mu} - J^{\mu}A_{\mu}$$

$$\omega^2 \sim k^2 + \omega_p^2$$

PMO

$$V(1)_{Y} \times U(1)'$$

Pospelov' 2008 Ackerman, Buckley, Carrol, Kamionkowsk' 2008 Arkani-Hame, Finkbeine, Slatyer, Weiner' 2008

$$\omega^2 = k^2 + m_{A'}^2$$

Ningqiang Song (<u>songnq@itp.ac.cn</u>)

Resonant Dark Photon Conversion

- star when $m_{A'} \sim \omega_p$
- Redefine $A_{\mu} \rightarrow A_{\mu} + \kappa A'_{\mu}$ to remove the mixing,

$$\mathscr{L} = -\frac{1}{4}(F_{\mu\nu}F^{\mu\nu} + F'_{\mu\nu}F^{'\mu\nu}) + \frac{1}{2}m_{A'}^2A'_{\mu}A^{'\mu} - (A_{\mu} + \kappa A'_{\mu})J^{\mu}$$

Equation of motion

$$\begin{aligned} (\omega^2 + \nabla^2) \mathbf{A} - \nabla (\nabla \cdot \mathbf{A}) + \omega^2 (\mathbf{\chi}^p + \mathbf{\chi}^{\text{vac}}) \cdot (\mathbf{A} + \kappa \mathbf{A}') &= 0 \\ (\omega^2 + \nabla^2) \mathbf{A}' - m_{A'}^2 \mathbf{A}' + \kappa \omega^2 (\mathbf{\chi}^p + \mathbf{\chi}^{\text{vac}}) \cdot \mathbf{A} &= 0 \end{aligned}$$

$$oldsymbol{\epsilon} = 1 + oldsymbol{\chi}^p = R^{yz}_{ heta} \cdot egin{pmatrix} arepsilon & ig & 0 \ -ig & arepsilon & 0 \ 0 & 0 & \eta \end{pmatrix} \cdot R^{yz}_{- heta}$$

Resonant conversion from dark photon to photon in the magnetosphere of a neutron

No magnetic field need!

Resonant Dark Photon Conversion

$$egin{aligned} &(\omega^2+\partial_z^2)A_x-\partial_x\partial_z A_z+\omega^2 aar{A}_x=0\,,\ &(\omega^2+\partial_z^2)A_y-\partial_y\partial_z A_z+\omega^2[(\eta'\sin^2 heta+\omega^2)A_y-\partial_y\partial_z A_z+\omega^2](\eta'\sin^2 heta+\omega^2)A_z+\omega^2[-(\eta'+\omega^2)A_z+\omega^2)A_z+\omega^2] \end{aligned}$$

Conversion probability

$$p \simeq \frac{|\tilde{A}_{y}|^{2} + |\tilde{A}_{z}|^{2}}{|\tilde{A}_{x}'|^{2} + |\tilde{A}_{y}'|^{2} + |\tilde{A}_{z}'|^{2}} \simeq \frac{\pi \kappa^{2} \omega_{p}^{3} (m_{A'}^{2} c)}{6km_{A'}^{2}}$$

 The converted photon has both transverse and longitudinal polarizations, and evolves in the direction that is perpendicular to the magnetic field

 $+ a + q \sin \theta^2) \bar{A}_y - (\eta' + q) \cos \theta \sin \theta \bar{A}_z] = 0,$ $(+ q) \cos \theta \sin \theta \bar{A}_y + (\eta' \cos^2 \theta + a + q \cos^2 \theta) \bar{A}_z] = 0.$

Compact Stars in the Galactic Centre

Freitag et al 2006

Radio Telescopes

Minimum detectable signal flux density

$$S_{\min} = \frac{\text{SEFD}}{\eta \sqrt{n_{\text{pol}} \mathcal{B} t_{\text{obs}}}}$$

SEFD =
$$2k_B \frac{T_{\text{sys}}}{A_{\text{eff}}} = 2.75 \text{ Jy} \frac{1000 \text{ m}^2/\text{K}}{A_{\text{eff}}/T_{\text{sys}}}$$

$$S_{\rm sig} = \frac{1}{\mathscr{B}d^2} \frac{dP}{d\Omega} > S_{\rm min}$$

Sensitivities for Galactic Center Signals

Collection of neutron stars

Dark Photon Mass

Edward Hardy, **NS**, 2212.09756

Criteria for Strong Conversion

- Strong magnetic field is NOT required
- Dense plasma \Rightarrow Larger dark photon mass lacksquare
- High temperature \Rightarrow Less Inverse Bremsstrahlung absorption

$$\Gamma_{\rm IB} = \frac{8\pi\alpha^3 n_e n_{\rm ion}}{3\omega^3 m_e^2} \sqrt{\frac{2\pi m_e}{T}} \ln\left(\frac{2T^2}{\omega_p^2}\right)$$

White Dwarf Atmosphere

Isotropic plasma \Rightarrow photon longitudinal polarization does not propagate, only transverse modes convert

$$\begin{bmatrix} -i\frac{d}{dr} + \frac{1}{2k} \begin{pmatrix} m_{A'}^2 - \omega_p^2 & -\kappa\omega_p^2 \\ -\kappa\omega_p^2 & 0 \end{pmatrix} \end{bmatrix} \begin{pmatrix} \tilde{A} \\ \tilde{A'} \end{pmatrix} = 0.$$

White Dwarf Atmosphere

- Pressure gradient balances gravity $l_a \simeq$
- Exponential density profile $n_e(r) = n_0 e^{-\frac{r-r_0}{l_a}}$

• Conversion probability
$$p = \frac{2\pi \kappa^2 m_{A'}^2}{3 k} l_a$$

Radio emission power •

$$\frac{d\mathcal{P}}{d\Omega} \simeq 2pr_c^2 \rho_{A'}(r_c)v_c$$

 $T_a \sim 10^4 - 10^5 \text{ K}, n_0 \sim 10^{17} \text{ cm}^{-3}$

$$\frac{kT_a r_0^2}{GM_{\rm WD}\mu m_p} = 0.06 \text{ km} \left(\frac{T_a}{10^4 \text{ K}}\right) \left(\frac{M_{\rm WD}}{M_\odot}\right) \left(\frac{r_0}{0.01 R_\odot}\right)^2$$

$$\frac{l_a}{l_a}$$

Sensitivities from White Dwarf Atmosphere

Collection of white dwarfs

Edward Hardy, **NS**, 2212.09756

White Dwarf Corona?

- Higher temperature $10^6 10^7$ Kelvins \Rightarrow less absorption
- Exponential density profile $n_e(r) = n_0 e^{-r}$
- No observational evidence for hot corona in isolated white dwarfs

$$T_a \sim 10^6 - 10^7$$
 K, r

$$\frac{r-r_0}{l_a}$$

K,
$$n_0 \sim ?$$

Sensitivities from White Dwarf Corona

Credit: ESA

Edward Hardy, NS, 2212.09756

Accreting White Dwarf

Non-magnetic cataclysmic variable

Magnetic cataclysmic variable

Non-magnetic Cataclysmic Variables

- The inner part of the disk decelerates and forms a hot boundary layer near the white dwarf surface
- High accretion rate ⇒ Black body emission from the optically-thick boundary layer
- Low accretion rate ⇒ Bremsstrahlung emission from the optically-thin boundary layer

Optically Thin Boundary Layer

- Temperature $T \simeq \frac{3}{16} \frac{GM\mu m_p}{kR} \sim 10^8 \text{ K}$
- Thickness $b \simeq 600 \text{ km} \left(\frac{T_s}{10^8 \text{ K}}\right) \left(\frac{M_{\text{WD}}}{M_{\odot}}\right) \left(\frac{r_0}{0.01 R_{\odot}}\right)^2$
- Height $H = 2 \times 10^3 \text{ km } \alpha_d^{-1/10} \dot{M}_{16}^{3/20} \left(\frac{r_0 + b}{10^5 \text{ km}}\right)^{9/8} f_r^{3/5}$
- Density profile

$$n_e = n_d \exp\left(1 - \frac{r - r_0}{b} - \frac{h^2}{H^2}\right)$$

Patterson et al 1985

211

X-ray Map in the Galactic Center

Zhu et al 1802.05073

Sensitivities from Non-magnetic Cataclysmic Variable

Single accreting white dwarf

Edward Hardy, **NS**, 2212.09756

