超对称 - 最有希望的新物理理论

曹俊杰

junjiec@alumni.itp.ac.cn

郑州大学物理学院

2025年1月5日

1 如何研究新物理模型?

- ② 为什么超对称是最有希望的理论?
- 3 最小超对称模型
- ④ 最小超对称模型面临的问题及解决方案
- ⑤ 次最小超对称模型

Section I

如何研究新物理模型?

参考文献:

 J. Cao, J. Li, Y. Pan, L. Shang, Y. Yue and D. Zhang, Phys. Rev. D 99, no.11, 115033 (2019), [arXiv:1807.03762 [hep-ph]].

贝叶斯定理: $\Theta = (\Theta_1, \Theta_2, \cdots)$ 是理论输入参数。

$$P(\boldsymbol{\Theta} \mid \mathbf{D}, H) \equiv \frac{P(\mathbf{D} \mid \boldsymbol{\Theta}, H) P(\boldsymbol{\Theta} \mid H)}{P(\mathbf{D} \mid H)} \Longrightarrow P(\boldsymbol{\Theta}) \equiv \frac{\mathcal{L}(\boldsymbol{\Theta}) \pi(\boldsymbol{\Theta})}{\mathcal{Z}}$$

P(**D** | Θ, H) ≡ L(Θ): 似然函数, 反映实验结果对 {Θ} 的偏好。
 例: 多次精细测量后, 实验结果服从高斯分布:

$$\mathcal{L} = e^{-\frac{\left[\mathcal{O}_{th}(\Theta) - \mathcal{O}_{exp}\right]^2}{2\sigma^2}}$$

 $\mathcal{O}_{th}(\Theta)$:理论预测值, \mathcal{O}_{exp} :实验测量值, σ :总不确定度。

- $P(\Theta \mid H) \equiv \pi(\Theta)$: 先验概率密度函数; 如何选择合理的 $\pi(\Theta)$?
 - 选择物理可观测量,如粒子质量和耦合常数,作为输入可能更好。
 原因:它们的合理范围是确定的。
 - 对于实验未能提供有用信息的输入参数,选择均匀分布可能更好。 选择具有明确的物理考量!

1、统计学 - 贝叶斯定理

贝叶斯定理: $\Theta = (\Theta_1, \Theta_2, \cdots)$ 是理论输入参数。

$$P(\boldsymbol{\Theta} \mid \mathbf{D}, H) \equiv \frac{P(\mathbf{D} \mid \boldsymbol{\Theta}, H) P(\boldsymbol{\Theta} \mid H)}{P(\mathbf{D} \mid H)} \Longrightarrow P(\boldsymbol{\Theta}) \equiv \frac{\mathcal{L}(\boldsymbol{\Theta}) \pi(\boldsymbol{\Theta})}{\mathcal{Z}}$$

P(D | *H*) ≡ Z: 贝叶斯证据, 归一化因子; 它代表平均似然度, 反 映理论与数据保持一致的能力。
 Z 越小 → 理论越需要精细调节去迎合实验结果!

$$\mathcal{Z} = \int \mathcal{L}(\mathbf{\Theta}) \pi(\mathbf{\Theta}) d^D \mathbf{\Theta}.$$

- 依赖于 *L*、Θ、π 和积分参数空间!
- 应用: 对参数空间开展扫描转化为计算 Z 时的蒙特卡洛采样。
- $P(\Theta | D, H) \equiv P(\Theta)$: 后验概率分布函数。
 - 反映给定实验数据 D 的情况下, 对参数 Θ 的认知程度;
 - 可以理解为受实验数据影响以后的先验概率分布;
 - 从 P(Θ) 的分布推断模型背后的物理。

2、贝叶斯统计中常用的统计量

边缘后验概率:反映实验结果对一个或多个参数特定区域的偏好。

$$1D: P(\Theta_A) = \int P(\Theta)d\Theta_1 d\Theta_2 \cdots d\Theta_{A-1} d\Theta_{A+1} \cdots \cdots$$
$$2D: P(\Theta_A, \Theta_B) = \int P(\Theta)d\Theta_1 d\Theta_2 \cdots d\Theta_{A-1} d\Theta_{A+1} \cdots d\Theta_{B-1} d\Theta_{B+1} \cdots$$

可信区间:数据最偏好的参数区域;这取决于似然函数和相空间。

$$1D: \int_{\Theta_{A_1}}^{\Theta_{A_2}} P(\Theta_A) d\Theta_A = 1 - \alpha$$

$$2D: \int_{P(\Theta_A, \Theta_B) \ge p_{\text{crit}}} P(\Theta_A, \Theta_B) d\Theta_A d\Theta_B = 1 - \alpha$$

$$1\sigma: \alpha = 0.317, \qquad 2\sigma: \alpha = 0.055.$$

3、频率论中常用的统计量

轮廓似然:参数解释实验结果的能力。

$$\begin{split} 1D: \mathcal{L}(\Theta_{A}) &= \max_{\Theta_{1}, \cdots, \Theta_{A-1}, \Theta_{A+1}, \cdots} \mathcal{L}(\Theta), \\ 2D: \mathcal{L}(\Theta_{A}, \Theta_{B}) &= \max_{\Theta_{1}, \cdots, \Theta_{A-1}, \Theta_{A+1}, \cdots, \Theta_{B-1}, \Theta_{B+1}, \cdots} \mathcal{L}(\Theta) \\ \\ \hline & \Xi信区间: 解释数据最优的区域; 这仅取决于似然函数. \\ & 1D: \left\{\chi^{2}(\Theta_{A}) - \chi^{2}_{Best}\right\} \leq F_{\chi^{2}_{1}}^{-1}(1-\alpha), \\ & 2D: \left\{\chi^{2}(\Theta_{A}, \Theta_{B}) - \chi^{2}_{Best}\right\} \leq F_{\chi^{2}_{2}}^{-1}(1-\alpha) \\ & \chi^{2}\left(\Theta_{A}, \cdots\right) \equiv -2\log\mathcal{L}(\Theta_{A}, \cdots), \quad \chi^{2}_{Best}: \text{ 最佳点的 } \chi^{2} \text{ 值.} \\ & F_{\chi^{2}_{n}}^{-1}: \text{ n 自由度卡方分布的逆累积分布函数,} \\ & 1\sigma (\alpha = 0.317): F_{\chi^{2}_{1}}^{-1} = 1.00, \quad F_{\chi^{2}_{2}}^{-1} = 2.30; \\ & 2\sigma (\alpha = 0.046): F_{\chi^{2}_{1}}^{-1} = 4.00, \quad F_{\chi^{2}_{2}}^{-1} = 6.18 \\ & \mathbf{h}$$

全局拟合:将实验测量结果映射到理论参数空间。

- 新物理参数空间的特点:维度高、似然函数高度简并、物理的 参数空间常常彼此孤立,随机扫描和马尔可夫链扫描效率低下。
- MultiNest 算法能很好地适应这种情况,细致地扫描参数空间:
 - 在每次迭代中使用 *nlive* 个样本来确定等似然度轮廓,能提供参数空间的诸多细节;
 - 结果具有统计显著性。
- 借助扫描得到的参数点,<u>全面地探索理论的性质</u>,如对各种实验 测量的预言、理论的精细调节程度、真空稳定性和相变特征等。
 为研究人员提供丰富的素材加以仔细理解!
- 利用各种统计量揭示理论的整体特征:
 可以推断理论背后的物理机制。
- 通过解析<mark>公式</mark>提供直观的理解。

严重挑战:需要大量样本,计算量巨大。

与天文学不同,已经积累了丰富且精确的实验数据:

- 电弱精确可观测量;
- 对各类低能过程开展的精细测量;
- 重味物理数据;
- 中微子实验;
- •希格斯性质测量;
- 暗物质搜索实验;
- LHC 寻找超对称结果;
- 可选: 缪子反常磁矩、W 玻色子质量。

丰富的数据为细致分析理论的特点奠定基础!

4、全局拟合 – LHC 寻找超对称结果

信号末态特征:丢失的横向能量 + 高 PT 喷柱 + 多轻子

4、全局拟合 - LHC 寻找超对称结果

ATLAS SUSY Searches* - 95% CL Lower Limits

July 2024					$\sqrt{s} = 13 \text{ TeV}$	
	Model	Signa	ture	∫£ dı [ſb'	1 Mass limit	Reference
arches	$\bar{q}\bar{q}, \bar{q} \rightarrow q\bar{q}^0_1$	0 r.μ 2-6 mono-jet 1-3	ets Enios ets Etan	140 140	[1%.0x.Degen] 1.0 1.85 m(² 1)≤400 GeV ∦ [8x.Degen] 0.9 m(² 1)≤400 GeV	2010.14293 2102.10874
	$kR, k \rightarrow q \bar{q} \bar{q}_1^0$	0 r,μ 2-6	ets E ₇	140	2.3 pt ⁽¹⁾ / ₂ =0.6ev 2.3 pt ⁽¹⁾ / ₂ =0.6ev 7.001000 1.15-1.66 pt ⁽¹⁾ / ₂ =0.6ev	2010.14293 2010.14293
S.	88. 2-49W21	1 r. µ 2-6	ets	140	2.2 m ⁽¹⁾ +60 GeV	2101.01629
84	88. 3-mp((1)4)	cc./01 2 ja	ts Error	140	3 2.2 m(t)<700 GeV	2204.13072
ocius	$\chi\chi, \chi \rightarrow qqWZV_1^{-1}$	88 e.μ 6 ji	995 Eym 68	140	8 1.07 m(r) <00 GeV 8 1.15 m(c) = 0.0 GeV	2008.09032 2307.01094
2	33. 2→10 ² 1	0-1 «.µ 3 SS «.µ 6 ji	ts Error	140	8 2.45 m(i)+500 GeV 8 1.25 m(i)+700 GeV	2211/08028 1909/08457
	hihi	0 r.µ 2	E_{T}^{min}	140	δ. 1.255 mt ² [+400 GeV δ. 0.68 10 GeV c/style, δ.] (-20 GeV	2101.12527 2101.12527
arks tion	$\bar{b}_1 \bar{b}_1, \bar{b}_1 \rightarrow b \bar{k}_2^0 \rightarrow b b \bar{k}_1^0$	0 r.μ 6 2 τ 2	b E_T^{min} b E_T^{min}	140 140	Br. Forbidden 0.22-1.35 Am(F_1, F_1)=130 GeV, m(F_1)=100 GeV Br. 0.13-0.85 Am(F_1, F_1)=130 GeV, m(F_1)=0 GeV	1908.03122 2103.08189
200	$\tilde{I}_1 \tilde{I}_1, \tilde{I}_1 \rightarrow i \tilde{K}_1^0$	0-1 e, μ ≥ 1	jet E_T^{miss}	140	λ ₁ 1.25 m(r))=1 GeV	2004.14060, 2012.03799
e ă	$\tilde{r}_1 \tilde{r}_1, \tilde{r}_1 \rightarrow WhW_1$	1 c. µ 3 job	(1.b. E ₇	140	A Forbidden 1.06 mi(7)-500 GeV	2012.03799, 2401.13430
100	$h_1 r_1, r_1 \rightarrow r_1 m_1, r_1 \rightarrow r_0$ $h_1 r_1, r_2 \rightarrow r_1 m_2, r_1 \rightarrow r_0$	0.0 2	Epin	36.1	2 0.85 mb-66v	1005.01649
9.0	stated and successful	0 r. p mon	sjat Ry	140	7, 0.55 m); .; -m(?;) -5 GeV	2102.10874
	$\tilde{I}_1\tilde{I}_1, \tilde{I}_1 \rightarrow i\tilde{K}_2^0, \tilde{K}_2^0 \rightarrow Z/h\tilde{K}_1^0$	1-2 e. µ 1-4	b Erto	140	li 0.067-1.18 m(l ² ₂)=500 GeV	2006.05880
	$t_2t_2, t_2 \rightarrow t_1 + Z$	3 e.p 1	b Er	140	Is Forbidden 0.06 m(Ε)=393 GeV, m(F)=40 GeV	2006.05890
	$\bar{x}_1^1 \bar{x}_2^0$ via wZ	Multiple (/jets cc.jo) ≥ 1	jet Etitos	140 140	k ² /k ² 0.95 m(t ²)=0, wino bino k ² /k ² 0.205 m(t ²)=0(t ²) to GeV, wino bino	2106.01676, 2108.07586 1911.12606
	<i>k</i> ⁺ ₁ <i>k</i> [*] ₁ via ₩₩	2 c. p	E_T^{mbo}	140	f ^a ₁ 0.42 m(l ²)=0, who bino	1908.08215
	$\hat{\mathcal{K}}_{1}^{*}\hat{\mathcal{K}}_{2}^{*}$ wig Wb	Multiple //jets	E_T^{max}	140	1,06 m(7)=70 GeV, who bloo	2004.10894, 2108.07586
~ 5	X1X1 Va 6.19	869	ATTIN	140	1.0 m(//)-d.5(n(r))-m(/))	1908.08215
2.0	hadre land	26.0 01	es Juin	140	7 07 07 million	1908.08215
0	00.0.1000	or.µaµ ≥1	jot Eyro	140	2 0.26 m() m(f)=10 GeV	1911.12505
	HH, H-MG/2G	4 c.p 0 j	es Eten	140	P 0.55 0.94 0.95 0.94	2103.11684
		0 r, μ ≥ 2 lan	le jets L'fan	140	R 0.45-0.93 BH(r - 2C)-1	2108.07595
		20.0 22	66 E.T.	140	III 0.77 6P(r; → 20)+6P(r; → 4G)+0.5	2204.13072
ъ.	Direct $\hat{x}_1^* \hat{x}_1^*$ prod., long-lived \hat{x}_1^*	Disapp. trk 1 j	$H = E_T^{min}$	140	21 0.66 Pure Wino 21 0.21 Pure Miggsino	2201.62472 2201.62472
0.0	Stable (R-hadron	pixel dE/dx	L_T^{min}	140	2.05	2205.09013
88	Metastable g R hadron, g→eoF	pixel dE/dx	Er	140	2 [rig) =10 rs] 2.2 rr(r)=100 GeV	2205.09013
28	12, 2-405	Usp. ep	67	140	7 0.35 0.74 10 -0.145	ATLAS-CONF-2024-011
		pixel dE/dx	E_T^{mbo}	140	r 0.35 rið = 10 m	2205.06013
	$\tilde{\chi}_{1}^{\pm} \tilde{\chi}_{1}^{\pm} / \tilde{\chi}_{1}^{\pm} , \tilde{\chi}_{1}^{\pm} \rightarrow Z \ell \rightarrow \ell \ell \ell$	3 c.p		140	k ² ₁ /k ² ₁ (BP(Zr)+1, BP(Zr)+1) 0.625 1.05 Pure Wro	2011.10543
	$\hat{x}_{1}^{*}\hat{x}_{1}^{*}/\hat{x}_{2}^{0} \rightarrow WW)Z\ell\ell\ell\ell rr$	4 r. p 0 ji	ts Eg	140	λ ² /λ ² ₂ [λ ₀₀ ≠ 0, λ ₁₀₀ ≠ 0] 0.95 1.55 m(l ² ₁)=200 GeV	2103.11984
	$\underline{X}_{1}^{*}, \underline{x} \rightarrow qqX_{1}^{*}, X_{1}^{*} \rightarrow qqq$	28	ets	140	2 mit()=50 (av) (20 (av) 1.6 (2.34 Lage A ₁₁₂	2401.16333
2	$\overline{B}, \overline{I} \rightarrow B \overline{A}_1, \overline{A}_1 \rightarrow B \overline{A}_2$ $\overline{B}, \overline{I} \rightarrow B \overline{A}_1^{(2)}, \overline{A}_2^{(2)} \rightarrow B \overline{A}_2$	21	pie Ib	140	7 Exhibition 0.95 which day	2010/01015
œ	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow bx$	2 jots	+28	38.7	Tr [ay, br] 0.42 0.61	1710.07171
	$\tilde{r}_1 \tilde{r}_1, \tilde{r}_1 \rightarrow q t'$	2 r.μ 2 1μ D	2	140 136	λ 0.441,85 BR(β)br/(b_0)20% λ 1.0 1.6 BR(β)br/(b_0)20%	2406.18367 2003.11956
	$\tilde{\chi}_{1}^{0}/\tilde{\chi}_{2}^{0}/\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1,2}^{0} \rightarrow obs, \tilde{\chi}_{1}^{+} \rightarrow bbs$	1.2 c. p 26	ots	140	R ⁴ 0.2-0.32 Pure higgsino	2106.09929
*Only	a coloction of the available ma	ere limite on new e	tatos or			
Mass scale [rev]						

Uniy a selection of the available mass limits on new states of phenomena is shown. Many of the limits are based on simplified models, c.1. refs. for the assumptions made.

ATLAS 寻找超对称结果总结

Status of SUSY

ATLAS Preliminary

对超对称理论开展全局拟合研究的团队:

GAMBIT、MasterCode、SuperBayes 和本人带领的团队。

● 专门设计的计算集群;

- ❷ SARAH系列计算工具;
 - 模型构建: SARAH;
 - 粒子谱计算工具: SPheno;
 - 暗物质物理计算工具: MicrOMEGAs;
 - •希格斯物理计算工具: HiggsSingal、HiggsBounds;
 - 味物理计算工具: FlavorKit;
 - •蒙特卡洛模拟: MadGraph_aMC@NLO、PYTHIA8和 Delphes;
 - LHC 超对称搜索: SModelS、CheckMATE。
- 扫描策略:并行 MultiNest 算法;
 高性能:可同时计算超过 10⁶ 个进程。
- 参与 CheckMATE 程序包研发: 重现超过 40 个实验分析。

表 1: CheckMATE 包含的电弱超子产生过程实验分析(仅列举出部分)。

场景	末态	名称
$\tilde{\chi}^0_2 \tilde{\chi}^{\pm}_1 \rightarrow WZ \tilde{\chi}^0_1 \tilde{\chi}^0_1$	$n\ell(n\geq 2)+nj(n\geq 0)+\mathbf{E}_{\mathrm{T}}^{\mathrm{miss}}$	$\begin{array}{c} \text{CMS-SUS-20-001}(137fb^{-1}) \\ \text{ATLAS-2106-01676}(139fb^{-1}) \\ \text{CMS-SUS-17-004}(35.9fb^{-1}) \\ \text{CMS-SUS-16-039}(35.9fb^{-1}) \\ \text{ATLAS-1803-02762}(36.1fb^{-1}) \\ \text{ATLAS-1806-02293}(36.1fb^{-1}) \end{array}$
$\tilde{\chi}_2^0 \tilde{\chi}_1^{\pm} \rightarrow \ell \tilde{\nu} \ell \tilde{\ell}$	$n\ell(n=3) + \mathrm{E}_{\mathrm{T}}^{\mathrm{miss}}$	CMS-SUS-16-039(35.9fb ⁻¹) ATLAS-1803-02762(36.1fb ⁻¹)
$\tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{\pm} \rightarrow \tilde{\tau}\nu\ell\tilde{\ell}$	$2\ell + 1\tau + E_T^{miss}$	$CMS-SUS-16-039(35.9fb^{-1})$
$\tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{\pm} \rightarrow \tilde{\tau}\nu\tilde{\tau}\tau$	$3\tau + E_T^{miss}$	$CMS-SUS-16-039(35.9fb^{-1})$
$\tilde{\chi}^0_2 \tilde{\chi}^\pm_1 \rightarrow W h \tilde{\chi}^0_1 \tilde{\chi}^0_1$	$n\ell(n\geq 1)+nb(n\geq 0)+nj(n\geq 0)+\mathbf{E}_{\mathrm{T}}^{\mathrm{miss}}$	$\begin{array}{l} {\rm ATLAS-1909-09226(139fb^{-1})}\\ {\rm CMS-SUS-17-004(35.9fb^{-1})}\\ {\rm CMS-SUS-16-039(35.9fb^{-1})}\\ {\rm ATLAS-1812-09432(36.1fb^{-1})}\\ {\rm CMS-SUS-16-034(35.9fb^{-1})}\\ {\rm CMS-SUS-16-045(35.9fb^{-1})}\\ \end{array}$
$\tilde{\chi}_1^{\mp}\tilde{\chi}_1^{\pm} \rightarrow WW \tilde{\chi}_1^0 \tilde{\chi}_1^0$	$2\ell + E_T^{miss}$	$\begin{array}{l} \texttt{ATLAS-1908-08215} (139 f b^{-1}) \\ \texttt{CMS-SUS-17-010} (35.9 f b^{-1}) \end{array}$
$\tilde{\chi}_1^{\mp} \tilde{\chi}_1^{\pm} \rightarrow 2 \tilde{\ell} \nu (\bar{\nu} \ell)$	$2\ell + E_T^{miss}$	$\begin{array}{l} {\tt ATLAS-1908-08215}(139fb^{-1}) \\ {\tt CMS-SUS-17-010}(35.9fb^{-1}) \end{array}$
$\begin{array}{l} \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{\mp} \rightarrow h/ZW \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow \gamma/Z\tilde{G} \\ \tilde{\chi}_{1}^{\pm}\tilde{\chi}_{1}^{\mp} \rightarrow WW \tilde{\chi}_{1}^{0}\chi_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow \gamma/Z\tilde{G} \end{array}$	$2\gamma + n\ell(n \geq 0) + nb(n \geq 0) + nj(n \geq 0) + \mathbf{E}_{\mathrm{T}}^{\mathrm{miss}}$	ATLAS-1802-03158(36.1fb ⁻¹)
$ \begin{array}{l} \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{\pm}\rightarrow ZW\tilde{\chi}_{1}^{0}\chi_{1}^{0},\tilde{\chi}_{1}^{0}\rightarrow h/Z\tilde{G}\\ \tilde{\chi}_{1}^{2}\tilde{\chi}_{1}^{0}\rightarrow WW\tilde{\chi}_{1}^{0}\chi_{1}^{0},\tilde{\chi}_{1}^{0}\rightarrow h/Z\tilde{G}\\ \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0}\rightarrow Z\tilde{\chi}_{1}^{0}\chi_{1}^{0},\tilde{\chi}_{1}^{0}\rightarrow h/Z\tilde{G}\\ \tilde{\chi}_{1}^{\pm}\tilde{\chi}_{1}^{0}\rightarrow W\tilde{\chi}_{1}^{\pm}\chi_{1}^{0},\tilde{\chi}_{1}^{0}\rightarrow h/Z\tilde{G} \end{array} $	$n\ell(n \ge 4) + \mathbb{E}_{\mathbb{T}}^{\text{miss}}$	ATLAS-2103-11684(139fb ⁻¹)
$\tilde{\chi}^{0,\pm}_i \tilde{\chi}^{0,\mp}_j \rightarrow \tilde{\chi}^0_1 \tilde{\chi}^0_1 + \chi_{soft} \rightarrow ZZ/H \check{G} \check{G}$	$n\ell(n\geq 2)+nb(n\geq 0)+nj(n\geq 0)+\mathbf{E}_{\mathrm{T}}^{\mathrm{miss}}$	$\begin{array}{l} {\rm CMS-SUS-16-039(35.9fb^{-1})} \\ {\rm CMS-SUS-17-004(35.9fb^{-1})} \\ {\rm CMS-SUS-20-001(137fb^{-1})} \end{array}$
$\tilde{\chi}^{0,\pm}_i \tilde{\chi}^{0,\mp}_j \rightarrow \tilde{\chi}^0_1 \tilde{\chi}^0_1 + \chi_{soft} \rightarrow HH \tilde{G} \tilde{G}$	$n\ell(n\geq 2)+nb(n\geq 0)+nj(n\geq 0)+\mathbf{E}_{\mathrm{T}}^{\mathrm{miss}}$	CMS-SUS-16-039(35.9fb ⁻¹) CMS-SUS-17-004(35.9fb ⁻¹)
$\bar{\chi}^0_2 \bar{\chi}^\pm_1 \rightarrow W^* Z^* \bar{\chi}^0_1 \bar{\chi}^0_1$	$3\ell + E_T^{miss}$	ATLAS-2106-01676(139fb ⁻¹)
$\tilde{\chi}^0_2 \tilde{\chi}^\pm_1 \rightarrow Z^* W^* \tilde{\chi}^0_1 \tilde{\chi}^0_1$	$2\ell + nj(n \geq 0) + \mathbb{E}_{\mathrm{T}}^{\mathrm{miss}}$	$\begin{array}{l} {\tt ATLAS-1911-12606(139fb^{-1})} \\ {\tt ATLAS-1712-08119(36.1fb^{-1})} \\ {\tt CMS-SUS-16-048(35.9fb^{-1})} \end{array}$
$\tilde{\chi}^0_2 \tilde{\chi}^\pm_1 + \tilde{\chi}^\pm_1 \tilde{\chi}^\mp_1 + \tilde{\chi}^\pm_1 \tilde{\chi}^0_1$	$2\ell + nj(n \ge 0) + \mathbf{E}_{T}^{\mathrm{miss}}$	ATLAS-1911-12606(139fb ⁻¹) ATLAS-1712-08119(36.1fb ⁻¹) CMS_SUS_16_048(35.0fb ⁻¹)

Junjie Cao (郑州大学物理学院)

Status of SUSY

2025年1月5日 13/63

Section II

为什么超对称是最有希望的理论?

参考文献:

• H. E. Haber and G. L. Kane, Phys. Rept. 117 (1985).

实现强、电和弱三种相互作用的统一

大统一的理论动机:宇宙是简单和谐的,对称性!

自然地预言了暗物质

暗物质不可能全部是轴子和原初黑洞,也不可能由大质量黑洞构成! R 宇称:标准模型粒子量子数为+1,超粒子量子数为-1; 最轻的超对称粒子为理想的暗物质候选者!

• 费米子与标量粒子的圈图贡献

$$-i\Pi_{h}^{f}(p^{2}) - i\Pi_{h}^{b}(p^{2}) = [\lambda_{\phi} - 4Y_{f}^{2}]\frac{1}{(2\pi)^{4}}[-i\pi^{2}\Lambda^{2}] + \cdots$$

```
Note: 没乘上色因子 N_c
```

自然地稳定电弱标度

以 $h(=H_2^0)$ 为例 [NPB272(1986)]

对于一代夸克
$$u, d$$
, 我们有 $\tilde{u}_L, \tilde{u}_R, \tilde{d}_L, \tilde{d}_R$.

$$Y_u = \frac{gm_u \cos \alpha}{2m_W \sin \beta} \qquad Y_d = \frac{gm_d \sin \alpha}{2m_W \cos \beta} \qquad P22$$

$$\lambda_{\tilde{u}_L} = \frac{g^2}{2} \left[\frac{-T_{uL}^3 + e_{\tilde{u}_L} s_W^2}{c_W^2} \cos 2\alpha + \frac{m_u^2 \cos^2 \alpha}{m_W^2 \sin^2 \beta} \right]$$

$$\lambda_{\tilde{u}_R} = \frac{g^2}{2} \left[\frac{-e_{\tilde{u}_R} s_W^2}{c_W^2} \cos 2\alpha + \frac{m_u^2 \cos^2 \alpha}{m_W^2 \sin^2 \beta} \right]$$

$$\lambda_{\tilde{d}_L} = \frac{g^2}{2} \left[\frac{-T_{dL}^3 + e_{\tilde{d}_L} s_W^2}{c_W^2} \cos 2\alpha + \frac{m_d^2 \sin^2 \alpha}{m_W^2 \cos^2 \beta} \right]$$
P34

$$\lambda_{\tilde{d}_R} = \frac{g^2}{2} \left[\frac{-e_{\tilde{d}_R} s_W^2}{c_W^2} \cos 2\alpha + \frac{m_d^2 \sin^2 \alpha}{m_W^2 \cos^2 \beta} \right]$$

$$\lambda_{\phi} - 4Y_f^2 = \lambda_{\tilde{u}_L} + \lambda_{\tilde{u}_R} + \lambda_{\tilde{d}_L} + \lambda_{\tilde{d}_R} - 4Y_u^2 - 4Y_d^2 = 0$$

Junjie Cao (郑州大学物理学院)

2025年1月5日 20/63

QCD 轴子理论的精细调节问题

假设:

$$\phi = \frac{\rho + f_a}{\sqrt{2}} e^{i\frac{a}{f_a}};$$
PQ 对称性破缺:

$$V_0(\phi) = \lambda \left(|\phi|^2 - \frac{f_a^2}{2} \right)^2;$$
瞬子效应:

$$V_{QCD}(a) = \left(0.4 \frac{f_\pi m_\pi}{f_a} \right)^2 f_a^2 \left[1 - \cos\left(\frac{a}{f_a} + \theta\right) \right];$$
PQ 机制:

$$\mathcal{L} = \frac{g_s^2}{32\pi^2} \left(\theta + \frac{a}{f_a} \right) G^{\mu\nu,a} \tilde{G}^a_{\mu\nu};$$
引力效应:

$$V_g(\phi) = \frac{|g|e^{i\delta}}{M_{Pl}^{2m+n-4}} |\phi|^{2m} \phi^n + h.c.;$$

$$V_g(a) = \left(|g| M_{Pl}^2 \left(\frac{f_a}{\sqrt{2M_{Pl}}} \right)^{2m+n-2} \right)^2 f_a^2 \left[1 - \cos\left(\frac{na}{f_a} + \delta\right) \right]$$
轴子势能:

$$V(a) = V_{QCD}(a) + V_g(a);$$
解决强 CP 问题:

$$|g| \lesssim 10^{-55}, \qquad \text{对于 5 维对称性破缺算符和}$$
错位机制:

$$\Omega_a h^2 \approx 0.18 \times \left(\frac{f_a}{10^{12} \text{GeV}} \right)^{1.19} \left(\frac{3\theta_i^2}{\pi^2} \right).$$

Section III 最小超对称模型

参考文献:

- H. E. Haber and G. L. Kane, Phys. Rept. 117 (1985).
- A. Pierce, N. R. Shah and K. Freese, [arXiv:1309.7351 [hep-ph]].

1、超对称代数

洛伦兹代数, 庞加莱代数, 超代数

$$\begin{split} [P_{\mu}, P_{\nu}] &= 0\\ [M_{\mu\nu}, P_{\lambda}] &= i(P_{\mu}g_{\nu\lambda} - P_{\nu}g_{\mu\lambda})\\ [M_{\mu\nu}, M_{\rho\lambda}] &= -i(M_{\mu\rho}g_{\nu\lambda} + M_{\nu\lambda}g_{\mu\rho} \\ &- M_{\mu\lambda}g_{\nu\rho} - M_{\nu\rho}g_{\mu\lambda})\\ [P_{\mu}, Q_{a}] &= 0\\ [M_{\mu\nu}, Q_{a}] &= -(\sigma_{\mu\nu}^{4})_{ab}Q_{b}\\ \{Q_{a}, Q_{b}\} &= -2(\gamma^{\mu}C)_{ab}P_{\mu}\\ \{\bar{Q}_{a}, \bar{Q}_{b}\} &= 2(C^{-1}\gamma^{\mu})_{ab}P_{\mu}\\ \{Q_{a}, \bar{Q}_{b}\} &= 2(\gamma^{\mu})_{ab}P_{\mu}\\ \{Q_{a}, \bar{Q}_{b}\} &= 2(\gamma^{\mu})_{ab}P_{\mu} \end{split}$$

洛伦兹标量

庞加莱代数的 Casimir 算子: (1) $P^2 = p_\mu p^\mu$; (2) $W^2 = W_\mu W^\mu$ (Pauli-Lubanski 算子 ⇒ 自旋相关)。

物理意义:

负载其表示的场具有特定质量和 自旋: 标量场、旋量场、矢量场、高自 旋场。

旋量场(基础表示):

二分量表示,分左手旋量和右手旋 量,记为 $(0,\frac{1}{2})$ 和 $(\frac{1}{2},0)$ 表示; 两个群表示空间由 CP 变换联系, Dirac 旋量所处空间由这两个空间 直和得到。

Junjie Cao (郑州大学物理学院)

(Internal):

 P_{μ} :

 M_{μ}

 Q_a :

 T^{a}

$|F\rangle \leftrightarrow |B\rangle$ 超对称生成元是费米算符,它将玻色算符 与费米算符进行转换,不可约表示包含不同自旋的场。

$W^{\pm}H^{\pm} \gamma Z h H A u d e \nu \cdots$ $\downarrow \qquad \downarrow \qquad \downarrow$ $\tilde{\chi}_{2}^{\pm}\tilde{\chi}_{1}^{\pm} \qquad \tilde{\chi}_{4}^{0}\tilde{\chi}_{3}^{0}\tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0} \qquad \begin{array}{c} \tilde{u}_{L}\tilde{d}_{L}\tilde{e}_{L}\tilde{\nu}_{L} \\ \tilde{u}_{R}\tilde{d}_{R}\tilde{e}_{R}\tilde{\nu}_{R} \end{array}$

每一个标准模型粒子都有其超对称伴子!

SM (标准模型)

- 彭加勒不变
 - 物质场;
 - •规范场;
 - 直接构造不变量。
- ・ 规范群:
 SU(3)_C × SU(2)_L × U(1)_Y;
- 物质场: 三代轻子与夸克;
- 电弱对称性破缺: Higgs 机制;
 势能: Higgs 势。

SUSY (超对称理论)

- 超对称代数不变
 - 手征超场;
 - 矢量超场;
 - 对 Grassman 空间积分,
 等效于投影方法。
- 规范群: SU(3)_C × SU(2)_L × U(1)_Y;
- 物质场: 三代轻子与夸克;
- 电弱对称性破缺: Higgs 机制; 势能: 由超势 W 定义, 需加 软破缺项贡献。

超对称拉氏量具体形式见G.-L. Kane 的 Physics Report 附录。

- 手征超场: $\psi_i \longrightarrow (A_i, \psi_i, F_i)$, *i*: 群表示基矢指标,如同位旋指标;
- 矢量超场: $A^a_{\mu} \longrightarrow (A^a_{\mu}, \lambda^a, D^a)$, a: 群生成元指标;
- 超势 W: 根据理论动机,如质量起源、暗物质等,人为指定。

例:
$$W_{\text{Yukawa}} = -Y_d \hat{d}\hat{q}\hat{H}_d - Y_e \hat{e}\hat{l}\hat{H}_d + Y_u \hat{u}\hat{q}\hat{H}_u$$
。

超对称包含的相互作用: SM 相互作用有其超对称性对应; R 宇称守恒, 超粒子成对出现。

$$\begin{split} \mathcal{L}_{SUSY} = & -\frac{1}{4} \mathbf{F}_{\mu\nu}^{\mathbf{a}} \mathbf{F}^{\mu\nu\mathbf{a}} + \mathbf{i}\bar{\lambda}^{\mathbf{a}}\bar{\sigma}^{\mu}(\mathscr{D}_{\mu}\lambda)^{\mathbf{a}} + \frac{1}{2} \mathbf{D}^{\mathbf{a}} \mathbf{D}^{\mathbf{a}} + \mathbf{F}_{\mathbf{i}}^{\dagger} \mathbf{F}_{\mathbf{i}} \\ & + (\mathcal{D}_{\mu}\mathbf{A})_{\mathbf{i}} (\mathcal{D}^{\mu}\mathbf{A})_{\mathbf{i}}^{\dagger} + \mathbf{i}\psi_{\mathbf{i}}^{\dagger}\bar{\sigma}^{\mu}(\mathcal{D}_{\mu}\psi)_{\mathbf{i}} + \mathbf{g}\mathbf{A}_{\mathbf{i}}^{\dagger}\mathbf{T}_{\mathbf{ij}}^{\mathbf{a}}\mathbf{A}_{\mathbf{j}}\mathbf{D}^{\mathbf{a}} \\ & + \mathbf{i}\mathbf{g}\sqrt{2} \left(\mathbf{A}_{\mathbf{i}}^{\dagger}\mathbf{T}_{\mathbf{ij}}^{\mathbf{a}}\psi_{\mathbf{j}}\lambda^{\mathbf{a}} - \lambda^{\dagger\mathbf{a}}\psi_{\mathbf{i}}^{\dagger}\mathbf{T}_{\mathbf{ij}}^{\mathbf{a}}\mathbf{A}_{\mathbf{j}}\right) \\ & + \mathbf{F}_{\mathbf{i}}\frac{\mathbf{d}\mathbf{W}}{\mathbf{d}\mathbf{A}_{\mathbf{i}}} + \mathbf{F}_{\mathbf{i}}^{\dagger} \left(\frac{\mathbf{d}\mathbf{W}}{\mathbf{d}\mathbf{A}_{\mathbf{i}}}\right)^{\dagger} \\ & - \frac{1}{2}\frac{\mathbf{d}^{2}\mathbf{W}}{\mathbf{d}\mathbf{A}_{\mathbf{i}}\mathbf{d}\mathbf{A}_{\mathbf{j}}}\psi_{\mathbf{i}}\psi_{\mathbf{j}} - \frac{1}{2} \left(\frac{\mathbf{d}^{2}\mathbf{W}}{\mathbf{d}\mathbf{A}_{\mathbf{i}}\mathbf{d}\mathbf{A}_{\mathbf{j}}}\right)^{\dagger}\psi_{\mathbf{i}}^{\dagger}\psi_{\mathbf{j}}^{\dagger}; \end{split}$$

其中:

$$\begin{split} F^a_{\mu\nu} &= \partial_\mu V^a_\nu - \partial_\nu V^a_\mu - g f_{abc} V^b_\mu V^c_\nu; \\ \mathscr{D}_{\mu ab} &\equiv \delta_{ab} \partial_\mu + g f_{abc} V^c_\mu; \\ \mathcal{D}_\mu &= \partial_\mu + i g T^a V^a_\mu \, \circ \end{split}$$

一般的超对称拉氏量构造的详细步骤见 Martin 书的第二到第四章。

Status of SUSY

超对称拉氏量中新引入的相互作用:

• 规范多重态自相互作用:

$$\mathbf{F}^{\mathbf{a}\mu\nu}\mathbf{F}^{\mathbf{a}}_{\mu\nu} \to \mathbf{igf}_{\mathbf{abc}}\lambda^{\mathbf{a}}\sigma^{\mu}\bar{\lambda}^{\mathbf{b}}\mathbf{V}^{\mathbf{c}}_{\mu};$$

• 规范多重态与物质多重态相互作用:

 $-gT^{a}_{ij}V^{a}_{\mu}\left(\bar{\psi}_{i}\bar{\sigma}^{\mu}\psi_{j}+iA^{*}_{i}\overleftrightarrow{\partial}_{\mu}A_{j}\right)+ig\sqrt{2}T^{a}_{ij}\left(\lambda^{a}\psi_{j}A^{*}_{i}-\bar{\lambda}^{a}\bar{\psi}_{i}A_{j}\right)+g^{2}(T^{a}T^{b})_{ij}V^{a}_{\mu}V^{\mu b}A^{*}_{i}A_{j};$

物质多重态自相互作用:

💶 F 项和 D 项:

$$\mathbf{F_i} = \frac{\partial \mathbf{W}}{\partial \mathbf{A_i}}, \quad \mathbf{D^a} = \mathbf{g} \mathbf{A_i^*} \mathbf{T_{ij}^a} \mathbf{A_j};$$

❷ 势能项 (−V 是拉氏量中成分):

$$V = \frac{1}{2}\mathbf{D}^{\mathbf{a}}\mathbf{D}^{\mathbf{a}} + \mathbf{F}_{\mathbf{i}}^{*}\mathbf{F}_{\mathbf{i}};$$

Syntaina 400 Yukawa 相互作用项与费米子质量项:

$$-\frac{1}{2}\bigg[\bigg(\frac{\partial^2 \mathbf{W}}{\partial \mathbf{A_i}\partial \mathbf{A_j}}\bigg)\psi_i\psi_j+\bigg(\frac{\partial^2 \mathbf{W}}{\partial \mathbf{A_i}\partial \mathbf{A_j}}\bigg)^*\bar{\psi}_i\bar{\psi}_j\bigg];$$

● 软破缺项引入的贡献。

超对称破缺原因?

• 超对称要求标准模型粒子与其超对称伴子质量简并,需通过显式破缺项破坏提升伴子质量。

软破缺项特点:

•规范不变性,不引入规范反常和二次发散(计算标量粒子质量时)。

软破缺项形式:

 $\tilde{M}_1 A^2 + \kappa (A^3 + \text{h.c.}) + \tilde{M}_3 (\lambda^a \lambda^a + \bar{\lambda}^a \bar{\lambda}^a) + \tilde{M}_4 (\lambda' \lambda' + \bar{\lambda}' \bar{\lambda}'),$

其中 A^2 和 A^3 表示标量场的群不变组合,如 $A^3 \equiv d_{ijk}A_iA_jA_k$ 等。

- *M*₁: 分开标量场与费米子超伴子的质量;
- κ: 引入新的标量相互作用,通过将超势中超场替换为标量场得到;
- *M˜*₃, *M˜*₄: 规范超子的马约拉纳质量项。

现实模型构建:

- 超迹定理:树图水平要求超伴子质量平方之和等于对应标准模型粒子质量平方之和;
- 规避方案:引入量子效应或非局域效应,通过隐藏扇区实现超对称自发破缺,使用中介机制将 破缺效应传递到可见扇区;
- 工作机制:引力中介(Planck标度高维算子)或规范中介(圈图)。

SM field	Super partner	$SU(2)_L$	$U(1)_Y$
$L = \begin{pmatrix} u_L \\ e_L \end{pmatrix}$	$\tilde{L} = \begin{pmatrix} \tilde{\nu}_L \\ \tilde{e}_L \end{pmatrix}$	2	$-\frac{1}{2}$
e_L^c	$\tilde{E} = \tilde{e}_L^c \Rightarrow \hat{e}_R^*$	1	+1
$Q = \begin{pmatrix} u_L \\ d_L \end{pmatrix}$	$ ilde{Q} = \begin{pmatrix} ilde{u}_L \\ ilde{d}_L \end{pmatrix}$	2	$+\frac{1}{6}$
u_L^c	$\tilde{U} = \tilde{u}_L^c \Rightarrow \tilde{u}_R^*$	1	$-\frac{2}{3}$
d_L^c	$\tilde{D}=\tilde{d}_L^c \Rightarrow \tilde{d}_R^*$	1	$+\frac{1}{3}$
$H_d = \begin{pmatrix} H_d^0 \\ H_d^- \end{pmatrix}$	$\tilde{H}_d = \begin{pmatrix} \tilde{H}_d^0 \\ \tilde{H}_d^- \end{pmatrix}$	2	$-\frac{1}{2}$
$H_u = \begin{pmatrix} H_u^+ \\ H_u^0 \end{pmatrix}$	$\tilde{H}_u = \begin{pmatrix} \tilde{H}_u^+ \\ \tilde{H}_u^0 \end{pmatrix}$	2	$+\frac{1}{2}$

所有费米场都是二分量 Weyl 旋量;相互作用的全纯性要求 2HD.

- 3、最小超对称模型
 - 超势:

$$W_{\rm MSSM} = \mu \hat{H}_u \hat{H}_d - Y_d \hat{d}\hat{q}\hat{H}_d - Y_e \hat{e}\hat{l}\hat{H}_d + Y_u \hat{u}\hat{q}\hat{H}_u;$$

• 规范超子质量:

$$-\frac{1}{2}\left(M_1\tilde{B}\tilde{B}+M_2\tilde{W}^a\tilde{W}^a+M_3\tilde{g}^a\tilde{g}^a\right);$$

• 标夸克与标轻子质量:

$$-\left(\tilde{Q}_{i}^{\alpha}m_{Q_{ij}}^{2}\tilde{Q}_{j}^{\alpha*}+\tilde{L}_{i}^{\alpha}m_{L_{ij}}^{2}\tilde{L}_{j}^{\alpha*}+\tilde{U}_{i}^{c}m_{U_{ij}}^{2}\tilde{U}_{j}^{c*}+\tilde{D}_{i}^{c}m_{D_{ij}}^{2}\tilde{D}_{j}^{c*}+\tilde{E}_{i}^{c}m_{E_{ij}}^{2}\tilde{E}_{j}^{c*}\right);$$

● 希格斯质量:

$$-m_{H_u}^2|H_u|^2 - m_{H_d}^2|H_d|^2 + (\mu B_\mu H_d \cdot H_u + \text{h.c.});$$

• 标量三次方耦合项:

$$H_u \cdot \tilde{Q}_i \tilde{A}_{u_{ij}} \tilde{U}_j^c + H_d \cdot \tilde{Q}_i \tilde{A}_{d_{ij}} \tilde{D}_j^c + H_d \cdot \tilde{L}_i \tilde{A}_{e_{ij}} \tilde{E}_j^c + \text{h.c.}$$

• CP-Even Higgs 质量矩阵: 定义

$$\begin{split} H_{\rm SM} &\equiv \sin\beta \ {\rm Re}(H_u^0) + \cos\beta \ {\rm Re}(H_d^0), \\ H_{\rm NSM} &\equiv \cos\beta \ {\rm Re}(H_u^0) - \sin\beta \ {\rm Re}(H_d^0) \, . \end{split}$$

选取(H_{SM}, H_{NSM})为基矢,质量矩阵表示为:

$$\mathcal{M}^{2} = \begin{pmatrix} m_{A}^{2} + m_{Z}^{2} \sin^{2}(2\beta) & -\frac{1}{2}m_{Z}^{2} \sin(4\beta) \\ -\frac{1}{2}m_{Z}^{2} \sin(4\beta) & m_{Z}^{2} \cos^{2}(2\beta) \end{pmatrix},$$

对角化得到质量本征态:
$$V_H^{\dagger} \mathcal{M}^2 V_H = \text{Diag}\left(m_h^2, m_H^2\right)$$
。

• Stop 平方质量矩阵: 以 $(\tilde{t}_L, \tilde{t}_R)$ 为基矢,质量矩阵形式为:

$$M_{\tilde{t}}^{2} = \begin{pmatrix} M_{Q}^{2} + m_{Z}^{2} \cos 2\beta (\frac{1}{2} - \frac{2}{3}s_{W}^{2}) + m_{t}^{2} & m_{t}(A_{t} - \mu \cot \beta) \\ \\ m_{t}(A_{t} - \mu \cot \beta) & M_{U}^{2} + \frac{2}{3}m_{Z}^{2} \cos 2\beta s_{W}^{2} + m_{t}^{2} \end{pmatrix},$$

对角化得到质量本征态: $V_{\tilde{t}}^{\dagger}\mathcal{M}_{\tilde{t}}^{2}V_{\tilde{t}} = \mathrm{Diag}\left(m_{\tilde{t}_{1}}^{2}, m_{\tilde{t}_{2}}^{2}\right).$

Junjie Cao (郑州大学物理学院)

• Chargino 质量矩阵: 以 $\psi^{\pm} = (\widetilde{W}^+, \widetilde{H}^+_u, \widetilde{W}^-, \widetilde{H}^-_d)$ 为基矢,

$$\mathcal{M}_C = \begin{pmatrix} 0 & X^T \\ X & 0 \end{pmatrix},$$

其中子矩阵 X 为:

$$X = \begin{pmatrix} M_2 & \sqrt{2}s_\beta m_W \\ \sqrt{2}c_\beta m_W & \mu \end{pmatrix} = \begin{pmatrix} M_2 & gv_u \\ gv_d & \mu \end{pmatrix},$$

对角化得到质量本征态: $U_C^*XV_C = \text{Diag}\left(m_{\tilde{\chi}_1^\pm}, m_{\tilde{\chi}_2^\pm}\right)$ 。

对于 Dirac 旋量粒子,其质量一定是正定的!

一般性讨论: 2×2 实对称矩阵的对角化。
 结论:有解析表达式,结果可借助质量进行表达。

$$\begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} A & B \\ B & C \end{pmatrix} \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} = \begin{pmatrix} M_1^2 & 0 \\ 0 & M_2^2 \end{pmatrix},$$

$$M_{1,2}^2 = \frac{1}{2}(A+C) \mp \frac{1}{2}\sqrt{(A-C)^2 + 4B^2}, \quad \sin 2\theta = \frac{2B}{M_2^2 - M_1^2}.$$

• Neutralino 质量矩阵: 选取 $\psi^0 = (-i\tilde{B}, -i\tilde{W}^0, \tilde{H}^0_d, \tilde{H}^0_u)$ 为基矢:

$$\mathcal{M}_{\tilde{N}} = \begin{pmatrix} M_1 & 0 & -c_{\beta}s_W m_Z & s_{\beta}s_W m_Z \\ 0 & M_2 & c_{\beta}c_W m_Z & -s_{\beta}c_W m_Z \\ -c_{\beta}s_W m_Z & c_{\beta}c_W m_Z & 0 & -\mu \\ s_{\beta}s_W m_Z & -s_{\beta}c_W m_Z & -\mu & 0 \end{pmatrix}$$

対角化:
$$N^T \mathcal{M}_{\tilde{N}} N = \text{Diag}\Big(m_{\tilde{\chi}_1^0}, m_{\tilde{\chi}_2^0}, m_{\tilde{\chi}_3^0}, m_{\tilde{\chi}_4^0}\Big);$$

特 点: $m_{\tilde{\chi}_i^0} \simeq M_1, M_2, \mu, -\mu;$
久期方程: $(m - M_1)(m - M_2)(m^2 - \mu^2)$
 $-M_Z^2(m - M_1c_W^2 - M_2s_W^2)(2\mu s_\beta c_\beta + m) = 0.$

由此可得质量的近似解 (Majorana 旋量粒子,质量可正可负):

$$m_{\tilde{\chi}_1^0} \simeq M_1 - \frac{m_Z^2 s_W^2}{\mu^2} (\mu \sin 2\beta + M_1), \quad m_{\tilde{\chi}_2^0} \simeq \cdots$$

 $m_{\tilde{\chi}_1^0}$ 替代 M_1 作为输入参数, 同时把 $m_{\tilde{\chi}_2^0}$ 、 $m_{\tilde{\chi}_3^0}$ 和 $m_{\tilde{\chi}_4^0}$ 作为输入参数:

$$N_{i,j} = \frac{1}{\sqrt{C_i}} \begin{pmatrix} \left(\mu^2 - m_{\tilde{\chi}_i^0}^2\right) \left(M_2 - m_{\tilde{\chi}_i^0}\right) - M_Z^2 c_W^2 \left(m_{\tilde{\chi}_i^0} + 2\mu s_\beta c_\beta\right) \\ -M_Z^2 s_W c_W \left(m_{\tilde{\chi}_i^0} + 2\mu s_\beta c_\beta\right) \\ \left(M_2 - m_{\tilde{\chi}_i^0}\right) \left(m_{\tilde{\chi}_i^0} c_\beta + \mu s_\beta\right) M_Z s_W \\ - \left(M_2 - m_{\tilde{\chi}_i^0}\right) \left(m_{\tilde{\chi}_i^0} s_\beta + \mu c_\beta\right) M_Z s_W \end{pmatrix}_j$$

Ci: 归一化因子

$$\begin{split} C_{i} = & M_{Z}^{2} c_{W}^{2} \left(m_{\tilde{\chi}_{i}^{0}} + 2\mu s_{\beta} c_{\beta} \right) \left[M_{Z}^{2} \left(m_{\tilde{\chi}_{i}^{0}} + 2\mu s_{\beta} c_{\beta} \right) + 2 \left(\mu^{2} - m_{\tilde{\chi}_{i}^{0}}^{2} \right) \left(m_{\tilde{\chi}_{i}^{0}} - M_{2} \right) \right] \\ & + \left(m_{\tilde{\chi}_{i}^{0}} - M_{2} \right)^{2} \left\{ M_{Z}^{2} s_{W}^{2} \left[\left(m_{\tilde{\chi}_{i}^{0}}^{2} + \mu^{2} \right) + 4\mu m_{\tilde{\chi}_{i}^{0}} s_{\beta} c_{\beta} \right] + \left(m_{\tilde{\chi}_{i}^{0}}^{2} - \mu^{2} \right)^{2} \right\} \end{split}$$

利用 N_{ij} 的解析表达式,可得 Neutralino 的相互作用形式。 这对直观理解背后的物理是很有帮助的!

Section IV

最小超对称模型面临的问题及解决方案

参考文献:

- H. Baer, V. Barger, D. Mickelson and M. Padeffke-Kirkland, Phys. Rev. D 89, no.11, 115019 (2014), [arXiv:1404.2277 [hep-ph]].
- P. Dießner, J. Kalinowski, W. Kotlarski and D. Stöckinger, JHEP 12, 124 (2014), [arXiv:1410.4791 [hep-ph]].
- J. Cao, L. Meng, Y. Yue, H. Zhou and P. Zhu, Phys. Rev. D 101, no.7, 075003 (2020), [arXiv:1910.14317 [hep-ph]].
- Y. He, L. Meng, Y. Yue and D. Zhang, Phys. Rev. D 108, no.11, 115010 (2023), [arXiv:2303.02360 [hep-ph]].

MSSM 的精细调节问题:实验现状

ATLAS SUSY Searches* - 95% CL Lower Limits

July 2024					$\sqrt{s} = 13 \text{ TeV}$	
	Model	Signa	ture	∫£ dı [ſb'	1 Mass limit	Reference
arches	$\bar{q}\bar{q}, \bar{q} \rightarrow q\bar{q}^0_1$	0 r.μ 2-6 mono-jet 1-3	ets Enios ets Etan	140 140	[1%.0x.Degen] 1.0 1.85 m(² 1)≤400 GeV ∦ [8x.Degen] 0.9 m(² 1)≤400 GeV	2010.14293 2102.10874
	$kR, k \rightarrow q \bar{q} \bar{q}_1^0$	0 r,μ 2-6	ets E ₇	140	2.3 pt ⁽¹⁾ / ₂ =0.6ev 2.3 pt ⁽¹⁾ / ₂ =0.6ev 7.001000 1.15-1.66 pt ⁽¹⁾ / ₂ =0.6ev	2010.14293 2010.14293
S.	88. 2-49W21	1 r. µ 2-6	ets	140	2.2 m ⁽¹⁾ +60 GeV	2101.01629
84	88. 3-mp((1)4)	cc./01 2 ja	ts Error	140	3 2.2 m(t)<700 GeV	2204.13072
ocius	$\chi\chi, \chi \rightarrow qqWZV_1^{-1}$	88 e.μ 6 ji	995 Eym 68	140	8 1.07 m(r) <00 GeV 8 1.15 m(c) = 0.0 GeV	2008.09032 2307.01094
2	33. 2→10 ² 1	0-1 «.µ 3 SS «.µ 6 ji	ts Error	140	8 2.45 m(i)+500 GeV 8 1.25 m(i)+700 GeV	2211/08028 1909/08457
	hihi	0 r.µ 2	E_{T}^{min}	140	δ. 1.255 mt ² [+400 GeV δ. 0.68 10 GeV c/style, δ.] (-20 GeV	2101.12527 2101.12527
arks tion	$\bar{b}_1 \bar{b}_1, \bar{b}_1 \rightarrow b \bar{k}_2^0 \rightarrow b b \bar{k}_1^0$	0 r.μ 6 2 τ 2	b E_T^{min} b E_T^{min}	140 140	Br. Forbidden 0.22-1.35 Am(f_1, f_1)=130 GeV, m(f_1)=100 GeV Br. 0.13-0.85 Am(f_1, f_1)=130 GeV, m(f_1)=0 GeV	1908.03122 2103.08189
200	$I_1I_1, I_1 \rightarrow t \hat{\chi}_1^0$	0-1 e, μ ≥ 1	jet E_T^{miss}	140	λ ₁ 1.25 m(r))=1 GeV	2004.14060, 2012.03799
e ă	$\tilde{r}_1 \tilde{r}_1, \tilde{r}_1 \rightarrow WhW_1$	1 c. µ 3 job	(1.b. E ₇)	140	A Forbidden 1.06 mi(1)-500 GeV	2012.03799, 2401.13430
100	$h_1 r_1, r_1 \rightarrow r_1 m_1, r_1 \rightarrow r_0$ $h_1 r_1, r_2 \rightarrow r_1^{(0)} (R, r_2 \rightarrow r_1^{(0)})$	0.0 2	Epin	36.1	2 0.85 mb-66w	1005.01649
9.0	stated and successful	0 r. p mon	sjat Ry	140	7, 0.55 m); .; -m(?;) -5 GeV	2102.10874
	$\tilde{I}_1\tilde{I}_1, \tilde{I}_1 \rightarrow i\tilde{K}_2^0, \tilde{K}_2^0 \rightarrow Z/h\tilde{K}_1^0$	1-2 e. µ 1-4	b Erto	140	li 0.067-1.18 m(l ² ₂)=500 GeV	2006.05880
	$t_2t_2, t_2 \rightarrow t_1 + Z$	3 e.p 1	5 E.T	140	Is Forbidden 0.06 m(E)=393 GeV, m(F)=40 GeV	2006.05890
	$\bar{x}_1^1 \bar{x}_2^0$ via wZ	Multiple (/jets cc.µµ ≥ 1	$pn = \frac{E_{max}^{min}}{E_T^{max}}$	140 140	k ² /k ² 0.95 m(t ²)=0, wino bino k ² /k ² 0.205 m(t ²)=0(t ²) to GeV, wino bino	2106.01676, 2108.07586 1911.12606
	<i>k</i> ⁺ ₁ <i>k</i> [*] ₁ via ₩₩	2 c. p	E_T^{mbo}	140	f ^a ₁ 0.42 m(l ²)=0, who bino	1908.08215
	$\hat{\mathcal{K}}_{1}^{*}\hat{\mathcal{K}}_{2}^{*}$ wig Wb	Multiple //jets	E_T^{max}	140	1,06 m(7)=70 GeV, who bloo	2004.10894, 2108.07586
~ 5	X1X1 Va 6.19	869	ATTIN	140	1.0 m(//)-d.5(n(r))-m(/))	1908.08215
2.0	hadra land	26.0 01	es Juin	140	7 000 million	1908.08215
0	00.0.1000	or.µaµ ≥1	jot Egns	140	2 0.26 m() m(f)=10 GeV	1911.12505
	HH, H-MG/2G	4 c.p 0 j	es Eten	140	P 0.55 0.94 0.95 0.94	2103.11684
		0 r, μ ≥ 2 lan	le jets L'fan	140	R 0.45-0.93 BH(r - 2C)-1	2108.07595
		20.0 22	66 E.T.	140	III 0.77 6P((7 → 20)+6P(7 → 46)+0.5	2204.13072
ъ.	Direct $\hat{x}_1^* \hat{x}_1^*$ prod., long-lived \hat{x}_1^*	Disapp. trk 1 j	$H = E_T^{min}$	140	21 0.66 Pure Wino 21 0.21 Pure Miggsino	2201.62472 2201.62472
0.00	Stable (R-hadron	pixel dE/dx	L_T^{min}	140	2.05	2205.09013
88	Metastable g R hadron, g→eoF	pixel dE/dx	Er	140	2 [rig) =10 rs] 2.2 rr(r)=100 GeV	2205.09013
28	12, 2-405	Usp. ep	67	140	7 0.35 0.74 10 -0.145	ATLAS-CONF-2024-011
		pixel dE/dx	E_T^{mbo}	140	r 0.35 rið = 10 m	2205.06013
	$\tilde{\chi}_{1}^{\pm} \tilde{\chi}_{1}^{\pm} / \tilde{\chi}_{1}^{\pm} , \tilde{\chi}_{1}^{\pm} \rightarrow Z \ell \rightarrow \ell \ell \ell$	3 c.p		140	k ² ₁ /k ² ₁ (BP(Zr)+1, BP(Zr)+1) 0.625 1.05 Pure Wro	2011.10543
	$\hat{x}_{1}^{*}\hat{x}_{1}^{*}/\hat{x}_{2}^{0} \rightarrow WW)Z\ell\ell\ell\ell rr$	4 r. p 0 ji	ts Eg	140	λ ² /λ ² ₂ [λ ₀₀ ≠ 0, λ ₁₀₀ ≠ 0] 0.95 1.55 m(l ² ₁)=200 GeV	2103.11984
	$\underline{X}_{1}^{*}, \underline{x} \rightarrow qqX_{1}^{*}, X_{1}^{*} \rightarrow qqq$	28	ets	140	2 mit()=50 (av) (20 (av) 1 (av) 1 (av) (av) (av) (av) (av) (av) (av) (av)	2401.16333
2	$\overline{B}, \overline{I} \rightarrow B \overline{A}_1, \overline{A}_1 \rightarrow B \overline{A}_2$ $\overline{B}, \overline{I} \rightarrow B \overline{A}_1^{(2)}, \overline{A}_2^{(2)} \rightarrow B \overline{A}_2$	21	pie Ib	140	7 Exhibition 0.95 which day	2010/01015
œ	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow bx$	2 jots	+28	38.7	Tr [ay, br] 0.42 0.61	1710.07171
	$\tilde{r}_1 \tilde{r}_1, \tilde{r}_1 \rightarrow q t'$	2 r.μ 2 1μ D	2	140 136	λ 0.441,85 BR(β)br/(b_0)20% λ 1.0 1.6 BR(β)br/(b_0)20%	2406.18367 2003.11956
	$\tilde{\chi}_{1}^{0}/\tilde{\chi}_{2}^{0}/\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1,2}^{0} \rightarrow obs, \tilde{\chi}_{1}^{+} \rightarrow bbs$	1.2 c. p 26	ots	140	R ⁴ 0.2-0.32 Pure higgsino	2106.09929
*Only	a coloction of the available ma	ere limite on new e	tatos or			
Mass scale [rev]						

Unity a selection of the available mass limits on new states or phenomena is shown. Many of the limits are based on simplified models, c.1. refs. for the assumptions made.

ATLAS 超对称搜索质量排除限总结

ATLAS Preliminary

MSSM 的精细调节问题:实验现状

CMS 137 fb⁻¹ (13 TeV) $\tilde{\chi}^0 \rightarrow Z \tilde{\chi}^0$ CL upper limit on cross section [pb] 102 10 10 10⁻² 95% 600 700 800 900 $m_{\tilde{y}^{\pm}} = m_{\tilde{y}^{0}}$ [GeV]

最新的 LHC 利用三轻子和双轻子信号寻找 Wino 结果

● 适用情形:简化模型,假定一步或两步衰变链,100%分支比;

- ❷ 具体理论:复杂的衰变链和信号、多种信号产生机制;
- ③ 工作要求:需要开展蒙特卡洛模拟来仔细研究。

MSSM 的精细调节

 $W_{\rm MSSM} = y_u \hat{Q} \cdot \hat{H}_u \hat{U} + y_d \hat{H}_d \cdot \hat{Q} \hat{D} + \mu \hat{H}_u \cdot \hat{H}_d + \cdots$

 μ 参数:自然取值为 $\mu = 0$ 或 $\mu = \Lambda_{GUT}$ 。

Z 玻色子质量要求: $\mu \lesssim 1$ TeV; LHC 要求: $\mu \gtrsim 180$ GeV。 Giudice-Maserio 机制:

通过引力介导的超对称性破缺产生超对称守恒项。 标准模型: $m_h^2 = m_h^2|_{tree} + \delta m_h^2 = m_h^2|_{tree} - \frac{3y_t^2}{8\pi^2}\Lambda^2;$ **MSSM:** $m_h^2 = m_h^2|_{tree} + \delta m_h^2$ $\simeq m_h^2|_{tree} - \frac{3y_t^2}{8\pi^2} (m_{\tilde{t}_1}^2 + m_{\tilde{t}_2}^2) \log \frac{\Lambda^2}{m_{\tilde{t}_1} m_{\tilde{t}_2}}$ $\simeq m_h^2|_{tree} - \frac{3y_t^2}{8\pi^2} \frac{2g_s^2}{3\pi^2} m_{\tilde{g}}^2 \left(\log \frac{\Lambda^2}{m_{\tilde{t}_1} m_{\tilde{t}_2}}\right)^2;$ 因为 $\delta m_{\tilde{t}_i}^2 \simeq \frac{g_s^2}{3\pi^2} m_{\tilde{g}}^2 \log \frac{\Lambda^2}{m_{\tilde{t}_i} m_{\tilde{t}_o}} \circ M_3|_{\text{EW}} = 2.91 M_3|_{\text{GUT}} \circ$ 当 $\Lambda = \Lambda_{\text{GUT}}$ 且 $m_{\tilde{t}} = 1$ TeV 时, $m_h^2 \simeq m_h^2|_{tree} - 13.6 \times m_{\tilde{t}}^2$!

MSSM 的精细调节:理论根源

考虑 GUT 尺度的 SUSY 破缺和重整化群演化效应,

$$\begin{split} m_Z^2 &\equiv \{2(m_{H_d}^2 - m_{H_u}^2 \tan^2\beta)/(\tan^2\beta - 1) - 2\mu^2 \ \}|_{\textbf{Weak scale}} \\ &= \{(3.84M_3^2 + 0.32M_3M_2 + 0.047M_1M_3 - 0.42M_2^2 + 0.01M_2M_1 \\ &- 0.012M_1^2 - 0.65M_3A_t - 0.15M_2A_t - 0.025M_1A_t + 0.22A_t^2 \\ &+ 0.004M_3A_b - 1.27m_{H_u}^2 - 0.053m_{H_d}^2 + 0.73m_{Q_3}^2 + 0.57m_{U_3}^2 \\ &+ 0.049m_{D_3}^2 - 0.052m_{L_3}^2 + 0.053m_{E_3}^2 + 0.051m_{Q_2}^2 - 0.110m_{U_2}^2 \\ &+ 0.051m_{D_2}^2 - 0.052m_{L_2}^2 + 0.053m_{E_2}^2 + 0.051m_{Q_1}^2 - 0.110m_{U_1}^2 \\ &+ 0.051m_{D_2}^2 - 0.052m_{L_1}^2 + 0.053m_{E_1}^2) - 2.18\mu^2 \ \} \ |_{\textbf{GUT}}, \\ &\stackrel{\text{ }}{\cong} \tan\beta = 10 \ \text{ If} \ &\cdot \\ m_Z^2 &= (\textbf{0.45m_{\tilde{g}}^2 + \textbf{0.82m_{\tilde{t}_1}^2} + \textbf{0.74m_{\tilde{t}_R}^2} - \textbf{1.27m_{H_u}^2}|_{\textbf{GUT}} + \cdots) - 2m_{\tilde{H}}^2 \end{split}$$

当考虑 LHC 实验结果后,每项贡献都很大。可能的压低机制:

• 通过对称性(如R对称性)避免对数抬高;

- 合适的初始条件,例如所有系数按比例,精细抵消不同贡献;
- 放松 LHC 限制,例如级联衰变、压低产生截面等。

第二项还与暗物质物理密切相关!

Junjie Cao (郑州大学物理学院)

MSSM 的精细调节:可能的解决方案

标准模型:
$$m_h^2 = m_h^2|_{tree} + \delta m_h^2 = m_h^2|_{tree} - \frac{3y_t^2}{8\pi^2} \Lambda^2;$$

最小超对称标准模型: $m_h^2 = m_h^2|_{tree} + \delta m_h^2$
 $\simeq m_h^2|_{tree} - \frac{3y_t^2}{8\pi^2} (m_{\tilde{t}_1}^2 + m_{\tilde{t}_2}^2) \log \frac{\Lambda^2}{m_{\tilde{t}_1} m_{\tilde{t}_2}}$
 $\simeq m_h^2|_{tree} - \frac{3y_t^2}{8\pi^2} \frac{2g_s^2}{3\pi^2} m_{\tilde{g}}^2 \left(\log \frac{\Lambda^2}{m_{\tilde{t}_1} m_{\tilde{t}_2}}\right)^2;$
因为 $\delta m_{\tilde{t}_i}^2 \simeq \frac{g_s^2}{3\pi^2} m_{\tilde{g}}^2 \log \frac{\Lambda^2}{m_{\tilde{t}_1} m_{\tilde{t}_2}}.$

 MRSSM: 软破项 → 超软算符 (Super-safe operators)

 $m_h^2 = m_h^2|_{tree} + \delta m_h^2$
 $\simeq m_h^2|_{tree} - \frac{3y_t^2}{8\pi^2}(m_{t_1}^2 + m_{t_2}^2)\log \frac{M_3^2}{m_{t_1}m_{t_2}};$
 $\delta m_{t_i}^2 = \frac{g_s^2}{3\pi^2}m_g^2\log \frac{\tilde{m}_2^2}{m_g^2}, \quad \tilde{m}:$ Gluino 伴子质量;

 $m_Z^2 = a_1M_3^2 + a_2m_{Q_3}^2 + a_3m_{U_3}^2 - 2\mu^2 + \cdots;$
 $a_i:$ 一圈或二圈压低,无对数增强;

 $\mu:$ 可以与暗物质物理无关,考虑 LHC 限制后仍能够比较轻。

 另一种经济的解决方案: 对 MSSM 进行单态场扩充!

Junjie Cao (郑州大学物理学院)

Status of SUSY

2025年1月5日

MSSM 的暗物质问题:实验现状

arXiv:2207.03764

FIG. 5

FIG. 7

MSSM 的暗物质问题:理论根源

• MSSM: 完整表达式很复杂; $\mu/m_{\tilde{\chi}_1^0}$ 是希格斯质量/暗物质质量

$$\begin{split} &\sigma_{\tilde{\chi}_{1}^{0}-N}^{\mathrm{SI}} \simeq 5 \times 10^{-45} \mathrm{~cm}^{2} \left(\frac{\mathrm{C}_{\tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}\mathrm{h}}}{0.1}\right)^{2} \left(\frac{\mathrm{m}_{\mathrm{h}}}{125 \mathrm{GeV}}\right)^{2} \\ &\sigma_{\tilde{\chi}_{1}^{0}-N}^{\mathrm{SD}} \simeq 10^{-39} \mathrm{~cm}^{2} \left(\frac{\mathrm{C}_{\tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}Z}}{0.1}\right)^{2} \\ &C_{\tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}h} \simeq e \tan \theta_{W} \frac{m_{Z}}{\mu \left(1 - m_{\tilde{\chi}_{1}^{0}}^{2} / \mu^{2}\right)} \left(\sin 2\beta + \frac{m_{\tilde{\chi}_{1}^{0}}}{\mu}\right) \\ &C_{\tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}Z} \simeq \frac{e \tan \theta_{W} \cos 2\beta}{2} \frac{m_{Z}^{2}}{\mu^{2} - m_{\tilde{\chi}_{1}^{0}}^{2}} \end{split}$$

• 希格斯粒子质量保守的限:

LZ 实验: $\mu \gtrsim 380$ GeV, **LZ** + LHC + a_{μ} : $\mu \gtrsim 500$ GeV • 希格斯粒子质量与电弱对称性破缺相关!

$$m_Z^2 = 2(m_{H_d}^2 - m_{H_u}^2 \tan^2 \beta) / (\tan^2 \beta - 1) - 2\mu^2$$

电弱对称性破缺中1%的精细调节。在Giudice-Masiero机制中显著变差。

MSSM 的暗物质问题:可能解决方案

解决方案:对经济的 WIMP 理论扩充形成孤立的暗物质部分。

暗物质有效理论	示例	暗物质丰度	$\tilde{\chi} - N$ 散射	备注	
			$\sigma_{\rm SI}\gtrsim 10^{-45} {\rm cm}^2$	实验已排除	
		弱/接触的 相互作用	且/或 $\sigma_{\rm SD}\gtrsim 10^{-39}{\rm cm}^2$	天極口加林	
标准模型+暗物质	标准模型+实单态场	14_616/13	通过相互抵消抑制	对称性!	
		微弱的相互作用:	被抑制	精细调节程度增加:	
		h/Z 共振	02.14/101	$\Delta > 150$	
标准描刊, EM 质, V	目右权抑范招子的 MSSM	壯湎正/旗入粒子	波加山	精细调节: $\Delta > 30;$	
1/11出快生于咱1000千八	关行在风径通101 MISSM	六连八/妹川粒]	122.34119	LHC 严格限制	
与波诺刑, 应物质, VV	General NMSSM	可能形成	油生 北印 牛山	无需精细调节;	
小市安全工作物與十五日	ISS-NMSSM	退藕的暗物质部分	የጣ ባትር አያ	三个门户连接标准模型	

为什么这种暗物质仍被称为 WIMP? 暗物质部分通过与弱相互作用强度相当的作用预言合适的 Ωh²,标准模 型与暗物质部分之间联系微弱从而压低暗物质-原子核散射截面!

至少两个模型构建方向:

- 自然解决 μ 问题: **MSSM** \rightarrow Z₃-**NMSSM** \rightarrow **General NMSSM**
- 产生中微子质量: Type-I NMSSM → ISS-NMSSM → B-L NMSSM

Junjie Cao (郑州大学物理学院)

Status of SUSY

2025年1月5日

Section V

次最小超对称模型

参考文献:

- J. Cao, L. Meng, Y. Yue, H. Zhou and P. Zhu, Phys. Rev. D 101, no.7, 075003 (2020), [arXiv:1910.14317 [hep-ph]].
- H. Zhou, J. Cao, J. Lian and D. Zhang, Phys. Rev. D 104, no.1, 015017 (2021), [arXiv:2102.05309 [hep-ph]].
- J. Cao, D. Li, J. Lian, Y. Yue and H. Zhou, JHEP 06, 176 (2021), [arXiv:2102.05317 [hep-ph]].
- J. Cao, X. Jia, L. Meng, Y. Yue and D. Zhang, JHEP 03, 198 (2023), [arXiv:2210.08769 [hep-ph]].
- L. Meng, J. Cao, F. Li and S. Yang, JHEP 08, 212 (2024), [arXiv:2405.07036 [hep-ph]].

1、具有 Z₃ 对称性的 NMSSM (Z₃-NMSSM)

• 规范群及包含的物质场:对 MSSM 进行规范单态场扩充;

超场	自旋 0	自旋 <u>1</u>	代数	$(\mathrm{U}(1)\otimes\mathrm{SU}(2)\otimes\mathrm{SU}(3))$
\hat{q}	\tilde{q}	q	3	$\left(rac{1}{6}, oldsymbol{2}, oldsymbol{3} ight)$
\hat{l}	Ĩ	l	3	$\left(-rac{1}{2}, 2, 1 ight)$
\hat{H}_d	H_d	\tilde{H}_d	1	$\left(-\frac{1}{2}, 2, 1\right)$
\hat{H}_u	H_u	\tilde{H}_u	1	$(\frac{1}{2}, 2, 1)$
\hat{d}	$ ilde{d}_R^*$	d_R^*	3	$\left(\frac{1}{3}, 1, \overline{3}\right)$
\hat{u}	\tilde{u}_R^*	u_R^*	3	$\left(-\frac{2}{3},1,\overline{3}\right)$
ê	\tilde{e}_R^*	e_R^*	3	(1, 1, 1)
ŝ	S	$ ilde{S}$	1	(0, 1 , 1)

- 超势及软破缺项具有 Z_3 对称性,经济地解决 μ 参数问题; $W_{\text{NMSSM}} = W_{\text{Yukawa}} + \lambda \hat{S} \hat{H}_u \hat{H}_d + \frac{1}{2} \kappa \hat{S}^3.$
- 暗物质可能由 Bino 或 Singlino 主导。对于 Bino 主导的情况:
 - **LZ** 实验: $\mu \gtrsim 380$ GeV, 希格斯数据: $\lambda \mu \lesssim 100$ GeV;

由于 $\lambda \leq 0.3$, 暗物质物理与 MSSM 相同。

2、Z₃-NMSSM: 暗物质性质

Singlino 主导的暗物质:

• Neutralino 质量矩阵 — 旋转矩阵 N 对角化

$$\mathcal{M} = \begin{pmatrix} M_1 & 0 & -\frac{g_1 v_d}{2} & \frac{g_1 v_u}{\sqrt{2}} & 0\\ M_2 & \frac{g_2 v_d}{\sqrt{2}} & -\frac{g_2 v_u}{\sqrt{2}} & 0\\ & 0 & -\mu & -\lambda v_u\\ & & 0 & -\lambda v_d\\ & & & \frac{2\kappa}{\lambda}\mu \end{pmatrix};$$

• 暗物质质量及其耦合的近似表达式: $\mu \equiv \mu_{\text{eff}} \equiv \frac{\lambda}{\sqrt{2}} v_s$

$$\begin{split} m_{\tilde{\chi}_{1}^{0}} &\approx \frac{2\kappa}{\lambda} \mu + \frac{\lambda^{2} v^{2}}{\mu^{2}} (\mu \sin 2\beta - \frac{2\kappa}{\lambda} \mu) \simeq \frac{2\kappa}{\lambda} \mu, \qquad N_{15} \simeq 1, \\ \frac{N_{13}}{N_{15}} &= \frac{\lambda v}{\sqrt{2\mu}} \frac{(m_{\tilde{\chi}_{1}^{0}}/\mu) \sin \beta - \cos \beta}{1 - \left(m_{\tilde{\chi}_{1}^{0}}/\mu\right)^{2}}, \qquad \frac{N_{14}}{N_{15}} = \frac{\lambda v}{\sqrt{2\mu}} \frac{(m_{\tilde{\chi}_{1}^{0}}/\mu) \cos \beta - \sin \beta}{1 - \left(m_{\tilde{\chi}_{1}^{0}}/\mu\right)^{2}}, \\ C_{\tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0} h_{i}} \simeq \frac{\sqrt{2}\mu}{v} \left(\frac{\lambda v}{\mu}\right)^{2} \frac{V_{h_{i}}^{\mathrm{SM}}(m_{\tilde{\chi}_{1}^{0}}/\mu - \sin 2\beta)}{1 - (m_{\tilde{\chi}_{1}^{0}}/\mu)^{2}} + \dots, \\ C_{\tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0} Z} \simeq \frac{m_{Z}}{\sqrt{2}v} \left(\frac{\lambda v}{\mu}\right)^{2} \frac{\cos 2\beta}{1 - (m_{\tilde{\chi}_{1}^{0}}/\mu)^{2}}, \end{split}$$

2、Z₃-NMSSM: 暗物质性质

Singlino 主导的暗物质:

• 暗物质与核子散射:

$$\begin{split} \sigma_{\tilde{\chi}_{1}^{0}-N}^{\rm SI} &\simeq 5 \times 10^{-45} {\rm cm}^{2} \times \left(\frac{\mathcal{A}}{0.1}\right)^{2}, \quad \sigma_{\tilde{\chi}_{1}^{0}-N}^{\rm SD} \simeq 10^{-39} \ {\rm cm}^{2} \left(\frac{{\rm C}_{\tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}Z}}{0.1}\right)^{2}, \\ \mathcal{A} &\simeq \left(\frac{125 {\rm GeV}}{m_{h}}\right)^{2} V_{h}^{\rm SM} C_{\tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}h} + \left(\frac{125 {\rm GeV}}{m_{h_{s}}}\right)^{2} V_{h_{s}}^{\rm SM} C_{\tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}h_{s}} \\ &\simeq \sqrt{2} \left(\frac{125 {\rm GeV}}{m_{h}}\right)^{2} \lambda \frac{\lambda v}{\mu} \frac{(m_{\tilde{\chi}_{1}^{0}}/\mu - \sin 2\beta)}{1 - (m_{\tilde{\chi}_{1}^{0}}/\mu)^{2}}, \\ C_{\tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}Z} &\simeq \frac{m_{Z}}{\sqrt{2}v} \left(\frac{\lambda v}{\mu}\right)^{2} \frac{\cos 2\beta}{1 - (m_{\tilde{\chi}_{1}^{0}}/\mu)^{2}}. \end{split}$$

• 暗物质性质由四个独立参数描述: $\tan \beta, \lambda, \mu, m_{\tilde{\chi}_1^0}$ 或 $\kappa, \exists 2|\kappa|/\lambda < 1.$

LZ 实验: $\lambda \leq 0.05$, 暗物质-Higgsino 共湮灭以获得正确的丰度。 贝叶斯证据被严重抑制 \rightarrow 理论需要精细调节!

3、一般形式的 NMSSM (GNMSSM)

• 手征超场及规范群:

超场	自旋0	自旋 <u>1</u>	代数	$(\mathrm{U}(1)\otimes\mathrm{SU}(2)\otimes\mathrm{SU}(3)$
\hat{q}	\tilde{q}	q	3	$\left(rac{1}{6}, oldsymbol{2}, oldsymbol{3} ight)$
\hat{l}	ĩ	l	3	$\left(-rac{1}{2}, 2, 1 ight)$
\hat{H}_d	H_d	\tilde{H}_d	1	$\left(-rac{1}{2}, 2, 1 ight)$
\hat{H}_u	H_u	\tilde{H}_u	1	$\left(\frac{1}{2}, 2, 1\right)$
\hat{d}	\tilde{d}_R^*	d_R^*	3	$\left(\frac{1}{3}, 1, \overline{3}\right)$
\hat{u}	\tilde{u}_R^*	u_R^*	3	$\left(-\frac{2}{3},1,\overline{3}\right)$
\hat{e}	\tilde{e}_R^*	e_R^*	3	(1, 1, 1)
\hat{s}	S	$ ilde{S}$	1	(0, 1 , 1)

• 超势具有更一般的形式:

$$W_{\text{GNMSSM}} = W_{\text{Y}} + \lambda \hat{S} \hat{H}_u \cdot \hat{H}_d + \frac{1}{3} \kappa \hat{S}^3 + \mu \hat{H}_u \cdot \hat{H}_d + \frac{1}{2} \mu' \hat{S}^2 + \xi \hat{S};$$

- ❶ 解决了 Z₃-NMSSM 中的畴壁和蝌蚪项问题;
- 系数带有质量量纲的项源自高能标遵从 Zⁿ₄ 或 Zⁿ₈ 对称性的统一理论;

4、GNMSSM: 暗物质性质

Singlino 主导的暗物质:

• 中性粒子超子质量矩阵: $\mu_{eff} \equiv \frac{\lambda}{\sqrt{2}} v_s$, $\mu_{tot} \equiv \mu + \mu_{eff}$,

$$m_{\tilde{\chi}_{i}^{0}} = \begin{pmatrix} M_{1} & 0 & -\frac{1}{2}g_{1}v_{d} & \frac{1}{2}g_{1}v_{u} & 0\\ 0 & M_{2} & \frac{1}{2}g_{2}v_{d} & -\frac{1}{2}g_{2}v_{u} & 0\\ -\frac{1}{2}g_{1}v_{d} & \frac{1}{2}g_{2}v_{d} & 0 & -\mu_{\text{tot}} & -\frac{1}{\sqrt{2}}v_{u}\lambda\\ \frac{1}{2}g_{1}v_{u} & -\frac{1}{2}g_{2}v_{u} & -\mu_{\text{tot}} & 0 & -\frac{1}{\sqrt{2}}v_{d}\lambda\\ 0 & 0 & -\frac{1}{\sqrt{2}}v_{u}\lambda & -\frac{1}{\sqrt{2}}v_{d}\lambda & \mathbf{m_{N}} \end{pmatrix};$$

Singlino 主导的暗物质的质量和耦合由下式给出:

$$\begin{split} m_{\tilde{\chi}_{1}^{0}} &\simeq & m_{N} + \frac{1}{2} \frac{\lambda^{2} v^{2}(m_{\tilde{\chi}_{1}^{0}} - \mu_{tot} \sin 2\beta)}{m_{\tilde{\chi}_{1}^{0}}^{2} - \mu_{tot}^{2}} \simeq m_{N}, \quad \mathbf{m}_{N} \equiv \sqrt{2} \kappa \mathbf{v_{s}} + \mu', \\ C_{\tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0} h_{i}} &= & C_{\tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0} h_{i}}^{\mathbf{Z}_{3} - \mathbf{NMSSM}} |_{\mu \to \mu_{tot}}, \quad & C_{\tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0} Z} = C_{\tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0} Z}^{\mathbf{Z}_{3} - \mathbf{NMSSM}} |_{\mu \to \mu_{tot}} \circ \end{split}$$

• 暗物质性质由**五个**独立参数描述:

 $\tan\beta$, λ , κ , μ_{tot} , and $m_{\tilde{\chi}_1^0}$. μ_{tot} : Higgsino mass.

注意:

与 Z_3 -NMSSM 不同, $m_{\tilde{\chi}_1^0}$ 、 λ 和 κ 之间不存在关联!

• 在 $\lambda \rightarrow 0$ 极限下,矩阵分解: $5 \times 5 = 4 \oplus 1$,解耦!

4、GNMSSM:希格斯物理

软破缺项:

$$-\mathcal{L}_{soft} = \left[\lambda A_{\lambda} S H_{u} \cdot H_{d} + \frac{1}{3} A_{\kappa} \kappa S^{3} + m_{3}^{2} H_{u} \cdot H_{d} + \frac{1}{2} {m'_{S}}^{2} S^{2} + h.c. \right]$$
$$+ m_{H_{u}}^{2} |H_{u}|^{2} + m_{H_{d}}^{2} |H_{d}|^{2} + m_{S}^{2} |S|^{2}.$$

CP 奇希格斯质量矩阵,基矢 $(A_{\text{NSM}}, \text{Im}(S))$:

$$\mathcal{M}_{P,11}^2 = \frac{2\left[\mu_{eff}(\lambda A_\lambda + \kappa \mu_{eff} + \lambda \mu') + \lambda m_3^2\right]}{\lambda \sin 2\beta} \equiv \mathbf{m}_A^2,$$

$$\mathcal{M}_{P,22}^2 = \frac{(\lambda A_\lambda + 4\kappa \mu_{eff} + \lambda \mu')\sin 2\beta}{4\mu_{eff}}\lambda v^2 - \frac{\kappa \mu_{eff}}{\lambda}(3A_\kappa + \mu') - \frac{\mu}{2\mu_{eff}}\lambda^2 v^2 - 2m_S'^2,$$

$$\mathcal{M}_{P,12}^2 = \frac{v}{\sqrt{2}} (\lambda A_\lambda - 2\kappa \mu_{eff} - \lambda \mu') \equiv \frac{\lambda \mathbf{v}}{\sqrt{2}} (\mathbf{A}_\lambda - \mathbf{m}_N).$$

• m_A : 重双态质量尺度; $m_B \equiv \sqrt{\mathcal{M}_{P,22}^2}$: CP 奇单态希格斯质量。

$$m_{3}^{2} = \frac{\lambda \mathbf{m}_{\mathbf{A}}^{2} \sin 2\beta - 2\kappa \mu_{\text{eff}}^{2} - 2\lambda \mu_{\text{eff}} \mu' - 2\lambda \mu_{\text{eff}} A_{\lambda}}{2\lambda};$$

$$m_{S}^{\prime 2} = -\frac{1}{2} \left[\mathbf{m}_{\mathbf{B}}^{2} + \frac{\mu}{2\mu_{\text{eff}}} \lambda^{2} v^{2} + \frac{\kappa \mu_{\text{eff}}}{\lambda} \left(3A_{\kappa} + \mu' \right) - \frac{(\lambda A_{\lambda} + 4\kappa \mu_{\text{eff}} + \lambda \mu') \sin 2\beta}{4\mu_{\text{eff}}} \lambda v^{2} \right]$$

4、GNMSSM:希格斯物理

CP 偶希格斯质量矩阵,基矢 $(H_{NSM}, H_{SM}, Re[S])$:

$$\begin{split} \mathcal{M}_{S,11}^2 &= m_A^2 + \frac{1}{2} (2m_Z^2 - \lambda^2 v^2) \sin^2 2\beta, \\ \mathcal{M}_{S,12}^2 &= -\frac{1}{4} (2m_Z^2 - \lambda^2 v^2) \sin 4\beta, \\ \mathcal{M}_{S,13}^2 &= -\frac{1}{\sqrt{2}} (\lambda A_\lambda + 2\kappa \mu_{eff} + \lambda \mu') v \cos 2\beta \equiv -\frac{\lambda}{\sqrt{2}} (A_\lambda + m_N) v \cos 2\beta, \\ \mathcal{M}_{S,22}^2 &= m_Z^2 \cos^2 2\beta + \frac{1}{2} \lambda^2 v^2 \sin^2 2\beta, \\ \mathcal{M}_{S,23}^2 &= \frac{v}{\sqrt{2}} \left[2\lambda (\mu_{eff} + \mu) - (\lambda A_\lambda + 2\kappa \mu_{eff} + \lambda \mu') \sin 2\beta \right], \\ &\equiv \frac{\lambda v}{\sqrt{2}} \left[2\mu_{tot} - (\mathbf{A}_\lambda + \mathbf{m}_N) \sin 2\beta \right], \\ \mathcal{M}_{S,33}^2 &= \frac{\lambda (A_\lambda + \mu') \sin 2\beta}{4\mu_{eff}} \lambda v^2 + \frac{\mu_{eff}}{\lambda} (\kappa A_\kappa + \frac{4\kappa^2 \mu_{eff}}{\lambda} + 3\kappa \mu') - \frac{\mu}{2\mu_{eff}} \lambda^2 v^2 \exp \lambda v^2 + \frac{\kappa}{2} \lambda \to 0 \ \mathrm{KR} \, \mathbb{F}, \ \mathrm{ER} \, \mathrm{F} \, \mathrm{FR} : \ 3 \times 3 = 2 \oplus 1, \ \mathrm{ER} \, \mathrm{FR} \, \mathrm{ER} \, \mathrm{FR} \, \mathrm{FR}$$

$$A_{\kappa} = \frac{\mathbf{m}_{\mathbf{C}}^{2} + \frac{\mu}{2\mu_{\text{eff}}}\lambda^{2}v^{2} - \frac{\lambda(A_{\lambda} + \mu')sin2\beta}{4\mu_{\text{eff}}}\lambda v^{2} - \frac{4\kappa^{2}}{\lambda^{2}}\mu_{\text{eff}}^{2} - \frac{3\kappa}{\lambda}\mu_{\text{eff}}\mu'}{\frac{\mu_{\text{eff}}}{\lambda}\kappa}.$$

Junjie Cao (郑州大学物理学院)

•

2025年1月5日 51/

原始拉氏量中的输入参数:

- 软破缺质量: $m_{H_u}^2$ 、 $m_{H_d}^2$ 和 m_S^2 ;
- 希格斯部分的 Yukawa 耦合: λ 和 κ ;
- 软破缺三线性系数 A_{λ} 和 A_{κ} ;
- 双线性质量参数 μ 和 μ' ,及其软破缺参数 m_3^2 和 m'_S^2 。

物理输入参数: λ 、 κ 、 $\tan \beta$ 、 v_s 、 $m_{H^{\pm}}$ 、 m_{h_s} 、 m_{A_s} 、 $m_{\tilde{\chi}_1^0}$ 和 μ_{tot} 。

- 真空期望值: v_u 、 v_d 、 v_s ;
- 希格斯部分的 Yukawa 耦合: λ 和 κ ;
- 电弱超子质量: $m_{\tilde{\chi}_1^0} \simeq m_N$ 和 Higgsino 质量 μ_{tot} ;
- 希格斯玻色子质量: $m_{H^{\pm}}^2 \simeq m_A^2$ 、 $m_{A_s} \simeq m_B$ 和 $m_{h_s} \simeq m_C$;
- 软破缺三线性系数 *A_λ*: 对绝大多数可观测量都不敏感的参数。

4、GNMSSM:关键特征

Singlino 主导的暗物质:

- 假设所有输入参数平坦分布,贝叶斯分析表明: 暗物质主要倾向于由 Singlino 主导。
- 单态主导的粒子形成一个孤立的暗物质部分。
 - 观测到的暗物质丰度由以下过程负责:

 - p-introde multiplicative p-introde multi
 - *h_s/A_s*-共振。

通过调节 m_{hs}/m_{As} 可以实现正确的丰度。

• 暗物质-核子散射被 λ⁴ 抑制:

目前 LZ 实验要求 $\lambda \leq 0.05$ 。未来直接探测实验将进一步抑制 λ , 但不影响 GNMSSM 现象学。

热平均湮灭截面表达式:

$$\begin{split} \langle \sigma v \rangle_{x_F}^{h_s A_s} &\simeq \frac{1}{64\pi m_{\tilde{\chi}_1^0}^2} \times \\ \sqrt{\left[\left[1 - \frac{(m_{h_s} + m_{A_s})^2}{4m_{\tilde{\chi}_1^0}^2} \right] \left[1 - \frac{(m_{h_s} - m_{A_s})^2}{4m_{\tilde{\chi}_1^0}^2} \right]} \\ &\times |\mathcal{A}_s + \mathcal{A}_t|^2; \end{split}$$

其中:

$$\mathcal{A}_s \simeq \frac{-2m_{\tilde{\chi}_1^0} C_{\tilde{\chi}_1^0 \tilde{\chi}_1^0 A_s} C_{h_s A_s A_s}}{m_{A_s}^2 - 4m_{\tilde{\chi}_1^0}^2};$$

湮灭过程的主要特征:

- 条件: $2m_{\tilde{\chi}_1^0} > m_{h_s} + m_{A_s}$;
- 实现: s-道交换 Z 和 CP 为齐 Higgs 粒子, t-道交换 χ⁰_i。

简化表达式:假定

$$m_{\tilde{\chi}_{1}^{0}} - A_{\kappa}| \ll (4m_{\tilde{\chi}_{1}^{0}}^{2} - m_{A_{s}}^{2})/|m_{\tilde{\chi}_{1}^{0}}|:$$

 $\langle \sigma v \rangle_{x_{F}}^{h_{s}A_{s}} \simeq \frac{\kappa^{4}}{4\pi m_{\tilde{\chi}_{1}^{0}}^{2}};$
丰度对参数的要求:
 $\langle \sigma v \rangle_{asA_{s}}^{h_{s}A_{s}} \simeq 2 \times 10^{-26} \text{cm}^{3} s^{-1};$

$$\kappa ert \sim 0.15 imes \left(rac{\mathbf{m}_{ ilde{\chi}_1^0}}{300\,\mathrm{GeV}}
ight)^{1/2}$$

$$\mathcal{A}_t \simeq -2C_{\tilde{\chi}^0_1 \tilde{\chi}^0_1 h_s} C_{\tilde{\chi}^0_1 \tilde{\chi}^0_1 A_s} \left[1 + \frac{2m_{A_s}^2}{4m_{\tilde{\chi}^0_1}^2 - (m_{A_s}^2 + m_{A_s}^2)} \right]$$

热平均湮灭截面表达式:

$$\begin{split} &\left\langle \sigma v \right\rangle_{x_{F}}^{h_{s}h_{s}} \simeq \frac{v_{F}^{2}}{192\pi m_{\tilde{\chi}_{1}^{0}}^{2}} \sqrt{1 - \frac{m_{h_{s}}^{2}}{m_{\tilde{\chi}_{1}^{0}}^{2}}} \times \\ &\left\{ \frac{8C_{h_{s}h_{s}h_{s}}C_{\tilde{\chi}_{1}^{1}\tilde{\chi}_{1}^{0}h_{s}}^{3}m_{\tilde{\chi}_{1}^{0}}^{3}(2m_{h_{s}}^{2} - 5m_{\tilde{\chi}_{1}^{0}}^{2})}{(m_{h_{s}}^{2} - 4m_{\tilde{\chi}_{1}^{0}}^{2})(m_{h_{s}}^{2} - 2m_{\tilde{\chi}_{1}^{0}}^{2})} \\ &+ \frac{3C_{h_{s}h_{s}h_{s}}^{2}C_{\tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}h_{s}}^{2}m_{\tilde{\chi}_{1}^{0}}^{2}}{(m_{h_{s}}^{2} - 4m_{\tilde{\chi}_{1}^{0}}^{2})^{2}} \\ &+ \frac{16C_{\tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}h_{s}}(9m_{\tilde{\chi}_{1}}^{8} - 8m_{\tilde{\chi}_{1}^{0}}^{6}m_{h_{s}}^{2} + 2m_{h_{s}}^{8})}{(m_{h_{s}}^{2} - 2m_{\tilde{\chi}_{1}^{0}}^{2})^{4}} \right\} \end{split}$$

丰度对参数的要求:

$$|\kappa| \sim 0.23 \times \left(\frac{m_{\tilde{\chi}^0_1}}{300 \, \text{GeV}}\right)^{1/2} \, . \label{eq:klassical}$$

湮灭过程的主要特征:

- s-道交换 CP 为偶 Higgs 粒子, t-道交换 *x*⁰_i;
- 成为最重要湮灭通道的条件:

•
$$m_{\tilde{\chi}_1^0} > m_{h_s}$$
;
• $m_{A_s} > 2m_{\tilde{\chi}_1^0} - m_{h_s}$.

简化表达式:

$$\langle \sigma v \rangle_{x_F}^{h_s h_s} \simeq \frac{3 v_F^2 \kappa^4}{16 \pi m_{\tilde{\chi}_1^0}^2};$$

热平均完整湮灭截面表达式:

$$\begin{split} & \left\langle \sigma v \right\rangle_{x_F}^{A_s A_s} \simeq \frac{v_F^2}{128 \pi m_{\tilde{\chi}_1}^2} \sqrt{1 - \frac{m_{A_s}^2}{m_{\tilde{\chi}_1}^2}} \\ & \left\{ \frac{32 C_{\tilde{\chi}_1^0 \tilde{\chi}_1^0 A_s}^4 m_{\tilde{\chi}_1^0}^4 (m_{A_s}^2 - m_{\tilde{\chi}_1}^2)^2}{3(m_{A_s}^2 - 2m_{\tilde{\chi}_1}^2)^4} \right. \\ & \left. + \frac{4 C_{\tilde{\chi}_1^0 \tilde{\chi}_1^0 h_s}^2 C_{\tilde{\chi}_1^0 \tilde{\chi}_1^0 A_s}^2 m_{\tilde{\chi}_1}^2 m_{h_s}^2}{(m_{h_s}^2 - 4m_{\tilde{\chi}_1}^2)^2 + m_{h_s}^2 \Gamma_{h_s}^2} \right\} \end{split}$$

主要特征:

• 发生条件:

•
$$m_{h_s} > m_{A_s};$$

•
$$m_{h_s} > 2m_{\tilde{\chi}_1^0} - m_{A_s}$$
 •

• 产生机制: 与 $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow h_s h_s$ 类似。

$\langle \sigma v \rangle_{x_F}^{A_s A_s}$ 与 $\langle \sigma v \rangle_{x_F}^{h_s h_s}$ 的区别:

• 额外依赖参数
$$m_{A_s}$$
;
• 若 $m_{h_s} \simeq 2m_{\tilde{\chi}_1^0}$, 共振抬高;
• 具有更复杂的行为。
简化表达式: 若 $m_{h_s}^2 \gg m_{A_s}^2$,
 $\langle \sigma v \rangle_{x_F}^{A_s A_s} \simeq \frac{v_F^2 \kappa^4}{48 \pi m_{\tilde{\chi}_1^0}^2}$ 。

丰度对参数的要求:

$$|\kappa| \sim 0.40 \times \left(\frac{m_{\tilde{\chi}^0_1}}{300\,{\rm GeV}}\right)^{1/2}\,. \label{eq:kappa}$$

4、GNMSSM:关键特征

特点:

- 避免了畴壁和蝌蚪项问题;
- ❷ 比 MSSM 具有更稳定的真空;

$$V_{\min}^{\text{des}} = \dots - \frac{\kappa^2}{\lambda^4} \mu_{eff}^4 - \frac{1}{3} \frac{\kappa A_{\kappa}}{\lambda^3} \mu_{eff}^3.$$

- ③ 显著缓解 LHC 寻找超对称带来的限制; 重的超粒子倾向于先衰变为较轻的超粒子,逐次衰变。 这使得超粒子的衰变链变长,衰变产物更加复杂。
- 理论变得更加自然;

考虑 LZ + LHC + a_{μ} 约束,

$$\begin{split} &Z_3\text{-NMSSM:} \ m_{\tilde{\chi}^0_1}\gtrsim 260\text{GeV} \text{, } \mu\gtrsim 550\text{GeV} \text{, } v_s\gtrsim 2 \text{ TeV} \text{;} \\ &\text{GNMSSM:} \ m_{\tilde{\chi}^0_1}\gtrsim 10\text{GeV} \text{, } \mu_{tot}\gtrsim 200\text{GeV} \text{, } v_s<1 \text{ TeV} \text{.} \end{split}$$

⑤ 贝叶斯证据远大于 Z₃-NMSSM。

示例:超对称粒子的多步衰变

信号末态特征:丢失的横向能量 + 高 PT 喷柱 + 多轻子

5、GNMSSM:存在的问题及解决方案

深层次问题:

- 暗物质直接探测实验: $\lambda \lesssim 0.05$, 不自然地小!
- $\mu_{tot} \gg \mu_{eff}$, 丧失引入 *S* 场的主要动机!
- 中微子质量由何而来?

潜在解决方案: B-L NMSSM、跷跷板扩充的 MRSSM、…

共同特点:暗物质物理与标准模型粒子退藕!

- $\hat{\nu}_R$ 和 \hat{S} 形成孤立的暗物质结构;
- 特色湮灭过程: $\tilde{\nu}_R \tilde{\nu}_R \rightarrow SS$;
- S 或 ν 作为媒介,连接暗物质和标准模型部分。

B-L NMSSM:

- 自然地将 Seesaw 机制与 NMSSM 相结合;
- 自然地解释 μ 参数和 R 宇称等诸多理论优点。

R-对称性 + 跷跷板机制:

• R-对称性: 超对称代数自同构群的最大子群, 它与洛伦兹群对易。

R 宇称超对称的关键特征: Super-safe

标准模型: $m_h^2 = m_h^2|_{tree} + \delta m_h^2 = m_h^2|_{tree} - \frac{3y_t^2}{8\pi^2}\Lambda^2;$ 最小超对称标准模型: $m_h^2 = m_h^2|_{tree} + \delta m_h^2$ $\simeq m_h^2|_{tree} - rac{3y_t^2}{8\pi^2}(m_{\tilde{t}_1}^2 + m_{\tilde{t}_2}^2)\lograc{\Lambda^2}{m_{\tilde{\tau}} m_{\tilde{\tau}}}$ $\simeq m_h^2 |_{tree} - \frac{3y_t^2}{8\pi^2} \frac{2g_s^2}{3\pi^2} m_{\tilde{g}}^2 \left(\log \frac{\Lambda^2}{m_{\tilde{t}_1} m_{\tilde{t}_2}} \right)^2;$ 因为 $\delta m_{\tilde{t}_i}^2 \simeq \frac{g_s^2}{3\pi^2} m_{\tilde{q}}^2 \log \frac{\Lambda^2}{m_z m_z}.$ **MRSSM**: 软破项 \rightarrow 招软算符 $m_h^2 = m_h^2|_{tree} + \delta m_h^2$ $\simeq m_h^2|_{tree} - \frac{3y_t^2}{8\pi^2} (m_{\tilde{t}_1}^2 + m_{\tilde{t}_2}^2) \log \frac{M_3^2}{m_{\tilde{t}_1} m_{\tilde{t}_2}};$ $\delta m_{\tilde{t}_i}^2 = \frac{g_s^2}{3\pi^2} m_{\tilde{g}}^2 \log \frac{\tilde{m}^2}{m_z^2}, \quad \tilde{m}: 胶超子质量;$ $m_Z^2 = a_1 M_3^2 + a_2 m_{O_2}^2 + a_3 m_{U_2}^2 - 2\mu^2 + \cdots$ *a_i*: 一圈或二圈压低. 无对数增强: μ : 与暗物质物理无关,在不违背 LHC 限制的情况下可能很轻。

Section VI

结论

- 所谓的 WIMP 危机仅意味着最经济的 WIMP 理论面临挑战 → 这激励我们研究更复杂的理论!
- ❷ 最小超对称理论受到强烈的实验限制,表现出很不自然的行为→ 这是模型自身的缺陷,而非超对称性,导致的!
- ② 奥卡姆剃刀在过去被错误地应用于次最小超对称模型! Z₃ 对称性导致 NMSSM 存在精细调节问题,掩盖理论本质特征。
- 一般次最小超对称理论应该引起重视!
 最简单的超对称理论之一,能够自然地与当前实验符合。
 - 贝叶斯统计首选 Singlino 暗物质!
 - 具有诸多显著的理论优势!
- 考虑当前实验后,超对称仍旧维持诸多优点,是最有希望的理论! 低谷时期可能很快过去,未来仍有希望成为研究热点。
- ◎ 表面独立的问题可能有共同的物理根源! 暗物质、LHC 寻找超粒子、精细调节? 以开放性思维和更加先进的技术去探索大自然规律。

