Effective Field Theory (EFT) - why EFT ? - examples of EFT / there are many EFTs.... - the standard Model Effective Field Theory (SMEFT) - phenomenology (if there's time) not relevant for 135M

note his opinim on Hierarchy problem... useful refs. K (see my lecture for my opinim) Manchar's lectures on EFT 1804.05863 or TASI 2022 2025 sakurai Prize (mith Jonkins) dd ones: 1006.2142 skiba, hep-ph/0308266 Rothstein nucl-th/0510023 Kaplan book: Invoduction to EFT. Burgess

SMEIFT:

Lectures on SINEFT, Falkonski (no arxiv) Warson basis 1008.4884 HiggstEW SMEFT 1308.1879 (Borcelona) Elias-Mire, Espihosa, Maso, Ponorol SMEPTsim 3.0 Ilaria Brivio 2012.11343 Well maintained

$$V(\vec{r}) = \frac{1}{r} \sum_{l,m} b_{lm} \frac{1}{r^{1}} Y_{lm}(\theta, \theta) \quad (knd + like operators in field theoryspherical harmonics $(\frac{1}{r^{1}} U_{R}^{1})(\frac{1}{r^{1}} U_{R}^{1})(\frac{1}{r^{1}} U_{R}^{1})$
$$= \frac{1}{r} \sum_{l,m} (m(\frac{\alpha}{r})^{l} Y_{lm} \quad b_{lm} \equiv lm \alpha^{l}$$
$$= \alpha_{l,m}$$

(Im S are dimension less parameters (utually of order 1).
separation of scales $(\frac{\alpha}{r}(c_{1}) =)$ The expansion is useful.
i.e. we only need to keep a few terms
in the l expansion to get a good explosionation
(more terms \Rightarrow better accuracy)
difference energy
 $IR \quad r \qquad E \sim Vr \quad Ew inder v$
 $UV \quad \alpha \qquad A \sim 1/\alpha \quad inder of the physics$ $explansion \quad \frac{\alpha}{r} \qquad \frac{E}{\Lambda} \quad (\sigma \frac{v}{\Lambda})$
(coupling (im cofficients) (im $(\alpha - 1/\alpha)^{l} + \beta_{lm} + \beta_{lm})$
 $(1/2) for energy (1/2) = (1/2$$$

multiple scales

example 2 Fermi's theory

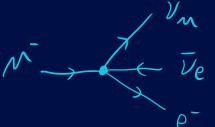
mnon de cay

$$M = \left(\frac{-ig}{f_{\Sigma}}\right)^{2} \left(\overline{\mathcal{V}}_{m} \mathcal{K}^{m} \mathcal{M}_{L}\right) \left(\overline{\mathcal{E}}_{L} \mathcal{V}^{\nu} \mathcal{V}_{e}\right) \cdot \frac{-i\partial_{m\nu}}{p^{2} - \mathcal{M}_{w}^{2}}$$

$$M = \left(\frac{ig}{f_{\Sigma}}\right)^{2} \left(\overline{\mathcal{V}}_{m} \mathcal{K}^{m} \mathcal{M}_{L}\right) \left(\overline{\mathcal{E}}_{L} \mathcal{V}^{\nu} \mathcal{V}_{e}\right) \cdot \frac{-i\partial_{m\nu}}{p^{2} - \mathcal{M}_{w}^{2}}$$

$$P = \left(\frac{ig}{f_{\Sigma}}\right)^{2} \left(\overline{\mathcal{V}}_{m} \mathcal{K}^{m} \mathcal{M}_{L}\right) \left(\overline{\mathcal{E}}_{L} \mathcal{V}^{\nu} \mathcal{V}_{e}\right) \cdot \frac{-i\partial_{m\nu}}{p^{2} - \mathcal{M}_{w}^{2}}$$

$$P = \left(\frac{ig}{f_{\Sigma}}\right)^{2} \left(\overline{\mathcal{V}}_{m} \mathcal{K}^{m} \mathcal{M}_{L}\right) \left(\overline{\mathcal{E}}_{L} \mathcal{V}^{\nu} \mathcal{V}_{e}\right) \cdot \frac{-i\partial_{m\nu}}{p^{2} - \mathcal{M}_{w}^{2}}$$


For
$$p^2(CM_w^2)$$
, we can expand the operator

$$\frac{1}{p^2 - M_w^2} = -\frac{1}{M_w^2} \left(1 + \frac{p^2}{M_w^2} + \frac{p^4}{M_w^4} + \dots\right)$$

Keeping only the 1st term we have

$$iM = \frac{-ig^2}{2M_W^2} (\overline{v}_m \gamma^m \mu_L) (\overline{e}_L \gamma_m v_e) + O(\frac{1}{M_W^4})$$

which can be produced by the local Lagrangian
often written as
$$\frac{c}{\Lambda^2}$$
 whose $\Lambda \sim M_{\star}^2$, it the UV theory is unknown.

$$J = -\frac{g^2}{2M_{\star}^2} (\bar{\nu}_{\rm m} \, \chi n \, \mu_{\rm L}) (\bar{e}_{\rm L} \, \chi_{\rm m} \, \nu_{\rm e}) + O(\frac{1}{M_{\star}^4})$$
dimension-6 operator, what Fermi wrote down.

If we keep note terms in the Legrangian we'll generate
higher dimensional operators, e.g. the
$$\frac{1}{M_{o}}$$
 term corresponds
to dimensional operators may lack very complicated, it's
actually much easier to use on-shell amplitudes!
This is the simplest example of the matching between
the full model (SM) and the low-every effective
field theory (Fermils theory).
This way of matching is called amplitude matching.
(Finding a EFT that gives the same low every unplitudes as the full theory)
• Northering ran also be understand from the path integral picture
(mider light field(s) d
hency field (S) $\frac{1}{M_{o}}$ ($\frac{1}{M_{o}}$ $\frac{1}$

Note: The two pictures of matching are equivalent.

buck to
$$\frac{1}{p^2 - m_w^2} = -\frac{1}{m_w^2} \left(1 + \frac{p^2}{m_w^2} + \frac{p^2}{m_w^4} + \dots\right)$$

• For $p^2 (K M_w^2)$, the 4F opentar gives a very good
approximation of the full theory. This is the case
for mum decay. $\left(p^2 (M_w^2 - \frac{m_w^2}{m_w^2} - 10^{-6})\right)$
• For $p^2 \gtrsim M_w^2$, the expansion breaks down!
consider $2 \Rightarrow 2$ scattering $\sum_{m_w^2} \frac{1}{m_w^2} = \frac{-2}{2M_w^2} = \frac{-2}{V^2}$.
Measuring much decay only tells us the value of V
(or $G_F = \frac{1}{12}V^2$), but not M_w , which definds on g .
• But M_w is the scale at which the EFT breaks down!
In our world, $g \approx 0.65$.
Suppose we've measured G_F but don't knew the value of g .
The scale at which the EFT breaks down definds on the value of rhe
(arous for $M_F = \frac{1}{2}V^2$), $M_F = \frac{1}{2}V^2$.
 $Measured G_F = \frac{1}{2}V^2$), $V_F = \frac{1}{2}V^2$.
 $M_F = \frac{1}{2}V^2$, $M_F = \frac{1}{2}V^2$.
(or $G_F = \frac{1}{2}V^2$), $W_F = \frac{1}{2}V^2$.
 $M_F = \frac{1}{2}V^2$, $M_F = \frac{1}{2}V^2$.
 $M_F = \frac{1}{2}V^2$.
 $M_F = \frac{1}{2}V^2$, $M_F = \frac{1}{2}V^2$.
 $M_F =$

- In this simple example, if we also measure the dim-8 coefficient $\left(-\frac{9^2}{M_{\pi}^4}\right)$ we can derive the W mass. In more complicated cases (with multiple heavy particles) it is in general not possible.
 - global from

Example 3 a complex scalar EFT
(with a U(1) global symmetry)
• bottom up uppronch, writting down all operators
in the EFT approach.

$$L = \partial_{n} \varphi^{*} \partial_{n} \varphi - m^{2} |\varphi|^{2} - \frac{\lambda}{4} |\varphi|^{4} \quad [G] \leq 4$$

$$+ \frac{2}{i} \left(\frac{G_{i}^{(p)}}{h} G_{i}^{(s)} + \frac{2}{i} \frac{G_{i}}{h} G_{i}^{(s)} + \frac{2}{i} \frac$$

Operators in L are divided into 3 classes based on their mass dimensions

(cnpling dimension [6]<4 relevant |ψ)^{*} >0 [0] = 4 marginal *こ0* 1414 [6] >4 irrelevant *<0* $d \downarrow f_{G(n)} = M \sim \left(\frac{E}{\Lambda}\right)^{n-4}$ Small effects at law energy EFT breaks down at high energy! with [0]>4, the theory (annot be a complete theory =) why it's called on EFT. This classification is also related to renormalizability - we'll come back to it later.

Now let's try to write down the higher dim. operators... Each $O_i^{(n)}$ need to be invariant under U(1) symmetry. No odd dimension $p^* q \phi^* \partial \phi$ art corentz invariant operator ! $(q)^4 \phi$ not U(1) incariant

Large (\rightarrow) leading contribution: $(\bigcirc_{i}^{(6)}]$ Bettom-up approach : write down all possible O Not all of them are independent! Operator redundancy Operators are related by · Integration by parts (IBP) Equation of Mation (Ean) why Earn norks beyond the classical level
 Fierz identity....(no use for scalar theory)
 (more generally, field redefinition) Let's try to write down all possible db operators: 09: [4] $(\partial^{n} \phi^{*} \phi) \phi^{*} \phi , (\partial^{n} \partial_{n} \phi^{*}) \phi \phi^{*} \phi , ((\partial^{n} \phi^{*}) \phi) ...$ 29: $(\partial^{m} \partial_{m} \phi^{*})(\partial^{\nu} \partial_{\nu} \phi) , \cdots \cdots$ only (indep operator

$$\begin{split} \mathsf{L}\mathsf{B}\mathsf{P}: & \mathsf{total denimplie} \\ (\partial^{\mathsf{m}}\partial_{\mathsf{n}}\phi^{\mathsf{*}})(\partial^{\mathsf{v}}\partial_{\mathsf{v}}\phi) &= (\partial^{\mathsf{m}}[(\partial_{\mathsf{n}}\phi^{\mathsf{*}})(\partial^{\mathsf{v}}\partial_{\mathsf{v}}\phi)] \\ &- \partial_{\mathsf{n}}\phi^{\mathsf{*}}\partial_{\mathsf{v}}\phi \\ &- \partial_{\mathsf{n}}\phi^{\mathsf{*}}\partial_{\mathsf{n}}\partial_{\mathsf{v}}\phi \\ & \mathsf{moved }\partial^{\mathsf{m}}\mathsf{here}, \mathsf{equivalent operator} \end{split}$$

EOM:

$$\frac{\partial \mathcal{L}}{\partial \phi} - \partial_{m} \frac{\partial \mathcal{L}}{\partial (\partial_{m} \phi)} = 0 \qquad (\phi \leftrightarrow \phi^{*})$$

$$-m^{2} \phi^{*} - \frac{\lambda}{2} \phi^{*} \phi^{*} \phi - \partial_{n} \partial^{n} \phi^{*} + \cdots = 0$$

$$\partial_{m} \partial^{m} \phi^{*} = -m^{2} \phi^{*} - \frac{\lambda}{2} \phi^{*} \phi^{*} \phi + \cdots$$

$$\partial_{m} \partial^{m} \phi = -m^{2} \phi - \frac{\lambda}{2} \phi^{*} \phi^{*} \phi + \cdots$$

$$L (\partial^{n} \partial_{n} \varphi^{*}) \varphi \varphi^{*} \varphi \qquad d \geq 8 , ignore$$

$$= -\frac{i}{n^{2}} m^{2} |\varphi|^{Q} - \frac{i}{n^{2}} \frac{\lambda}{2} |\varphi|^{6} + \cdots$$
We can eliminate $(\partial^{n} \partial_{n} \varphi^{*}) \varphi \varphi^{*} \varphi \qquad in form of |\varphi|^{6}$

$$(\partial^{n} \partial_{n} \varphi^{*}) \varphi \varphi^{*} \varphi \qquad in form of |\varphi|^{6}$$

total derivative $\partial^{n} ((\partial_{n} \phi^{*}) \phi \phi^{*} \phi)$ $+2(\partial_{n}\phi^{x}\partial^{n}\phi)\phi^{x}\phi$ $= (\partial^{n} \partial_{n} \phi^{*}) \phi \phi^{*} \phi$ + $\left(\left(\partial_{n} \phi^{*}\right) \phi\right)^{2}$ $t(\partial_n \phi^*) \phi \phi^* (\partial_n \phi)$ (an eliminate 2 independent db operators! We can chuse 1416, 1412 and # and This is called choosing a basis. (choose which redundant Of course we can choose an different basis. Why not just keep redundant operators? < global fit gonrameters we have) (important to know how many indep. physical

Physics are basis - independent. HEFT norkshap Physicists are basis - dependent!

Instead of e.e.m. We can perform field redefinition...

$$\begin{aligned}
\begin{aligned}
& = \partial_{n} \phi^{*} \partial^{m} \phi &= m^{2} |\phi|^{2} - \frac{\lambda}{4} |\phi|^{4} \\
&+ \frac{C_{*}}{\Lambda^{2}} |\phi|^{6} + \frac{C_{*}}{\Lambda^{2}} |\phi|^{2} \partial_{n} \phi^{*} \partial^{m} \phi \\
&+ (\frac{C_{*}}{\Lambda^{2}} (\partial^{*} \partial_{m} \phi^{*}) \phi \phi^{*} \phi + h.e.) + \frac{C_{*}}{\Lambda^{2}} (\partial^{*} \partial_{m} \phi^{*}) (\partial^{*} \partial_{n} \phi^{*}) \\
&+ (\frac{C_{*}}{\Lambda^{2}} (\partial^{*} \partial_{m} \phi^{*}) \phi \phi^{*} \phi + h.e.) + \frac{C_{*}}{\Lambda^{2}} (\partial^{*} \partial_{m} \phi^{*}) (\partial^{*} \partial_{n} \phi^{*}) \\
&+ (\frac{C_{*}}{\Lambda^{2}} (\partial^{*} \partial_{m} \phi^{*}) \phi \phi^{*} \phi + h.e.) + \frac{C_{*}}{\Lambda^{2}} (\partial^{*} \partial_{m} \phi^{*}) (\partial^{*} \partial_{n} \phi^{*}) \\
&+ (\frac{C_{*}}{\Lambda^{2}} (\partial^{*} \partial_{m} \phi^{*}) \phi \phi^{*} \phi^{*} \phi + \partial_{n} \phi^{*} \partial_{n} \phi^{*} \partial_{n} \phi^{*}) \\
&+ (\frac{C_{*}}{\Lambda^{2}} (\partial^{*} \partial_{m} \phi^{*}) \phi^{*} \phi^{*} \phi^{*} \phi^{*} \partial_{n} \phi^{*} \partial_{n} \phi^{*}) \\
&+ (\frac{C_{*}}{\Lambda^{2}} (\partial^{*} \partial_{m} \phi^{*}) \phi^{*} \phi^{*} \partial_{n} \phi^{*} \partial_{n} \phi^{*} \partial_{n} \phi^{*}) \\
&+ (\frac{C_{*}}{\Lambda^{2}} (\partial^{*} \partial_{m} \phi^{*}) \phi^{*} \phi^{*} \partial_{n} \phi^{*$$

 $\frac{(\partial^2 \phi)}{\langle \varphi^2 \phi^4 \rangle} \stackrel{(ancel with propagator}{(\partial^2 \phi^4)}$

 $\frac{1}{p^{2}\left(1+\frac{q^{1}}{\Lambda^{2}}\right)} = \frac{1}{p^{2}}\left(1-\frac{cp^{2}}{\Lambda^{2}}+1\right)$

 $u \mid i t_0 \quad \frac{1}{\Lambda^4} : \quad u d d \quad \checkmark \quad \frac{d}{\Lambda^4} \quad \frac{d}{\Lambda^4} \quad \frac{d}{\Lambda^4}$ d is card \bigwedge $\frac{1}{\Lambda^{c}}$ REFT is renormalizable order by order in the EPT expansion, mm why SMEFT ? My SMEFT! SM is in complete (dark matter, matter anti-matter asymmetry) There must be BSM New physics (some people thank) but We don't know what it is (they know) light particle heavy particle (M>>V) vory neak can pling SMEFT / SMOSEI · strictly speaking, gravita makes smEPT invalid. (But that's ok) since he don't know what it is · bottom-up approach: Be agnostic about the UV physics and try to systematically parameterize its effects at la energies by writing down higer dimension operators. (top-down: made (building) • useful even if we know the UV model for collulation resumming large legs with RG...

$$SMEFT$$

$$\mathcal{L}_{SMEFT} = \mathcal{L}_{SM} + \frac{1}{5} \frac{C_{i}^{(p)}}{\Lambda} O_{i}^{(s)} + \frac{1}{5} \frac$$

Further more, all odd dimension operators violate
Baryon (B) or Lepton (L) numbers.
B, L, Charge of U(1) B, U(1) global symmetry
B L
G
$$\frac{1}{5}$$
 0
C $\frac{1}{7}$ 0
C

Hilbert series : Murayana etal. 1512.03433

Narsan basis 1008.4884

· first to write down a complete d6 basis

· try to eliminate operators with more derivatives in favor of operators with more fields. - (why hoone completed it in 24 years?)

Buchmüller	k	Wyler	almost	did	î t	ıγ	1986
------------	---	-------	--------	-----	-----	----	------

X ³		φ^6 and $\varphi^4 D^2$		$\psi^2 arphi^3$		
Q_G	$\int f^{ABC} G^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	Q_{φ}	$(arphi^\dagger arphi)^3$	$Q_{e\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{l}_{p}e_{r}\varphi)$	
$Q_{\tilde{G}}$	$\int f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{\varphi\Box}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	$Q_{u\varphi}$	$(\varphi^{\dagger}\varphi)(ar{q}_{p}u_{r}\widetilde{\varphi})$	
Q_W	$\varepsilon^{IJK} W^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$	$Q_{\varphi D}$	$\left(arphi^{\dagger} D^{\mu} arphi ight)^{\star} \left(arphi^{\dagger} D_{\mu} arphi ight)$	$Q_{d\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}d_{r}\varphi)$	
$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$					
$X^2 \varphi^2$		$\psi^2 X \varphi$		$\psi^2 \varphi^2 D$		
$Q_{\varphi G}$	$\varphi^{\dagger}\varphiG^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi l}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{l}_{p}\gamma^{\mu}l_{r})$	
$\ \ Q_{\varphi \widetilde{G}}$	$\varphi^{\dagger}\varphi\widetilde{G}^{A}_{\mu u}G^{A\mu u}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$	$Q^{(3)}_{arphi l}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\varphi)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$	
$Q_{\varphi W}$	$\varphi^{\dagger}\varphi W^{I}_{\mu\nu} W^{I\mu\nu}$	Q_{uG}	$\left(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{\varphi} G^A_{\mu\nu}\right)$	$Q_{\varphi e}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$	
$\left\ \begin{array}{c} Q_{\varphi \widetilde{W}} \end{array} \right\ $	$arphi^{\dagger} arphi \widetilde{W}^{I}_{\mu u} W^{I\mu u}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{\varphi} W^I_{\mu\nu}$	$Q_{\varphi q}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$	
$Q_{\varphi B}$	$arphi^{\dagger}arphiB_{\mu u}B^{\mu u}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{\varphi} B_{\mu\nu}$	$Q^{(3)}_{\varphi q}$	$\left(\varphi^{\dagger}i \overleftrightarrow{D}_{\mu}^{I} \varphi)(\bar{q}_{p} \tau^{I} \gamma^{\mu} q_{r})\right)$	
$\ \ Q_{\varphi \widetilde{B}}$	$arphi^{\dagger}arphi\widetilde{B}_{\mu u}B^{\mu u}$	Q_{dG}	$\left(\bar{q}_p \sigma^{\mu\nu} T^A d_r\right) \varphi G^A_{\mu\nu}$	$Q_{\varphi u}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}u_{r})$	
$Q_{\varphi WB}$	$arphi^\dagger au^I arphi W^I_{\mu u} B^{\mu u}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi d}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{d}_{p}\gamma^{\mu}d_{r})$	
$Q_{\varphi \widetilde{W}B}$	$\varphi^{\dagger}\tau^{I}\varphi\widetilde{W}^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu u} d_r) \varphi B_{\mu u}$	$Q_{\varphi ud}$	$i(\widetilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$	
	$(\bar{L}L)(\bar{L}L)$		$(\bar{R}R)(\bar{R}R)$		$(\bar{L}L)(\bar{R}R)$	
Qu	$\frac{(\bar{L}L)(\bar{L}L)}{(\bar{l}_p\gamma_\mu l_r)(\bar{l}_s\gamma^\mu l_t)}$	Q_{ee}	$(ar{R}R)(ar{R}R)$ $(ar{e}_p\gamma_\mu e_r)(ar{e}_s\gamma^\mu e_t)$	Q_{le}	$(\bar{L}L)(\bar{R}R)$ $(\bar{l}_p\gamma_{\mu}l_r)(\bar{e}_s\gamma^{\mu}e_t)$	
$Q_{qq}^{(1)}$		Q_{ee} Q_{uu}	$(\bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t)$ $(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{le} Q_{lu}		
$\begin{array}{ c c } Q_{qq}^{(1)} \\ Q_{qq}^{(3)} \\ Q_{qq}^{(3)} \end{array}$	$(\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t)$		$(\bar{e}_p \gamma_\mu e_r) (\bar{e}_s \gamma^\mu e_t)$		$(\bar{l}_p \gamma_\mu l_r) (\bar{e}_s \gamma^\mu e_t)$	
$\begin{array}{c c} Q_{qq}^{(1)} \\ Q_{qq}^{(3)} \\ Q_{qq}^{(3)} \\ Q_{lq}^{(1)} \end{array}$	$\begin{aligned} &(\bar{l}_p \gamma_\mu l_r)(\bar{l}_s \gamma^\mu l_t) \\ &(\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t) \\ &(\bar{q}_p \gamma_\mu \tau^I q_r)(\bar{q}_s \gamma^\mu \tau^I q_t) \\ &(\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t) \end{aligned}$	Q_{uu}	$\begin{aligned} &(\bar{e}_p\gamma_\mu e_r)(\bar{e}_s\gamma^\mu e_t)\\ &(\bar{u}_p\gamma_\mu u_r)(\bar{u}_s\gamma^\mu u_t)\\ &(\bar{d}_p\gamma_\mu d_r)(\bar{d}_s\gamma^\mu d_t)\\ &(\bar{e}_p\gamma_\mu e_r)(\bar{u}_s\gamma^\mu u_t) \end{aligned}$	$egin{array}{c} Q_{lu} \ Q_{ld} \ Q_{qe} \end{array}$	$\begin{aligned} &(\bar{l}_p\gamma_\mu l_r)(\bar{e}_s\gamma^\mu e_t)\\ &(\bar{l}_p\gamma_\mu l_r)(\bar{u}_s\gamma^\mu u_t) \end{aligned}$	
$\begin{array}{ c c } Q_{qq}^{(1)} \\ Q_{qq}^{(3)} \\ Q_{qq}^{(3)} \end{array}$	$\begin{aligned} &(\bar{l}_p \gamma_\mu l_r)(\bar{l}_s \gamma^\mu l_t) \\ &(\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t) \\ &(\bar{q}_p \gamma_\mu \tau^I q_r)(\bar{q}_s \gamma^\mu \tau^I q_t) \end{aligned}$	$egin{array}{c} Q_{uu} \ Q_{dd} \ Q_{eu} \ Q_{ed} \end{array}$	$\begin{aligned} & (\bar{e}_p \gamma_\mu e_r) (\bar{e}_s \gamma^\mu e_t) \\ & (\bar{u}_p \gamma_\mu u_r) (\bar{u}_s \gamma^\mu u_t) \\ & (\bar{d}_p \gamma_\mu d_r) (\bar{d}_s \gamma^\mu d_t) \\ & (\bar{e}_p \gamma_\mu e_r) (\bar{u}_s \gamma^\mu u_t) \\ & (\bar{e}_p \gamma_\mu e_r) (\bar{d}_s \gamma^\mu d_t) \end{aligned}$	$\begin{array}{c} Q_{lu} \\ Q_{ld} \\ Q_{qe} \\ Q_{qu}^{(1)} \end{array}$	$\begin{aligned} &(\bar{l}_p\gamma_\mu l_r)(\bar{e}_s\gamma^\mu e_t)\\ &(\bar{l}_p\gamma_\mu l_r)(\bar{u}_s\gamma^\mu u_t)\\ &(\bar{l}_p\gamma_\mu l_r)(\bar{d}_s\gamma^\mu d_t)\\ &(\bar{q}_p\gamma_\mu q_r)(\bar{e}_s\gamma^\mu e_t)\\ &(\bar{q}_p\gamma_\mu q_r)(\bar{u}_s\gamma^\mu u_t) \end{aligned}$	
$\begin{array}{c c} Q_{qq}^{(1)} \\ Q_{qq}^{(3)} \\ Q_{qq}^{(3)} \\ Q_{lq}^{(1)} \end{array}$	$\begin{aligned} &(\bar{l}_p \gamma_\mu l_r)(\bar{l}_s \gamma^\mu l_t) \\ &(\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t) \\ &(\bar{q}_p \gamma_\mu \tau^I q_r)(\bar{q}_s \gamma^\mu \tau^I q_t) \\ &(\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t) \end{aligned}$	$egin{array}{c} Q_{uu} \ Q_{dd} \ Q_{eu} \ Q_{ed} \ Q_{ed} \ Q_{ud} \ \end{array}$	$\begin{aligned} & (\bar{e}_p \gamma_\mu e_r) (\bar{e}_s \gamma^\mu e_t) \\ & (\bar{u}_p \gamma_\mu u_r) (\bar{u}_s \gamma^\mu u_t) \\ & (\bar{d}_p \gamma_\mu d_r) (\bar{d}_s \gamma^\mu d_t) \\ & (\bar{e}_p \gamma_\mu e_r) (\bar{u}_s \gamma^\mu u_t) \\ & (\bar{e}_p \gamma_\mu e_r) (\bar{d}_s \gamma^\mu d_t) \\ & (\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t) \end{aligned}$	$\begin{array}{c} Q_{lu} \\ Q_{ld} \\ Q_{qe} \\ Q_{qu}^{(1)} \\ Q_{qu}^{(8)} \end{array}$	$\begin{aligned} &(\bar{l}_p\gamma_\mu l_r)(\bar{e}_s\gamma^\mu e_t)\\ &(\bar{l}_p\gamma_\mu l_r)(\bar{u}_s\gamma^\mu u_t)\\ &(\bar{l}_p\gamma_\mu l_r)(\bar{d}_s\gamma^\mu d_t)\\ &(\bar{q}_p\gamma_\mu q_r)(\bar{e}_s\gamma^\mu e_t) \end{aligned}$	
$\begin{array}{c c} Q_{qq}^{(1)} \\ Q_{qq}^{(3)} \\ Q_{qq}^{(3)} \\ Q_{lq}^{(1)} \end{array}$	$\begin{aligned} &(\bar{l}_p \gamma_\mu l_r)(\bar{l}_s \gamma^\mu l_t) \\ &(\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t) \\ &(\bar{q}_p \gamma_\mu \tau^I q_r)(\bar{q}_s \gamma^\mu \tau^I q_t) \\ &(\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t) \end{aligned}$	$egin{array}{c} Q_{uu} \ Q_{dd} \ Q_{eu} \ Q_{ed} \end{array}$	$\begin{aligned} & (\bar{e}_p \gamma_\mu e_r) (\bar{e}_s \gamma^\mu e_t) \\ & (\bar{u}_p \gamma_\mu u_r) (\bar{u}_s \gamma^\mu u_t) \\ & (\bar{d}_p \gamma_\mu d_r) (\bar{d}_s \gamma^\mu d_t) \\ & (\bar{e}_p \gamma_\mu e_r) (\bar{u}_s \gamma^\mu u_t) \\ & (\bar{e}_p \gamma_\mu e_r) (\bar{d}_s \gamma^\mu d_t) \end{aligned}$	$\begin{array}{c} Q_{lu} \\ Q_{ld} \\ Q_{qe} \\ Q_{qu}^{(1)} \\ Q_{qu}^{(8)} \\ Q_{qu}^{(1)} \\ Q_{qd}^{(1)} \end{array}$	$\begin{split} &(\bar{l}_p\gamma_\mu l_r)(\bar{e}_s\gamma^\mu e_t)\\ &(\bar{l}_p\gamma_\mu l_r)(\bar{u}_s\gamma^\mu u_t)\\ &(\bar{l}_p\gamma_\mu l_r)(\bar{d}_s\gamma^\mu d_t)\\ &(\bar{q}_p\gamma_\mu q_r)(\bar{e}_s\gamma^\mu e_t)\\ &(\bar{q}_p\gamma_\mu q_r)(\bar{u}_s\gamma^\mu u_t)\\ &(\bar{q}_p\gamma_\mu T^A q_r)(\bar{u}_s\gamma^\mu T^A u_t)\\ &(\bar{q}_p\gamma_\mu q_r)(\bar{d}_s\gamma^\mu d_t) \end{split}$	
$\begin{array}{c c} Q_{qq}^{(1)} \\ Q_{qq}^{(3)} \\ Q_{qq}^{(3)} \\ Q_{lq}^{(1)} \end{array}$	$\begin{aligned} &(\bar{l}_p \gamma_\mu l_r)(\bar{l}_s \gamma^\mu l_t) \\ &(\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t) \\ &(\bar{q}_p \gamma_\mu \tau^I q_r)(\bar{q}_s \gamma^\mu \tau^I q_t) \\ &(\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t) \end{aligned}$	$egin{array}{c} Q_{uu} \ Q_{dd} \ Q_{eu} \ Q_{ed} \ Q_{ed} \ Q_{ud} \ \end{array}$	$\begin{aligned} & (\bar{e}_p \gamma_\mu e_r) (\bar{e}_s \gamma^\mu e_t) \\ & (\bar{u}_p \gamma_\mu u_r) (\bar{u}_s \gamma^\mu u_t) \\ & (\bar{d}_p \gamma_\mu d_r) (\bar{d}_s \gamma^\mu d_t) \\ & (\bar{e}_p \gamma_\mu e_r) (\bar{u}_s \gamma^\mu u_t) \\ & (\bar{e}_p \gamma_\mu e_r) (\bar{d}_s \gamma^\mu d_t) \\ & (\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t) \end{aligned}$	$egin{array}{c} Q_{lu} & & \ Q_{ld} & & \ Q_{qe} & & \ Q_{qu}^{(1)} & & \ Q_{qu}^{(8)} & & \ \end{array}$	$\begin{split} &(\bar{l}_p\gamma_\mu l_r)(\bar{e}_s\gamma^\mu e_t)\\ &(\bar{l}_p\gamma_\mu l_r)(\bar{u}_s\gamma^\mu u_t)\\ &(\bar{l}_p\gamma_\mu l_r)(\bar{d}_s\gamma^\mu d_t)\\ &(\bar{q}_p\gamma_\mu q_r)(\bar{e}_s\gamma^\mu e_t)\\ &(\bar{q}_p\gamma_\mu q_r)(\bar{u}_s\gamma^\mu u_t)\\ &(\bar{q}_p\gamma_\mu T^A q_r)(\bar{u}_s\gamma^\mu T^A u_t) \end{split}$	
$\begin{bmatrix} Q_{qq}^{(1)} \\ Q_{qq}^{(3)} \\ Q_{lq}^{(1)} \\ Q_{lq}^{(1)} \\ Q_{lq}^{(3)} \\ \end{bmatrix}$	$\begin{aligned} &(\bar{l}_p \gamma_\mu l_r)(\bar{l}_s \gamma^\mu l_t) \\ &(\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t) \\ &(\bar{q}_p \gamma_\mu \tau^I q_r)(\bar{q}_s \gamma^\mu \tau^I q_t) \\ &(\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t) \end{aligned}$	$egin{array}{c} Q_{uu} \ Q_{dd} \ Q_{eu} \ Q_{ed} \ Q_{ed} \ Q_{ud} \ \end{array}$	$\begin{aligned} & (\bar{e}_p \gamma_\mu e_r) (\bar{e}_s \gamma^\mu e_t) \\ & (\bar{u}_p \gamma_\mu u_r) (\bar{u}_s \gamma^\mu u_t) \\ & (\bar{d}_p \gamma_\mu d_r) (\bar{d}_s \gamma^\mu d_t) \\ & (\bar{e}_p \gamma_\mu e_r) (\bar{u}_s \gamma^\mu u_t) \\ & (\bar{e}_p \gamma_\mu e_r) (\bar{d}_s \gamma^\mu d_t) \\ & (\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t) \\ & (\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t) \end{aligned}$	$\begin{array}{c} Q_{lu} \\ Q_{ld} \\ Q_{qe} \\ Q_{qu}^{(1)} \\ Q_{qu}^{(8)} \\ Q_{qu}^{(1)} \\ Q_{qd}^{(1)} \end{array}$	$\begin{split} &(\bar{l}_p\gamma_\mu l_r)(\bar{e}_s\gamma^\mu e_t)\\ &(\bar{l}_p\gamma_\mu l_r)(\bar{u}_s\gamma^\mu u_t)\\ &(\bar{l}_p\gamma_\mu l_r)(\bar{d}_s\gamma^\mu d_t)\\ &(\bar{q}_p\gamma_\mu q_r)(\bar{e}_s\gamma^\mu e_t)\\ &(\bar{q}_p\gamma_\mu q_r)(\bar{u}_s\gamma^\mu u_t)\\ &(\bar{q}_p\gamma_\mu T^A q_r)(\bar{u}_s\gamma^\mu T^A u_t)\\ &(\bar{q}_p\gamma_\mu T^A q_r)(\bar{d}_s\gamma^\mu d_t)\\ &(\bar{q}_p\gamma_\mu T^A q_r)(\bar{d}_s\gamma^\mu T^A d_t) \end{split}$	
$\begin{array}{c} Q_{qq}^{(1)} \\ Q_{qq}^{(3)} \\ Q_{lq}^{(3)} \\ Q_{lq}^{(1)} \\ Q_{lq}^{(3)} \\ \end{array} \\ \hline (\bar{L}R) \\ Q_{ledq} \end{array}$	$\begin{aligned} &(\bar{l}_p\gamma_\mu l_r)(\bar{l}_s\gamma^\mu l_t)\\ &(\bar{q}_p\gamma_\mu q_r)(\bar{q}_s\gamma^\mu q_t)\\ &(\bar{q}_p\gamma_\mu\tau^I q_r)(\bar{q}_s\gamma^\mu\tau^I q_t)\\ &(\bar{l}_p\gamma_\mu l_r)(\bar{q}_s\gamma^\mu q_t)\\ &(\bar{l}_p\gamma_\mu\tau^I l_r)(\bar{q}_s\gamma^\mu\tau^I q_t)\end{aligned}$	$egin{array}{c} Q_{uu} \ Q_{dd} \ Q_{eu} \ Q_{ed} \ Q_{ed} \ Q_{ud} \ \end{array}$	$\begin{aligned} & \left(\bar{e}_{p}\gamma_{\mu}e_{r}\right)\left(\bar{e}_{s}\gamma^{\mu}e_{t}\right) \\ & \left(\bar{u}_{p}\gamma_{\mu}u_{r}\right)\left(\bar{u}_{s}\gamma^{\mu}u_{t}\right) \\ & \left(\bar{d}_{p}\gamma_{\mu}d_{r}\right)\left(\bar{d}_{s}\gamma^{\mu}d_{t}\right) \\ & \left(\bar{e}_{p}\gamma_{\mu}e_{r}\right)\left(\bar{u}_{s}\gamma^{\mu}u_{t}\right) \\ & \left(\bar{e}_{p}\gamma_{\mu}e_{r}\right)\left(\bar{d}_{s}\gamma^{\mu}d_{t}\right) \\ & \left(\bar{u}_{p}\gamma_{\mu}u_{r}\right)\left(\bar{d}_{s}\gamma^{\mu}d_{t}\right) \\ & \left(\bar{u}_{p}\gamma_{\mu}T^{A}u_{r}\right)\left(\bar{d}_{s}\gamma^{\mu}T^{A}d_{t}\right) \end{aligned}$	$\begin{array}{c} Q_{lu} \\ Q_{ld} \\ Q_{qe} \\ Q_{qu}^{(1)} \\ Q_{qd}^{(1)} \\ Q_{qd}^{(8)} \\ Q_{qd}^{(8)} \\ Q_{qd}^{(8)} \\ Iating \end{array}$	$\begin{split} & (\bar{l}_p \gamma_\mu l_r) (\bar{e}_s \gamma^\mu e_t) \\ & (\bar{l}_p \gamma_\mu l_r) (\bar{u}_s \gamma^\mu u_t) \\ & (\bar{l}_p \gamma_\mu l_r) (\bar{d}_s \gamma^\mu d_t) \\ & (\bar{q}_p \gamma_\mu q_r) (\bar{e}_s \gamma^\mu e_t) \\ & (\bar{q}_p \gamma_\mu q_r) (\bar{u}_s \gamma^\mu u_t) \\ & (\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t) \\ & (\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu d_t) \\ & (\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t) \end{split}$	
$\begin{array}{c} Q_{qq}^{(1)} \\ Q_{qq}^{(3)} \\ Q_{lq}^{(1)} \\ Q_{lq}^{(1)} \\ Q_{lq}^{(3)} \\ \end{array} \\ \hline (\bar{L}R) \\ Q_{ledq} \\ Q_{quqd}^{(1)} \\ \end{array}$	$\begin{split} & (\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t) \\ & (\bar{q}_p \gamma_\mu q_r) (\bar{q}_s \gamma^\mu q_t) \\ & (\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t) \\ & (\bar{l}_p \gamma_\mu l_r) (\bar{q}_s \gamma^\mu q_t) \\ & (\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t) \\ \end{split} \\ \\ \hline & (\bar{R}L) \text{ and } (\bar{L}R) (\bar{L}R) \\ & (\bar{l}_p^j e_r) (\bar{d}_s q_t^j) \\ & (\bar{q}_p^j u_r) \varepsilon_{jk} (\bar{q}_s^k d_t) \end{split}$	$egin{aligned} Q_{uu} & & \ Q_{dd} & & \ Q_{eu} & & \ Q_{ed} & & \ Q_{ud}^{(1)} & & \ Q_{ud}^{(8)} & & \ Q_{ud}^{(8)} & & \ \end{array}$	$\begin{aligned} & \left(\bar{e}_{p}\gamma_{\mu}e_{r}\right)(\bar{e}_{s}\gamma^{\mu}e_{t})\\ & \left(\bar{u}_{p}\gamma_{\mu}u_{r}\right)(\bar{u}_{s}\gamma^{\mu}u_{t})\\ & \left(\bar{d}_{p}\gamma_{\mu}d_{r}\right)(\bar{d}_{s}\gamma^{\mu}d_{t})\\ & \left(\bar{e}_{p}\gamma_{\mu}e_{r}\right)(\bar{u}_{s}\gamma^{\mu}u_{t})\\ & \left(\bar{e}_{p}\gamma_{\mu}e_{r}\right)(\bar{d}_{s}\gamma^{\mu}d_{t})\\ & \left(\bar{u}_{p}\gamma_{\mu}u_{r}\right)(\bar{d}_{s}\gamma^{\mu}d_{t})\\ & \left(\bar{u}_{p}\gamma_{\mu}T^{A}u_{r}\right)(\bar{d}_{s}\gamma^{\mu}T^{A}d_{t}) \end{aligned}$	$\begin{array}{c} Q_{lu} \\ Q_{ld} \\ Q_{qe} \\ Q_{qu}^{(1)} \\ Q_{qu}^{(8)} \\ Q_{qd}^{(1)} \\ Q_{qd}^{(1)} \\ Q_{qd}^{(2)} \\ Q_{qd}^{(3)} \end{array}$	$ \begin{array}{c} (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{u}_{s}\gamma^{\mu}T^{A}u_{t}) \\ (\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{d}_{s}\gamma^{\mu}T^{A}d_{t}) \end{array} $	
$\begin{array}{c} Q_{qq}^{(1)} \\ Q_{qq}^{(3)} \\ Q_{lq}^{(1)} \\ Q_{lq}^{(3)} \\ Q_{lq}^{(3)} \\ \end{array} \\ \hline \\ \hline \\ \hline \\ Q_{lq}^{(1)} \\ Q_{quqd}^{(1)} \\ Q_{quqd}^{(8)} \\ Q_{quqd}^{(8)} \end{array}$	$\begin{split} & (\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t) \\ & (\bar{q}_p \gamma_\mu q_r) (\bar{q}_s \gamma^\mu q_t) \\ & (\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t) \\ & (\bar{l}_p \gamma_\mu l_r) (\bar{q}_s \gamma^\mu \tau^I q_t) \\ & (\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t) \\ \end{split} \\ \\ \hline & (\bar{R}L) \text{ and } (\bar{L}R) (\bar{L}R) \\ & (\bar{l}_p^j e_r) (\bar{d}_s q_t^j) \\ & (\bar{q}_p^j u_r) \varepsilon_{jk} (\bar{q}_s^k d_t) \\ & (\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t) \end{split}$	$egin{array}{c} Q_{uu} \\ Q_{dd} \\ Q_{eu} \\ Q_{ed} \\ Q_{ud}^{(1)} \\ Q_{ud}^{(8)} \\ Q_{ud} \end{array}$	$\begin{split} & \left(\bar{e}_{p}\gamma_{\mu}e_{r}\right)(\bar{e}_{s}\gamma^{\mu}e_{t})\\ & \left(\bar{u}_{p}\gamma_{\mu}u_{r}\right)(\bar{u}_{s}\gamma^{\mu}u_{t})\\ & \left(\bar{d}_{p}\gamma_{\mu}d_{r}\right)(\bar{d}_{s}\gamma^{\mu}d_{t})\\ & \left(\bar{e}_{p}\gamma_{\mu}e_{r}\right)(\bar{u}_{s}\gamma^{\mu}u_{t})\\ & \left(\bar{e}_{p}\gamma_{\mu}e_{r}\right)(\bar{d}_{s}\gamma^{\mu}d_{t})\\ & \left(\bar{u}_{p}\gamma_{\mu}u_{r}\right)(\bar{d}_{s}\gamma^{\mu}d_{t})\\ & \left(\bar{u}_{p}\gamma_{\mu}T^{A}u_{r}\right)(\bar{d}_{s}\gamma^{\mu}T^{A}d_{t}) \end{split}$	$\begin{array}{c} Q_{lu} \\ Q_{ld} \\ Q_{qe} \\ Q_{qu}^{(1)} \\ Q_{qu}^{(2)} \\ Q_{qd}^{(2)} \\ Q_{qd}^{(3)} \\ Q_{qd}^{(3)} \\ P_{qd}^{(3)} \\ P_$	$ \begin{array}{c} (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{u}_{s}\gamma^{\mu}T^{A}u_{t}) \\ (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{d}_{s}\gamma^{\mu}T^{A}d_{t}) \\ \hline \\ \hline \\ \hline \\ \left[(q_{s}^{\gamma j})^{T}Cl_{t}^{k} \\ \right] \\ \left[(q_{s}^{\gamma m})^{T}Cl_{t}^{n} \\ \right] \\ \end{array} \right] $	
$\begin{array}{c} Q_{qq}^{(1)} \\ Q_{qq}^{(3)} \\ Q_{lq}^{(1)} \\ Q_{lq}^{(3)} \\ Q_{lq}^{(3)} \\ \end{array} \\ \hline (\bar{L}R) \\ Q_{ledq} \\ Q_{quqd}^{(1)} \\ \end{array}$	$\begin{split} & (\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t) \\ & (\bar{q}_p \gamma_\mu q_r) (\bar{q}_s \gamma^\mu q_t) \\ & (\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t) \\ & (\bar{l}_p \gamma_\mu l_r) (\bar{q}_s \gamma^\mu q_t) \\ & (\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t) \\ \end{split} \\ \\ \hline & (\bar{R}L) \text{ and } (\bar{L}R) (\bar{L}R) \\ & (\bar{l}_p^j e_r) (\bar{d}_s q_t^j) \\ & (\bar{q}_p^j u_r) \varepsilon_{jk} (\bar{q}_s^k d_t) \end{split}$	$egin{array}{c} Q_{uu} \\ Q_{dd} \\ Q_{eu} \\ Q_{ed} \\ Q_{ud}^{(1)} \\ Q_{ud}^{(8)} \end{array}$	$\begin{split} & \left(\bar{e}_{p}\gamma_{\mu}e_{r}\right)(\bar{e}_{s}\gamma^{\mu}e_{t})\\ & \left(\bar{u}_{p}\gamma_{\mu}u_{r}\right)(\bar{u}_{s}\gamma^{\mu}u_{t})\\ & \left(\bar{d}_{p}\gamma_{\mu}d_{r}\right)(\bar{d}_{s}\gamma^{\mu}d_{t})\\ & \left(\bar{e}_{p}\gamma_{\mu}e_{r}\right)(\bar{u}_{s}\gamma^{\mu}u_{t})\\ & \left(\bar{e}_{p}\gamma_{\mu}e_{r}\right)(\bar{d}_{s}\gamma^{\mu}d_{t})\\ & \left(\bar{u}_{p}\gamma_{\mu}u_{r}\right)(\bar{d}_{s}\gamma^{\mu}d_{t})\\ & \left(\bar{u}_{p}\gamma_{\mu}T^{A}u_{r}\right)(\bar{d}_{s}\gamma^{\mu}T^{A}d_{t}) \end{split}$	$\begin{array}{c} Q_{lu} \\ Q_{ld} \\ Q_{qe} \\ Q_{qu}^{(1)} \\ Q_{qu}^{(2)} \\ Q_{qd}^{(2)} \\ Q_{qd}^{(3)} \\ Q_{qd}^{(3)} \\ P_{qd}^{(3)} \\ P_$	$ \begin{array}{c} (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{u}_{s}\gamma^{\mu}T^{A}u_{t}) \\ (\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{d}_{s}\gamma^{\mu}T^{A}d_{t}) \end{array} $	

4+3+3

8 × 3

briefly explain each type of cherators ...

5+7+8

ollerators

(transverse) anomalous triple gauge coupling aTGC & & (gartic GC) aGGC 2) $\varphi(\rightarrow)$ $||1|^6 \rightarrow h^3 \mod h^3 k^4$ (all-12) modify and and , h have function renormalization shift Higgs couplings 3) y² q³ -> modify '(ukawa conphiling (relation between m & y) 3 4) $|H|^2 V_{n\nu} V^{n\nu} \sim \frac{h V_{n\nu} V^{n\nu}}{h h V_{n\nu} V^{n\nu}} \sim \frac{1}{\sqrt{2}}$ different from h 2m2n hww. 5) $H \ni v$ dipole $\sqrt{\frac{1}{F_R}}$ real magnetric $\overline{f_R}$ impirely electric modifies SM VIJ coupling contact interaction

3 generations: 2499 parameters!

(many of them are 4f operators)

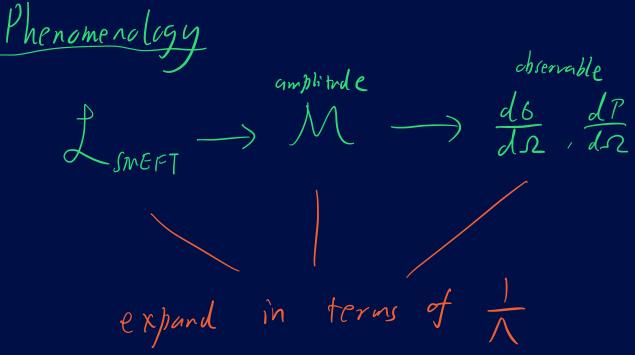
In other bases, we sometimes keep aperators with more derivatives.

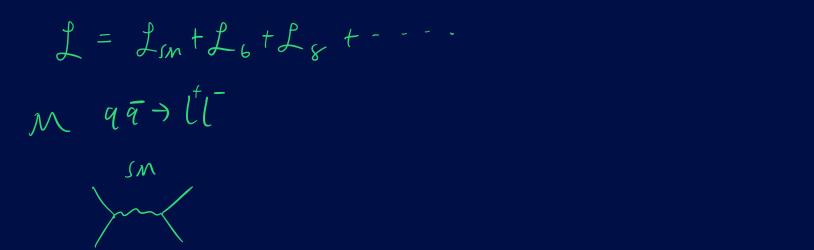
e.g.
$$(b_{2w} = -\frac{1}{2} (D^{m} W_{mv}^{\alpha})^{2} (b_{2g} = -\frac{1}{2} (\partial^{m} B_{mv})^{2})^{2}$$

useful in describing universal contributions to 4f interactions
 $U_{Hw} = ig(D^{m}H)^{\dagger} G^{\alpha} (D^{\nu}H) W_{mv}^{\alpha}$
 $D_{Hw} = ig'(D^{m}H)^{\dagger} (D^{\nu}H) B_{mv}$
 $(longitudinal)$
useful for describing anomalous triple gauge couplings
 $(aTGc_{s})$

(may skip) 1308.2627
RG running 1310.4838 Alanso, Jonkins, Mondaar, Trott
running couplings (=)
$$\mathcal{M}$$
sum large logs
tree level calculation + running couplings give
a reasonably accurate prediction.
Suppose $vev \rightarrow 0$, [9sm]=0

Let
$$\binom{6}{i} = \frac{c_i^{(c)}}{\Lambda^2}$$
 $[\binom{c}{i}] = -2$

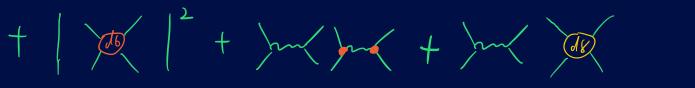

V


db RGE
$$\beta_{C_i} \equiv M_{JA} C_i \equiv \sigma_{ij} C_j$$
 Still holds!
anomalous dimension meetrix
depends on g_{sn}
This is the only form allowed by dimensional analysis!
Hav about $Vev \neq 0$?
 C_i contribute to $\beta_{gsn} \equiv M_{JA} g_{sn} \equiv + N^2 C_i g_{sn} + \cdots$
 $C_i^2 C_i^{(8)}$ contribute to β_{C_i}
 $db^2 d8 \leftarrow can ignore since they are higher order$
 $(d8 RGEs are more complicated, has both d8 & db^2 contributions)$

Solve RGE. If expand to list loop order (not resumed)

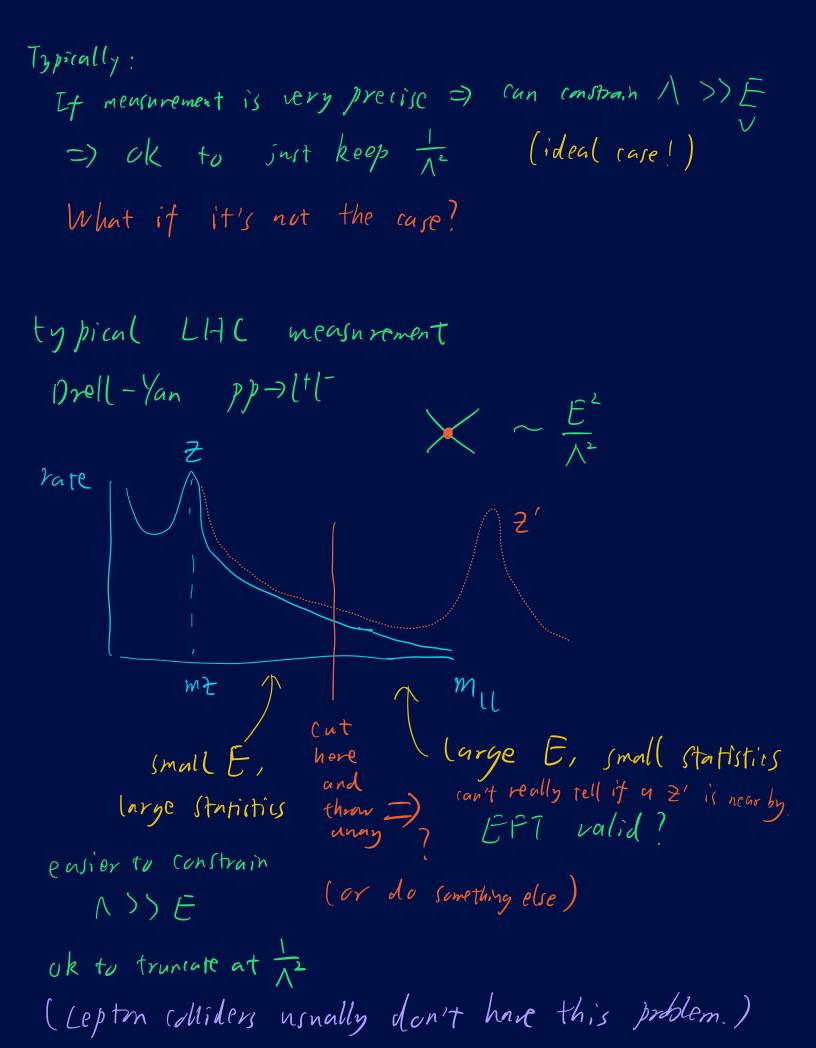
$$C_i(M) = C_i(M_0) + \log M_i$$
 $Y_i(C_i)$ is promoted to
resumption to
 $Y_i(M_i) = C_i(M_0) + \log M_i$ $Y_i(C_i)$ is promoted to
 $Y_i(M_i) = \sum_{maximum interval
 $Y_i(M_i) = \sum_{maxim interval
 $Y_i(M_i) = \sum_{ma$$$

+ - - - .



(d6² & ds are formally) in distinguishable

ligher dimensional aperators can can t in dinominators $\frac{1}{p^2 - m^2 - imp}$	we don't consider it here
(or just expand?)	
$G \sim M ^2$	
$\left \right\rangle $	


+2le

 $\frac{1}{\sqrt{4}}$

+ ----.

We can truncate 6 at collider $\frac{1}{\Lambda^2}$ is a very good approximation if $V < C \land$ $(1+\chi)^2 \simeq 1+2\chi$ if χ is very small! 14 strictly speaking need to calculate US what if A is not that tange, shall we keep dt ??

- Important exceptions of the $\frac{1}{\Lambda^2}$ power cauting: When SM contribution is obsent or strongly suppressed leading order: $d6^2 \sim \frac{1}{\Lambda^4}$ SM: d6, SM: d8 << $d6^2$
- rare process
 - flavor violation...

proton decay
$$T_p \sim \frac{m_p^5}{\Lambda^4} \qquad \Lambda \gtrsim 10^{15} \text{ GeV}$$

Fermiss theory: Weak interaction

 ^V_m
 ^V_m

The interforence term with SM is suppressed.
 Different helicity amplitudes...
 e.g. Z_m F_s^m f_z Z_m v F_c O^{nu} f_R = 0 interforence in the my -30 limit!

c) prators!
Srd generation
e.g.
$$\mathcal{L} > \mathcal{Y}_{+} \overline{Q}_{L}^{(3)} t_{R} \widetilde{H} + \frac{C_{+}}{\Lambda^{2}} |H|^{2} \overline{Q}_{L}^{(3)} t_{R} \widetilde{H} + h.c.$$

$$= \frac{\mathcal{Y}_{+}}{f_{2}} (\nu + h) \widetilde{t}_{L} t_{R} + \frac{C_{+}}{\Lambda^{2}} \frac{(\nu + h)^{3}}{2f_{2}} \widetilde{t}_{L} t_{R} + h.c.$$

with
$$C_{t}$$
: $\mathcal{I} = \left(\frac{\gamma_{t}\nu}{J_{2}} + \frac{\zeta_{t}\nu^{3}}{2J_{2}\Lambda^{2}}\right)\overline{t}_{L}t_{R} + \left(\frac{\gamma_{t}}{J_{2}} + \frac{\zeta_{t}^{3}\nu^{2}}{2J_{2}\Lambda^{2}}\right)h\overline{t}_{L}t_{R} + h.t.$
 m_{t}
 η_{ntt}
 η_{ntt}

Unespin: Does the measurement of
$$M_{t}$$
 gives us a
constraint on $(t]$
If $c_{t} \neq 0$, is m_{t} not 173 GeV anymore?
No! because a nonzero l_{t} only changes the
"inferred Value" of y_{t} .

We need 2 measurements to fix 2 jurameters. In other words, Ct changes the relation between Mt & ghtt

$$m_{t} = \frac{\gamma_{t} \nu}{\sqrt{2}} + \frac{(t \nu)^{3}}{2\sqrt{2}\sqrt{2}} \qquad \qquad \frac{\gamma_{t}}{\sqrt{2}} = \frac{m_{t}}{\nu} - \frac{(t \nu)^{2}}{2\sqrt{2}\sqrt{2}}$$

$$\mathcal{J}_{h+t} = \frac{h_{t}}{V} + \frac{c_{t}V^{2}}{J_{\Sigma}\Lambda^{2}}$$

More generally, any observes of the form

$$|H|^2 O_{SM}$$
 can call be probed with the
"It liggs particle"!
 $g_{SM} O_{SM}$ vs. $g_{SM} O_{SM} + \frac{C}{\Lambda^2} |H|^2 O_{SM}$
 $= g_{SM} O_{SM} + \frac{C}{\Lambda^2} \frac{V^2}{2} O_{SM} + terms with h$
 $= (g_{SM} + \frac{CV^2}{2\Lambda^2}) O_{SM} + terms with h$
redefine $\overline{g} = g_{SM} + \frac{CV^2}{2\Lambda^2}$
 $= \overline{g} O_{SM} + terms with h$
(can also be h in the loop)
Similarly, $O_b = (H^{\dagger}H)^3$ can only be probed
by measuring the Higgs self coupling!
HW