2025 第一期新物理冬季学校

Multi-Higgs Models (2HDM...)

苏伟

Why BSM

Why BSM

Motivations for extended scalar sectors:

- Why not?
- Susy
- Sources of (spontaneous CP violation) for baryogenesis
- Inflation
- Mass hierarchy of SM fermions
- Strong CP problem axions
- GUTs
- Dark matter relic abundance
- Vacuum stability

后续课程:

此次新物理冬季学校包含以下课程 基础课程: EW+QCD, BSM (CHM, SSM/2HDM, SUSY, EFT) 第一天: 电弱相互作用3课时、CHM 2课时(张宏浩), 强相互作用3课时(刘晓辉), 第二天:SSM+2HDM 2课时(苏伟),SUSY 2课时(曹俊杰), EFT4课时(顾嘉荫) 核心课程: 36课时, 包含 '暗物质(宋宁强、刘佐伟)、中微子(李玉峰,丁桂军)、AI(吴永成,刘炳萱) '拓展课程:16课时,包含 对撞机物理 (岩斌,张昊),相变 (边立功,张阳) 特邀报告: Tao Han, 杨金民, ...

Outline

*****2HDM framework

*Higgs and Z-pole Precision Measurements

Direct searches

Study Results: Tree & one-loop Level

*Electroweak Phase Transition

*multi-Higg models / scenoris

The Two-Higgs doublet mo

PHYSICAL REVIEW D

VOLUME 8, NUMBER 4

A Theory of Spontaneous T Violation*

T. D. Lee Department of Physics, Columbia University, New York, New York 10027 (Received 11 April 1973)

A theory of spontaneous T violation is presented. The total Lagrangian is assume invariant under the time reversal T and a gauge transformation (e.g., the hyperchangauge), but the physical solutions are not. In addition to the spin-1 gauge field and t known matter fields, in its simplest form the theory consists of two complex spin-0 fields. Through the spontaneous symmetry-breaking mechanism of Goldstone and Higgs, the vacuum expectation values of these two spin-0 fields can be characterized by the shape of a triangle and their quantum fluctuations by its vibrational modes, just like a triangular molecule. T violations can be produced among the known particles through virtual excitations of the vibrational modes of the triangle which has a built-in T-violating phase angle. Examples of both Abelian and non-Abelian gauge groups are discussed. For renormalizable theories, all spontaneously T-violating effects are finite. It is found that at low energy, below the threshold of producing these vibrational quanta, T violation is always quite small.

I. INTRODUCTION

In this paper we discuss a theory of spontaneous T violation. To illustrate the theory. we shall

$$\phi_k - e^{i\Lambda} \phi_k$$

and

• T.D.Lee, Phys. Rev. D8(1973)1226

(1)

The Two-Higgs doublet model (2HDM)

The 2HDM, consists of two-complex hypercharge-one scalar doublets Φ_1 and Φ_2 . Of the eight initial degrees of freedom, three are eaten and provide masses for the W^{\pm} and Z, and the remaining five correspond to physical scalars: a charged Higgs pair, H^{\pm} , and three neutral scalars h_1 , h_2 and h_3 . In contrast to the SM, where the Higgs-sector is CP-conserving, the 2HDM allows for Higgs-mediated CP-violation.

If CP is conserved, the three scalars can be classified as two CP-even scalars, h and H (where $m_h < m_H$) and a CP-odd scalar A.

• Two Higgs Doublet Model

$$V(\Phi_{1}, \Phi_{2}) = m_{11}^{2} \Phi_{1}^{\dagger} \Phi_{1} + m_{22}^{2} \Phi_{2}^{\dagger} \Phi_{2} - (m_{12}^{2} (\Phi_{1}^{\dagger} \Phi_{2} + h.c.) + \frac{\lambda_{1}}{2} (\Phi_{1}^{\dagger} \Phi_{1})^{2} + \frac{\lambda_{2}}{2} (\Phi_{2}^{\dagger} \Phi_{2})^{2} + \lambda_{3} (\Phi_{1}^{\dagger} \Phi_{1}) (\Phi_{2}^{\dagger} \Phi_{2}) + \lambda_{4} (\Phi_{1}^{\dagger} \Phi_{2}) (\Phi_{2}^{\dagger} \Phi_{1}) + \frac{1}{2} [\lambda_{5} (\Phi_{1}^{\dagger} \Phi_{2})^{2} + h.c.] + \frac{1}{2} (\Phi_{1}^{\dagger} \Phi_{2} + h.c.) (\lambda_{6} \Phi_{1}^{\dagger} \Phi_{1} + \lambda_{7} \Phi_{1}^{\dagger} \Phi_{1}) + Hard breaking of Z2$$

$$\Phi_i = \begin{pmatrix} \phi_i^+ \\ (v_i + \phi_i^0 + iG_i)/\sqrt{2} \end{pmatrix}$$

$$\Phi_1 \rightarrow \Phi_1 \,, \ \Phi_2 \rightarrow -\Phi_2$$

• Two Higgs Doublet Model

$$V(\Phi_{1}, \Phi_{2}) = m_{11}^{2} \Phi_{1}^{\dagger} \Phi_{1} + m_{22}^{2} \Phi_{2}^{\dagger} \Phi_{2} - m_{12}^{2} (\Phi_{1}^{\dagger} \Phi_{2} + h.c.) + \frac{\lambda_{1}}{2} (\Phi_{1}^{\dagger} \Phi_{1})^{2} + \frac{\lambda_{2}}{2} (\Phi_{2}^{\dagger} \Phi_{2})^{2} + \lambda_{3} (\Phi_{1}^{\dagger} \Phi_{1}) (\Phi_{2}^{\dagger} \Phi_{2}) + \lambda_{4} (\Phi_{1}^{\dagger} \Phi_{2}) (\Phi_{2}^{\dagger} \Phi_{1}) + \frac{1}{2} [\lambda_{5} (\Phi_{1}^{\dagger} \Phi_{2})^{2} + h.c.] + \frac{1}{2} (\Phi_{1}^{\dagger} \Phi_{2} + h.c.) (\lambda_{6} \Phi_{1}^{\dagger} \Phi_{1} + \lambda_{7} \Phi_{1}^{\dagger} \Phi_{1}) + \frac{1}{2} [\lambda_{5} (\Phi_{1}^{\dagger} \Phi_{2})^{2} + h.c.] + \frac{1}{2} (\Phi_{1}^{\dagger} \Phi_{2} + h.c.) (\lambda_{6} \Phi_{1}^{\dagger} \Phi_{1} + \lambda_{7} \Phi_{1}^{\dagger} \Phi_{1}) + \frac{1}{2} [\lambda_{5} (\Phi_{1}^{\dagger} \Phi_{2})^{2} + h.c.] + \frac{1}{2} (\Phi_{1}^{\dagger} \Phi_{2} + h.c.) (\lambda_{6} \Phi_{1}^{\dagger} \Phi_{1} + \lambda_{7} \Phi_{1}^{\dagger} \Phi_{1}) + \frac{1}{2} [\lambda_{5} (\Phi_{1}^{\dagger} \Phi_{2})^{2} + h.c.] + \frac{1}{2} (\Phi_{1}^{\dagger} \Phi_{2} + h.c.) (\lambda_{6} \Phi_{1}^{\dagger} \Phi_{1} + \lambda_{7} \Phi_{1}^{\dagger} \Phi_{1}) + \frac{1}{2} [\lambda_{5} (\Phi_{1}^{\dagger} \Phi_{2})^{2} + h.c.] + \frac{1}{2} (\Phi_{1}^{\dagger} \Phi_{2} + h.c.) (\lambda_{6} \Phi_{1}^{\dagger} \Phi_{1} + \lambda_{7} \Phi_{1}^{\dagger} \Phi_{1}) + \frac{1}{2} [\lambda_{5} (\Phi_{1}^{\dagger} \Phi_{2})^{2} + h.c.] + \frac{1}{2} (\Phi_{1}^{\dagger} \Phi_{2} + h.c.) (\lambda_{6} \Phi_{1}^{\dagger} \Phi_{1} + \lambda_{7} \Phi_{1}^{\dagger} \Phi_{1}) + \frac{1}{2} [\lambda_{5} (\Phi_{1}^{\dagger} \Phi_{2})^{2} + h.c.] + \frac{1}{2} (\Phi_{1}^{\dagger} \Phi_{2} + h.c.) (\lambda_{6} \Phi_{1}^{\dagger} \Phi_{1} + \lambda_{7} \Phi_{1}^{\dagger} \Phi_{1}) + \frac{1}{2} [\lambda_{5} (\Phi_{1}^{\dagger} \Phi_{2})^{2} + h.c.] + \frac{1}{2} (\Phi_{1}^{\dagger} \Phi_{2} + h.c.) (\lambda_{6} \Phi_{1}^{\dagger} \Phi_{1} + \lambda_{7} \Phi_{1}^{\dagger} \Phi_{1}) + \frac{1}{2} [\lambda_{5} (\Phi_{1}^{\dagger} \Phi_{2})^{2} + h.c.] + \frac{1}{2} (\Phi_{1}^{\dagger} \Phi_{2} + h.c.) (\lambda_{6} \Phi_{1}^{\dagger} \Phi_{1} + \lambda_{7} \Phi_{1}^{\dagger} \Phi_{1}) + \frac{1}{2} (\Phi_{1}^{\dagger} \Phi_{2} + h.c.) + \frac{1}{2} (\Phi_{1$$

• Why is the Z2 symmetry demanded?

- -

$$\mathcal{L}_{Y} \sim Y_{f} \Phi \bar{f}_{i} f_{j} \xrightarrow{\langle \Phi \rangle = v} M_{ij} = Y_{f} v \bar{f}_{i} f_{j}$$
$$\mathcal{L}_{Y} \sim Y_{f}^{1} \Phi_{1} \bar{f}_{i} f_{j} + Y_{f}^{2} \Phi_{2} \bar{f}_{i} f_{j} \xrightarrow{\langle \Phi_{1} \rangle = v_{1}} M_{ij} = Y_{f}^{1} v_{1} \bar{f}_{i} f_{j} + Y_{f}^{2} v_{2} \bar{f}_{i} f_{j}$$

 Z_2 symmetry avoids FCNC at tree level

• Two Higgs Doublet Model

$$V(\Phi_1, \Phi_2) = m_{11}^2 \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \Phi_2^{\dagger} \Phi_2 - m_{12}^2 (\Phi_1^{\dagger} \Phi_2 + h.c.) + \frac{\lambda_1}{2} (\Phi_1^{\dagger} \Phi_1)^2 + \frac{\lambda_2}{2} (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + \frac{1}{2} \Big[\lambda_5 (\Phi_1^{\dagger} \Phi_2)^2 + h.c. \Big]$$

• Parameters (CP-conserving, Flavor Limit, Z_2 Symmetry)

• Two Higgs Doublet Model

$$V(\Phi_1, \Phi_2) = m_{11}^2 \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \Phi_2^{\dagger} \Phi_2 - m_{12}^2 (\Phi_1^{\dagger} \Phi_2 + h.c.) + \frac{\lambda_1}{2} (\Phi_1^{\dagger} \Phi_1)^2 + \frac{\lambda_2}{2} (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + \frac{1}{2} \Big[\lambda_5 (\Phi_1^{\dagger} \Phi_2)^2 + h.c. \Big]$$

Parameters (Alignment limit)

	ф 1	ф 2	
Type I	u,d,l		
Type II	u	d,l	
lepton-specific	u,d	I	
flipped	u,l	d	

$$\kappa_i = g_{hii}^{BSM} / g_{hii}^{SM}$$

Model	κ_V	κ_u	κ_d	κ_ℓ
2HDM-I	$\sin(\beta - \alpha)$	$\cos \alpha / \sin \beta$	$\cos \alpha / \sin \beta$	$\cos \alpha / \sin \beta$
2HDM-II	$\sin(\beta - \alpha)$	$\cos lpha / \sin eta$	$-\sin \alpha / \cos \beta$	$-\sin \alpha / \cos \beta$
2HDM-L	$\sin(\beta - \alpha)$	$\cos \alpha / \sin \beta$	$\cos \alpha / \sin \beta$	$-\sin \alpha / \cos \beta$
2HDM-F	$\sin(\beta - \alpha)$	$\cos \alpha / \sin \beta$	$-\sin \alpha / \cos \beta$	$\cos \alpha / \sin \beta$

2HDM framework

$$\mathcal{L}_{\rm kin} = [\sin(\beta - \alpha)h + \cos(\beta - \alpha)H] \Big(\frac{m_W^2}{v} W^{+\mu} W^-_{\mu} + \frac{m_Z^2}{2v} Z^{\mu} Z_{\mu} \Big) + g_{\phi_1 \phi_2 V} (\partial^{\mu} \phi_1 \phi_2 - \phi_1 \partial^{\mu} \phi_2) V_{\mu} + g_{\phi_1 \phi_2 V_1 V_2} \phi_1 \phi_2 V_1^{\mu} V_{2\mu},$$

$$\begin{aligned} -\mathcal{L}_{Y} &= Y_{u} Q_{L} i \sigma_{2} \Phi_{u}^{*} u_{R} + Y_{d} Q_{L} \Phi_{d} d_{R} + Y_{e} L_{L} \Phi_{e} e_{R} + \text{h.c.}, \\ -\mathcal{L}_{Y}^{\text{int}} &= \sum_{f=u,d,e} \frac{m_{f}}{v} \left(\xi_{h}^{f} \overline{f} fh + \xi_{H}^{f} \overline{f} fH - 2i I_{f} \xi_{f} \overline{f} \gamma_{5} fA \right) \\ &= \frac{\chi_{f}^{f}}{v} \left(\xi_{h}^{f} \overline{f} fh + \xi_{H}^{f} \overline{f} fH - 2i I_{f} \xi_{f} \overline{f} \gamma_{5} fA \right) \\ &= \frac{\chi_{f}^{f}}{v} \left[V_{ud} \overline{u} \left(m_{d} \xi_{d} P_{R} - m_{u} \xi_{u} P_{L} \right) dH^{+} + m_{e} \xi_{e} \overline{v} P_{R} eH^{+} + \text{h.c.} \right], \end{aligned}$$

2HDM framework

	Z_2 charge					Mixing	Mixing factor			
	$\overline{\Phi_1}$	Φ2	Q_L	L_L	u _R	d_R	e _R	ξu	ξd	ξe
Type-I	+		+	+	_	_	_	$\cot \beta$	$\cot \beta$	$\cot \beta$
Type-II	+	—	+	+	_	+	+	$\cot\beta$	$-\tan\beta$	$-\tan\beta$
Type-X	+	_	+	+	_	_	+	$\cot\beta$	$\cot \beta$	$-\tan\beta$
Type-Y	+	—	+	+	—	+	—	$\cot \beta$	$-\tan\beta$	$\cot \beta$

Charge assignment of the softly-broken Z_2 symmetry and the mixing factors in Yukawa interactions given in Eq. (8).

$$\mathcal{L} = +g_{\phi V_1 V_2} g^{\mu \nu} \phi V_{1 \mu} V_{2 \nu} + g_{\phi_1 \phi_2 V} (\partial^{\mu} \phi_1 \phi_2 - \phi_1 \partial^{\mu} \phi_2) V_{\mu} + g_{\phi_1 \phi_2 V_1 V_2} g^{\mu \nu} \phi_1 \phi_2 V_{1 \mu} V_{2 \nu} + \cdots.$$

$$\mathcal{L} = +\lambda_{\phi_i\phi_j\phi_k}\phi_i\phi_j\phi_k + \lambda_{\phi_i\phi_j\phi_k\phi_l}\phi_i\phi_j\phi_k\phi_l + \cdots.$$

Vertices	$g_{\phi_1\phi_2}V$	Vertices	$g_{\phi_1\phi_2}V_1V_2$	Vertices	$g_{\phi_1\phi_2}V_1V_2$
$hG^{\pm}W^{\mp}_{\mu}$	$\mp i \frac{g}{2} s_{\beta-\alpha}$	$hhW^+_\mu W^ u$	$\frac{g^2}{4}$	$G^{\pm}G^{0}W^{\mp}_{\mu}Z_{ u}$	$\pm i \frac{gg_Z}{2} s_W^2$
$HG^{\pm}W^{\mp}_{\mu}$	$\mp i \frac{g}{2} c_{\beta-\alpha}$	$HHW^+_{\mu}W^{\nu}$	$\frac{g^2}{4}$	$H^{\pm}AW^{\mp}_{\mu}Z_{ u}$	$\pm i \frac{gg_Z}{2} s_W^2$
$G^0G^\pm W^\mp_\mu$	$-\frac{g}{2}$	$AAW^+_\mu W^ u$	$\frac{g^2}{4}$	$G^{\pm}HW^{\mp}_{\mu}Z_{ u}$	$-\frac{gg_Z}{2}s_W^2c_{\beta-\alpha}$
$hH^{\pm}W^{\mp}_{\mu}$	$\mp i \frac{g}{2} c_{\beta-\alpha}$	$G^0G^0W^+_\mu W^ u$	$\frac{g^2}{4}$	$H^{\pm}hW^{\mp}_{\mu}Z_{ u}$	$-\frac{gg_Z}{2}s_W^2c_{\beta-\alpha}$
$HH^{\pm}W^{\mp}_{\mu}$	$\pm i \frac{g}{2} s_{\beta-\alpha}$	$G^+G^-W^+_\mu W^ u$	$\frac{g^2}{2}$	$G^{\pm}hW^{\mp}_{\mu}Z_{ u}$	$-\frac{gg_Z}{2}s_W^2s_{\beta-\alpha}$
$AH^{\pm}W^{\mp}_{\mu}$	$-\frac{g}{2}$	$H^+H^-W^+_\mu W^ u$	$\frac{g^2}{2}$	$H^{\pm}HW^{\mp}_{\mu}Z_{ u}$	$\frac{gg_Z}{2}s_W^2s_{\beta-\alpha}$
$G^+G^-Z_\mu$	$i\frac{g_Z}{2}c_{2W}$	$hhZ_{\mu}Z_{ u}$	$\frac{g_Z^2}{8}$	$H^{\pm}AW^{\mp}_{\mu}A_{ u}$	$\mp \frac{eg}{2}$
$H^+H^-Z_\mu$	$i\frac{g_Z}{2}c_{2W}$	$HHZ_{\mu}Z_{\nu}$	$\frac{g_Z^2}{8}$	$G^{\pm}G^{0}W^{\mp}_{\mu}A_{ u}$	$\mp \frac{eg}{2}$
hG^0Z_{μ}	$-\frac{g_Z}{2}s_{\beta-\alpha}$	$AAZ_{\mu}Z_{ u}$	$\frac{g_Z^2}{8}$	$H^{\pm}hW^{\mp}_{\mu}A_{ u}$	$\frac{eg}{2}c_{\beta-\alpha}$
hAZ_{μ}	$-\frac{g_Z}{2}c_{\beta-\alpha}$	$G^0G^0Z_\mu Z_ u$	$\frac{g_Z^2}{8}$	$G^{\pm}HW^{\mp}_{\mu}A_{\nu}$	$\frac{eg}{2}c_{\beta-\alpha}$
HG^0Z_{μ}	$-\frac{g_Z}{2}c_{\beta-\alpha}$	$G^+G^-Z_\mu Z_\nu$	$\frac{g_Z^2}{4}c_{2W}^2$	$G^+G^-A_\mu Z_\nu$	eg _Z c _{2W}
HAZ_{μ}	$\frac{g_Z}{2}s_{\beta-\alpha}$	$H^+H^-Z_\mu Z_\nu$	$\frac{g_Z^2}{4}c_{2W}^2$	$H^+H^-A_\mu Z_\nu$	egycow
$G^+G^-A_\mu$	ie	$G^+G^-A_\mu A_ u$	e^2	$G^{\pm}hW^{\mp}_{\mu}A_{ u}$	$\frac{eg}{2}s_{\beta-\alpha}$
$H^+H^-A_\mu$	ie	$H^+H^-A_\mu A_ u$	e^2	$H^{\pm}HW^{\mp}_{\mu}A_{ u}$	$-\frac{eg}{2}s_{\beta-\alpha}$

The Scalar–Scalar–Gauge and Scalar–Scalar–Gauge–Gauge type vertices and those coefficients.

Higgs Basis

It is convenient to define new Higgs doublet fields:

$$H_{1} = \begin{pmatrix} H_{1}^{+} \\ H_{1}^{0} \end{pmatrix} \equiv \frac{v_{1}^{*} \Phi_{1} + v_{2}^{*} \Phi_{2}}{v}, \qquad H_{2} = \begin{pmatrix} H_{2}^{+} \\ H_{2}^{0} \end{pmatrix} \equiv \frac{-v_{2} \Phi_{1} + v_{1} \Phi_{2}}{v}$$
$$\langle H_{1}^{0} \rangle = v / \sqrt{2} \text{ and } \langle H_{2}^{0} \rangle = 0 \qquad H_{2} \to e^{i\chi} H_{2}$$

$$\begin{aligned} \mathcal{V} &= Y_1 H_1^{\dagger} H_1 + Y_2 H_2^{\dagger} H_2 + [Y_3 H_1^{\dagger} H_2 + \text{h.c.}] + \frac{1}{2} Z_1 (H_1^{\dagger} H_1)^2 \\ &+ \frac{1}{2} Z_2 (H_2^{\dagger} H_2)^2 + Z_3 (H_1^{\dagger} H_1) (H_2^{\dagger} H_2) + Z_4 (H_1^{\dagger} H_2) (H_2^{\dagger} H_1) \\ &+ \left\{ \frac{1}{2} Z_5 (H_1^{\dagger} H_2)^2 + \left[Z_6 (H_1^{\dagger} H_1) + Z_7 (H_2^{\dagger} H_2) \right] H_1^{\dagger} H_2 + \text{h.c.} \right\} \end{aligned}$$

The gauge boson–Higgs boson interactions

$$\mathscr{L}_{VVH} = \left(gm_W W^+_{\mu} W^{\mu-}_{\mu} + \frac{g}{2c_W} m_Z Z_{\mu} Z^{\mu}\right) \operatorname{Re}(q_{k1})h_k + em_W A^{\mu} (W^+_{\mu} G^- + W^-_{\mu} G^+) -gm_Z s^2_W Z^{\mu} (W^+_{\mu} G^- + W^-_{\mu} G^+) ,$$

$$\begin{aligned} \mathscr{L}_{VVHH} &= \left[\frac{1}{4} g^2 W^+_{\mu} W^{\mu -} + \frac{g^2}{8c_W^2} Z_{\mu} Z^{\mu} \right] \operatorname{Re}(q_{j1}^* q_{k1} + q_{j2}^* q_{k2}) h_j h_k \\ &+ \left[\frac{1}{2} g^2 W^+_{\mu} W^{\mu -} + e^2 A_{\mu} A^{\mu} + \frac{g^2}{c_W^2} \left(\frac{1}{2} - s_W^2 \right)^2 Z_{\mu} Z^{\mu} + \frac{2ge}{c_W} \left(\frac{1}{2} - s_W^2 \right) A_{\mu} Z^{\mu} \right] (G^+ G^- + H^+ H^-) \\ &+ \left\{ \left(\frac{1}{2} eg A^{\mu} W^+_{\mu} - \frac{g^2 s_W^2}{2c_W} Z^{\mu} W^+_{\mu} \right) (q_{k1} G^- + q_{k2} H^-) h_k + \operatorname{h.c.} \right\}, \end{aligned}$$

$$\begin{aligned} \mathscr{L}_{VHH} &= \frac{g}{4c_W} \operatorname{Im}(q_{j1}q_{k1}^* + q_{j2}q_{k2}^*) Z^{\mu}h_j \overleftrightarrow{\partial}_{\mu} h_k - \frac{1}{2}g \Big\{ iW_{\mu}^+ \left[q_{k1}G^- \overleftrightarrow{\partial}^{\mu} h_k + q_{k2}H^- \overleftrightarrow{\partial}^{\mu} h_k \right] + \text{h.c.} \Big\} \\ &+ \left[ieA^{\mu} + \frac{ig}{c_W} \left(\frac{1}{2} - s_W^2 \right) Z^{\mu} \right] (G^+ \overleftrightarrow{\partial}_{\mu} G^- + H^+ \overleftrightarrow{\partial}_{\mu} H^-) \,, \end{aligned}$$

where
$$s_W \equiv \sin \theta_W$$
 and $c_W \equiv \cos \theta_W$.

How to test it?

Various constraints have to be taken into account:

- Flavour physics observables
- Electroweak precision observables
- Collider searches
- SM Higgs-boson mass and signal strengths
- $Zb\bar{b}$ vertex corrections

Constraints from theoretical considerations:

- Stability of the vacuum
- Perturbativity
- Perturbative unitarity

Higgs discovery

CMS-HIG-14-042 ATLAS-HIGG-2014-14

LHC Run-I: $m_h = 125.09 \pm 0.24 \text{ GeV}$

LHC era: Higgs discovery

CMS-HIG-14-042 ATLAS-HIGG-2014-14

LHC Run-I: $m_h = 125.09 \pm 0.24 \text{ GeV}$

Higgs property at LHC Run-I

Higgs property at LHC Run-II

ATLAS Preliminary - Total	Stat. 💳 S	yst. 🔲 SM
$m_{\mu} = 125.09 \text{ GeV}, v_{\mu} < 2.5$		
$p_{SM}^{H} = 87\%$	Total	Stat. Syst.
ggF γγ 📥	1.03 ± 0.11 (± 0.08 , ± 0.08)
ggF ZZ	0.94 +0.11 (± 0.10 , ± 0.04)
ggF WW	1.08 ^{+0.19} _{-0.18} (±0.11, ±0.15)
ggF ττ μ	1.02 ^{+0.60} _{-0.55} (+0.39 +0.47 -0.38 -0.39)
ggF comb.	1.00 ± 0.07 (± 0.05 , ± 0.05)
VBF γγ	1.31 ^{+0.26} _{-0.23} (+0.19 +0.18 -0.18 , -0.15)
VBF ZZ	1.25 +0.50 -0.41 (+0.48 +0.12 -0.40 , -0.08)
VBF WW	0.60 + 0.36 (+0.29 -0.27, ±0.21)
	1.15 ^{+0.57} _{-0.53} ($^{+0.42}_{-0.40}$, $^{+0.40}_{-0.35}$)
VBF bb	3.03 ^{+1.67} _{-1.62} (+1.63 +0.38 -1.60 , -0.24)
VBF comb.	1.15 ^{+0.18} _{-0.17} (± 0.13 , $^{+0.12}_{-0.10}$)
νΗ γγ	1.32 ^{+0.33} _{-0.30} ($^{+0.31}_{-0.29}$, $^{+0.11}_{-0.09}$)
	1.53 ^{+1.13} _{-0.92} ($+1.10 + 0.28 \\ -0.90 - 0.21$
VH bb	1.02 ^{+0.18} _{-0.17} (± 0.11 , $^{+0.14}_{-0.12}$)
VH comb.	1.10 ^{+0.16} _{-0.15} (± 0.11 , $\begin{array}{c} +0.12\\ -0.10\end{array}$)
ttH+tH γγ 🚘	0.90 +0.27 -0.24 ($+0.25 + 0.09 \\ -0.23 - 0.06$
ttH+tH VV	1.72 ^{+0.56} _{-0.53} ($^{+0.42}_{-0.40}$, $^{+0.38}_{-0.34}$)
	1.20 +1.07 -0.93 ($+0.81 + 0.70 \\ -0.74 - 0.57$
ttH+tH bb	0.79 ^{+0.60} _{-0.59} (± 0.29 , $^{+0.52}_{-0.51}$)
ttH+tH comb.	1.10 +0.21 (+0.16 + 0.14 - 0.15 - 0.13
	<u>i i l î</u>	III.
-2 0 2 4	6	8
$\sigma imes B$ no	rmalize	d to SM

ATLAS-CONF-2020-027

Higgs property at LHC Run-II

CMS_137_HIG-19-005-pas

Nature 607 (2022) 52-59 Nature 607 (2022) 60-68

LHC era: 62.5 GeV - 1 TeV

• Conventional channels:

Exotic Decays

$\operatorname{channel}$	AT	LAS	CMS		
	8 TeV	$13 { m TeV}$	8 TeV	$13 { m TeV}$	
$A \to hZ \to bb\ell\ell$	[36]	[37]	[38]	[39]	
$A \to hZ \to \tau \tau \ell \ell$	[40]	[41]	[38]		
H ightarrow hh	[42]	[43]	[44]	[45]	

channel	ATLAS	CMS
$A/H \rightarrow HZ/AZ \rightarrow bb\ell\ell$	[57] (13 TeV)	[58] (13 TeV)
$A/H \to HZ/AZ \to \tau \tau \ell \ell$		[59] (8 TeV)

2212.06186 (F. Kling, S. Li, S. Su, H.Song, WS)

LHC era: 10 GeV ~ 62.5 GeV

• Exotic Decays

· SM Higgs decay width

channel	ATLAS	CMS
$h \to AA \to bbbb$	[46]	
$h \to AA \to bb\tau\tau$		[47]
$h \to AA \to bb\mu\mu$	[48]	[49]
$h \to AA \to \tau\tau\tau\tau$		[50]
$h \to AA \to \tau \tau \mu \mu$	[51]	[52]
$h \to AA \to \mu\mu\mu\mu$	([53])	([54])

CMS
$$\Gamma = 3.2^{+2.4}_{-1.7}$$
 MeV
Nat. Phys. 18 (2022) 1329
ATLAS $\Gamma = 4.5^{+3.3}_{-2.5}$ MeV
Phys. Lett. B 846 (2023) 138223

LHC era: 10 GeV ~ 62.5 GeV

- Precision Higgs Measurements: Global fit
- SM Higgs invisible decays : <u>Eur. Phys. J. C 83 (2023) 933</u> Phys. Lett. B 842 (2023) 137963_
- 95% CL limit for $H \rightarrow inv$

ATLAS: 10.7% (7.7% exp.) CMS: 15% (8% exp.)

Higgs property

Higgs property

ATL-PHYS-PUB-2014-016

$\Delta \mu/\mu$	3	300 fb^{-1}	3000 fb^{-1}		
	All unc.	No theory unc.	All unc.	No theory unc.	
$H \rightarrow \gamma \gamma \text{ (comb.)}$	0.13	0.09	0.09	0.04	
(0j)	0.19	0.12	0.16	0.05	
(1j)	0.27	0.14	0.23	0.05	
(VBF-like)	0.47	0.43	0.22	0.15	
(WH-like)	0.48	0.48	0.19	0.17	
(ZH-like)	0.85	0.85	0.28	0.27	
(<i>ttH</i> -like)	0.38	0.36	0.17	0.12	
$H \rightarrow ZZ \text{ (comb.)}$	0.11	0.07	0.09	0.04	
(VH-like)	0.35	0.34	0.13	0.12	
(<i>ttH</i> -like)	0.49	0.48	0.20	0.16	
(VBF-like)	0.36	0.33	0.21	0.16	
(ggF-like)	0.12	0.07	0.11	0.04	
$H \rightarrow WW$ (comb.)	0.13	0.08	0.11	0.05	
(0j)	0.18	0.09	0.16	0.05	
(1j)	0.30	0.18	0.26	0.10	
(VBF-like)	0.21	0.20	0.15	0.09	
$H \rightarrow Z\gamma$ (incl.)	0.46	0.44	0.30	0.27	
$H \rightarrow b\bar{b}$ (comb.)	0.26	0.26	0.14	0.12	
(WH-like)	0.57	0.56	0.37	0.36	
(ZH-like)	0.29	0.29	0.14	0.13	
$H \rightarrow \tau \tau \text{ (VBF-like)}$	0.21	0.18	0.19	0.15	
$H \rightarrow \mu\mu \text{ (comb.)}$	0.39	0.38	0.16	0.12	
(incl.)	0.47	0.45	0.18	0.14	
(<i>ttH</i> -like)	0.74	0.72	0.27	0.23	

Higgs precision measurements

	collider	CEPC	FCC-ee	ILC					
ĺ	\sqrt{s}	$240{ m GeV}$	$240{ m GeV}$	$250{ m GeV}$	${ m GeV}$ 350 ${ m GeV}$		$500{ m GeV}$		
	$\int {\cal L} dt$	5 ab^{-1}	$10 {\rm ~ab^{-1}}$	2 ab^{-1}	200	fb^{-1}		4 ab^{-1}	
	production	Zh	Zh	Zh	Zh	$ u ar{ u} h$	Zh	$ u ar{ u} h$	$t\bar{t}h$
	$\Delta\sigma/\sigma$	0.51%	0.4%	0.71%	2.1%	-	1.06	-	-
	decay			$\Delta(\sigma \cdot$	$BR)/(\sigma$	$(\cdot BR)$			
	$h ightarrow b ar{b}$	0.28%	0.2%	0.42%	1.67%	1.67%	0.64%	0.25%	9.9%
	$h \to c \bar{c}$	2.2%	1.2%	2.9%	12.7%	16.7%	4.5%	2.2%	-
	h ightarrow gg	1.6%	1.4%	2.5%	9.4%	11.0%	3.9%	1.5%	-
	$h \to WW^*$	1.5%	0.9%	1.1%	8.7%	6.4%	3.3%	0.85%	-
	$h \to \tau^+ \tau^-$	1.2%	0.7%	2.3%	4.5%	24.4%	1.9%	3.2%	-
	$h \to Z Z^*$	4.3%	3.1%	6.7%	28.3%	21.8%	8.8%	2.9%	-
	$h ightarrow \gamma \gamma$	9.0%	3.0%	12.0%	43.7%	50.1%	12.0%	6.7%	-
	$h ightarrow \mu^+ \mu^-$	17%	13%	25.5%	97.6%	179.8%	31.1%	25.5%	-
	$(uar{ u})h ightarrow bar{b}$	2.8%	2.2%	3.7%	-	-	-	-	-

CEPC-preCDR, TLEP Design Study Working Group, ILC Operating Scenarios
Higgs precision measurements

co	ollider	CEPC	FCC-ee		$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
	\overline{s}	$240{ m GeV}$	$240{ m GeV}$	$250{ m GeV}$	350	GeV	$500\mathrm{GeV}$					
\int	$\mathcal{L}dt$	5 ab^{-1}	$10 {\rm ~ab^{-1}}$	2 ab^{-1}	200	$200 {\rm ~fb}^{-1}$		4 ab^{-1}				
pr	oduction	Zh	Zh	Zh	Zh	$ u ar{ u} h$	Zh	$ u ar{ u} h$	$t ar{t} h$			
Δ	σ/σ	0.51%	0.4%	0.71%	2.1%	-	1.06	-	-			
de	ecay			$\Delta(\sigma \cdot$	$BR)/(\sigma$	$(\cdot BR)$						
h	$ ightarrow b\overline{b}$	0.28%	0.2%	0.42%	1.67%	1.67%	0.64%	0.25%	9.9%			
$\mid h$	$\rightarrow c\bar{c}$	2.2%	1.2%	2.9%	12.7%	16.7%	4.5%	2.2%	-			
h	ightarrow gg	1.6%	1.4%	2.5%	9.4%	11.0%	3.9%	1.5%	-			
h	$\rightarrow WW^*$	1.5%	0.9%	1.1%	8.7%	6.4%	3.3%	0.85%	-			
h	$\rightarrow \tau^+ \tau^-$	1.2%	0.7%	2.3%	4.5%	24.4%	1.9%	3.2%	-			
h	$\rightarrow ZZ^{*}$	4.3%	3.1%	6.7%	28.3%	21.8%	8.8%	2.9%	-			
h	$ ightarrow \gamma \gamma$	9.0%	3.0%	12.0%	43.7%	50.1%	12.0%	6.7%	-			
h	$ ightarrow \mu^+ \mu^-$	17%	13%	25.5%	97.6%	179.8%	31.1%	25.5%	-			
$(\nu$	$(ar{ u})\overline{h ightarrow bar{b}}$	2.8%	2.2%	3.7%	-	-	-	-	-			

CEPC-preCDR, TLEP Design Study Working Group, ILC Operating Scenarios

Higgs precision measurements

Collider	$\Delta \mu$ (hbb)
LHC Run-I	50% (wh)
LHC 14 TeV $300 f b^{-1}$	26%
LHC 14 TeV $3000 f b^{-1}$	12%
CEPC 240 GeV $5ab^{-1}$ (zh)	0.28%
FCC-ee 240 GeV $10ab^{-1}$ (zh)	0.2%
ILC 240 GeV $2ab^{-1}$ (zh)	0.42%
ILC 350 GeV $0.2ab^{-1}$ (zh)	1.6%
ILC 500 GeV $4ab^{-1}$ (vvh)	0.24%

38

Higgs precision measurements

Z-pole precision measurements

		Measurement	Fit	O ^{meas} -O	^{fit} /σ ^{meas}		CEPC
	(5)	0.00750 + 0.00005		0 1	2 3	\sqrt{s}	$90/250~{ m GeV}$
	$\Delta \alpha_{had}^{(o)}(m_Z)$	0.02758 ± 0.00035	0.02767			$\int \mathcal{L} dt$	$\sim 100 \text{ fb}^{-1}/1 \text{ ab}^{-1}$
	m _z [GeV]	91.1875 ± 0.0021	91.1874			$\frac{J}{\alpha (M^2)}$	$+1.0 \times 10^{-4}$
	Γ _z [GeV]	2.4952 ± 0.0023	2.4965			$\frac{\alpha_s(m_Z)}{(5)(1-2)}$	$\pm 1.0 \times 10^{-5}$
	σ_{had}^{0} [nb]	41.540 ± 0.037	41.481			$\Delta \alpha_{\rm had}^{(\gamma)}(M_Z^2)$	$\pm 4.7 \times 10^{-6}$
	R _I	20.767 ± 0.025	20.739			$m_Z [{ m GeV}]$	± 0.0005
	A ^{0,I} _{fb}	0.01714 ± 0.00095	0.01642			$m_t \; [\text{GeV}] \; (\text{pole})$	$\pm 0.6_{\rm exp} \pm 0.25_{\rm th}$
	A _I (P _τ)	0.1465 ± 0.0032	0.1480			$m_h [{ m GeV}]$	$< \pm 0.1$
[R _b	0.21629 ± 0.00066	0.21562			$m_W \; [{ m GeV}]$	$(\pm 3_{\mathrm{exp}} \pm 1_{\mathrm{th}}) \times 10^{-3}$
	R _c	0.1721 ± 0.0030	0.1723			$\sin^2 heta^\ell_{ m eff}$	$(\pm 4.6_{\rm exp} \pm 1.5_{\rm th}) \times 10^{-5}$
	A ^{0,b} _{fb}	0.0992 ± 0.0016	0.1037			$\Gamma_Z [{ m GeV}]$	$(\pm 5_{\mathrm{exp}} \pm 0.8_{\mathrm{th}}) \times 10^{-4}$
	A ^{0,c} _{fb}	0.0707 ± 0.0035	0.0742				
	A _b	0.923 ± 0.020	0.935				
	A _c	0.670 ± 0.027	0.668				
	A _l (SLD)	0.1513 ± 0.0021	0.1480				

CEPC-preCDR, TLEP Design Study, ILC Operating Scenarios

ILC

 $90/160 {
m GeV}$

 $/100 {\rm ~fb^{-1}}$

 $\pm 1.0 \times 10^{-4}$

 $\pm 4.7 \times 10^{-5}$

 ± 0.0021

 $\pm 0.03_{\rm exp} \pm 0.1_{\rm th}$

 $< \pm 0.1$

 $(\pm 5_{\rm exp} \pm 1_{\rm th}) \times \overline{10^{-3}}$

 $(\pm 1.3_{\rm exp} \pm 1.5_{\rm th}) \times 10^{-5}$

 ± 0.001

TLEP-W/TLEP-Z

 $90/160 {
m GeV}$

 $5.6/1.6 \text{ ab}^{-1}/\text{yr}/\text{IP}$

 $\pm 1.0 \times 10^{-4}$

 $\pm 4.7 \times 10^{-5}$

 $\pm 0.0001_{\rm exp}$

 $\pm 0.6_{\mathrm{exp}} \pm 0.25_{\mathrm{th}}$

 $< \pm 0.1$

 $(\pm 8_{\rm exp} \pm 1_{\rm th}) \times 10^{-3}$

 $(\pm 0.3_{exp} \pm 1.5_{th}) \times 10^{-5}$ $(\pm 1_{exp} \pm 0.8_{th}) \times 10^{-4}$

Z-pole precision measurements

	Measurement Fit [O ^{meas} –O ^{fit}]/σ ^{meas}								CEI	PC		ILO	C	r	TLEP-W	/TLEP-Z
$\frac{0 1 2 3}{4 c^{(5)} (m)} = 0.00256 \pm 0.00025 0.002767 = 10000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.0000025 0.0000000000000000000000000000000000$							\checkmark	\overline{s}	$90/250~{ m GeV}$			$90/160~{ m GeV}$			$90/160~{ m GeV}$	
	Current $(1.7 \times 10^7 Z's)$ CEPC $(10^{10}Z's)$ FCC-ee $(7 \times 10^{11}Z's)$ ILC $(10^9Z's)$															
	7	correlation		σ	correlation			σ	correlation			σ		correlation		
	0	S	T	U	(10^{-2})	S	T	U	(10^{-2})	S	T	U	(10^{-2})	S	T	U
S	0.04 ± 0.11	1	0.92	-0.68	2.46	1	0.862	-0.373	0.67	1	0.812	0.001	3.53	1	0.988	-0.879
T	0.09 ± 0.14	_	1	-0.87	2.55	_	1	-0.735	0.53	_	1	-0.097	4.89	_	1	-0.909
U	-0.02 ± 0.11	_	_	1	2.08	_	_	1	2.40	_	_	1	3.76	_	_	1

LEP

CEPC-preCDR, TLEP Design Study, ILC Operating Scenarios

Study strategies

*Study Results: Tree & one-loop Level

*Flavor physics

*****2HDM & Electroweak Phase Transition

2HDM: Tree Level

2HDM: Tree Level Model Distinction

2HDM: Tree Level Model Distinction

Flavour searches

Observable	Experimental result	SM prediction
R_{γ}	$(3.22 \pm 0.15) \times 10^{-3}$ [69]	$(3.35 \pm 0.16) \times 10^{-3}$ [70]
$BR(B o \chi_s \gamma)$	$(3.32 \pm 0.15) \times 10^{-4} \ [15]$	$(3.40 \pm 0.17) \times 10^{-4}$ [70]
BR(B o au u)	$(1.09 \pm 0.24) \times 10^{-4}$ [16]	$(9.24 \pm 11.3) \times 10^{-5}$
$BR(B_s \to \mu^+ \mu^-)$	$(2.93 \pm 0.35) \times 10^{-9}$ [16]	$(3.48 \pm 0.26) imes 10^{-9}$
$BR(B_d \to \mu^+ \mu^-)$	$(3.9 \pm 1.5) \times 10^{-10} \ [17]$	$(1.08 \pm 0.13) imes 10^{-10}$
$BR(D_s \to \tau \nu)$	$(5.48 \pm 0.23) \times 10^{-2}$ [16]	$(5.22 \pm 0.04) imes 10^{-2}$
$BR(D_s \to \mu \nu)$	$(5.49 \pm 0.16) \times 10^{-3} \ [16]$	$(5.31 \pm 0.04) \times 10^{-3}$
R(D)	$(0.34 \pm 0.03) \ [15]$	(0.303 ± 0.006)

 Table 4. Experimental results for certain flavor physics observables and their corresponding SM values.

Flavour searches

Results

***Study Results:** Tree & one-loop Level

2HDM: One-Loop Level

(1) Loop + degenerate: $\cos (\beta - \alpha) = 0$, $m_{\Phi} \equiv m_{H} = m_{A} = m_{H^{\pm}}$ (2) Tree + Loop + degenerate: $\cos (\beta - \alpha) \neq 0$, $m_{\Phi} \equiv m_{H} = m_{A} = m_{H^{\pm}}$ (3) Tree + Loop + non-degenerate: $\Delta m_{a} = m_{A} - m_{H}$, $\Delta m_{c} = m_{H^{\pm}} - m_{H}$

Vacuum Stability

$$\lambda_1 > 0, \quad \lambda_2 > 0, \quad \lambda_3 > -\sqrt{\lambda_1 \lambda_2}, \\ \lambda_3 + \lambda_4 - |\lambda_5| > -\sqrt{\lambda_1 \lambda_2}.$$

$$\lambda_1 v^2 = (m_H^2 \tan^2 \beta + m_h^2) \sin^2(\beta - \alpha) + (m_H^2 + m_h^2 \tan^2 \beta) \cos^2(\beta - \alpha) + 2(m_H^2 - m_h^2) \sin(\beta - \alpha) \cos(\beta - \alpha) \tan \beta - M^2 \tan^2 \beta,$$

$$\begin{split} \lambda_2 v^2 &= (m_H^2 \cot^2 \beta + m_h^2) \sin^2(\beta - \alpha) + (m_H^2 + m_h^2 \cot^2 \beta) \cos^2(\beta - \alpha) \\ &- 2(m_H^2 - m_h^2) \sin(\beta - \alpha) \cos(\beta - \alpha) \tan \beta - M^2 \cot^2 \beta, \\ \lambda_3 v^2 &= (m_H^2 - m_h^2) [\cos^2(\beta - \alpha) - \sin^2(\beta - \alpha) + (\tan \beta - \cot \beta) \sin(\beta - \alpha) \cos(\beta - \alpha)] \\ &+ 2m_{H^{\pm}}^2 - M^2, \\ \lambda_4 v^2 &= M^2 + m_A^2 - 2m_{H^{\pm}}^2, \\ \lambda_5 v^2 &= M^2 - m_A^2. \end{split}$$

Vacuum Stability

$$\begin{split} \lambda_1 &> 0, \quad \lambda_2 > 0, \quad \lambda_3 > -\sqrt{\lambda_1 \lambda_2}, \\ \lambda_3 &+ \lambda_4 - |\lambda_5| > -\sqrt{\lambda_1 \lambda_2}. \\ &\uparrow \text{Unitary} \qquad |\lambda_i| \leq 4\pi \\ &\uparrow \text{Verturbativity} \qquad |\lambda_i \leq 16\pi| \\ \end{split}$$

Vacuum Stability

$$\begin{array}{ll} \lambda_1 > 0, & \lambda_2 > 0, & \lambda_3 > -\sqrt{\lambda_1 \lambda_2}, \\ \lambda_3 + \lambda_4 - |\lambda_5| > -\sqrt{\lambda_1 \lambda_2}. \end{array}$$

$$\begin{array}{ll} \text{Unitary} & |\lambda_i| \leq 4\pi \end{array}$$

Perturbativity $|\Lambda_i \leq 16\pi|$

 $\cos (\beta - \alpha) = 0,$ $m_{\Phi} \equiv m_H = m_A = m_{H^{\pm}}$

$$v^{2}\lambda_{1} = m_{h}^{2} + t_{\beta}^{2}\lambda v^{2},$$

$$v^{2}\lambda_{2} = m_{h}^{2} + \lambda v^{2}/t_{\beta}^{2},$$

$$v^{2}\lambda_{3} = m_{h}^{2} + \lambda v^{2},$$

$$v^{2}\lambda_{4} = -\lambda v^{2},$$

$$v^{2}\lambda_{5} = -\lambda v^{2}.$$

2 Free parameters

Higgs direct search at LHC

Conventional Search

Exotic: A -> HZ 50 20 10 5 **BP-B** $m_A = m_{H^+} > m_H$ $\Delta m = 200 \text{ GeV}$ 2 $A \rightarrow HZ \rightarrow \tau \tau II$ LHC HL-LHC FCC 1 0.5 1.0 2.0 3.0 4.0 *m_A* [TeV]

an eta

S. Su et. al., 1812.01633

Type-II

63

Z Pole Precision

	Current (C	$(10^{10}Z)$'s)	FCC-ee $(7 \times 10^{11} Z's)$				ILC $(10^9 Z's)$							
	correlation		tion	σ	correlation		σ	correlation		σ	σ correlation		tion			
	0	S	T	U	(10^{-2})	S	T	U	(10^{-2})	S		U	(10^{-2})	S	T	U
S	0.04 ± 0.11	1	0.92	-0.68	2.46	1	0.862	-0.373	0.67	1	0.812	0.001	3.53	1	0.988	-0.879
T	0.09 ± 0.14	_	1	-0.87	2.55	_	1	-0.735	0.53	-	1	-0.097	4.89	_	1	-0.909
U	-0.02 ± 0.11	_	_	1	2.08	—	_	1	2.40	_	_	1	3.76	_	_	1

Z Pole Precision

U

Z Pole Precision

2HDM: Type-I

Constraints at Large tanß

Part Summary : Higgs precision

Alignment vs Non-alignment

Degenerate vs Non-gedenerate

👋 Tree vs Loop

2HDM

Complementary to

Z pole precision

LHC direct search

Results

Higgs and Z-pole Precision Measurements

Study Results: Tree & one-loop Level

***2HDM & Electroweak Phase Transition**
Electroweak Phase Transition

SM: Cross-over around T=100 GeV BSM: bubble formation — asymmetry

2HDM: precision

<u>1808.02037</u> N. Chen, T. Han, S. Su, WS, Y. Wu

2HDM: precision

<u>1808.02037</u> N. Chen, T. Han, S. Su, WS, Y. Wu

2HDM: LHC direct search

Results: Case-1

Type-II fixed mass splitting 200 GeV $m_H < 710 \text{ GeV}$ $tan\beta \epsilon (1.8,10)$ Vacuum uplifting: arXiv:1705.09186 G. C. Dorsch, S. Huber, K. Mimasu, J. M. No $\Delta \mathcal{F}_{0} = \frac{1}{64\pi^{2}} \left[\left(m_{h}^{2} - 2M^{2} \right)^{2} \left(\frac{3}{2} + \frac{1}{2} \log \left[\frac{4m_{A}m_{H}m_{H^{\pm}}^{2}}{\left(m_{h}^{2} - 2M^{2} \right)^{2}} \right] \right)$ $\left. + \frac{1}{2} \left(m_A^4 + m_H^4 + 2m_{H^{\pm}}^4 \right) + \left(m_h^2 - 2M^2 \right) \left(m_A^2 + m_H^2 + 2m_{H^{\pm}}^2 \right) \right]$

Results: Type-II

Future

Results: Type-I

Part Summary

IDM

• The inert 2HDM

In this model, one imposes a symmetry $H_2 \rightarrow -H_2$ in the Higgs basis. As a result, The Higgs sector is CP-conserving. In the CP-conserving neutral Higgs-fermion Lagrangian, this model corresponds to $\sin(\beta - \alpha) = 1$, $\cos(\beta - \alpha) = 0$ and $\rho^U = \rho^D = 0$. The CP-even h^0 is identical to the SM Higgs boson, and H^0 , A^0 and H^{\pm} appear only quadratically in interactions and so the lightest among these states is absolutely stable.

Fermiophobic 2HDM

This is a model that purports to invent a Higgs scalar that couples only to gauge bosons and is decoupled from fermions. This can be realized in a Type-I 2HDM where $\cos \alpha = 0$. In this case, h^0 has no tree-level couplings to fermions. However, the h^0 couplings to W^+W^- and ZZ are suppressed by a factor of $\cos \beta$.

$$-\mathcal{L}_{Y}^{\text{int}} = \sum_{f=u,d,e} \frac{m_{f}}{v} \left(\xi_{h}^{f} \overline{f} fh + \xi_{H}^{f} \overline{f} fH - 2i I_{f} \xi_{f} \overline{f} \gamma_{5} fA \right) + \frac{\sqrt{2}}{v} \left[V_{ud} \overline{u} \left(m_{d} \xi_{d} P_{R} - m_{u} \xi_{u} P_{L} \right) dH^{+} + m_{e} \xi_{e} \overline{v} P_{R} eH^{+} + \text{h.c.} \right],$$

The Higgs sector of the MSSM

The Higgs sector of the MSSM is a 2HDM, whose Yukawa couplings and Higgs potential are constrained by SUSY. Instead of employing to hypercharge-one scalar doublets $\Phi_{1,2}$, it is more convenient to introduce a Y = -1 doublet $H_d \equiv i\sigma_2 \Phi_1^*$ and a Y = +1 doublet $H_u \equiv \Phi_2$:

$$H_d = \begin{pmatrix} H_d^1 \\ H_d^2 \end{pmatrix} = \begin{pmatrix} \Phi_1^{0*} \\ -\Phi_1^- \end{pmatrix}, \qquad H_u = \begin{pmatrix} H_u^1 \\ H_u^2 \end{pmatrix} = \begin{pmatrix} \Phi_2^+ \\ \Phi_2^0 \end{pmatrix}$$

The origin of the notation originates from the Higgs Yukawa Lagrangian:

$$\mathcal{L}_{\text{Yukawa}} = -h_u^{ij} (\bar{u}_R^i u_L^j H_u^2 - \bar{u}_R^i d_L^j H_u^1) - h_d^{ij} (\bar{d}_R^i d_L^j H_d^1 - \bar{d}_R^i u_L^j H_d^2) + \text{h.c.}$$

Note that the neutral Higgs field H_u^2 couples exclusively to up-type quarks and the neutral Higgs field H_d^1 couples exclusively to down-type quarks. This is a Type-II 2HDM.