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e Spin correlation in ete™ - y*/yp - AA

e Quantum measurement description of A and A decays

- Quantum non-locality and entanglement in AA system in
charmonium decays [few body exclusive process]

 Quark and hadron spin correlation in coalescence model
In high energy HIC

« Two examples of spin correlations in HIC: (a) spin
correlation in ¢ meson’s spin alignment; (b) AA’s spin
correlation as probe to vortical structure of sQGP

« Summary
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Qubit: a two-level system. Spin-1/2 hyperons (Z, A, E) can be good Qubits in particle
physics since their spin states can be measured through weak decays.
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weak decay law
Hyperons’ weak decay (e.g. A—»pm, E—Am) has being a

long history in HEP experiment. The angular ‘ dN
L 2T : : x 1+ aP 0
distribution server as the polarimeter for itself. dcos 0 HB €08
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A typical weak decay process for a spin-1/2 hyperon (anti-hyperon) is
B —» B'M (B - B'M). In the rest frame of B, the decay amplitude is

Apopr =Gemiiip(s',p)(Cr — Cyys)up(s, 0)

—Gpm3, \/QmB(EBf + mB')XL (S +Po-p)xs

S-wave + P-wave

Dirac spinors for particles spin quantization direction

sp = (sin# cos ¢, sin fsin ¢, cos )

Xs~ | SB_ T AP LIIR Dl Rl i PR )
u(s.p) = vV Ep +m \\

Qun Wang (USTC/AUST), Spin correlation in Lambda-anti-Lambda system



Squared amplitude: sum over the daughter spin

> Aol ocx! (5 + Pro-p ZXS (S + Po - p) xs

ZXS (S* 1 Pto. f)) (S 4 Po -13) Y. Measurement operator
. . S+ Po-p
=Tr (S + Po - S*+ P'o - M, =
( P)ps( p)] » = T ST 1P
xTr (MpppM))

We assume that the hyperon is in the spin up state (100% polarization) along the
direction sg, then the spin density operator

1 dI’
pE =X+ P(p) T, Tv (Mppp M)
—ip (4 “ « N
() (egens) e nse e s
sin 5 1 .
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The measurement processes in quantum physics are subject to a collection of
measurement operators {M,,}. When we use the density operator p to describe a
system being measured, the probability of obtaining a certain outcome m is given

by

P(m) = Tr (M,,pM},) > 0, Y. P(m) =1

where {P(m)} are probability distributions for all possible outcomes.

These two conditions lead to constraints on {M,,}, the positive semi-deniteness
and completeness conditions:

MM,>0  Y.M.M,=1

Based on the measurement postulate in quantum mechanics, the initial state p
instantaneously transforms after the measurement to the state p,,

MT
P=Pm="p"  TT(Pm) =

The resulting quantum states are described by {P(m), p,.}.
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The post-measurement state is then

YmPM)p, =X MmpM;I;z

which can be taken as a quantum evolution generated by the measurement. This
process is often characterized as a quantum channel

p - E(p) = T MyppM},
and the set of {M,,,} is called Kraus operators.
Hyperon decay as quantum measurement

S+ Po-p
© VAT (ISP +[PP)

1 .
P(p) =Tr (JWP,OB]W;) =1 (1+agsp-p),

1 .
MM, =— (1 + apo - p). / dQ, MiM, = 1

Qun Wang (USTC/AUST), Spin correlation in Lambda-anti-Lambda system



According to the quantum measurement postulate, the spin density operator of the
daughter baryon can be obtained via the post-measurement state

MRe(S*P)

M,pp M} 1 YB=To L pe

pr(f)) s PPB p']- — 5(1+0"SBI) Y |‘S’|2_'_|]D|2
T (M M ) O (S*P

I \ pPB Ap A A B :—|S|I§Er |P|)2

Sp :CYBP - 53(1—” X SB) + Sy + (1 - ’YB)(P ' SB)p |S|2 . |p|2

[T asp p 8 =GE | PE

where sgr is the polarization vector of the daughter baryon in the mother baryon's
rest frame as a function of p, ag, B and yp are three real parameters in B’s weak
decay satisfying a% + % +y% = 1. [T. D. Lee and C. N. Yang, Phys. Rev. 108, 1645
(1957)].

In the hyperon decay process, the daughter baryon may fly in any direction p
associated with the probability P(p), which is just the angular distribution of the
daughter baryon that can be detected in particle physics experiments.
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With the daughter's spin density operator pg/(p), we have an ensemble
{P(D),pp'(P)}. According to the generalized measurement postulate, this post-

measurement ensemble can be interpreted as a quantum evolution in the channel
E as

1 .
E(pp) = / A MyppM] = — / dQ[1 + ap(p - sp)]

1 . R . -
—|—§O'/dﬂ [aBp—BB(pX SB)""YBSB—'_(l_’YB)(p'SB)p]

1 1
=5 [1 + §(1 +2vp)o - sB]

The term (1 + 2yp)/3 just represents the average polarization of the daughter
baryon in the rest frame of the mother hyperon.

A chain of decay B - B{M, - B,M, M, is called the concatenate quantum
measurement with joint probability

1 d°T

_ T1—=2 3 rB— qTB—=1q ril—=2
T dQy r [Mi;? My My M ]

P(Pl;pz) =
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The spin state of two spin-1/2 particles such as BB is described by spin density
operator

1 SB:<O'®1>
2]
Cij:(o'i@)gj‘)

There are 15 real parameters: sg (3), sg (3), Ci; (9).

symmetric and real matrix

The joint Hilbert space associated with spin states of BB is denoted as J#3 ® 5
respectively. The one particle density operator can be obtained by taking the

partial trace 1
ps =Trg(ppp) = 5(1 +sp-0)

1

pp =1r8(ppp) = 5(1+s5- )

According to the guantum measurement postulate, a joint decay process can be
regarded as parallel quantum measurement which gives the joint probability

P(p.p) = Tr [(My & My) pygs (M} @ M} ) |
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The spin density operator for YY can be rewritten as
1o wv=(0,) =(0,12,3),

Pyy =

w0y & 0y do not distinguish upper or lower indices

14

0, = (1,0')7 O, = SYis @03' = Sy, @z‘j — O%'j

Z
Y @y
We choose the helicity rest frame as / h
e 9 e
, ——————

~

Y=-D.XPy, Z=Dy, T=YXZ /’y*/w

production plane

In the rest frames of Y and Y we have

| ] costl = p. - p
1+ ay cos? 6 0 By sinf cos 0 Pe " Py
o 1 0 sin” 0 Yy sinf cos @ o s —AMP |Gy /Gyl’
v = e S = 5 3
a 1+ ay, cos? 6 By sinf cos b 0 _O%SmQQ 0 s+ AM? |G /Gyl
T . — ) c[—1,1]
0 Yy sin 6 cos ¢ 0 vy, + cos” 0

) AP =arg{Gp/Gar}

@ = /1 —aZ sin(Ad), T = /1 — a2 cos(AD) e(—m, )
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Before our investigation of Bell nonlocality, it is convenient to transform the two-
qubit state described by 0,, to the X state by swapping the y and z axes and then

diagonalizing C;; in Y and Y 's rest frame

pry = (Uy @ Uy) pyy (Uy @ Uy

Corresponding to

p

1

0 0 a

a

t, 00
0 15 0

0 0 #3

19

ly

1
1 (1+a02®1+1®a02+2t¢0i®0i)

By sin ) cos

1+ vy, cos? ()
I+, + \/(1 + avy cos 20)° — 32 sin” 20
2(1 + oy, cos? )
o —ay sin? 6
1+ (vy, cos? 6

The states described by pyy and P’y‘? are said to be local unitary equivalent in the
sense that they have same quantum correlation properties such as Bell nonlocality
and entanglement.

12
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The Bell inequality is a fundamental concept in quantum mechanics that addresses
the nature of correlations predicted by quantum theory compared to those
predicted by classical physics (or more specifically, local realism). [John Bell
(1964)].

Key ldeas:

Local Realism: This principle assumes two things: (a) Locality: Information cannot
travel faster than the speed of light, meaning that an event at one location cannot
instantaneously affect another location that is far away. (b) Realism: Physical
properties exist with definite values independent of observation.

Quantum Entanglement: In quantum mechanics, entangled particles are in a state
where the properties of one particle are correlated with the properties of another,
no matter how far apart they are. Measurement on one particle seems to
instantaneously affect the state of the other, violating the idea of locality.
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Bell's Theorem:

If the world behaves according to local realism, the correlations between
measurements made on separated particles must satisfy the Bell inequality.
However, quantum mechanics predicts correlations that can violate this inequality.

Bell-CHSH inequality:

The mathematical expression for Bell's inequality can take various forms
depending on the specific scenario, but the most common form is the CHSH
(Clauser-Horne-Shimony-Holt, 1969) inequality, which is used in experiments
involving measurements of entangled particles.

Consider two particles shared between two distant observers, Alice and Bob. Each
observer can perform one of two possible measurements on their particle.

« Alice measures: A; or A;, A, = *1
« Bob measures: B; or B;, By, = +1

* E(A; Bj): expectation value of the product of the outcomes that Alice measures
A; and Bob measures B;

14
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Bell-CHSH inequality:

|E(A1,B1) + E(A1,B3) + E(A2,B1) — E(A2,B3)| < 2
Improved Bell-CHSH inequality accounting for detector inefficiencies in
experiments (Clauser and Horne, 1974; Fine, 1982)

P(A1,B1) + P(A4,Bz) + P(A2,B1) — P(A2,B2) —P(A1) —P(B1) <0
where we assume 4;, Bj € [0,1], P(A;, B;) denotes the probability of the joint
outcome of Alice and Bob.

Let us consider an entangled state
1 0
[2(6)) = cosf|00) +sinf |11) 0) = (0) 1) = (1)

We define two operators 4 and B for Alice and Bob for measurement of spins
along one specific direction

1 N
A=5(ta0), B=5(+b o)

spin direction spin direction

| —
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Calculate the expectation value (probability) for the measurement at spin
directions @ and b

P(A) = (W0 A® Iy [0(0) = 2 [1+ 0. co8(20)]  maiona

5 maximally 1
. N B oo Lo, y entangled ~ P(4) =P(B) = 3
(B) = (w () f@’A ) =g bcosGhl - 14 Tlab + b —ah)
P(A,B) = (0(0)| A® B [(0))
:i + i(az +b.) cos(20) + i a:0. + (azb. — ayb,) sin(20)]

Let us do the measurements at spin directions dy,d,, by, b, and check CHSH
inequality Qcysy < 0

Qcnsy =P(Ay, By) + P(Ay, Ba) + P(As, By) — P(Ag, Ba) — P(Ay) — P(B))
1
- - 5 + Z [alz(blz + b2z) + a2z(b1z - b2z)]

+ Z Sin(QQ) [alx(blrc + er) + a2x(blx - b2:r:) o aly(bly + b2y) - a2y(b1y o b2y)]
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We look at the entangled state with @ = /4. We assume that all spin directions are
in the xz-plane with the angles ¢ (&’1,62,31,32) = (0,2 X —g), we obtain

’?’3’
11 a by
QCHSH:—§‘|‘Z(G1'51+01'1724‘(12'51—@2'52) 2
——1+1(1+1+1+1>—1>0 o
2 4\2 2 2 -8 b,

If we choose ¢ (61,62,31,32) = (0,%,%, —g), we obtain the maximum violation of

the CHSH inequality (Tsirelson's bound)

a .
o 1 1 b4
CHSH:—§+Z(a1-b1—|—a,1-bg—l—ag-bl—ag-bg)
1 1(v2 V2 V2 V2 1 a,
__1.1 _ 2—4) 0
2+4(2'+2‘%2*‘2 Q(J_ o .
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Let us consider another entangled state (the triplet for 8 = /4 and singlet for 6 =
7mt/4)

7 (01) +[10)). 6 = F

01) — [10)). 6= &

4

=

|1(6)) = cos @ |01) + sind [10) = 1
75 (

Let us do the measurements at spin directions dy,d,, by, b, and check CHSH
inequality Qcysy < 0

Qcnsy =P(A1.By) 4+ P(A1, By) + P(Ay. By) — P(Ay. By) — P(Ay) — P(By)
1 1

= — 5 — Z [alz(blz + sz) + a2z(b12 - bQZ)]

1 .
+7 sin(26) [a1. (bie + b2e) + a0 (b1y — boy) + a1y (byy + bay) + ag, (b, — bay)]
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The triplet with 8 = /4. We assume that all spin directions are in the xy-plane

_ (0,%” d —g), we can check that the CHSH

with the angles ¢ (&’1,&’2,31,32) '3

inequality is violated . b
a, 1
1 1

QCHSH:_§+Z(al'b1+a1'b2+02'b1_32'b2) _

a
S LY (LI 1

2 4\2 2 2 -8 A

2

The singlet with 8 = 7m/4. We assume that all spin directions are in the xy-plane
2m 2m _ 2T we can check that the CHSH

with the angles ¢ (Hl,az,bl,bz) = (0,—?, 3 3

inequality is violated 7
1
1 1
QCHSH:_§_Z(31'b1+a’1'b2+32'b1_02'b2) a,
= 1+1(1+1+1+1>—1>0
2 1\2 7272 3 B, 2 d,
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The triplet with 8 = /4. We assume that all spin directions are in the xy-plane
with the angles ¢ (&’1,&’2,31,32) = (O,g,g, —g), we can check that the CHSH
inequality is violated

| | a b4
73§$3H:_§+Z(01'51+a1'bz+az'b1—az'bz)
a,
S Y S E IR N .
2 4 2 2 2 2 2 b,

The singlet with 8 = 7 /4. We assume that all spin directions are in the xy-plane
with the angles ¢ (&’1,6’2,31,752) =(0,—= 3m ——) we can check that the CHSH

2’ 4"’
inequality is violated —
b4
o ——1—1(a by +a;-by+a, by —as- by
CHSH — 9 A 1 1 1 2 2 1 2 2 (_1)1
1T 1(v2 V2 V2 V2 1 -
b1 — 2—1) 0 b
2+4(2+2+2+2 2(\/_ - 2 )
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Generalized Bell-CH inequalities for 3 and 4 measurements

I3 =P(Ay, By) + P(Ay, By) + P(Ay, Bs) + P(A2, By) + P(As, Bs)
— P(Ay, By) + P(As, B)) — P(As, By) — P(A,) — 2P(By) — P(B,)
<0 (for local realistic theory)
Iy =P(A, By) + P(A1, Bs) + P(A1, Bs) + P(A1, By) + P(As, By) + P(Ay. By)
+ P(Ay, By) — P(Ag, By) + P(As, By) + P(As, By) — P(As, By)
+ P(Ay, By) — P(Ay, By) — P(Ay) —3P(By) —2P(By) — P(DBy)

<0 (for local realistic theory)

For any local realistic theory, these inequalities must hold, but quantum theory can
violate them.

Froissart, Nuov Cim B 64, 241 (1981) Two advantages of Bell-CH inequalities:
Garg and Mermin, Phys. Rev. Lett. 49, 1220 (1982) e Easily tested in experiments
Collins and Gisin, J. Phys. A37, 1775 (2004) e Good mathematical structures
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Qun Wang (USTC/AUST), Spin correlation in Lambda-anti-Lambda system



New method I: Rearrangement inequalities

C. Qian, Y.-G. Yang, QW and C.-F. Qiao,

Phys. Rev. A 103, 062203 (2021)
Iy =1 (1 + y2) + 22(th —y2) — Y — i X

[2(0) = — (111 + woy2) + Y- + Yy,
I SIS)) <0

ng—gxlz'rﬁa"';mmg-rJrgX
: 0<y_ < ey <yp <Y
I, -- Alice: 2 measurements; Bob: 2 measurements ==t e = e =
= min(ry, o, -+ Tpy)
Iy =21 (yo +y3) + x2(y1 + y3) + x3(y1 + y2)
Ty =max(xy, T, Ty

— XoYo — x3y3 — (11 + 22)Y — (1 + y2) X
— mzn(yl,yg, e Jym)

0
I = — (2yy1 + Tz + T3y3) + 2y + 7Yy v = maz(yy, Yo, Yu)

+(y+aogF+as—ay—a )y + Yo +ys —yr —y-)
I, <" <0

I5 -- Alice: 3 measurements; Bob: 3 measurements
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New method II: Linear inequalities C. Qian, Y-G. Yang, QW and C.-F. Qiao,

: : . . Phys. Rev. A 103, 062203 (2021
Graphical construction of Bell-CHSH inequalities Y ( )

| c, - C,
|1 0 6| |10 6] |10 = ]
11 1 <101 0O4+-1]-1]1 0O
o1 -1 -1]-1|1 0 10|11 0O
|-t o 0o o] |1 0 0 8] |1 0 0
211 1 1 _ 1|11 1 0, -1} 2[1 10
1(1 1 -1 1|21 1 07 1|[-1/1 1 0
0|1 1 0 O0|O0|1 -1 0 0| 0|1 -1 0
| Cy. - Oy, m n m n
T T T Ty VD Carit XD Coyi 3D Canyrity
C.-rm Cwmyl ne Oxmyn = = e

More than 100 pages’ proofs of 257 Bell-CH inequalities!
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New Class of Bell-CH inequalities based on rearrangement inequalities

1
T (0) < __IP(x _ P(r — Plus. Plao.
2.CH S 2 CH = 2 {[ (il’yl) ('Ll’y2) (-Lz,y1) N (‘LQ’QQ)] Tighter than original CH
+|P(x1,y1) — P(x1,y2) — P(x2,y1) + Pla2, y2)|} inequality with LHVT
m m+1l—j m—1
Imm(mla e ,fﬂm|‘y11 e -Jym) Z Z ;Yy; — thym+2 1 Z (m —‘E:]$=Y —ylx
=1 1i=1 i=1
Inm(z1, - Zm|yn, - ym) <0 C. Qian, Y.-G. Yang, QW and C.-F. Qiao,

Phys. Rev. A 103, 062203 (2021)

New Class of Bell-CH inequalities based on linear inequalities

- k—1
max{]ml 10T Z [P(x2, yi) — P(x2)], 1(2_)11;(_1.’(2 + Z [P(x1, yi) — Plx )]} <0

i=1 i=1

k—1 k—j k—1 k=2
L 10 = Z Z P(Xj,yj)—ZP(X,,‘,)’]C+1,£‘)— Z (k—1—0DP(x;) — P(v;), New Bell-CH inequalities have less
Li=liz2 =3 i=1.i#2 measurement settings than the
| k= il k2 original ones
I oo _ZZP(x, x;)—ZP(x, Veri—i) = 3 (k=1 = DP(x;) — P(vy).
j=1 i=2 = i=2
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The nonlocal property in a quantum entangled system can be tested by the
violation of Bell inequality. The most widely used Bell-type inequality is the
CHSH inequality

(A1 ® By) + (A @ Bo) + (A, ® By) — (As @ Bo)| <2

where 4, =a, -0, B;=b;, -0 (i=1,2)

)

and (A®B)=Tr[pyy(a-c@b- o)

Here a.. a>. by, by are four directions (unit vectors) along which the spin
polarization is measured. The inequality can be rewritten in a simpler form

C.Qian, J.-L. Li, A.S. Khan, C.-F. Qiao, PRD(2020)
la; - C - (by +by)+as-C- (b —by)| <2 s wu,C.Qian, QW, X.-R. Zhou, PRD(2024)

with € being the correlation matrix C;;. The maximum of the left-hand side can be
Obta|ned by tun'ng a;. as. b]: bg

B[p]E max |CL1'O'(b1+b2)+a2'0'(b1—b2)|

ay.az.by.b>

= 2y/m; + m, =mmmm) m, and m, are are two largest eigenvalues of €TC
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Therefore, the CHSH inequality can be violated iff (if and only if) m; + m, > 1 and
the maximum possible violation of the CHSH inequality is the upper bound value

2v2 . We define my,[p] = m; + m, to be a measure of the Bell nonlocality.

Since we have put the density operator into the X form, we have

Maximum
C' = diag {t,.t5. 13}, CTC = diag {2, 12 t ' violation at
7 ! / ]_/ / 3 !
L 0=m/2
v
The measure of the Bell nonlocality reads Ll T [—amoar |
. -“H.’..\\ i J/'Eff—*z+?_
12 ‘,‘,J . \'\ - J;T,{'}—)E_ia"'
= r . e g1 — EPE0 ]
X t% + tg: (Y, > 0 E < k ~.
mi2 [PY}? = ~ 1l 7 Nonjdcal \ AN
2 2 42 2 . £ ) “
max {t]_ —I_ tzj t]. —I_ tg} s CY¢ < 0 E 1.0 "o, ..' ‘_‘\\]
/:
X 0.9} ‘"k h Local “.f\ ol
max B | =2,/1 4+ a? Maximum violation R RN
5 [pYY] \/ o . ! . .

ate =m/2 1.0 0.5 0.0 0.5 1.0

in Ad
/2 — 202 i , fora, >0 cos ¥
Y o

S. Wu, C. Qian, QW, X.-R. Zhou, PRD(2024)

" = arctan

Non-local range: (6", T — 6%)
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For a bipartite quantum system a state is said to be separable iff the following
decomposition holds

pas =Y _ il © piy pr > 0and 35, p =1
ke

Moreover, the state cannot be decomposed into the above form is called non-
separable or entangled.

The concurrence is an entanglement monotone, so it can be regarded as a
measure for the entanglement [Wootters, Phys. Rev. Lett. 80, 2245 (1998)]

Clp| =0, separable
Clp] = max {0, py — p1a — 13 — jia} Clp] >0, entangled
Clp] =1, maximally entangled

where u; (i = 1,2,3,4) are the eigenvalues of the Hermitain matrix ,/,/pp+/p and
p=0,80,p 0,80, .
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The spin density operator for the hyperon-antihyperon system

1 .
p})f}_/ — Z (1 + ao. ® 1 + 1 ® ao. + Ztiai ® 01) S. Wu, C. Qlan, QW, X.-R. ZhOU, PRD(2024)

225
2.20
2.15
2.10

We rewrite pj in the g, basis

(142 +ts 0 0t -t 203
v 1 0 1 —ty t) +1 0 Y%
SR I A
th—ty 0 0 1—2a+ty

The concurrence is

1
X— f
Clovy] 2(1 + vy cos? 0)

1+ oy — \/(1 + vy cos 29)* — Bi sin? 29 2./my; and 24/1 + 2

X

Blp] = 2y/mi; <2¢/1+C*[p] =) Bell nonlocality c entanglement

equality holds at @ = /2

28

Qun Wang (USTC/AUST), Spin correlation in Lambda-anti-Lambda system



The role of time-like electromagnetic form factors in quantum nonlocality and

entanglement

_ 2 0P, 2 A
F“—’Y”Fl(P )+Z SN FQ(P) fy* or J/w
P2
GE(Pg) :Fl—i_—FQ; GM(PQ) :F1—|-F2 EE—

7 P =pa+ P&

=

The spin polarization of A and A is
s —4M?|Gp/Gul

Ny = 5 E[—l,l]
1/1—()53811190089 s+4AM? |Gg /G|
PA :PK: 1—|—()5¢COS29 M _________ A@zarg{G‘E/GM}E(—mﬂ]

_ phase difference between G and Gy
If A® =0, pyy is reduced to a BDS form

1 Bell nonlocality == entanglement
BDS __ . ,
Pyy — 4 (1 @1+ Z tio; ® U‘*) ,/” at all scattering angles

-

-
-
-~

. 9 2 . .
BDS] 2 [ BDS] vy Sin” 6 Valid for elementary particles
mi2 [pYY]_1+C [pYY] _1+(1+a¢cos29) > 1 such as ttor ttt™
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Huge global orbital angular momentum (OAM) is produced in IS of HIC.
Q: How do orbital angular momenta be transferred to the matter in HIC?

A: Part of initial OAM is distributed into the matter in the form of local OAM and
then is converted to hadrons’ global spin polarization through spin-orbit coupling:
e.g. GSP of A hyperons [Liang, Wang (2005)]
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Zhang, Fang, QW, Wang (2019)
Pa

Weickgenannt, Speranza, Sheng, QW, Rischke (2021)

Va
' 5>
b 'S
v DB pecified
DU

SB
X L=bXxp, N

P
incident particles ?/
as wave packets SV outgoing particles
RY as plane wave

Particle collisions as wave packets: there is atransverse distance

between two wave packets (impact parameter) giving non-vanishing
OAM and then the polarization of one final particle

L=bXxp, o) (Z_;)sl—T a (%)sl—l
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STAR, Nature 548, 62 (2017)
T T T T T 1T ‘ T

9 Au+Au 20-50% parity-violating decay of hyperons
\; o : %:::Z :E:; | In case of A’s decay, daughter proton preferentially S
X 4 A PRC76 024915 (2007) | decays in the direction of A’s spin (opposite for anti-A) 1-5*
6 O A PRC76 024915 (2007) | p
e, = (14 aoP o
= -— a A. . p s
4r - dQy*  4rw p i

Il 1 1

10 10°
sy (GEV)

Beam-beam
counter .
- P,
sys pp o
Beam-beam
A counter
Quark-gluon
plasma

Forward-going
beam fragment

a: N\ decay parameter (=0.642+0.013)
o L —_—
Pa: A\ polarization -

pp": proton momgntur’n in A rest frame

A—p+at
(BR: 63.9%, cT~7.9 cm)

-
-
-
-
-

Updated by BES IIl, PRL129, 131801 (2022)

w = (9 £ 1)x10%Y/s, the largest angular
velocity that has ever been observed in
any system

Liang, Wang, PRL (2005)

Betz, Gyulassy, Torrieri, PRC (2007)
Becattini, Piccinini, Rizzo, PRC (2008)
Gao et al., PRC (2008)
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STAR, Nature 614, 244 (2023);

* o(yl<1.0and 1.2 <p; < 5.4 GeV c™)

i o K*(y|<1.0and 1.0 <p,<5.0 GeVc™)
040—

i — GY=464+073m?
035

s ]
o -

0.30 |- B

| o+ STAR (Au+Au and 20-60% centrality)
0251= & ALICE (Pb+Pb and 10-50% centrality)

m | Ll vl L
107 102 1038
[Som, (GEV)

Implication of correlation or fluctuation
of strong force fields

Nuclear
’ & fragments
TV G 4
& meson .’ L 4
7
5K- o/
A
Pk 4
et
K*® meson "
=t fragments 3
Px L)

Theory prediction:

Liang, Wang, PLB(2005);

Sheng, Oliva, QW, PRD(2020);

Sheng, Oliva, Liang, et al., PRL(2022).

Pa{R), Pr=(P)
Pho =5 ~(PoPs) # (P)(Ps)~PxPj
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Global quark spin correlations in relativistic heavy-ion collisions,
Lv, Yu, Liang, QW, Wang, PRD(2024)

transition matrices

Pv =Mp(glgz)MT mmm) 1927V
PH :Mp(qwz%)MT ) 192937 H

PH, s :Mp(l...g)MT mem) 19293949596 — H1H,
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The spin density matrices for one quark and two quarks are

1
P(q) :§(1+Pq'0')

1 . :
P(12) =1 [1 +Py -0+ Py -0+ tgjl.z)ali ® 09, | ==y with shortcoming

1
:p(l) ® p(g) —I— _C?(;jl-z)o-]_i ® O-Qj ‘ improved

2-body genuine correlation

Similarly, the spin density matrix for three quarks has the form

1
P(123) =P(1) @ P2) @ P(3) + ﬁcgig)ali ) 09 & O3k 3-body correlation

LT a2 (23)
+§[Z_ 01i & 025 & pr3y + ¢ Cik P(1) @ 025 & 03k

—I—E&S)al@ ® p2) @ 034 2-body correlations
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The spin density matrix for four quarks has the form

1 (1234
P1234) =P1) ® P2) ® p3) @ pay + 57 1 EJH )o1; ® 025 @ 03k ® 041 4-body correlation

11 a2 (38)
+ 22 lcij 01 @ 025 ® p(3) @ pray + ki P(1) ® p(2) @ O3k @ Oy
+ Cik 01; ® p2) ® 03k ® pra) + c( )p(l) ® 025 ® p3) @ 0ar 2-body

(14) ( 3) correlations
-I-Cﬂ 01i ® p2) ® p3) ®oq +c¢ Cik pP1) ®o2; @ o3k @ p(4)]

1
+ 2_3 lcgﬁg)gli ® 02; @ 03k ® p(ay + CEJ‘I 4)0'11‘ @ 02; K p(3) @ ou

+Cigr T2 @ p(a) @ Tz ® 0uy + C;i?4)ﬂ(1) ® 02; ® 031 @ 041]

3-body correlations

The polarizations and spin correlations can be extracted by taking

expectation values of a direct product of Pauli matrices on spin density
matrices.
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We consider the combination process q1q, — V. The spin density matrix
of the vector meson is given by

_ t e transition matrix
pv o _MP(QJ.(_?E)M ””””” fOr qlaz g V
e e e e e v--"

The spin density matrix element of vector meson (M) = ljma, jama)

.4
4
7

mzm)) = [j1m), jamy)

pgm’ — <jm| Mﬂ(qlgz)MT |jmf> =
= Y (mIM|mas) (maz)l i)

'
(12)

=Ny Z (gmlma2) ) (ma2)|h(g,.) IM(12)) (M(12)l3)

m(lz):mzu)

mEm)’> <m'£12)| Mt lgm’)

m(y12),m

CG coefficient CG coefficient

Here we assumed (jm|M|j'm") = 6;;:0mm (jm|M|jm) due to rotational
symmetry of the transition matrix.
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Spin density matrix elements of vector mesons are then obtained.

Diagonal elements:

1
=gy
1o o
=g |(L+ Fy) (1+ Ff) + oD |
17 -
Pl ~v (1-Pr)(1-Fy) +C£‘§q)]

1+ PTP? + PYPY — PEP7 + (D 4 (D — cggfﬂ]

Normalization constant

Cv=3+P, P;+c9D 1 cg%'y‘f) + 49

Off-diagonal elements:

1 _ _
A = 5on {cﬁ‘if” + e + (1+ P;) P + Py (1+ Ff)
_; [%ﬂ +eD 4 (14 P7)PY+PY (1+ P;)] }
1 - = - = z T
Po.—1 =750 {—62?;‘” — @+ Pr(1-P) + (1-F;) P;

+i [cg‘g;?) +¢@D — Py (1— PZ) — (1 - P7)

Qun Wang (USTC/AUST), Spin correlation in Lambda-ant

1
v
P11 =
I’IOV

| — 4 + P2 P — PYPY
i (PgP; + PEPY 4 claD c;qf))}
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If we assume that the polarization and spin correlation are small effects,
the average spin alignment is then in the form

1 2
{(Pto) ~3 + 9 [(PFPF) + (PYPY) —2(P;Ff)] Correlation in spin polarization
2 - - -
+ 9 [<C—£¢t§)> + <ngﬂ> -2 <C£iq}>] Genuine correlation from dynamical processes

(olh) g+ (B7) + (B = 5 (B P + (PYPY) = 2P )]

=y E0) ) - ) s 2o [swadupoie s
1 = - = Tr VvV —1
)+ )2l :

Here the spin quantization direction is along +z direction. The three
polarization vectors (direction of the vector field) for the vector meson in
the rest frame are

1 , 1 ,
€) =€,, €1 = —ﬁ(em +iey), €-1 = E(em —iey)
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(ab)

When all two-particle spin correlations (c{” # 0, all other ¢, = 0

with 3 < n < 6) are considered, the result for the spin correlation of AA is

1
cﬂ;’l =PZP: + B ( (%) 4 four and six body correla,tlon)
AR

~P?PZ? + ¢*3 4 four or more body correlation

where B,z is defined as
By=1-P,-P;—P; -Pj— (ud] (ud) + four body correlatlon

We can take average of czA over all AA events

ZZ

<c‘1fI > ~ (P?PZ) + < (33)> + four or more body correlation

In AA correlation, sisin Aand sisin A, i.e. the correlatlon of constltuent quarks in
different particles - long range correlation * <

In spin alignment of ¢ meson <p00> there are also (P%PZ%) and < (”9> but the average
here is taken inside the ¢ meson — short range correlation -~
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Pang, Petersen, QW, et al. PRL(2016);
Xia, Li, Tang, QW, PRC(2018);
Lisa, Barbon, Serenone, Shen, PRC (2021)

Spin correlation of A A can probe the vortical structure in sQGP
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Sheng, Oliva, Liang, QW, et al., PRL (2023), PRD(2024)

Review on QKE and SKE based on Wigner functions:
Hidaka, Pu, QW, Yang, Prog. Part. Nucl. Phys. 127 (2022) 103989

Quark coalescence model:
Greco, Ko, Levai (2003);
Fries, Mueller et al (2003);
Yang, Hwa (2003).

Quark coalescence to V-meson V-meson dissociation to quarks
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0.38] % ¢ STAR  — Out-of-Plane (a) The STAR's data on phi meson's
- In—Plane py, (out-of-plane, red stars) and p§,
1 (in-plane, blue diamonds) in 0-80%
Au+Au collisions as functions of
collision energies. The red-solid line
and blue-dashed line are calculated
with values of FZ and F? from fitted
curves in (b).

(b) Values of F2 (magenta triangles)
and F? (cyan squares) with shaded
error bands extracted from the
STAR's data on the phi meson's p},
and pj, in (a). The magenta-dashed

10 20 50 100 200 line (cyan-solid line) is a fit to the
Vs (GeV) extracted FZ (F2) as a function of
SNN-

Sheng, Lucia, Liang, QW, et al,
PRL (2023), PRD(2024)
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oas——" . P _
115 Gev | ii:ez/H_\ Calculated p7, (solid line) of
: 4 ¢ mesons as functions of

i $ transverse momenta in 0-
10 e e e o 80% Au+Au collisions at
different colliding energies
in comparison with STAR
data. Shaded error bands are
from the extracted
parameters F2 and F? .

kr (GeV/c)

Sheng, Lucia, Liang, QW, et al,
PRL (2023), PRD(2024)
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0.5

odB ™

0.4—

0.35—

T T
STAR Preliminary
X ¢2"order (1.0< P,

] T T T

<5.0 GeV/c)

E ¢1%order (1.0< p,<5.0 GeVrc)

..... poo=1/3
..... Theory (1.2<pT<5

20%-60%)’

Au+Au 19.6 GeV
0%-80%

.4 GeVlc,

0.3 r[n..nn““‘"““““

(

-"_l 1 1 1 1 I 1 | I I 1 | B S | [ 1 1 1 1 l"'l I—

Sheng, Pu, QW, PRC(2023)

0.2
) 0.1
g
o 0
5y
-2r - 11 /-01
: ‘ : : : /_\
-4 -2 0 2 4 -4 -2 0 2 4
by (GeV/c) px (GeV/c)

If B and E? is isotropic in all directions in lab frame,
we have simple formula with clear physics

8 2+ p?
(6p00) (P) :ﬂ(cl + Cy) F? (z%a‘ — pi)

1
ocip%w [3cos(2¢) — 1] + (mg + p7) sinh? Y
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Take-home message:

Spin correlation is a new tool to study quantum properties
of sQGP.
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