

Hadronic parity violation in chiral EFT

Ulf-G. Meißner, Univ. Bonn & FZ Jülich

by CAS, PIFI

by DFG, SFB 1639

(NUMERIQS)

by ERC, EXOTIC

by NRW-FAIR

- Ulf-G. Meißner, Hadronic parity violation ..., ITP, Beijing, Sept. 9, 2024 -

- Short introduction
- The framework
- Resonance saturation: DDH in view of EFT
- Analysis of parity-violating proton-proton scattering
- Analysis of parity-violating neutron-proton fusion
- Recent developments
- Summary & outlook

Short Introduction

- Ulf-G. Meißner, Hadronic parity violation ..., ITP, Beijing, Sept. 9, 2024 -

Parity-violation in the Standard Model

- Parity-violation (PV) is an integral part of the Standard Model
- Important Chinese contributions to establish it:

Prediction of PV in the weak interactions

T.-D. Lee and C.-N. Yang, Phys. Rev. 104 (1956) 254

 \hookrightarrow Nobel prize 1957

Experimental verification in ⁶⁰Co decay

C.S. Wu et al., Phys. Rev. 105 (1957) 1413

 \hookrightarrow no Nobel prize, why?

Parity-violation in the Standard Model cont'd

• Parity-violation (PV) is an integral part of the Standard Model

← effective four-Fermion operators at low energies Fermi 1933

• Hadronic/nuclear PV in most cases effectively masked:

 \hookrightarrow look for observables that vanish for PC interactions

- Theory mostly based on boson-exchange models
 - ... Desplanques, Donoghue, Holstein 1980 and many others
 - \hookrightarrow uncertainties hard to specify
 - → only consistent model for PV/PC int.
 is the vector-meson stabilized Skyrmion
 Kaiser, UGM 1990; UGM, Weigel 1999

 $G_F M_\pi^2 \sim 10^{-7}$

Status of hadronic PV A.D. 2016

- Various experimental determinations
 - → consistent picture? Haxton, Wieman 2001
- inconsistency in h_{π} (weak pion-nucleon coupling \rightarrow slide)
- consistency of DDH approach?
- power counting ?
- link to QCD ?
- \Rightarrow can do better these days
- \Rightarrow chiral nuclear EFT
 - [pionless approach can also be used] Schindler, Springer, Prog. Part. Nucl. Phys. **72** (2013) 1

= DDH best value

Estimates & limits on h_{π} A.D. 2016

• Naive dimensional analysis (NDA):

$$h_\pi \sim {\cal O}(G_F F_\pi \Lambda_\chi) \sim 10^{-6}$$

• DDH best value [range]:

Desplanques, Donoghue, Holstein 1980

$$h_{\pi} = 4.6 \cdot 10^{-7} ~[0 \leq h_{\pi} \leq 1.2 \cdot 10^{-6}]$$

- SU(3) Skyrme model: $h_{\pi} = (1.0^{+0.3}_{-0.2}) \cdot 10^{-7}$ UGM, Weigel 1999
- Lattice (connected diagrams, $M_{\pi} = 389 \text{ MeV}$):

$$h_{\pi} = (1.10 \pm 0.50_{
m sys} \pm 0.06_{
m stat}) \cdot 10^{-7}$$
 Wasem 2012

• γ -ray emission from ¹⁸F: $h_{\pi} < 1.3 \cdot 10^{-7}$

Adelberger et al 1983; Page et al. 1987

The framework

Manifestations of PV at low energies

Chiral nuclear EFT

Weinberg, Gasser, Leutwyler, van Kolck, Epelbaum, Bernard, Kaiser, UGM, . . .

- explore the symmetries of QCD (chiral, C, P, T ...)
 - \hookrightarrow chiral effective Lagrangians in terms of pions and nucleons

$$\mathcal{L}_{ ext{QCD}}
ightarrow \mathcal{L}_{ ext{EFF}} = \mathcal{L}_{\pi\pi} + \mathcal{L}_{\pi N} + \mathcal{L}_{NN} + \dots$$

- power counting in Q/Λ_{χ} (Q = external momentum, pion mass)
- perturbative expansion of the scattering amplitudes for the pion and pion-nucleon sectors (CHPT)
- perturbative expansion of the potential $V = V_{\rm NN} + V_{\rm NNN} + \dots$
- extremely successfull in the parity-conserving (PC) sector

Epelbaum, Hammer, UGM, Rev. Mod. Phys. 81 (2009) 1773

Parity-odd chiral Lagrangian

• Write down terms that break P but have different chiral properties:

Kaplan, Savage 1993

$$\mathcal{L} = rac{G_F}{\sqrt{2}} \left[\left(rac{1}{2} - rac{1}{3} s_{
m W}^2
ight) \underbrace{V_\mu \cdot A^\mu}_{F_0} - rac{1}{3} s_{
m W}^2 \underbrace{I_\mu \cdot A_3^\mu}_{F_1} - s_{
m W}^2 \underbrace{\left(V_3^\mu A_3^3 - rac{1}{3} V_a^\mu A_a^a
ight)}_{F_2}
ight]^2_{F_2}
ight]$$

- F_0 : chiral scalar (conserves chiral symmetry)
- F_1 : isovector

 F_2 : isotensor

$$egin{aligned} V^a_\mu &= ar q \gamma^\mu au^a q \ A^a_\mu &= ar q \gamma^\mu \gamma^5 au^a q \ I_\mu &= ar q \gamma^\mu q \ q &= (u \ d)^T \ s^2_\mathrm{W} &= \sin^2 heta_\mathrm{W} \simeq 1/5 \end{aligned}$$

 \bullet Only $\mathbf{F_1}$ induces a leading-order pion-nucleon coupling:

$${\cal L}_{
m PV} = {h_\pi \over \sqrt{2}} ar{N} (ec{ au} imes ec{\pi}\,)^3 N$$

⁻ Ulf-G. Meißner, Hadronic parity violation ..., ITP, Beijing, Sept. 9, 2024 -

PC and PV interaction hierarchy

- Ulf-G. Meißner, Hadronic parity violation ..., ITP, Beijing, Sept. 9, 2024 -

PV chiral NN potential at NLO

• Leading order $\mathcal{O}(Q^{-1})$

Kaplan, Savage 1993

$$\pi^{\pm} \qquad -\left(\frac{g_A h_{\pi}}{2\sqrt{2}F_{\pi}}\right) i(\vec{\tau}_1 \times \vec{\tau}_2)^3 \frac{(\vec{\sigma}_1 + \vec{\sigma}_2)^3 \cdot \vec{q}}{\vec{q}^2 + M_{\pi}^2}$$

One-pion exchange (large uncertainty in the coupling constant h_{π})

• Next-to-leading order $\mathcal{O}(Q^1)$

Zhu et al. 2005, Kaiser 2007, Girlanda 2008, Viviani et al. 2014

NN contact terms (5)

but also: two-pion exchange, **not** in the DDH framework !

• For small values of h_{π} , must also consider NNLO ${\cal O}(Q^2)$

NLO contact interactions

• Leading order contact terms:

Girlanda, Phys. Rev. C **77** (2008) 067001 Phillips, Schindler, Springer, Nucl. Phys. A **822** (2009) 1 de Vries, Li, UGM, Kaiser, Liu, Zhu, Eur. Phys. J. A **50** (2014) 108

$$\begin{split} V_{\text{CT}}^{\text{NLO}} &= \frac{C_0}{F_\pi \Lambda_\chi^2} (\vec{\sigma}_1 - \vec{\sigma}_2) \cdot (\vec{p} + \vec{p}') + \frac{C_4}{F_\pi \Lambda_\chi^2} i (\vec{\tau}_1 \times \vec{\tau}_2)^3 (\vec{\sigma}_1 + \vec{\sigma}_2) \cdot \vec{q} \\ &+ \frac{1}{F_\pi \Lambda_\chi^2} \left(C_1 + C_2 \frac{(\vec{\tau}_1 + \vec{\tau}_2)^3}{2} + C_3 \frac{\vec{\tau}_1 \cdot \vec{\tau}_2 - 3\tau_1^3 \tau_2^3}{2} \right) i (\vec{\sigma}_1 \times \vec{\sigma}_2) \cdot \vec{q} \end{split}$$

• Can be easily understood: There are five possible $S \leftrightarrow P$ couplings:

 $\Delta I = 0$: one ${}^{3}S_{1} \leftrightarrow {}^{1}P_{1}$ transition, one ${}^{3}S_{1} \leftrightarrow {}^{3}P_{1}$ transition, $\Delta I = 1$: three ${}^{1}S_{0} \leftrightarrow {}^{3}P_{0}$ transitions (one for each value of m_{t})

• LECs C_i can be estimated via resonance saturation, see later

NNLO corrections to the potential

Kaplan, Savage 1993; de Vries, UGM, Kaiser, Li, Zhu 2014, Viviani et al. 2014

• no contact terms at this order (require two more derivatives for $P \leftrightarrow D$ transitions)

• new πN operators [+ recoil corrections from these terms]:

$$\mathcal{L}_{\rm PV} = h_0^v (v \cdot \partial \vec{\pi}) \cdot \bar{N} \vec{\tau} N + h_1^v (v \cdot \partial \pi^3) \bar{N} + h_2^v (v \cdot \partial \pi^3) \bar{N} \tau^3 N + \frac{h_{\pi}^{(2)}}{\sqrt{2}} \bar{N} (\partial^2 \vec{\pi} \times \vec{\tau})^3 N + \frac{h_m M_{\pi}^2}{\sqrt{2}} \bar{N} (\vec{\pi} \times \vec{\tau})^3 N + \cdots$$

• new $\pi\pi N$ operators:

$$\mathcal{L}_{\mathrm{PV}} = rac{h_1^{\pi\pi}}{F_\pi} (ec{\pi} imes \partial ec{\pi})^3 ar{N} S^\mu N - rac{h_2^{\pi\pi}}{F_\pi} \left[\partial_\mu \pi^3 ar{N} (ec{ au} imes ec{\pi})^3 S^\mu N + \ldots
ight]$$

• a three-pion operator: $\mathcal{L}_{PV} = \Delta_{\pi} (\vec{\pi} \times \partial_{\mu} \vec{\pi})^3 \partial^{\mu} \pi^3$

 \Rightarrow in principle, 8 new LECs (in practice, much less per process + renormalization)

NNLO corrections continued

de Vries, UGM, Kaiser, Li, Zhu 2014

• pertinent diagrams (cf. also PC case):

Resonance saturation: DDH in view of EFT

Resonance saturation

• Contact interactions modeled by heavy meson exchanges

Epelbaum, UGM, Glöckle, Elster 2002

must include form factor and subtract TPE contributions

- quite successfull in the PC case, can be extended to PV
- provides dictionary between EFT and OBE models

Dictionary

Carlson et al. 2002; Haxton, Holstein 2013; de Vries et al. 2014

• LO contact terms ($S \leftrightarrow P$ transitions)

$$\begin{split} \frac{C_0 + C_1}{F_\pi \Lambda_\chi^2} &\sim \quad \frac{1}{m_N} \left[\frac{g_\omega h_\omega^0 \chi_S}{m_\omega^2} c_\omega(0, \Lambda_\omega) - \frac{3g_\rho h_\rho^0 \chi_V}{m_\rho^2} c_\rho(0, \Lambda_\rho) \right] \\ &- \frac{C_0 + C_1}{F_\pi \Lambda_\chi^2} &\sim \quad \frac{1}{m_N} \left[\frac{g_\omega h_\omega^0 (2 + \chi_S)}{m_\omega^2} c_\omega(0, \Lambda_\omega) + \frac{g_\rho h_\rho^0 (2 + \chi_V)}{m_\rho^2} c_\rho(0, \Lambda_\rho) \right] \\ &\frac{C_2}{F_\pi \Lambda_\chi^2} + \frac{g_A^3 h_\pi}{2\sqrt{2}F_\pi} \frac{8}{(4\pi F_\pi)^2} \frac{s}{\Lambda_S} &\sim \quad \frac{1}{m_N} \left[\frac{g_\omega h_\omega^1 (2 + \chi_S)}{m_\omega^2} c_\omega(0, \Lambda_\omega) + \frac{g_\rho h_\rho^1 (2 + \chi_V)}{m_\rho^2} c_\rho(0, \Lambda_\rho) \right] \\ &\frac{C_3}{F_\pi \Lambda_\chi^2} &\sim \quad -\frac{1}{m_N} \frac{g_\rho h_\rho^2 (2 + \chi_V)}{\sqrt{6} m_\rho^2} c_\rho(0, \Lambda_\rho) \\ \\ &\frac{C_4}{F_\pi \Lambda_\chi^2} - \frac{g_A h_\pi}{2\sqrt{2}F_\pi} \frac{(2g_A^2 - 1)}{(4\pi F_\pi)^2} \frac{s}{\Lambda_S} &\sim \quad \frac{1}{m_N} \left[\frac{g_\omega h_\omega^1}{m_\omega^2} c_\omega(0, \Lambda_\omega) + \frac{g_\rho (h_\rho^1 \prime - h_\rho^1)}{m_\rho^2} c_\rho(0, \Lambda_\rho) \right] \\ &c_V(q^2, \Lambda_V) &= \quad \left(\frac{\Lambda_V^2 - m_V^2}{\Lambda_V^2 + q^2} \right)^2, \ V = \rho, \omega \end{split}$$

• C_2 and C_4 sensitive to TPE corrections (Λ_S = spectral function cut-off)

• can be used to estimate the LECs (better than NDA)

de Vries et al. 2014

• Use various model values for the couplings and deduce values for the LECs

Coupling	DDH 'best' value	KMW
h_{π}	$4.6 \cdot 10^{-7}$	$1.0 \cdot 10^{-7}$
$h_{\rho}^{\ddot{0}}$	$-11.4 \cdot 10^{-7}$	$-1.9 \cdot 10^{-7}$
h_{0}^{r}	$-0.19 \cdot 10^{-7}$	$-0.02 \cdot 10^{-7}$
h_{0}^{2}	$-9.5 \cdot 10^{-7}$	$-3.8\cdot10^{-7}$
$h_0^{1\prime}$	0	$-2.2 \cdot 10^{-7}$
h_{ω}^{ρ}	$-1.9 \cdot 10^{-7}$	$-1.1 \cdot 10^{-7}$
$h_{\omega}^{\tilde{1}}$	$-1.1 \cdot 10^{-7}$	$-1.0 \cdot 10^{-7}$

DDH: Desplanques, Donoghue, Holstein, Ann. Phys. **124** (1980) 449 KMW: Kaiser, UGM, Nucl. Phys. A **499** (1989) 699 UGM, Weigel, Phys. Lett. B **447** (1999) 1

LEC	DDH 'best' value	KMW
	$4.7\cdot 10^{-6}$	$0.89\cdot 10^{-6}$
$\ C_1$	$1.2\cdot 10^{-6}$	$0.11\cdot 10^{-6}$
$\ C_2$	$-2.2\cdot10^{-6}$	$-0.66\cdot10^{-6}$
$\ C_3$	$1.0\cdot 10^{-6}$	$0.41\cdot 10^{-6}$
$\ C_4$	$0.25\cdot 10^{-6}$	$-0.049 \cdot 10^{-6}$

Parity-violating proton-proton scattering

The longitudinal asymmetry

• The longitudinal asymmetry in \vec{pp} scattering:

$$A_L(heta_1, heta_2,E) = rac{\int d\Omega(\sigma_+-\sigma_-)}{\int d\Omega(\sigma_++\sigma_-)} = rac{\int d\Omega(\sigma_++\sigma_-)}{\pm ext{ = proton helicity}}$$

- \bullet vanishes for PC interactions, expected size $\sim 10^{-7}$
- only three (low-energy) data points (Bonn/PSI/TRIUMF):

angular range
$$A_L(14 \text{ MeV}) = -(0.93 \pm 0.21) \cdot 10^{-7} (20^\circ - 78^\circ)$$
 Eversheim et al. 1991 $A_L(45 \text{ MeV}) = -(1.50 \pm 0.22) \cdot 10^{-7} (23^\circ - 52^\circ)$ Kistryn et al. 1987 $A_L(221 \text{ MeV}) = +(0.84 \pm 0.34) \cdot 10^{-7} (2^\circ - 90^\circ)$ Berdoz et al. 2001

Theory of the longitudinal asymmetry

- No contribution of OPE as its M.E. is $\sim (t' t)$ (with t = total isospin)
- In EFT, A_L depends on two LECs: h_π and $C = (-C_0 + C_1 + C_2 C_3)$

• Solve the LS eq.:
$$(T = V + VG_0T)$$
 $V = V_{\text{strong}} + V_{\text{weak}} + V_{\text{Coulomb}}$

 \hookrightarrow Strong and weak potential **consistently** derived in chiral EFT

 \hookrightarrow Weak potential can be treated perturbatively

 \hookrightarrow Coulomb important in forward direction

Driscoll, Miller 1989; Driscoll, UGM 1990; Carlson et al. 2002; de Vries, UGM, Epelbaum, Kaiser 2013

Fits to low-energy data

de Vries, UGM, Epelbaum, Kaiser, Eur. Phys. J. A 49 (2013) 149

• Fits to the first two data and predict the third [chosen to be sensitive to ρ exchange]

 $h_{\pi} = (1.1 \pm 2.0) \cdot 10^{-6}$ $C = (-9.3 \pm 10) \cdot 10^{-6}$

- well described, but large uncertainties due to lack of data
- largest sensitivity to h_π for $E=100\ldots 150\,{
 m MeV}$

Fits to all low-energy data

• Fit to all data at 90% conf. level:

• Go to NNLO, include **dominant** TPE correction $\sim \pi c_4 h_{\pi}$, $c_4 = 3.4 \,\text{GeV}^{-1}$:

Parity-violating neutron-proton fusion

Theory of the longitudinal asymmetry

• LA in
$$\vec{n}p \to d\gamma$$
: $A_{\gamma}(\theta) = \frac{d\sigma_{+}(\theta) - d\sigma_{-}(\theta)}{d\sigma_{+}(\theta) + d\sigma_{-}(\theta)} = a_{\gamma} \cos \theta$

```
\pm = neutron helicity
```

- $A_{\gamma}(\theta) \sim \vec{s}_n \cdot \vec{k}_{\gamma} \rightarrow$ requires interference between E1 and M1 currents
- LO calculation: sensitive to h_{π} through meson exchange currents

 \hookrightarrow cancellations between the three contributions [PC $\mu_V \times ...$]

• NLO calculation: sensitive to h_{π} and the LEC C_4

LO analysis

• LO + NLO PC currents: iv magnetic moment plus MECs at thermal energies:

 $\sigma = (319 \pm 5) \text{ mb} \quad [(334.2 \pm 0.5) \text{ mb}]$

 \hookrightarrow remaining discrepancy from higher orders \checkmark

• PV current at LO:
$$\vec{J}_{PV} = rac{eg_A h_\pi}{2\sqrt{2}F_\pi} \left(\vec{\tau}_1 \cdot \vec{\tau}_2 - \tau_1^3 \tau_2^3
ight) imes f(\vec{k}; \vec{q}, \vec{\sigma_i})$$

 \Rightarrow LO analyzing power:

$$\left(a_{\gamma}=-(0.11\pm0.05)h_{\pi}
ight)$$

 \hookrightarrow cancellations between different contributions causes uncertainty

• Experimental uncertainty still larger (2016 not final value):

$$a_{\gamma} = -(0.72 \pm 0.44) \cdot 10^{-7}$$

• Expected exp. uncertainty: $\delta a_{\gamma} = \pm 1 \cdot 10^{-8}$

Combined fit

de Vries, Li, UGM, Nogga, Epelbaum, Kaiser, Phys. Lett. **B 747** (2015) 299

ullet Combine pp data with upcoming $ec n p o d\gamma$ experiment

[published value inconclusive: $(-1.8 \pm 1.9 \pm 0.2) \cdot 10^{-7}$] NPDG Coll., Gericke et al., Phys. Rev C 83 (2011) 015505

NLO analysis

• NLO current [
$$h_{\pi}$$
 small]: $\vec{J}_{\text{PV,NLO}} = -rac{C_4}{F_{\pi}\Lambda_{\chi}^2} \left(\vec{\tau}_1 \cdot \vec{\tau}_2 - \tau_1^3 \tau_2^3
ight) \left(\vec{\sigma}_1 + \vec{\sigma}_2
ight)$

• Result for the asymmetry: $a_\gamma = (-0.11 \pm 0.05) h_\pi + (0.055 \pm 0.025) C_4$

• Resonance saturation for
$$C_4$$
: $C_4 = \frac{F_{\pi}\Lambda_{\chi}^2}{2m_N} \left[\frac{g_{\omega}h_{\omega}^1}{m_{\omega}^2} + \frac{g_{\rho}(h_{\rho}^{1\,\prime} - h_{\rho}^1)}{m_{\rho}^2} \right]$
 $\rightarrow C_4 = (-0.8 \pm 0.4) \cdot 10^{-7}$
 \Rightarrow NLO prediction for A_{γ} : $a_{\gamma} = (-0.11 \pm 0.05)h_{\pi} - (0.5 \pm 0.5) \times 10^{-8}$

⇒ Short-distance effects larger than originally thought, include into the error budget Schiavilla et al. (1998), Liu (2007), Gericke et al. (2011)

 \Rightarrow for fixed h_{π} , strong correlation between C_4 and C (from pp data)

 \Rightarrow need more data to fit all LECs separately

Recent developments

• Finally, the NPDG collaboration published their final result

PHYSICAL REVIEW LETTERS 121, 242002 (2018)

Editors' Suggestion

First Observation of *P*-odd γ Asymmetry in Polarized Neutron Capture on Hydrogen

D. Blyth,^{1,2} J. Fry,^{3,4} N. Fomin,^{5,6} R. Alarcon,¹ L. Alonzi,³ E. Askanazi,³ S. Baeßler,^{3,7} S. Balascuta,^{8,1} L. Barrón-Palos,⁹
A. Barzilov,¹⁰ J. D. Bowman,⁷ N. Birge,⁵ J. R. Calarco,¹¹ T. E. Chupp,¹² V. Cianciolo,⁷ C. E. Coppola,⁵ C. B. Crawford,¹³
K. Craycraft,^{5,13} D. Evans,^{3,4} C. Fieseler,¹³ E. Frlež,³ I. Garishvili,^{7,5} M. T. W. Gericke,¹⁴ R. C. Gillis,^{7,4} K. B. Grammer,^{7,5}
G. L. Greene,^{5,7} J. Hall,³ J. Hamblen,¹⁵ C. Hayes,^{16,5} E. B. Iverson,⁷ M. L. Kabir,^{17,13} S. Kucuker,^{18,5} B. Lauss,¹⁹
R. Mahurin,²⁰ M. McCrea,^{13,14} M. Maldonado-Velázquez,⁹ Y. Masuda,²¹ J. Mei,⁴ R. Milburn,¹³ P. E. Mueller,⁷
M. Musgrave,^{22,5} H. Nann,⁴ I. Novikov,²³ D. Parsons,¹⁵ S. I. Penttilä,⁷ D. Počanić,³ A. Ramirez-Morales,⁹ M. Root,³
A. Salas-Bacci,³ S. Santra,²⁴ S. Schröder,^{3,25} E. Scott,⁵ P.-N. Seo,^{3,26} E. I. Sharapov,²⁷ F. Simmons,¹³ W. M. Snow,⁴
A. Sprow,¹³ J. Stewart,¹⁵ E. Tang,^{13,6} Z. Tang,^{4,6} X. Tong,⁷ D. J. Turkoglu,²⁸ R. Whitehead,⁵ and W. S. Wilburn⁶

(NPDGamma Collaboration)

$$A_{\gamma} = [-3.0 \pm 1.4 (ext{stat.}) \pm 0.2 (ext{syst.})] \cdot 10^{-8}$$

 \hookrightarrow Using our the discussed formalism [ct in the error budget]

$$ight[h_{\pi} = (0.27 \pm 0.18) \cdot 10^{-6}ight]$$

de Vries et al., Front.in Phys. 8 (2020) 218

New combined fit

• Sizeable shift from the old (intermediate) result (black ellipses)

- Ulf-G. Meißner, Hadronic parity violation ..., ITP, Beijing, Sept. 9, 2024 -

Further few-body reactions I

- The Pisa group has performed chiral EFT calculations for spin-rotation measurements in n-p, n-²H, n-³He and on the LA in n + ³He \rightarrow p + ³H
 - $egin{aligned} A_L &= -(0.14 \pm 0.01) h_\pi + (0.017 \pm 0.003) C_0 (0.007 \pm 0.001) C_1 \ &+ (0.008 \pm 0.001) C_2 + (0.018 \pm 0.002) C_4 \end{aligned}$ Viviani et al., 2014

PHYSICAL REVIEW LETTERS **125**, 131803 (2020)

Featured in Physics

First Precision Measurement of the Parity Violating Asymmetry in Cold Neutron Capture on ³He

M. T. Gericke⁰,^{1,*} S. Baeßler,^{2,3} L. Barrón-Palos,⁴ N. Birge,⁵ J. D. Bowman,³ J. Calarco,⁶ V. Cianciolo,³ C. E. Coppola,⁵ C. B. Crawford,⁷ N. Fomin,⁵ I. Garishvili,⁵ G. L. Greene,^{5,3} G. M. Hale,⁸ J. Hamblen,⁹ C. Hayes,⁵ E. Iverson,³ M. L. Kabir,⁷ M. McCrea,^{1,10} E. Plemons,⁵ A. Ramírez-Morales,⁴ P. E. Mueller,³ I. Novikov,¹¹ S. Penttila,³ E. M. Scott,⁵ J. Watts,⁹ and C. Wickersham⁹

 $(n^{3}\text{He Collaboration})$

$$ig[A_L = [1.55 \pm 0.97 (ext{stat.}) \pm 0.24 (ext{syst.})] \cdot 10^{-8} ig]$$

 \hookrightarrow not yet conclusive due to the partial determinations of the LECs

 \hookrightarrow combine with spin rotation $d\phi/dz(\vec{n}p,\vec{n}d)$ & all other measurements

Further few-body reactions II

- Non-zero measurement in p-⁴He scattering: Henneck et al. (1982), Lang et al. (1985) $A_L(46~{
 m MeV}) = -(3.3\pm0.9)\cdot10^{-7}$
- ullet sensitive to OPE $\sim h_\pi$
- presently investigated in NLEFT
- along the lines of *ab initio* α - α scattering Elhatisari et al., Nature **528** (2015) 111
- first results of PC n-⁴He scattering using the recent wavefunction matching method with chiral EFT at N3LO Elhatisari et al., Nature 630 (2024) 59
- \hookrightarrow some fine-tuning of the 3NFs needed

Elhatisari, Hildenbrand, UGM, in preparation

A new lattice QCD approach

PHYSICAL REVIEW LETTERS 120, 181801 (2018)

Novel Soft-Pion Theorem for Long-Range Nuclear Parity Violation

Xu Feng,^{1,2,3} Feng-Kun Guo,^{4,5} and Chien-Yeah Seng^{6,*} ¹School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China ²Collaborative Innovation Center of Quantum Matter, Beijing 100871, China ³Center for High Energy Physics, Peking University, Beijing 100871, China ⁴CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China ⁵School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China ⁶INPAC, Shanghai Key Laboratory for Particle Physics and Astronomy, Shanghai Jiao-Tong University, Shanghai 200240, China

$$egin{aligned} &\langle \delta m_N
angle_{4q} = \ rac{1}{m_N} \langle p | \mathcal{L}^w_{ ext{PC}}(0) | p
angle \ &= -rac{1}{m_N} \langle n | \mathcal{L}^w_{ ext{PC}}(0) | n
angle \end{aligned}$$

- This relation is not new, was already known in the days of CA
- Main result of FGS: Chiral corrections to this relations are $\sim (M_\pi/\Lambda_\chi)^2 \sim 1\%$
- \hookrightarrow Local four-quark operators of the PC weak Hamiltonian are easier computable in LQCD than h_{π}^{1} directly
- \hookrightarrow This was taken up in project **A.10** in the CRC 110 (Bonn lattice group)

Status of the LQCD calculation

Petschlies, Schlage, Sen, Urbach, Eur. Phys. J. A 60:9 (2024)

- 3 different topolgies of the 4q insertion
- ullet $M_{\pi}=261$ MeV, a=0.091 fm, L=3.1 fm

• Weak interactions treated in perturbation theory

$$m_{ ext{eff}}^{(\lambda)}(t| au) = m_{ ext{eff}}(t| au) + rac{\lambda}{2}(\delta m)_{4q} + \mathcal{O}(\lambda^2)$$

• Operator renormalization not yet done, can only calculate the bare value of class W

$$\left[h_{\pi}^{1}(W, ext{bare}) = 8.08(98) \cdot 10^{-7}
ight]$$

 \hookrightarrow of reasonable size, comparable to the earlier result of Wasem

 \hookrightarrow waiting for the fully renormalized result including all three topologies

Summary & outllok

- The extracted values of h_{π} still show a sizeable spread \hookrightarrow a better lattice QCD calculation is under way
- Evaluation of all data from few-nucleon systems still to be done
 - \hookrightarrow a few more measurements are under way $(ec{\gamma}d o np, ec{n}d o t\gamma, ...)$
- An \vec{pp} scattering experiment around 125 MeV could give more information
- How about many-body systems?
- PV measured in other systems, but theoretically difficult (F, Cs, La, Hf, ...)
 → NLEFT at N3LO might be the way to go
- For more details, see the reviews

de Vries, UGM, Int. J. Mod. Phys. E 25 (2016) 1641008

de Vries, Epelbaum, Girlanda, Gnech, Mereghetti, Viviani, Front. in Phys. 8 (2020) 218

SPARES

REMINDER: FERMI THEORY

- Weak decays
 - mediated by the charged W bosons, $M_W \simeq 80\,{
 m GeV}$
 - energy release in neutron β -decay $\simeq 1 \, \text{MeV}$
 - energy release in kaon decays \simeq a few 100 MeV $[K
 ightarrow \pi \, \ell \,
 u]$

$$\frac{e^2}{8\sin\theta_W} \times \frac{1}{M_W^2 - q^2} \stackrel{q^2 \ll M_W^2}{\longrightarrow} \frac{e^2}{8M_W^2 \sin\theta_W} \left\{ 1 + \frac{q^2}{M_W^2} + \dots \right\}$$
$$= \frac{G_F}{\sqrt{2}} + \mathcal{O}\left(\frac{q^2}{M_W^2}\right)$$

 \Rightarrow Fermi's current-current interaction w/ Fermi constant G_F

- Ulf-G. Meißner, Hadronic parity violation ..., ITP, Beijing, Sept. 9, 2024 -

- $[n
 ightarrow pe^-
 u_e]$

PREDICTING the LECs

• Leading order contact terms:

$$\begin{split} V_{\text{CT}} &= \frac{C_0}{F_\pi \Lambda_\chi^2} (\vec{\sigma}_1 - \vec{\sigma}_2) \cdot (\vec{p} + \vec{p}') + \frac{C_4}{F_\pi \Lambda_\chi^2} i (\vec{\tau}_1 \times \vec{\tau}_2)^3 (\vec{\sigma}_1 + \vec{\sigma}_2) \cdot \vec{q} \\ &+ \frac{1}{F_\pi \Lambda_\chi^2} \left(C_1 + C_2 \frac{(\vec{\tau}_1 + \vec{\tau}_2)^3}{2} + C_3 \frac{\vec{\tau}_1 \cdot \vec{\tau}_2 - 3\tau_1^3 \tau_2^3}{2} \right) i (\vec{\sigma}_1 \times \vec{\sigma}_2) \cdot \vec{q} \end{split}$$

• Predictions of the LECs C_i using resonance saturation

LEC	DDH best values	KMW soliton model
C_0	$4.7 \cdot 10^{-6}$	$0.89\cdot10^{-6}$
C_1	$1.2\cdot 10^{-6}$	$0.22\cdot 10^{-6}$
C_2	$-2.2\cdot10^{-6}$	$-0.66\cdot10^{-6}$
C_3	$1.0\cdot 10^{-6}$	$0.41\cdot 10^{-6}$
C_4	$0.25\cdot 10^{-6}$	$-0.05\cdot10^{-6}$

DDH: Desplanques, Donoghue, Holstein, Ann. Phys. 124 (1980) 449

KMW: Kaiser, UGM, Nucl. Phys. A **499** (1989) 699 UGM, Weigel, Phys. Lett. B **447** (1999) 1

- Ulf-G. Meißner, Hadronic parity violation ..., ITP, Beijing, Sept. 9, 2024 -