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Glueballs
• Quest for glueballs lasted for decades
• Quenched Lattice QCD (LQCD), sum rules (SR) 

gave scalar glueball mass 1.5-1.7 GeV (Chen et 
al. 06, Narison 98)

• Large                                                                 
supports f0(1710) as a candidate

• Quenched LQCD, SR gave pseudoscalar 
glueball mass > 2 GeV (Morningstar, Peardon 99; 
Narison 98)

• No strong candidate with mass > 2 GeV from 
J/psi radiative decays; X(2370) ~ 10E-5, 
quantum nonumber?
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Motivation 
• Conventional QCD sum rules: resonances 

assumed to exist and parametrized into 
spectral density 

• fine for well-established states, but not for 
uncertain states like glueballs

• New technique needed
• Will analyze glueball properties in 

dispersive approach developed recently
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Formalism 



Contour integration
• Two-current correlator

• Identity from contour integration,                                        
because          (photon                                                    
self-energy) has no pole 

vacuum polarization 
function

s

branching cut



Quark side
• Work on correlator at large
• Operator product expansion reliable

higher order higher powers

perturbative piece 4-quark condensate

nontrivial vacuum

(deep Euclidean region)

OPE



Hadron side
Contour integral 

contribution
from large 
circle C of 
radius R will 
be cancelled

branch cut caused by 
real intermediate
states due to time-like

(log term)

s

nonperturbative
spectral function



Dispersion relation
• Rewrite pert piece as contour integral

• Equality of two sides gives dispersion relation
• Contributions from big circles cancel, and 

spectral functions from branch cuts remain

due to analyticity of  perturbation theory 



Weakness of sum rules
• How to handle excited-state contribution?
• Rely on parametrization, quark-hadron duality

• Duality may fail
• Stability in unphysical Borel mass?
• Usually not; rely on discretionary prescription; 

tune s0 to make 70% (30%) perturbative
(nonperturbative) contribution   

continuum thresholdobservables: decay constant, mass

equivalent to q



Idea 
• Start with analyticity like sum rules
• OPE in Euclidean region calculable to high 

orders and powers with universal condensates
• Handle dispersion relation as inverse problem
• Solve for spectral density from inputs directly
• No presumption of resonances, no continuum 

threshold (free parameter), no duality
• Systematic framework; high predictive power 
• Limitation: observables must be formulated as 

correlators (inapplicable to jet observables)



UV subtraction
• Subtracted spectral function

• Maintain low-energy                                      
behavior              as 

• Bear resonance structure                                  
the same as

• Circle radius R can be pushed to infinity

• No duality assumed at finite s

Kwon et al 2008

arbitrary R switched 
into arbitrary scale



Solving integral equation



Fredholm integral equation
• Goal is to solve ill-posed integral equation

• How to solve it? Notoriously difficult
• Discretization does not work

unknown spectral density  
to be solved

1st kind of Fredholm integral equation

OPE input



ill-posedness
• Discretizing integral equation fails

• Rows Mij and M(i+1)j become almost 
identical for fine meshes, det(M) ~ 0

• Matrix M becomes singular; diverges
quickly

• Solution diverges and sensitive to variation 
of inputs

inputunknowns
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Strategy 
• Suppose       decreases quickly enough
• Expansion into powers of 1/x justified

• Suppose        can be expanded
• Decompose

• Orthogonality  

generalized
Laguerre
polynomials

depend on          at 

true for OPE



Solution 
• Equating coefficients of

• Solution
• True solution can be approached by 

increasing N, but          diverges with N
• Additional polynomial gives          

correction, beyond considered precision

matrix

unknown
input

due to orthogonality



Test examples
• Generate mock data from

• Compute matrix M with
• Solution stable for N > 20, becomes 

oscillatory as N=24 due to divergent  



Boundary conditions
• Test choices of      (red: true solution)

• Parameter     determined by boundary 
conditions of solution 

• Boundary conditions help getting correct 
solutions

deviation

N=22

almost perfect completely different

=1.2



Resolution 
• implies resolution power
• Test double peak functions

• Fine structure can’t be resolved (ill-posed)

red: true solution 



rho, glueball mass



Features of solution
• Dimensionless
• Variable changes            ,

• sets resolution power, ~ O(1) GeV
• Physical solution is independent of
• As it is large enough, condensate effects 

disappear, scaling of solution appears
• A solution          implies            is solution 

for any    , with which mass grows     



rho meson spectral density
• Compute M with
• OPE input known in the literature

• Positivity satisfied automatically

rho meson peak ! out of control

convergent solution

excited states

local duality 
violation



rho meson mass
• Vary   , find peak                                                  

location
• Tiny error, stable                                                   

solution

• Including RG effect, condensate variation

• Decay constant, area under peak w/o

physical
solution

scaling
region

consistent 
with PDG



Glueball correlators
• Correlator

• Input                       see 2109.04956
• Spectral density for scalar glueball

…

divergent
positivity lost

two peaks appear !

huge pert
background



Scalar glueball mass
• Subtracted spectral density and mass

BES data

width~
290 MeV

width~
112 MeV

little gluonium in              ?



Pseudoscalar glueball mass

• proposed by Page, XQ Li in 1998
• Quenched LQCD gave 2.6 GeV in 1999
• unknown parity, BR~10E(-5) 
• but seen in                 , unlikely

,
width ~ 
240 MeV

~270 MeV

BR ~ 10E(-4)



Comparison to earlier work
Tetramixing + anomalous Ward identity

``not lower than 1.8 GeV”,
W. Qin, Q. Zhao, X. H. Zhong, 
1712.02550

our result



Tensor glueball mass
• No solution!

• Single condensate          in OPE, insufficient 
nonpert information to establish resonance

• Narison found                     in 1998, but no 
stability as varying continuum threshold

scaling region

instead, chose an inflection point



Correlator at zero momentum
• Once           is obtained, can calculate

• Can be made well-define in our formalism 

local operator,
UV divergence

UV contribution 
from large circle Rcondensates

perturbative piece

known and finite!



Topological susceptibility
• Low-energy theorem

• Prediction                              almost 
independent of 

gluon condensate
fixed by rho mass

this relation then fixes 
triple-gluon condensate
(quite uncertain)

triple-gluon condensate 
used to predict 

Lattice:

chiral perturbation:

instanton
lattice



Summary  
• Solve dispersion relation as inverse problem, 

no duality assumption, no pole 
parametrization, no discretionary prescription

• Resonances appear naturally, rho mass 
produced with acceptable OPE inputs

• Same inputs predict                                                
and              as glue-rich states  

• and   ,     have small amount of gluonium
• Current OPE inputs insufficient to establish 

tensor glueball
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