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Background

Topological states

m Beyond the Landau-Ginzburg paradigm;

m nontrivial topology in the quantum wave
function;

m certain properties stable under small
perturbations;

m (quantum)Topological phase transition.
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Background

Topological semimetal family

-
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Triple-Degenerate Nodal
Normal metal Dirac semimetal (DSM) Weyl semimetal (WSM) Node-Line semimetal (NLSM)  Point semimetal (TDNPSM)

by
)
4

Classified according to the degeneracy and distribution in crystal
momentum space.

H. Weng, X. Dai and Z. Fang, J. Phys.:Condens. Matter 28, 303001 (2016)

H. Weng, Chin. Sci. Bull. 61, 3907-3916 (2016
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Background

Motivation

m Topological states of matter with strong interactions:
difficulty in direct condensed matter calculations,
especially for topological semimetals;

m Checking possible consequences of strong interactions:
topological structure destroyed or new topological
structures arise;

m New entry in the holographic dictionary:
topological states of matter;

m Anomaly and anomalous transports;
m Holography;

m Topological phase transition.
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Background

Effective field theory model of topological semimetal

Ideal Weyl semimetal

Lysm :&(ia_eA_’YM’YSb/L"FM)w:

where, ¢ = 140, 4# and ~° are
gamma matrices, b, is a
time-reversal odd axial gauge

field and M is the mass term.
D. Colladay and V. A. Kostelecky,
Phys. Rev. D 58, 116002 (1998)
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Effective field theory model of topological semimetal

Ideal Weyl semimetal
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Background

Phase transition of the ideal Weyl semimetal

(a) Weyl semimetal phase (b) Critical point (c) Trivial phase
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Background

Phase transition of the ideal Weyl semimetal
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(a) Weyl semimetal phase (b) Critical point (c) Trivial phase

|b| > |M]| the spectrum is ungapped. The separation of the Weyl points in
momentum space is given by 2beg = 2v/b2 — M?2.
|b| < |M| the system is gapped with gap M.g = v M? — b2
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Background

Phase transition of the ideal Weyl semimetal
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The anomalous Hall effect 7 =1 bopp X ﬁ can be employed as
2w ff
an order parameter to indicate the occurrence of a phase transition.
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Phase transition of the ideal Weyl semimetal

The anomalous Hall effect 7 = #?eff X ﬁ can be employed as
an order parameter to indicate the occurrence of a phase transition.
Topological invariants represent the intrinsic properties of the band
structure, which can be defined for topological states of matter.

In a weakly coupled ideal Weyl semimetal, the corresponding
topological invariant is defined as the Chern number. This is
calculated by integrating the Berry curvature in the momentum
space, and also can be calculated through the Green functions:

N(k,) = / dkodk,dk, Tr|e"7*Gd, G 1GH, G~ 1GI,G™*

2472

(K. Ishikawa and T. Matsuyama, Z. Phys. C 33, 41(1986))
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Background

Phase transition of the ideal Weyl semimetal

The topological number associated
with each Weyl point is either +1 or -1,
which correspond to opposite
chiralities;

The merger of two Weyl points results
in the formation of a Dirac point,
characterised by a topological number
of zero;

Upon the system becoming gapped,
corresponds to the topological trivial
phase, the topological number also
reaches zero.
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Phase transition of the ideal Weyl semimetal

The topological number associated
with each Weyl point is either +1 or -1,
which correspond to opposite C=0 C=1 C=0
chiralities; ‘

The merger of two Weyl points results |

in the formation of a Dirac point,

characterised by a topological number

|
|
of zero;
Upon the system becoming gapped,

corresponds to the topological trivial
phase, the topological number also

reaches zero. | gﬂj
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Background

Effective field theory model of topological semimetal

Nodal Line semimetal

L = '(L(i’y'ua,u -M- ’Y'ul/b,uu)'(b )

where, ) = 1)17?,
Fylw = %[,.Y,uy,yl/] ' bHV - _bVH is
an external antisymmetric

two-form field.
A. A. Burkov, M. D. Hook, L. Balents,
Phys. Rev. B 84, 235126 (2011)
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Background

Holographic topological semimetals

Model

K. Landsteiner, Y. Liu, Phys. Lett. B 753,453-457 (2016). (Ideal Weyl semimetal)

Y. Liu and Y. W. Sun, JHEP 12, 072 (2018). (Nodal line semimetal)

V. Juricic, I. S. Landea, R. Soto-Garrido, JHEP 07, 052 (2020). (Multi Weyl semimetal)
XTJ, Yan Liu, Ya-Wen Sun, Yun-Long Zhang, JHEP 12, 066 (2021). (Z2 Weyl semimetal)

K. Landsteiner, Y. Liu and Y. W. Sun, Sci. China Phys. Mech. Astron. 63, 250001 (2020)....
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Holographic topological semimetals
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V. Juricic, I. S. Landea, R. Soto-Garrido, JHEP 07, 052 (2020). (Multi Weyl semimetal)
XTJ, Yan Liu, Ya-Wen Sun, Yun-Long Zhang, JHEP 12, 066 (2021). (Z2 Weyl semimetal)

K. Landsteiner, Y. Liu and Y. W. Sun, Sci. China Phys. Mech. Astron. 63, 250001 (2020)....

Transports

K. Landsteiner, Y. Liu and Y. W. Sun, Phys. Rev. Lett., 117, 081604(2016). (Odd viscosity)
C. Copetti, J. Fernandez-Pendas, K. Landsteiner, JHEP 02, 138(2017). (Axial Hall effect)

G. Grignani, A. Marini, F. Pena-Benitez, S. Speziali, JHEP 03, 125(2017). (AC conductivity)
Y. Bu, R. G. Cai, Q. Yang, Y. L. Zhang, JHEP 09, 083(2018). (chiral electric separation effect)

XTJ, Y. Liu and X. M. Wu, Phys. Rev. D, 100, 126013(2019). (chiral vortical conductivity)...
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Background

Solid-liquid Coexistence State
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Background

Parent phase 1 Parent phase 2

N

Child phase

Solid-liquid Coexistence State A M. c!,\flk,ujl_tépnlﬂliflc\ﬁm]—nopegls(,) & (2022)
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Background
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J. Zhan, J. Li, W. Shi, X. Chen, Y. Sun,
Phys. Rev. B, 107: 224402(2023).
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Background

0.15
I No Fermi Arc
b
< 0.00 — @
'\ 4 R
>
-030 Weyl Nodal Walls
. (WNW)
J. Zhan, J. Li, W. Shi, X. Chen, Y. Sun, J.-Z. Ma, Q.-S. Wu, M. Song et al. Nat
Phys. Rev. B, 107: 224402(2023). Commun 12, 3994 (2021).
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Z5 Weyl semimetal

Effective field theory model:

L7, =W [0 (i0#0, — T A, — THTOb, + MiLi + Malo) + 10 (el A, — 410, )| w
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Z5 Weyl semimetal

Effective field theory model:

L7, =W [0 (i0#0, — T A, — THTOb, + MiLi + Malo) + 10 (el A, — 410, )| w

m U is an eight component spinor.
B =@k, T"=4"®Z, T°=+"QL, I°=~"®Zy, 4" is the
4 x 4 Dirac Gamma matrix.

1 0 1 0 .
.]I2:<0 1>322:(0 _1)vIl:dlag(]-?OalaOa]-?Oal?O)'

I, = diag(0,1,0,1,0,1,0,1).
m b, is an axial gauge field, T*T5b,, is a Lorentz breaking term supporting
the energy bands of the Weyl semimetal.
XTJ, Yan Liu, Ya-Wen Sun, Yun-Long Zhang, JHEP 12 (2021) 066.
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Z5 Weyl semimetal

(a) Weyl-Z, (b) double critical (c) gap-gap

w

(d) Weyl/Zy-critical (e) critical-gap or gap-eritical (f) Weyl/Zy-gap

16 /45



Z5 Weyl semimetal

Holographic model:

4 4 4 4
+ %EadeEAz (Fz?che + 3FpcFae + 3FpcFye + Fbscﬁdse)

1 1.o 1 1.
S:/d%@[g—;(zﬂg)—w% F?_-F?_ CF?

2 abcde } 0 n
+?ﬂ€ bed Ai(ngche+Fl?cF§e)
— (D*®1)*(Do®1) — (D*®2)* (D ®2) — V(@l,%)] ,

Two Chern-Simons terms are responsible for the Chiral and Z> anomaly,
respectively.

XTJ, Yan Liu, Ya-Wen Sun, Yun-Long Zhang, JHEP 12 (2021) 066.
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Zy Wey| semimetal

/Trivial
704=07=(

Weyl/Z,~Trivial

¢4>0, 62=0

Weyl/Z,~Trivial

&A:07 0-Z>0

Weyl-Z,

040, 67>0

0.0
05

M,
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Z5 Weyl semimetal
phase diagram in effective field

theory model

/Trivial iy
.5 ,,..~"UA=ozf9
Weyl/Z,—Trivial
7,50, G7=0 o Weyl/Zp—gap gap—gap
A 10 &
M, yd A
My o
ol Weyl-Z, | Weyl/z-Trivial
H 05
G450, 67500 G4=0, 6750 Weyl-2, Weyl/Zy-gap
L 0 % 0 05 1.0 15 20
1.0 15 A
M,
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Z5 Weyl semimetal

The determination of topological invariants from the Green function,
N(k:) = 5 [ dkodkedk, Tr [e“””zGauG_lG&,G_l(}apG_l} , necessitates
the utilisation of an integral in the ko = iw direction.
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Z5 Weyl semimetal

The determination of topological invariants from the Green function,

N(k:) = 5 [ dkodkedk, Tr [e“””zGauG_lG&,G_l(}apG_l} , necessitates
the utilisation of an integral in the ko = iw direction.

Topological invariants for interacting systems: the topological Hamiltonian
method (Z. Wang and S.C. Zhang, Phys. Rev. X 2, 031008 (2012), Phys. Rev.
X 4, 011006 (2014)):

The zero frequency Green function contains all topological information.
Topological Hamiltonian: H,(k) = —G~*(0, k).
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Z5 Weyl semimetal

The determination of topological invariants from the Green function,

N(k:) = 5 [ dkodkedk, Tr [e“””zGauG_lG&,G_l(}apG_l} , necessitates
the utilisation of an integral in the ko = iw direction.

Topological invariants for interacting systems: the topological Hamiltonian
method (Z. Wang and S.C. Zhang, Phys. Rev. X 2, 031008 (2012), Phys. Rev.
X 4, 011006 (2014)):

The zero frequency Green function contains all topological information.
Topological Hamiltonian: H,(k) = —G~*(0, k).

For holographic model, one could detect the topological structure from the
dual Green functions of probe fermions and calculate the topological invariants
from the Green functions.

M. Cubrovic, J. Zaanen and K. Schalm, Science 325, 439 (2009),

H. Liu, J. McGreevy and D. Vegh, Phys. Rev. D 83, 065029 (2011),

Y. Liu and Y. W. Sun, JHEP 10 (2018) 189,

G. Song, J. Rong, S. J. Sin, JHEP 10 (2019) 109,

Y. Liu and X. M. Wu, JHEP 05 (2021) 141...
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Z5 Weyl semimetal
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Z5 Weyl semimetal

The system exhibits both chiral and Z>
symmetry. The nodes are characterised
by the topological charge (£1,+1).
The first &1 corresponds to the chiral
symmetry, and the topological invariant
is the chiral charge.

The second +1 corresponds to the Z5
symmetry, and the topological invariant
is the Z5 charge.

Accordingly, two pairs of probe
fermions are required to calculate the
corresponding topological invariants in
a Z2 Weyl semimetal.
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Z5 Weyl semimetal

The probe fermion’s action has the form like

S=8+S52+S53+S1+ Ss
S = /./—gde\Tll(FaDa — ’mf)\I/l, So = /\/ _gdsl’ijQ(FaDa + mf)\Ij2
S3 = /\/ 7gd5x\Ij3(f‘“f)a — mf)\I/3, Sy = /\/ fgde\Th;(f‘a[)a —+ mf)\I/4
Se = — / V=9 z(m®1 U1 Vs + ni ®TUa Wy + 1PoUs Wy + 05 P50, U3)
Where I'*, Do, 1'%, D, is defined as
I :=7"®1Ila, Dy :=V,—i4,

[ :=~*®Zs, Dy:=Va—id,
Xiantong Chen, XTJ and Ya-Wen Sun, arXiv: 2501.XXXXX
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Effective field theory model of coexistence of topological
semimetal

£ =WITO [(iD#8,, + T* by, + THYIO0],, + M) Ty + (i0%9,, — TOTHI%b, + M) Io] U,
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Effective field theory model of coexistence of topological
semimetal

£ =WITO [(iD#8,, + T* by, + THYIO0],, + M) Ty + (i0%9,, — TOTHI%b, + M) Io] U,

XTJ,

W is an eight component spinor.

M“=4"@l, I"=+"®L, I'" = [[*,T"], v* is the 4 x 4 Dirac
Gamma matrix and I is the 2 X 2 unit matrix.

I, =diag(1,0,1,0,1,0,1,0), I, = diag(0,1,0,1,0,1,0,1).

b, is an axial gauge field, T#T"b,, is a Lorentz breaking term supporting
the energy bands of the Weyl semimetal.

buv is an antisymmetric real two-form field, and the term I'*”b,,,
contributes to the formation of the nodal line semimetal.
bfw is a pure imaginary field, which is the dual part of the b, .

Ya-Wen Sun, Eur. Phys. J. Plus 139, 485 (2024)
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Effective field theory model of coexistence of topological
semimetal

Set the non-zero component of the two-form field as b, in £, then the
non-zero component of the imaginary dual field bfw is b2, = ibsy. This choice
results in a nodal ring in the = — y plane.

To show the coexistence of the Weyl semimetal and the nodal semimetal
intuitively, we will set b, to be nonzero.

The energy spectrum of the eight eigenstates in £ can be solved at the k. =0

plane as
2
Eln:l: = =+ <\/k%+k§+M12$4bzy) B
2

23/45



Effective field theory model of coexistence of topological
semimetal

Eight eigenstates above could be divided into two groups.
m FEi,+ is responsible for forming the nodal ring.
B Fo,+ is responsible for the Weyl nodes.
m Set by, = bdk and byy = c.
m The effective radius of the nodal ring in the nodal line semimetal state is
/1662 — M2,

m The distance between two Weyl nodes is /b2 — M2.
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Effective field theory model of coexistence of topological
semimetal

Eight eigenstates above could be divided into two groups.
m FEi,+ is responsible for forming the nodal ring.
B Fo,+ is responsible for the Weyl nodes.
m Set by, = bdk and byy = c.
m The effective radius of the nodal ring in the nodal line semimetal state is
V/16¢2 — M32.
m The distance between two Weyl nodes is /b2 — M2.

Changing the values of M1, M2, b and ¢, different phases of the system can be
found. The corresponding phase diagram can be drawn with three
dimensionless parameters My = M /c, M2 = M>/b and ¢/b.
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Effective field theory model of coexistence of topological
semimetal

(8) Weyl-Nodal (b) Weyl-Critical () Weyl-Gap
g I N #:
(d) Dirac Point(Critical) (¢) Critical-Nodal (£) Critical-Gap
o Y
N -~
(&) Gap-Nodal (1) Gap-Critical ) Gap-Gay
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Effective field theory model of coexistence of topological
semimetal

Weyl-nodal Coexistence State
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Effective field theory model of coexistence of topological
semimetal

15 gap—nodal gap—gap
1’\,\42 1.0
0 Weyl-nodal Weyl-gap
DOO 2 4 6 8
M,
Weyl-nodal Coexistence State Phase diagram
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Holographic coexistence of nodal line and Weyl semimetals

2K2 Lf2

5 1 12 1 1., 1 1.
S:/d%ﬂ\/f [ (R+ )77.7:277}'27—F2——F2
g 4 4 4°° 4b
« A ~ A A
+ EeabcdeAa (3FveFae + FooFio + 3FpeFae + Fi.Fg.)
28 abcde 3 £ 55 5 Aa * a *
+ oA (3o Fae + FLLFL.) — (D®1)* (Da®1) — (D®3)" (Da®2)
1 abede(; . 2 b
- afa ¢ e(ZBaszde - ZB;bHcdc) — Vi(®1, ®2) — Va(Bap) — A @117 B, B® ] ,

k2 is the five dimensional gravitational constant, L is the AdS radius.
V and V are gauge fields represents the electromagnetic U(1) current,
As and A5 are the axial gauge field represents the axial U(1) current.
Bgyp is a complex anti-symmetric two form field, which is dual to
operators 1y*1) and 1)y"Y~°1) on the boundary.

Two scalar fields ®; and ®5 denote the mass deformations.
Haogqi Chu, XTJ, Ya-Wen Sun, JHEP 05 (2024) 166
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Holographic coexistence of nodal line and Weyl semimetals

Three Chern-Simons terms

m the term proportional to o produces the chiral anomaly

Vudt = lim [~ §ePTT (3FypFor + F,FS, ) = 50T (3, For + B, FS)
—iqy [®7(D"®1) — @1 (D" P1)"] } ,
m the term proportional to 8 produces the Z5 axial anomaly
TH — B _ o _rvpoT n 5 /b _ B _rvpor n 5 5
Vedl = lim |-%e 3Py pFor + FE F2. Se 8FypFor + FS F2.

— g [@;(E%z) - @2(ﬁrq>2)*] ] .

m the term proportional to 1 together with the mass term of the
two-form field give rise to the equation of motion for the two-form
field B, with the self-duality relation of B,,, taken into account.

28/45



Holographic coexistence of nodal line and Weyl semimetals

The Ansatz at zero temperature is

ds® = —u(r)di® + s+ f(r)(de® + dy®) + h(r)d=?,

1= ¢u(r), P2 = ¢2(r),
A = AZ(T)7BZy = 7Byz - Bzy,Btz = *th = iBtz 5

U, fyhy Az, Bay, Bz, ¢1 and ¢2 are functions of the radial coordinate 7.
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The Ansatz at zero temperature is

ds® = —u(r)di® + s+ f(r)(de® + dy®) + h(r)d=?,

1= ¢u(r), P2 = ¢2(r),
A = AZ(T)7BZy = 7Byz - Bzy,Btz = *th = iBtz 5

U, fyhy Az, Bay, Bz, ¢1 and ¢2 are functions of the radial coordinate 7.
The holographic analogues of the mass terms and the source term of the tensor
operators are introduced in the UV boundary conditions

lim 7”<I)1:]\417 lim Tq)QZMQy

T—00 T—00
lim A, =b, lim r7'B;. = lim v~ !B,y =c.
T—00 T—00 T—00
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Holographic coexistence of nodal line and Weyl semimetals

m b: corresponds to the source of the chiral current UTTT*I° W,
m ¢ corresponds to the source of UITOI** ¥ as well as UTTOTH o0,

m M; and Ms: sources of the UIT°M; ¥ and \IITFOMQ\II, the mass terms of
the fermions.
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m b: corresponds to the source of the chiral current UTTT*I° W,

m ¢ corresponds to the source of UITOI** ¥ as well as UTTOTH o0,

m M; and Ms: sources of the UIT°M; ¥ and \IITFOMQ\II, the mass terms of
the fermions.

c and M; here should be responsible for the nodal line semimetal, i.e. a certain
combination of them determines the effective radius of the nodal ring. Similarly,
the boundary values of b and M> are responsible for the Weyl nodes, and a

combination of them shows the effective distance between the two Weyl nodes.
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Holographic coexistence of nodal line and Weyl semimetals

m b: corresponds to the source of the chiral current UTTT*I° W,
m ¢ corresponds to the source of UITOI** ¥ as well as UTTOTH o0,

m M; and Ms: sources of the UIT°M; ¥ and \IITFOMQ\II, the mass terms of
the fermions.

c and M; here should be responsible for the nodal line semimetal, i.e. a certain
combination of them determines the effective radius of the nodal ring. Similarly,
the boundary values of b and M> are responsible for the Weyl nodes, and a
combination of them shows the effective distance between the two Weyl nodes.
Nine different types of IR solutions can be found, which flow to the asymptotic
AdSs boundary to give nine types of full spacetime solutions. From the IR
behavior of these nine solutions and the boundary value of each IR solution, a
phase diagram similar to the weakly coupled one can be obtained.
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Holographic coexistence of nodal line and Weyl semimetals

strongly correlated many- Weakly coupled
body system without = gravity, string theory in
gravity in 3+1D 441D

String&Gravity Field theory
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Holographic coexistence of nodal line and Weyl semimetals

strongly correlated many- Weakly coupled
body system without = gravity, string theory in
gravity in 3+1D 441D

String&Gravity Field theory

AdSs Lifshitz AdS5

e
M7b
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Holographic coexistence of nodal line and Weyl semimetals

Double Critical Point

d
ds® = ugr ( dt2+dx)+L2
UgT
+ foradgf + hor?®dz? ,
A, =1" o1=010, P2= P2,
Buy = 0o, B = b,

with ¢/b =1,
My =M= 1,073,
My=X My = 0.924.
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d w
ds® = ugr ( dt2+dx)+L2
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A, =71 d1= 1o, @2 = o,
Buy = 0o, B = b,
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Holographic coexistence of nodal line and Weyl semimetals

Weyl-Critical

w=muor?® (1 + 0u r™) ,
f=for** (L +8f1r™1),

h=hor? (1+ 8hy 1)

A, = ag + ¢3om " “hg exp <—T\j’%) ,
Byi. = bior® (1+ 6B r™)

By = 1% (14 0Bgy1 ) ,

Q1 = 10 (1 + 011 7)

3CL —1—a
@2 = Gag exp (m) e
0/t0
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Holographic coexistence of nodal line and Weyl semimetals

Critical-Nodal

u = ugr® (14 duy ™) ,
f=for* (L+ofire),

h = hor®® (1 + 6hy ™) ,

A, =71 (1+d0a;r*) |

Bi, = bisor' ™% (1 + 6Bp1 r™)
Byy =1 (14 6By ™) ,

¢, = ¢107“67

Dy = dog (1 4 dpoy 1) .
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Holographic coexistence of nodal line and Weyl semimetals

Critical-Nodal

u=upr? (14 duy r*) | w
f=for** (L +dfirm),

h = hor*2 (1 + 0hyr®) |

A, =71 (1+d0a;r*) |

Bi. = bpor' 2 (1 + 6By ™) |
Byy =1 (14 6By ™) ,

¢, = ¢107“67

Dy = dog (1 4 dpoy 1) .
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Holographic coexistence of nodal line and Weyl semimetals

Critical-Gap

w=ugr? (14 duqrt),
f=rt s ofir)

h = hor** (14 Shy r™t) |
A, =r*(1+dayr*),
Bi. = Bi.or®?,

Bay = Bayor®?,

Py =30 (1 + 011 77)
Do = oo (1 + dp217™") .

35/45



Holographic coexistence of nodal line and Weyl semimetals

Critical-Gap

w=ugr? (14 duqrt),
f=rt s ofir)

h = hor** (14 Shy r™t) |
A, =r*(1+dayr*),
Bi. = Bi.or®?,

Bay = Bayor®?,

Py =30 (1 + 011 77)
Do = oo (1 + dp217™") .

35/45



Holographic coexistence of nodal line and Weyl semimetals

Gap-Critical

u=ugr? (1 + du1 7t + Sus 7“2"‘372) ,
f=for® (L+8f1r 4 dfar2as=2)

h = ugr? (14 6hy 7%t + Sho r2°‘3_2) ,

A, =apgr®3,

Btz = Bizor? (1 + 0Biz1 v + §Baar?@372) |
Bay = Bayor® (1 + 6Bey1 71 + 6Bayy2 122 72) |
1 = 1o (14 5¢11 1L + 1212372

1 (704+ vV (e+2)2u0424
@2 :\/30 1+5¢217’a2 +7"2 Vo

)

36/45



Holographic coexistence of nodal line and Weyl semimetals

Gap-Critical

u=ugr? (1 + du1 7t + Sus 7“2"‘372) ,
f=for® (L+8f1r 4 dfar2as=2)

h = ugr? (1 4+ 6h1r* + Sho r2°‘3_2) ,

A, =apgr®3,

Btz = Bizor? (1 + 0Biz1 v + §Baar?@372) |
Bay = Bayor® (1 + 6Bay1 7%t + 6Bgy2 r23 7%
1 = 1o (14 5¢11 1L + 1212372

P =+v30 |1 +5¢217’a2 +r

36/45



Holographic coexistence of nodal line and Weyl semimetals

Weyl-Nodal

u=ugr? (1 +dur®),
f=Ffor®*(@A+0fr™),
h=r?(1+46hr*),

3a
AZ:aO—i—exp(—r\ﬂ%)r“ Y
Byi. = Bior® (1+ 0B, ) ,
By = 1% (14 0By ) ,
Dy = ¢io7r”,

3a _lta
@2 = ¢20 exp (— 27\/270) r 2 .

37/45



Holographic coexistence of nodal line and Weyl semimetals

Weyl-Nodal

u=ugr? (1 +dur®), w
f=Ffor®*(@A+0fr™),
h=r?(1+46hr*),

3a
AZ:aO—i—exp(—r\ﬂ%)r“ Y
Byi. = Bior® (1+ 0B, ) ,
By = 1% (14 0By ) ,
Dy = ¢io7r”,

3a _lta
@2 = ¢20 exp (— 27\/270) r 2 .

37/45



Holographic coexistence of nodal line and Weyl semimetals

Weyl-Gap

u=muyr?,

f=h=r?,

e (<0 (505 + )
By, = BtzOTB )

Byy = Buyor?

@ = g9+ P11 7,

exp (— 233270)

V372 r\‘}‘:TO

Dy = 2099

38/45



Holographic coexistence of nodal line and Weyl semimetals

Weyl-Gap

w=uyr?,
f = h = ’]"2 y
3ag P3gu0 B3
Al = - e
Go + exp ( r./uo) < 9rad 3
Btz = BtzOTB )
Ba:y = BzyOrB ;

@ = g9+ P11 7,

exp (— 233270)

V372 r\‘}‘:TO

Dy = 2099

38/45



Holographic coexistence of nodal line and Weyl semimetals

Gap-Nodal

w=muor? (1 + duy r*) ,
f=Ffor®*(1+0fir™),

h =72 (1+86hyr™),

A, = agr®?,

Byi. = bror® (1 + 6B r®) |
Bry = 1% (14 0Bgy1 ) ,
@y = ¢ior”,

Qg = oo + P21 7.

39/45



Holographic coexistence of nodal line and Weyl semimetals

Gap-Nodal

w=muor? (1 + duy r*) , w
f=Ffor®*(1+0fir™),

h =72 (1+86hyr™),

A, = agr®?,

Byi. = bror® (1 + 6B r®) |
Bry = 1% (14 0Bgy1 ) ,
@y = ¢ior”,

Qg = oo + P21 7.

39/45



Holographic coexistence of nodal line and Weyl semimetals

Gap-Gap
u=ugr?,
f=h=r?,
A, = agre?,
By, = BtzOT'B )
By = Bayor”
Q1 = d10 + 1172,
Dy = Poo + P21 7.

40/45



Holographic coexistence of nodal line and Weyl semimetals

Gap-Gap
u=ugr?, w
f=h=r?,

A, = agre?,

By, = Btzorﬂ )

By = Bayor”

Q1 = d10 + 1172,
Dy = Poo + P21 7.

40 /45
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Holographic coexistence of nodal line and Weyl semimetals

phase diagram in effective field
theory model
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Holographic coexistence of nodal line and Weyl semimetals

anomalous Hall conductivity
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free energy
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Summary and outlook

Summary

m Construct holographic models that allows for the coexistence of the
ideal Weyl semimetal and the nodal line semimetal

m Similar phase diagram with the weak coupling regime

m Anomalous Hall conductivity, free energy to demonstrate the
continuation of the phase transition.

Outlook
m How to realize the triple degenerate nodal point phase by
holographic model?
m Calculate the topological invariants of the system, to
ascertain whether there are any finite temperature effects.

m Gain a deeper comprehension of the disorder effect in

condensed matter systems through holography.
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