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Context

When a material undergoes deformation:
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Viscoelastic materials
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Context

Hydrodynamic descriptions:

o [Eckart, 1948; Azeyanagi et al., '09, '10; Fukuma & Sakatani, '11a,
'11b, '12] - geometrization of strain

e [Martin et al., 1972; Jihnig & Schmidt, 1972] - SSB of spatial
translations == crystals
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Holographic models with broken translations
explicitly [Vegh, '13; Davison et al., '14; Donos & Gauntlett, '14;
Andrade & Withers, '14; etc.]
spontaneously [Baggioli & Pujolas, '15; Alberte et al., '16; etc.]

generated a renewed interest in a complete hydrodynamic
description.
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Motivation and Results

[Delacrétaz et al., '17] [Grozdanov & Poovuttikul, '18] [Armas & Jain, '19]
X X v

[Ammon et al., '19; [Ammon et al., '20]

Donos et al., '19]

Fluid-gravity duality —} constitutive relations. We find:
e agreement with [Armas & Jain, '19] for specific values of the
transport coefficients

e spectrum of hydrodynamical collective modes (fixing
inconsistencies of [Grozdanov & Poovuttikul, '18])

e range of parameters for which the theory is stable
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Hydrodynamics of Crystals

Consider a crystal in a (2 + 1) dimensions with pointlike lattice

cores.

In the continuum limit, the crystal lattice can be described through

a set of surface forming one-form fields:
g [Armas & Jain, 2019]

e?(x) = eg(x)dx" where a=1,2



Hydrodynamics of Crystals

Consider a crystal in a (2 + 1) dimensions with pointlike lattice

cores.

In the continuum limit, the crystal lattice can be described through

a set of surface forming one-form fields: )
[Armas & Jain, 2019]

e?(x) = eg(x)dx" where a=1,2

b contains essential physical

The matrix e? - e
information:
o diagonal elements encode compression along the
directions of e' and e?;

o off-diagonal encodes shear deformation.




Hydrodynamics of Crystals

Absense of topological defects (dislocations) < de? = 0.

Our crystal has two 1-form global symmetries:

e 2-form currents = dxJ, =0

e topological conserved charges
Q7] :/*Ja
by

where ¥ is a 1-dimensional surface



Hydrodynamics of Crystals

@ @

background (non-dynamical) fields

\(—\—/\/—\
metric g, gauge fields by,
(h? = db?)

Sourced conservation equations:

[Grozdanov & Poovuttikul, '18]

V=0

2
1
VTl +5 > b3, =0

a=1

Constitutive relations are required to close the system!

%)



Hydrodynamics of Crystals
Constitutive relations involve the following (leading) transport coefficients:

e hydrostatic

— thermodynamic pressure
— entropy s
Viscous — heat capacity

e dissipative
— shear viscosity 1
— bulk viscosity ¢

e hydrostatic

_ — lattice pressure P
Elastic — shear modulus G and bulk modulus B

— “thermal expansion coefficient”

e dissipative: o
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Fluid/Gravity Duality
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Gauge invariance of the 2-form B? is the bulk realisation of the 1-form

global symmetry at the boundary



Fluid/Gravity Duality

[Grozdanov & Poovuttikul, '18]

S[G,B% = /d4x\ﬁc [R[G] +6— %dBa A *dB,| 4 GHY + S,

Gauge invariance of the 2-form B? is the bulk realisation of the 1-form

global symmetry at the boundary

2 dr? 2 2 2 2
ds* = ——=+r [—fdt + dx —l—dy]

r2F
dB? = (6m)dr A dt A dx?
where . 2 1 m\ 3
N 2r2 27 ) r3

[Andrade & Withers, '14]

m < density of lattice cores in homogeneous, isotropic crystal
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Let v be the induced metric near the conformal boundary and
H, = dB,.

= Scounf:erterm = Sdeformation
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Let v be the induced metric near the conformal boundary and
H, = dB,.

= Scounf:erterm = Sdeformation

Ja,jJ“ v
Sdeformai:ion = /d3 X\ — =
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Solve radial evolution eqgs (linearised) perturbatively in gradients (w, k)

r-constants expectation values of
of motion currents @ sources
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Fluid/Gravity Duality

EoM = constraints & radial evolution eqs

Hydrodynamical Conservation Eqs

Solve radial evolution eqgs (linearised) perturbatively in gradients (w, k)
r-constants expectation values of

of motion currents @ sources

Impose ingoing b.c. at the horizon

Constitutive Relations



Fluid/Gravity Duality

5TV ~ 9 (67 + 65 + Lo, (57 + 6J%)
m m
ST — 6T ~ 2% (605 —643) + 2%& (605 —61y)
ST + 3T = 6T + mC (645 +645)

® G is the shear modulus and 7 is the shear viscosity.

e bulk viscosity ( vanishes.

Given a regular solution © to 0, (r4.7-"(9r@) = m?0,
r?0, (r*0,0)

o2,
G = nee— i G
r7O(rp)?

lim,_ oo ©2



Fluid/Gravity Duality

moT™ 00T

51y ba ~ .
e P+ Ts 7 m
P+ T P 4T
bol b o, ottt 1 (14 8L (o 1 6uY)
2m? m 2

where (8 is a complicated hydrostatic function involving the bulk

modulus, the heat capacity and the “thermal expansion coefficient”.

PL = m2(C — rh)

(- 6r2)’

(m2(2C = 3r,) + 6r3)°

o =

2m m?+ 6rﬁ

o (m — 6r2)°

8=



Hydrodynamical Collective Modes
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Hydrodynamical Collective Modes

F
transverse sound: w = +V| k — i——k? + O(k3)
'n

r
longitudinal sound: w = £V jk — ir—”k2 + O(k%)
h

D
crystal diffusion: w = —ir—”k2 + O(k®)
h

T_ 6r,3 —m?
8mry
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Transverse speed?
of sound

. m

(as a function of =

r'n

for different C values)

The black dots come from the quasinormal modes of

[Grozdanov & Poovuttikul, '18].



Transverse speed?
of sound

. m

(as a function of =

r'n

for different C values)

Longitudinal speed?
of sound

C = 20r,

mC=15r,

mC=10r,

mC =5,

The black dots come from the quasinormal modes of

[Grozdanov & Poovuttikul, '18].

uC=10r,

mC =5,

mC =35,



For low C,
V2 <0— Im(w) >0

(linear instability)
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For low C,
V2 <0— Im(w) >0

(linear instability)

crystal
diffusion
constant

€ - 12-15In3 3 18 for the entire domain of ™ to be safe in all modes!
rp 6In3-8 rh
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Momentum Relaxation

[Andrade & Withers, '14]:

1

5¢ = Sgrav - 5

/ d*xV'=GF, AxF, + Sy,

where F, = d®, and Sg., = /d4xx/—G(R+ 6) + GHY .

65® = / d3x\/f [(TL") g —2(0%) 66,]



Momentum Relaxation

1

SB = Spa — 2/d4xx/—GHa A#Hs + Shy
1

5“’:5g,é,v—5 / d*xV'—GF, AxF, + Sy,
H? — ¢®xF, -

f5 B \fa B N\

i_o, Sazo and |dH, =0

G || 6B \><:

(s Y [ sse K .

\EZO’)\(SQDE’:O) and dFa:0




Momentum Relaxation

Viscoelasticity

SB~S®

Momentum
Relaxation
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Momentum Relaxation

SB~S®

Viscoelasticity 4

» Momentum
Relaxation
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Momentum Relaxation

1 longitudinal diffusion mode

- —m?§ TE N 08 TE
Bo (PL + ST)2 m

00,

b 2 PB7 (PLA ST)?
2m3

Recalling the crystal diffusion mode

Dy BU(PL—i—sT)2 4
= am o)



Momentum Relaxation

relaxation dispersion relation:

w=—ilre+ O(K?), Tr <1

GRSy

e Scalar theory: 1 transverse and 1 longitudinal relaxation mode
with the same [, = r;’;,.

e Higher-form theory: 1 transverse and 1 longitudinal relaxation
mode with the same [,y = B, [if C > 1.

rel!

8, -r® when C>m2



Conclusion and Outlook
e slow perturbations of the charged (under 2-form gauge fields)
black branes that we considered, obey the viscoelastic

hydrodynamics of [Armas & Jain, '19]

e novel expressions for the shear modulus, bulk viscosity, shear
viscosity and the elastic dissipative transport coefficient o

e lower bound on the deformation coupling C

e what about: bulk solutions that are stable for low C; anisotropic
lattice pressure; etc?

e holographic dual of a crystal with dynamical dislocations



Thanks for your attention
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