Applying Noether's theorem to the pure AdS_3 gravity

Jie-qiang Wu (ITP) The talk is based on an ongoing work with Zhe Feng, Zi-en Gao, Xiao-shuai Wang, Hongbao Zhang

Gauge Gravity Duality 2024

Dec 1st, 2024

- In this work, we revisit the approach with the covariant phase space formalism for the asymptotic symmetry analysis in the pure AdS₃ gravity
- We reformulate the approach into a version which is exactly in the framework of **Noether theorem**
- Specifically, we get the following two results:
 - First, we show that the asymptotic symmetries are indeed symmetries of the pure AdS₃ gravity in the sense of Noether theorem
 - Second, we compute the associated charges of the asymptotic symmetries with the expression of **Noether charge**, which reproduces the result from the ordinarily used approach with the covariant phase space formalism.

Quantum gravity

- Constructing quantum gravity is an important but difficult problem in physics
 - The singularity problem
 - The black hole informal paradox
 - The trans-planckian problem
- However, these problems are too difficult for me

A simpler set up

- To really have some understanding of quantum gravity, we consider a simpler setup and ask ourselves the following question
- Restricting to the effective field theory, low energy, and few body level, do we fully understand quantum gravity?
- There are still some unsolved problems:
 - Conserved charges
 - Diffeomorphism invariant observables
 - Solving the constraints in quantum level
 - Constructing the Hilbert space
 - Von-Neumann entropy

• Our focus: how to properly define conserved charges

Symmetries and conserved charges

- Symmetries and conserved charges are important topics in physics
- Noether's theorem

• Applications in classical mechanics, quantum mechanics, classical field theory, quantum field theory

The difficulty in applying Noether's theorem to gravity

- However, for gravitational system, the application of Noether's theorem is difficult
- The difficulty is from the constraints
- Difficulty I
 - Noether's first theorem: $d\mathbf{j}_{\xi} = e.o.m$

•
$$\int_{\Sigma_f} \mathbf{j}_{\xi} - \int_{\Sigma_i} \mathbf{j}_{\xi} = - \int_{\Gamma} \mathbf{j}_{\xi}$$

• For gravitational system, the spatial boundary term may not vanish

Difficulty II

- Noether's second theorem: $\mathbf{j}_{\xi}=e.o.m+d\mathbf{Q}_{\xi}$
- The charge $\int_{\Sigma} \mathbf{j}_{\xi} = \int_{\partial \Sigma} \mathbf{Q}_{\xi}$
- It requires a more careful treatment for the boundary effect

The covariant phase space formalism

• The more ordinarily used approach: the covariant phase space formalism

lyer, Lee, gr-qc/9403028

Barnich, Brandt, hep-th/0111246

Compere, 0708.3153

• Wide applications in the asymptotic symmetry analysis

Barnich, Brandt, hep-th/0111246

Compere, 0708.3153

Strominger, 1703.05448

Our goal

- For the completeness of the framework, we still want to solve these problems in the framework of Noether theorem
- Our goal: reformulate the approach with the covariant phase space formalism into a version, which is exactly in the framework of Noether's theorem

• Previous attempts: finite systems with timelike or null boundaries

Harlow, Wu, 1906.08616

Shi, Wang, Xiu, Zhang, 2008.10551

Chandrasekaran, Speranza, 2009.10739

- Key point: treating the boundary effects systematically
- This work: infinite systems with asymptotic boundaries More specifically, the pure AdS₃ gravity

Noether's theorem

• We illustrate Noether's theorem with a 0 + 1 dimensional system

$$L = L(t; q_a, \dot{q}_a, \ddot{q}_a, ..., q_a^{(n)})$$

The covariant phase space formalism

- To introduce Noether's theorem, we need to reformulate the 0+1 dimensional system into the Hamiltonian formalism
- Here, we take use of the covariant phase space formalism
- Structures in the covariant phase space formalism:
 - Pre-phase space $\widetilde{\mathcal{P}}$: the set of solutions
 - Symplectic form $\omega :$ read out from the Lagrangian

Reading out the symplectic form

- $\bullet\,$ We now read out the symplectic form ω from the Lagrangian
- Variation of the Lagrangian $\delta L = E^{a}[t; q_{a}]\delta q_{a} + \frac{d}{dt}\theta[t; q_{a}, \delta q_{a}]$
- Symplectic potential: θ

 (a one-form of the set of configurations)
- Symplectic form: $\omega = \delta \theta$ (a two-form of the set of configurations)
- The symplectic form of the pre-phase space: ω|_{*P̃*}
 (The pull-back of ω to the pre-phase space *P̃*)

The symmetry

- We now introduce the notion of the symmetry. Here, we need to go back to Lagrangian formalism
- A symmetry in the frame of Noether's theorem:
 - an infinitesimal transformation;
 - it acts on all of the configurations;
 - its change on the Lagrangian is a total derivative, up to a configuration independent anomaly term
- Representation in a more rigorous level:
 - Symmetry: $X_{\lambda} = \int dt \delta_{\lambda} q_{a}(t) \frac{\delta}{\delta q_{a}(t)}$
 - The change of the Lagrangian under the symmetry $X_{\lambda} \cdot \delta L = \frac{d}{dt} \alpha_{\lambda} [t, q_a] + \beta_{\lambda}(t)$ $X_{\lambda} \cdot \delta L$: acting the symmetry to the Lagrangian. $\frac{d}{dt} \alpha_{\lambda}$: the total derivative term.

 $\overline{eta}_{\lambda}(t)$: the anomaly term which is configuration independent

The Noether charge

• Noether charge: $Q_{\lambda} = X_{\lambda} \cdot \theta - \alpha_{\lambda}$

 X_{λ} : the symmetry, a vector field of the set of configurations θ : the symplectic potential, a one-form of the set of configurations

 α_{λ} : the total derivative term appearing in $X_{\lambda} \cdot \delta L$

The Noether theorem

Noether theorem

- First, the Noether charge Q_λ, when evaluated for the set of solutions (namely under the on-shell condition) is time independent, up to a configuration independent anomaly term ^d/_{dt}Q_λ|_{*p̃*} = β_λ.
- Second, the symmetry indeed maps a solution to a solution $X\cdot E^a|_{\widetilde{\mathcal{P}}}=0$
- Third, the Noether charge Q_λ is indeed the charge conjugate to the symmetry X_λ.

Namely, they satisfy the following Hamiltonian equation $X_{\lambda} \cdot \omega|_{\widetilde{\mathcal{P}}} = -\delta Q_{\lambda}|_{\widetilde{\mathcal{P}}}$

Generalization to the higher dimensional systems

• Higher dimensional generalization: we view the spatial direction as the internal degrees of freedom; and we directly transplant the 0+1 dimensional result to the higher dimensional system

• The
$$\theta$$
 and α :
 $\delta S = \int d^{d+1} x E^a \delta \phi_a + \theta|_{\Sigma_f} - \theta|_{\Sigma_i}$
 $X \cdot \delta S = \alpha|_{\Sigma_f} - \alpha|_{\Sigma_i} + \beta|_M$

Two approaches for the Noether charge

- Two approaches of the Noether charge
 - Approach I: with the Noether charge, ${\it Q} = {\it X} \cdot \theta lpha$
 - Approach II: with the Hamiltonian equation: $X \cdot \omega|_{\widetilde{\mathcal{P}}} = -\delta \mathcal{Q}|_{\widetilde{\mathcal{P}}}$
- The first approach: exactly what we learn in classical mechanics, $H = p\dot{q} L$
- The second approach: the widely used one in gravity
- Our goal: compute the charge in gravity with the first approach, namely with the expression of the Noether charge

Introduction Noether's theorem AdS₃ gravity

The application to the AdS₃ gravity

- We now apply Noether's theorem to the the pure AdS₃ gravity
- More specific targets: studying the asymptotic symmetries and their associated charges

The strategy

The strategy:

- $\bullet\,$ Define the pure AdS_3 gravity in the Lagrangian formalism
- Take a variation of the action Read out the symplectic potential $\boldsymbol{\theta}$
- Act the asymptotic symmetries to the action Read out $\alpha,\,\beta$
- Compute the Noether charge with $Q = X \cdot \theta \alpha$
- Technical issue: a systematical treatment of the boundary effect

Introduction Noether's theorem AdS₃ gravity

Boundary effect I: the definition of the theory

- The boundary effect in the definition of the theory
 - we need to adopt proper asymptotic boundary conditions $g_{zz} = \frac{1}{z^2} + O(z^0)$ $g_{za} = O(\frac{1}{z})$ $g_{ab} = \frac{1}{z^2}g_{ab}^{(0)} + O(z^0)$
 - we need to take holographic renormalization for the action in the off-shell level de Haro, Skenderis, Solodukhin, hep-th/0002230
 - We define the action as a limit of the regularized action

$$S = \lim_{\epsilon o 0} S_\epsilon$$

• The regularized action

$$\mathbf{S}_{\epsilon} = \int_{M_{\epsilon}} \mathbf{L} + \int_{\Gamma_{\epsilon}} \mathbf{L}$$

• The definition is finite for all configurations

Boundary effect II: the covariant phase space formalism

• The boundary effect in reformulating the theory into the covariant phase space formalism

Harlow, Wu, 1906.08616

$$\begin{split} \delta S &= \lim_{\epsilon \to 0} \left[\int_{\mathcal{M}_{\epsilon}} \mathbf{E}^{a} \delta \phi_{a} + \int_{\Gamma_{\epsilon}} \mathbf{F}^{a} \delta \phi_{a} \right. \\ &+ \int_{\Sigma_{f,\epsilon}} \mathbf{\Theta} - \int_{\partial \Sigma_{f,\epsilon}} \mathbf{C} - \int_{\Sigma_{i,\epsilon}} \mathbf{\Theta} + \int_{\partial \Sigma_{i,\epsilon}} \mathbf{C} \right] \end{split}$$

• The symplectic potential: $\theta = \lim_{\epsilon \to 0} \left[\int_{\Sigma_{\epsilon}} \Theta - \int_{\partial \Sigma_{\epsilon}} \mathbf{C} \right]$

Boundary effect III: acting the asymptotic symmetry

- The boundary effect in applying the asymptotic symmetry to the action
- The diffeomorphism is not parallel to the cutoff surface

- It has the following two effects:
 - For bulk Lagrangian density
 X_ξ · δ(∫_{M_ε} L) = ∫_{M_ε} L_ξL = ∫_{M_ε} d(ξ · L) ⊃ ∫_{Γ_ε} ξ · L

 For boundary Lagrangian density
 X_ξ · δl ≠ L_ξI

- The change of the action under the asymptotic symmetry: $X_{\xi} \cdot \delta S = \lim_{\epsilon \to 0} \left[\left(\int_{\Sigma_{f,\epsilon}} \xi \cdot \mathbf{L} - \int_{\partial \Sigma_{f,\epsilon}} \mu_{\xi} \right) - \left(\int_{\Sigma_{i,\epsilon}} \xi \cdot \mathbf{L} - \int_{\partial \Sigma_{i,\epsilon}} \mu_{\xi} \right) + \int_{\Gamma_{\epsilon}} \nu \right]$
 - The expressions of α_{ξ} , β_{ξ} $\alpha_{\xi} = \lim_{\epsilon \to 0} \left[\int_{\Sigma_{\epsilon}} \xi \cdot \mathbf{L} - \int_{\partial \Sigma_{\epsilon}} \mu_{\xi} \right]$ $\beta_{\xi} = \lim_{\epsilon \to 0} \int_{\Gamma_{\epsilon}} \nu_{\xi}$ β_{ξ} is configuration independent

Two results:

- The asymptotic symmetry is indeed a symmetry in the sense of Noether's theorem
- Noether charge:

$$Q_{\xi} = X_{\xi} \cdot \theta - \alpha_{\xi}$$

= $\int_{\partial \Sigma} \frac{1}{8\pi G} (-K^{\mu\nu} + K\gamma^{\mu\nu} - \gamma^{\mu\nu}) \xi_{\nu} \epsilon^{\Gamma}_{\mu\mu_1} dx^{\mu_1}$

consistent with the covariant phase space formalism and the boundary stress tensor

Discussions

- A new approach; open questions:
 - TMG
 - Kerr/CFT
 - Higher dimensional theories
 - Theories in asymptotic flat spacetime
- Boundary effects
- An off-shell definition of the pure AdS₃ gravity

Thanks

Thanks for your attention!