N=4 SYM on real projective space and analytic conformal bootstrap

Based on: PRL 133 (2024) 20, 201602.

Xinan Zhou (周稀楠)

Kavli Institute for Theoretical Sciences

University of Chinese Academy of Sciences

Gauge Gravity Duality 2024, Sanya, December 1, 2024

Theories on nontrivial backgrounds

- Studying theories on nontrivial backgrounds allows us to access information which is otherwise invisible in infinite flat space.
- An example: CFTs with a conformal boundary

CFT data: $\{\Delta_i, C_{ijk}\}$

Extended CFT data: $\{\Delta_i, C_{ijk}, \widehat{\Delta}_a, \widehat{C}_{abc}, \widehat{b}_{ai}\}$

Theories on real projective space

Real projective space is defined as

- Simplest non-orientable manifold in even d.
- Possible for any QFT with time reversal symmetry.
- Many studies in condensed matter and high energy physics in relation to subtle anomalies related to time reversal symmetry.

$$N = 4$$
 SYM on \mathbb{RP}^4

- $\mathcal{N}=4$ SYM: "hydrogen atom" for high energy physics
 - Integrable, amenable to susy localization, prime example of AdS/CFT.
 - Can these be extended beyond flat space?
- $\mathcal{N}=4$ SYM on \mathbb{RP}^4 : Rigid and minimal
 - Here we want to preserve half of supersymmetry [Wang '20].
 - Unlike BCFT with 1/2-BPS boundary condition, there are no new d.o.f. and no choice of boundary conditions.
 - We can, however, choose to gauge (or not to gauge) charge conjugation when we identify the operators under \mathbb{Z}_2

$$\mathcal{O}(x) \to \mathcal{O}(x')$$
 Charge
$$\tau: g \to g^* \in SU(N) \quad (T^a)^m_{\quad n} \to -(T^a)^n_{\quad m}$$
 conjugation

To gauge or not to gauge...

Physically, the two situations are very different. Let's consider 1pt functions

SUGRA dual:

A new classical background asymptotic to $AdS_5 \times S^5/\mathbb{Z}_2$

A \mathbb{Z}_2 quotient of $AdS_5 \times S^5$

Caetano, Rastelli '22]

- We consider the case of gauging charge conjugation because it's simpler and more interesting (preserving integrability [Caetano, Ratelli '22]).
- Side comment: Constructing the dual from string theory is difficult because \mathbb{Z}_2 is a conformal isometry emerging only in the IR.

Quotient AdS

• The \mathbb{Z}_2 acts on AdS_5 as an in version with respect to a unit hemisphere

$$(z_0, \vec{z}) \rightarrow \left(\frac{z_0}{z_0^2 + \vec{z}^2}, -\frac{\vec{z}}{z_0^2 + \vec{z}^2}\right)$$

leaving the north pole invariant.

• But the \mathbb{Z}_2 also acts on the internal S^5

$$(\Phi_1, \Phi_2, \Phi_3, \Phi_4, \Phi_5, \Phi_6) \rightarrow (\Phi_1, \Phi_2, \Phi_3, -\Phi_4, -\Phi_5, -\Phi_6)$$

• Fixed locus $S^2 \subset S^5$: an O1 orientifold. We need the orientifold because the 5-form flux would vanish unless we also reverse worldsheet orientation (τ in the field theory).

As defects

- Let me also digress a bit and make a comment that the system can be more generally viewed as an example of holographic defects.
- A p-dimensional defect in the CFT is dual to a (p+1)-dimensional submanifold in AdS. A familiar example is WL in the fundamental representation which is dual to an AdS_2 string worldsheet.
- Recently, there has been a lot of progress in studying holographic defect correlators both at tree level [Gimenez-Grau '23, Chen, Gimenez-Grau, XZ '23] and at loop level [Chen, Gimenez-Grau, Paul, XZ '24].
- The 0-dimension fixed point in AdS can be viewed as a defect with dimension -1.

In this talk...

- As mentioned, there is no "derivation" of the AdS dual. This means that the construction is necessarily bottom-up and involves some unfixed ingredients.
- This may seem that we do not even have a starting point for doing calculations. However, this is not a problem for bootstrap approaches.
- Concretely, we will consider 2pt functions of 1/2-BPS operators (super gravitons) in the strong coupling limit.
- Although the details of the SUGRA effective Lagrangian are not known, we will show that it is possible to obtain all tree-level 2pt functions using analytic bootstrap techniques.

Kinematics

We focus on super gravitons (1/2-BPS operators)

$$\mathcal{O}_p(x,Y) = \mathcal{N}_p \operatorname{tr}(\Phi^{i_1}(x) \dots \Phi^{i_p}(x)) Y_{i_1} \dots Y_{i_p}$$
 with $SO(6)$ null vectors $Y \cdot Y = 0$.

• The \mathbb{Z}_2 quotient breaks half of super symmetry

$$PSU(2,2|4) \to OSp(4|4) \quad \left\{ \begin{array}{ll} \text{conformal} & SO(4,1) \subset SO(4,2) \\ \\ \text{R-symmetry} & SO(3) \times SO(3) \subset SO(6) \\ \\ & \qquad \qquad Y = (\vec{u},\vec{v}) \quad \vec{Y} = (\vec{u},-\vec{v}) \end{array} \right.$$

• 1pt function can be non vanishing when p is even

$$\langle\!\langle \mathcal{O}_p \rangle\!\rangle = a_p \frac{(Y \cdot \bar{Y})^{\frac{p}{2}}}{(1+x^2)^p}$$
 a_p is new CFT data

Kinematics

2pt functions are partially fixed

$$\langle\!\langle \mathcal{O}_{p_1} \mathcal{O}_{p_2} \rangle\!\rangle = \frac{(Y_1 \cdot \bar{Y}_1)^{\frac{p_1}{2}} (Y_2 \cdot \bar{Y}_2)^{\frac{p_2}{2}}}{(1 + x_1^2)^{p_1} (1 + x_2^2)^{p_2}} \mathcal{G}_{p_1 p_2}(\eta; \sigma, \bar{\sigma})$$

polynomials in σ and $\bar{\sigma}$ of degree $p_m = \min\{p_1, p_2\}$

up to a function of three cross ratios

$$\eta = \frac{x_{12}^2}{(1+x_1^2)(1+x_2^2)} \qquad \sigma = \frac{Y_1 \cdot Y_2}{(Y_1 \cdot \bar{Y}_1)^{\frac{1}{2}}(Y_2 \cdot \bar{Y}_2)^{\frac{1}{2}}} \qquad \bar{\sigma} = \frac{Y_1 \cdot \bar{Y}_2}{(Y_1 \cdot \bar{Y}_1)^{\frac{1}{2}}(Y_2 \cdot \bar{Y}_2)^{\frac{1}{2}}}$$

$$\bar{\sigma} = \frac{Y_1 \cdot \bar{Y}_2}{(Y_1 \cdot \bar{Y}_1)^{\frac{1}{2}} (Y_2 \cdot \bar{Y}_2)^{\frac{1}{2}}}$$

Crossing symmetry

$$\mathcal{G}_{p_1p_2}(\eta;\sigma,\bar{\sigma}) = \mathcal{G}_{p_1p_2}(1-\eta;\bar{\sigma},\sigma)$$

• Scf Ward identities (analytically continue BCFT [Liendo, Meneghelli '16])

$$\left. \left(\partial_{w_1} + \frac{1}{2} \partial_z \right) \mathcal{G}_{p_1 p_2}(z; w_1, w_2) \right|_{w_1 = z} = 0$$

$$\sigma = \frac{(1 - w_1)(1 - w_2)}{4\sqrt{w_1 w_2}} \ \bar{\sigma} = \frac{(1 + w_1)(1 + w_2)}{4\sqrt{w_1 w_2}}$$

Witten diagrams

- The O1 orientifold induces vertices localized at a point in AdS.
- At tree level, i.e., $\mathcal{O}(1/N\sqrt{\lambda})$, we encounter two types of Witten diagrams

contact Witten diagram

$$W_{con} = 1$$

exchange Witten diagram

Method of images [Giombi, Khanchandani, XZ '20]

$$= \underbrace{x_1} + \underbrace{x_2'}_{x_2}$$

$$W_{p} = \sum_{k=\frac{p-p_{1}-p_{2}}{2}}^{-1} \frac{\Gamma(1-\frac{d}{2}+p)\Gamma(k+p_{1})\Gamma(k+p_{2})}{\Gamma(\frac{p+p_{12}}{2})\Gamma(\frac{p-p_{12}}{2})} \times \frac{\eta^{k}}{\Gamma(\frac{2+2k-p+p_{1}+p_{2}}{2})\Gamma(\frac{2-d+2k+p+p_{1}+p_{2}}{2})}$$

$$\mathcal{W}_{\Delta}^{\mathbb{Z}_2}(\eta) = \mathcal{W}_{\Delta}(\eta) + \bar{\mathcal{W}}_{\Delta}(\eta) \qquad \bar{\mathcal{W}}_{\Delta}(\eta) = \mathcal{W}_{\Delta}(1 - \eta)$$

Only scalars can be exchanged.

We start with an ansatz

$$\mathcal{A}_{p_1 p_2} = \mathcal{A}_{p_1 p_2, e} + \bar{\mathcal{A}}_{p_1 p_2, e} + \mathcal{A}_{p_1 p_2, c}$$

Exchange part:

$$\mathcal{A}_{p_1 p_2, e}(\eta, \sigma, \bar{\sigma}) = \sum_{X} \lambda_X h_{R_X}(\sigma, \bar{\sigma}) \mathcal{W}_{\Delta_X}(\eta)$$

$$\bar{\mathcal{A}}_{p_1p_2,e}(\eta,\sigma,\bar{\sigma}) = \mathcal{A}_{p_1p_2,e}(1-\eta,\bar{\sigma},\sigma)$$

The exchange part is determined by selection rules

- -R-symmetry selection rule
- -Non-extremal: $p < p_1 + p_2$ etc

fields	s_p	ϕ_p	t_p
SU(4) irrep	[0, p, 0]	[2, p-4, 2]	[0, p-4, 0]
Δ	p	p+2	p+4

R-symmetry polynomials $h_X(\sigma, \bar{\sigma})$ can be obtained from solving the R-symmetry Casimir equation, which can be identified with the Casimir equation for 4pt conformal blocks in 3d [Dolan, Osborn '03].

Contact part:

$$A_{p_1 p_2, c} = \sum_{a=0}^{p_m} \sum_{b=0}^{p_m - a} \delta_{a+b-p_m, \text{even}} c_{ab} \sigma^a \bar{\sigma}^b$$

We require contact vertices have no derivatives, but we include all R-symmetry structures.

- We can explicitly evaluate the ansatz and it is a rational function in the cross ratios.
- We then plug the ansatz into the suerpconformal Ward identities and then try to solve for the unknown coefficients.

- Let us implement this strategy starting from small values of $p_m = p_2$.
 - $p_m = 2$: only s_{p_1} can be exchanged

$$\mathcal{G}_{p_1 2} = \mu_1 \frac{\sigma \bar{\sigma}}{\eta (1 - \eta)} + \mu_0$$

 $-p_m = 3$:

The fields which can be exchanged are $\{X\} = \{s_{p_1-1}, s_{p_1+1}\}$. We find everything is fixed up to an overall constant. In particular, the ratio of exchange contributions are fixed

$$\frac{\lambda_{s_{p_1-1}}}{\lambda_{s_{p_1+1}}} = \frac{p_1 - 1}{p_1 + 1}$$

Recall that the parameter λ has the meaning of 3pt times 1pt

$$\lambda_{s_p} = C_{p_1p_2p}a_p$$
 [Lee, Minwalla, Rangamani, Seiberg '98]

This gives

$$a_p = C\sqrt{p}$$

-
$$p_m \ge 4$$
:

The other two fields t and ϕ start to appear in the exchanges. But using the result from $p_m = 3$, superconformal Ward identities fix all parameters up to the trivial additive constant solution which only exists for p_m even.

$$\mathcal{G}_{p_1 p_2} = \left\{ \sum_{p \in \mathcal{S}} a_p C_{p_1 p_2 p} \left(h_{p,0} \mathcal{W}_p + \nu_p h_{p-4,2} \mathcal{W}_{p+2} + \rho_p h_{p-4,0} \mathcal{W}_{p+4} \right) + (\eta \to 1 - \eta, \sigma \leftrightarrow \bar{\sigma}) \right\}$$
$$+ \mathcal{G}_{p_1 p_2, \text{con}} + B_{p_1 p_2} \delta_{p_m, \text{even}}$$

$$\mathcal{G}_{p_1 p_2, \text{con}} = C \sum_{t=1}^{\lfloor \frac{p_m}{2} \rfloor} \left[\frac{4(-1)^{\lfloor \frac{p_m-1}{2} \rfloor} \sqrt{p_1} (\lfloor \frac{1+p_m}{2} \rfloor) \frac{p_{12}}{2} (\frac{1+p_m}{2} - t)_t (\frac{2+p_m}{2} - t)_t \Gamma(\frac{3-p_1-p_2}{2})}{\Gamma(t) \Gamma(\frac{p_{12}}{2} + t) \sqrt{p_m} (\lfloor \frac{1+p_m}{2} \rfloor) \frac{1-p_1-p_2}{2}} (\sigma + \bar{\sigma})^{p_m-2t} \right]$$

$$\nu_p = \frac{((p-2)^2 - p_{12}^2)(p^2 - p_{12}^2)}{16(p-3)(p-1)^2 p} \qquad \rho_p = \frac{(p-1)((p+2)^2 - p_{12}^2)(p^2 - p_{12}^2)}{16(p^2-4)p(p+1)^2} \nu_p$$

Comparing with SUGRA

 One can also try to compare with direct supergravity calculation. This provides checks and only fixes the ambiguity. Only the tension term of O1 is relevant

$$-T_{\rm O1} \int_{\rm S^2} e^{-\frac{\Phi}{2}} \sqrt{-\det g_{ab}^{\rm P.B.}}$$

• For s and t, only the fluctuation field $\pi=h^{\alpha}_{\ \alpha}$ is relevant

$$\pi(x,y) = \sum_{p} \pi_p^I(x) Y_p^I(y) \qquad \pi_p = 10ps_p + 10(p+4)t_{p+4}$$

- The strategy is to expand in fluctuations and then integrate over the 2-sphere.
- At linear order, this gives rise to 1pt functions which fully agrees with the bootstrap calculation

$$a_p \propto \sqrt{p}$$
 $a_{t_{p+4}} \propto \sqrt{\frac{(p+3)(p+4)(p+7)}{(p+1)(p+5)}}$

Comparing with SUGRA

• At quadratic order and without derivatives, we can only write down π^2 . It contributes only to the contact part

$$\Pi_{p_1 p_2} = \frac{25\sqrt{p_1 p_2}(p_1 + 1)(p_2 + 1)}{2} \sum_{p \in \mathcal{I}} \frac{4\pi}{(p_1 + p_2 + 1)!!} \binom{p_1}{p} \binom{p_2}{p} p! (p_1 - p - 1)!! (p_2 - p - 1)!! (\sigma + \bar{\sigma})^p$$

However, this does not exactly match the bootstrap result

$$\mathcal{G}_{p_1 p_2, \text{con}} = C \frac{(p_1 + p_2 + 1)(p_1 + p_2 - 1)}{50\pi(p_1 + 1)(p_2 + 1)p_1 p_2} \times (\Sigma \partial_{\Sigma} - p_1)(\Sigma \partial_{\Sigma} - p_2)\Pi_{p_1 p_2} \qquad \Sigma = \sigma + \bar{\sigma}$$

• The mismatch does not prove bootstrap is wrong. Instead it indicates that there must exist some other subtle contributions to contact terms (e.g., from EOM). A similar mismatch was also observed for defect 2pt functions with WL [Gimenez-Grau '23].

Comparing with SUGRA

- Although the naive SUGRA analysis fails, it correctly captures two important features
 - It depends only on the combination $\sigma + \bar{\sigma}$.
 - The correlator should be analytic in the power p.
- Note that the additive ambiguity term corresponds to p=0 and is only present when p_m is even. The rest of the correlator is already analytic in p. This suggests the ambiguities should be set to zero!
- This way the bootstrap calculation completely determines all tree-level two-point functions.

Outlook

- We studied a cute model which has very simple results. It would be interesting to reproduce these results from other methods such as integrability [Caetano, Rastelli '22].
- An immediate generalization of the tree-level result is to go to loops, using AdS unitarity method [Aharony, Alday, Bissi, Perlmutter '16; Chen, Gimenez-Grau, Paul, XZ '24].
- We only looked at the SUGRA limit. But we can also go beyond it and consider stringy corrections.
 - Similar analysis has been carried out for 4pt functions or defect 2pt functions. The simpler model considered here offers an attractive alternative.
 - Use supersymmetric localization [Wang '20]. Integrated 2pt functions can be analyzed similar to defect 2pt functions [Pufu, Rodriguez, Wang '23; Dempsey, Pufu, Wang '24; Billo, Galvagno, Frau, Lerda '23, '24].
 - Study the flat-space limit [Alday, XZ '24] and combine worldsheet description?

Thank you!