Is holographic quark-gluon plasma homogeneous?

Matti Järvinen

Gauge/gravity duality 2024 Sanya – 2 December 2024

in collaboration with

Jesús Cruz Rojas (UNAM Mexico), Tuna Demircik (Wroclaw → Utrecht);

Niko Jokela, Aleksi Piispa (Helsinki) [2405.02392, 2405.02394, 2405.02399]

Outline

- 1. Introduction
- 2. Holographic models
- 3. Spatial instability
- 4. Conclusion

Outline

- 1. Introduction
- 2. Holographic models
- 3. Spatial Instability
- 4. Conclusion

QCD phase diagram and the critical point

Search for the critical point: ongoing effort at RHIC

- Beam Energy Scan stage I results available
- ► Stage II finished, results being analyzed

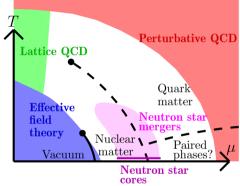
Will be extended by future experiments at FAIR, J-PARC, NICA

Neutron star observations give complementary information at high density

QCD phase diagram and the critical point

Theoretical approaches

- ► First-principles methods do not work in the region relevant for critical point
- Phase diagram or even relevant phases not known
- May include spatially modulated phases
- Can be accessed via the gauge/gravity duality?



▶ Basic idea (bottom-up): use the gauge/gravity duality to extrapolate lattice (and other) data to higher density

[DeWolfe et al. 1012.1864; Knaute et al. 1702.06731; Critelli et al. 1706.00455
 Jokela, MJ, Remes 1809.07770; Demircik, Ecker, MJ 2112.12157
 Cai, He, Li, Wang 2201.02004; Li, Liang, He, Li 2305.13874 . . .]

[See also the talk by Mei Huang]

Outline

- 1. Introduction
- 2. Holographic models
- 3. Spatial Instability
- 4. Conclusion

Generic holographic approach: fields

We want to describe holographically (chirally symmetric) QCD plasma (N_f massless flavors)

Most important (relevant and marginal) operators

- $ightharpoonup T_{\mu\nu}$, dual to the metric $g_{\mu\nu}$
- ▶ Gluon operator $G_{\mu\nu}^2$, dual to a scalar (the dilaton) ϕ
- ► Flavor currents $\bar{\psi}_i \gamma_\mu (1 \pm \gamma_5) \psi_j$, dual to the gauge fields $(A_\mu^{L/R})_{ij}$ (with $i, j = 1 \dots N_f$) global $U(N_f)_L \times U(N_f)_R$ of QCD promoted to gauge symmetry
- Flavor bilinears $\bar{\psi}_i \psi_j$ dual to a complex scalar T_{ij} irrelevant in chirally symmetric phase

What are our options for the choice of 5D action?

Chern-Simons (CS) terms in holography

Chiral anomalies in QCD: consider the chiral $U(N_f)_L \times U(N_f)_R$ coupled to external fields A_L , A_R

▶ Under transformation with parameters $\Lambda_{L/R}$

$$S_{\rm QCD} \mapsto S_{\rm QCD} + \frac{iN_c}{24\pi^2} \int \text{Tr} \left[\Lambda_L F_L \wedge F_L - \Lambda_R F_R \wedge F_R + \cdots \right]$$

Holographic counterpart

- External fields promoted to 5D gauge fields
- ► Gauge variation at the boundary must agree with the anomaly
- ► 5D CS term unique when chiral symmetry intact

[Witten hep-th/9802150]

$$S_{\text{CS}} = \frac{iN_c}{24\pi^2} \int \text{Tr} \left[-iA_L \wedge F_L \wedge F_L + \frac{1}{2}A_L \wedge A_L \wedge A_L \wedge F_L + \frac{i}{10}A_L \wedge A_L \wedge A_L \wedge A_L \wedge A_L \wedge A_L - (L \leftrightarrow R) \right]$$

► Generalizations (e.g. chirally broken) worked out

[Casero, Paredes, Kiritsis hep-th/0702155; Lau, Sugimoto 1612.09503; MJ, Kiritsis, Nitti, Préau 2209.05868]

Note: $U(1)_A$ anomaly is a separate issue – not needed here

Generic holographic approach: actions

We write down expected (two-derivative) terms

$$S = S_{\rm gr} + S_{\rm matter} + S_{\rm CS}$$

where S_{CS} is fixed by anomalies, and

$$S_{
m gr} = M_{
m p}^3 N_c^2 \! \int \! d^5 x \, \sqrt{-\det g} \left[R - rac{4}{3} (\partial \phi)^2 + V_{
m g}(\phi)
ight]$$

Choice of S_{matter} less obvious. Options: $S_{\text{matter}} = S_{\text{DBI}}$ or $S_{\text{matter}} = S_{\text{YM}}$, with

1.
$$S_{\text{DBI}} = M_{\text{p}}^3 N_c \int V_{\text{f}}(\phi) \operatorname{Tr} \left[\sqrt{-\det \left[g_{\mu\nu} + w(\phi) (F_L)_{\mu\nu} \right]} + (L \leftrightarrow R) \right]$$

2. $S_{\text{YM}} = M_{\text{p}}^3 N_c \int Z(\phi) \operatorname{Tr} \left[F_L^2 + F_R^2 \right]$

- ▶ Background gauge fields sourced by μ_B ⇒ at small density, $F_{L/R}$ small ⇒ DBI and YM reduce to the same choice
- Potentials $(V_g, V_f, w \text{ or } V_g, Z)$ to be fixed by QCD data

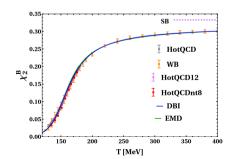
Fitting the potentials to data

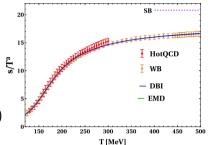
Potentials determined by comparison to lattice data

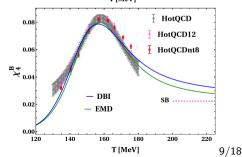
- ightharpoonup Data for Yang-Mills (V_g)
- ▶ Data for full QCD (other potentials): equation of state, $\chi_2^B = \frac{d^2p}{d\mu_B^2}\Big|_{\mu_B=0}$...

In case of DBI action we use two approaches

- 1. With confinement and phase transition (V-QCD)
- 2. Without confinement, direct fit to data







Outline

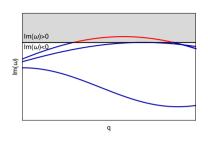
- 1. Introduction
- 2. Holographic models
- 3. Spatial Instability
- 4. Conclusion

Inhomogeneity in holographic plasma?

Spatially modulated instability

[Nakamura, Ooguri, Park 0911.0679; Ooguri, Park 1011.4144]

- Exponentially growing perturbation at $q \neq 0$: a quasi-normal mode with $\text{Im } \omega > 0$
- ► The Chern-Simons term can drive such a modulated instability at finite density



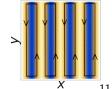
Schematic fluctuation equation

$$\psi''(r) + \left(A' + \frac{f'}{f}\right)\psi'(r) + \underbrace{\frac{qn}{M_p^3 f e^{2A} Z(\phi)^2} \psi(r)}_{\text{From CS term}} + \left(\frac{\omega^2}{f^2} - \frac{q^2}{f}\right)\psi(r) = 0$$

$$\psi = \delta A_{L/R}^{\mathsf{x}} \pm i \delta A_{L/R}^{\mathsf{y}}$$

r = holographic coord.

Ground state: Modulated 5D gauge fields dual to modulated persistent chiral currents in field theory

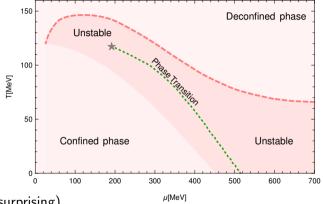


Modulated instability in V-QCD

The region where instability exists in V-QCD

[Cruz Rojas, Demircik, MJ 2405.02399]

The Chern-Simons term is strong enough to create an instability in V-QCD (unsurprising)



- ► Instability is found at low *T* and large density (expected)
- ▶ Instability is also found at higher *T*, near the regime with critical point?! (a big surprise)
- Estimate for transition and critical point from earlier work

Model dependence: fitting uncertainty

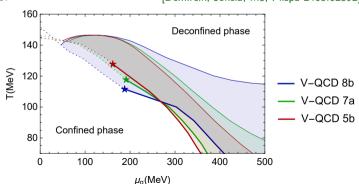
Low-density instability would be phenomenologically highly interesting and potentially testable

- ► There may be caveats and uncertainties (choices in fitting the data, model dependence and reliability...)
- ▶ However, at low densities, expect that models strictly fixed by lattice data
- Important to check this!

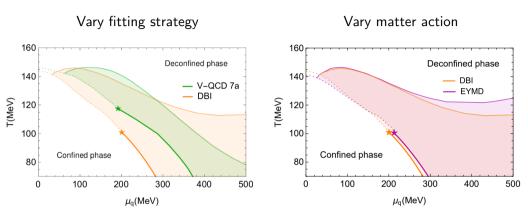
[Demircik, Jokela, MJ, Piispa 2405.02392]

Parameter depedence in V-QCD: rather weak

 Onset of instability solidly determined by lattice fit



Model dependence: other checks



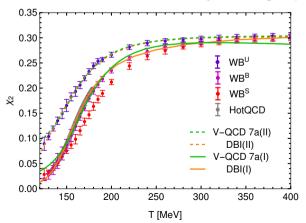
- Only minor changes in particular, DBI and Yang-Mills actions give essentially identical results
- ▶ This means that the instability appears in a wide class of models in the literature

Model dependence: strange quark mass

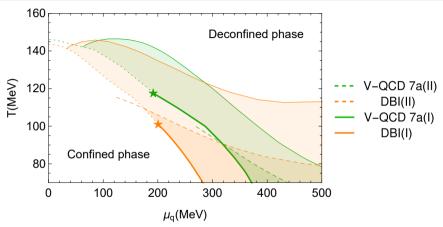
- Instability potentially sensitive to fit to $\chi_2 = \frac{d^2p}{d\mu^2}\big|_{\mu=0}$
- ► Lattice data shows mild flavor dependence

[Borsanyi et al. 1112.4416]

Naive test: fit instead of the full χ_2 the light quark χ_2 (dashed curves) of the $N_f = 2 + 1$ lattice result \Rightarrow isolate the instability in the light quark sector



Model dependence: strange quark mass



- Rather strong suppression of the instability!
- ▶ However, not a consistent check due to strange quark effects in lattice data
- ▶ Moreover, fit to strange quark χ_2 would instead enhance instability
- ► Therefore further careful study is required

Outline

- 1. Introduction
- 2. Holographic models
- 3. Spatial Instability
- 4. Conclusion

Conclusion

- Holographic bottom-up QCD models anchored to lattice data suffer from strong Nakamura-Ooguri-Park instability
 - ▶ Model dependence weak, so perhaps also a feature of real QCD?
- Appears at high density, region potentially reached in neutron star cores and neutron star mergers
- ► A surprise: also found at low density and high temperature, region reachable by lattice or experiments
- ▶ Dependence on fitting procedure and choice of flavor action small at low density affects ALL models fitted to equation of state and χ_2^B
- ► Flavor effects, in particular dependence on strange quark mass, expected to be significant
- ► Next step, therefore: add separate flavors and strange quark mass in progress with Toshali Mitra fitting already done

Thank you!

Generic holographic approach: fitting strategies

Potentials are determined by comparing with lattice results for QCD thermodynamics. Two main strategies:

Strategy I: Include confined phase, with $S_{\text{on-shell}} = \mathcal{O}(N_c^0)$, and the transition to a deconfined phase, with $S_{\text{on-shell}} = \mathcal{O}(N_c^2)$

▶ Used in Improved Holographic QCD and V-QCD models

[Gürsoy, Kiritsis 0707.1324; Gürsoy, Kiritsis, Nitti 0707.1349; MJ. Kiritsis 1112.1261]

Fit lattice data above $T = T_c$

[Gürsoy, Kiritsis, Mazzanti, Nitti 0903.2859; Jokela, MJ, Remes 1809.07770]

 \triangleright Faithful to the behavior in the limit of large N_c

Strategy II: Only deconfined black holes: no phase transition at low density

► Fit lattice data at all temperatures

[Gubser, Nellore, Pufu, Rocha 0804.1950; Gubser, Nellore 0804.0434; DeWolfe, Gubser, Rosen 1012.1864; . . .]

Follows the behavior in the phase diagram of QCD (crossover at low density)

We study both approaches

Fitting the models: setup

Solve numerically black hole geometries

$$ds^{2} = e^{2A(r)} \left(\frac{1}{f(r)} dr^{2} - f(r) dt^{2} + d\vec{x}^{2} \right)$$

with a horizon $f(r = r_h) = 0$ and a background gauge field

$$A_I^t(r) = A_R^t(r) = \Phi(r)\mathbb{I}$$

Black hole thermodynamics \Rightarrow equation of state

$$T = \frac{1}{4\pi} |f'(r_h)|$$
 $s = 4\pi M_p^2 N_c^2 e^{3A(r_h)}$

Relation between quark number n and chemical potential (for YM action) $\mu = \Phi(r=0) = n \int_{0}^{r_h} \frac{1}{e^A Z(\phi)}$

$$\mu = \Phi(r=0) = n \int_0^{r_n} \frac{1}{e^A Z(\phi)}$$

Numerical expansion \Rightarrow susceptibilities

$$\chi_k(T,\mu) = \frac{\partial^k p(T,\mu)}{\partial \mu^k} = \frac{\partial^{k-1} n(T,\mu)}{\partial \mu^{k-1}}$$

Constraining the potentials

In the UV ($\lambda \rightarrow 0$):

► UV expansions of potentials matched with perturbative QCD beta functions ⇒ asymptotic freedom and logarithmic flow of the coupling and quark mass, as in QCD

[Gürsoy, Kiritsis 0707.1324; MJ, Kiritsis 1112.1261]

In the IR $(\lambda \to \infty)$: various qualitative constraints

- Linear confinement, discrete glueball & meson spectrum, linear radial trajectories
- Existence of a "good" IR singularity
- Correct behavior at large quark masses
- Working potentials often string-inspired power-laws, multiplied by logarithmic corrections (i.e, first guesses usually work!)

[Gürsoy, Kiritsis, Nitti 0707.1349; MJ, Kiritsis 1112.1261; Arean, latrakis, MJ, Kiritsis 1309.2286, 1609.08922;

MJ 1501.07272]

Final task: determine the potentials in the middle, $\lambda = \mathcal{O}(1)$

Qualitative comparison to lattice/experimental data

Ansatz for potentials, (x = 1)

$$\begin{split} V_g(\lambda) &= 12 \left[1 + V_1 \lambda + \frac{V_2 \lambda^2}{1 + \lambda/\lambda_0} + V_{\rm IR} e^{-\lambda_0/\lambda} (\lambda/\lambda_0)^{4/3} \sqrt{\log(1 + \lambda/\lambda_0)} \right] \\ V_{f0}(\lambda) &= W_0 + W_1 \lambda + \frac{W_2 \lambda^2}{1 + \lambda/\lambda_0} + W_{\rm IR} e^{-\lambda_0/\lambda} (\lambda/\lambda_0)^2 \\ \frac{1}{w(\lambda)} &= w_0 \left[1 + \frac{w_1 \lambda/\lambda_0}{1 + \lambda/\lambda_0} + \bar{w}_0 e^{-\lambda_0/\lambda w_s} \frac{(w_s \lambda/\lambda_0)^{4/3}}{\log(1 + w_s \lambda/\lambda_0)} \right] \\ V_1 &= \frac{11}{27\pi^2} \;, \quad V_2 &= \frac{4619}{46656\pi^4} \\ W_1 &= \frac{8 + 3W_0}{9\pi^2} \;; \quad W_2 &= \frac{6488 + 999W_0}{15552\pi^4} \end{split}$$

Fixed UV/IR asymptotics ⇒ fit parameters only affect details in the middle

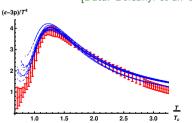
Fitting example: V-QCD (strategy I)

Fit to lattice data near $\mu=0$ with DBI action and fitting strategy I (with transition): the V-QCD model (in the chirally symmetric phase) [MJ, Jokela, Remes, 1809.07770]

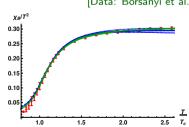
- ► Choose suitable Ansätze for the potentials, many parameters
- ► Parameters adjusted "by hand"
- ► Good description of lattice data nontrivial result!
- ► Flat direction in the fit ⇒ a one-parameter family of models

Interaction measure $\frac{\epsilon-3p}{T^4}$, 2+1 flavors

[Data: Borsanyi et al. 1309.5258]



Baryon number susceptibility $\chi_2\!=\!\frac{d^2p}{d\mu^2}\Big|_{\mu=0}$ [Data: Borsanyi et al. 1112.4416]

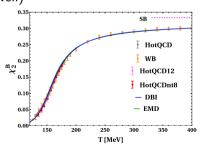


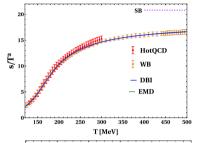
Fitting example: direct fit (strategy II)

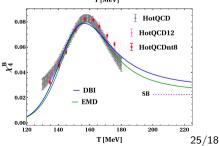
Use strategy II (no phase transition) with both DBI and YM [Jokela, MJ, Piispa 2405.02394]

Systematic statistical fit to

- Equation of state (through entropy density)
- 2. Cumulants χ_2 and χ_4
- ► (Here YM → EMD: for Abelian background, Yang-Mills=Maxwell)





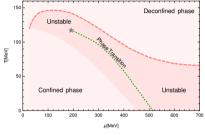


How does the instability arise?

Looks quite different from Nakamura-Ooguri-Park, where the onset was at fixed $\mu/T\dots$ what is going on?

 Also differs from result in Witten-Sakai-Sugimoto

[Ooguri, Park 1011.4144]



Look at the fluctuation equation

$$\psi'' + \left(A' + \frac{f'}{f}\right)\psi' + \frac{qn}{M_p^3 f e^{2A} Z(\phi)^2} \psi + \left(\frac{\omega^2}{f^2} - \frac{q^2}{f}\right)\psi = 0$$

- \triangleright Values of ϕ largest near horizon, and grow for smaller black holes
- ► Smallest black holes found near the deconfinement transition [Alho, MJ, Kajantie, Kiritsis, Rosen, Tuominen 1312.5199]
- ▶ $Z(\phi)$ determined by fit to χ_2 : fast increase of χ_2 with T \Rightarrow fast decrease of Z with ϕ
- ► Enhances instability strongly for small black holes