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1. Introduction
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QCD phase diagram and the critical point

Search for the critical point: ongoing effort at
RHIC

» Beam Energy Scan stage | results
available

> Stage Il finished, results being analyzed

Will be extended by future experiments at
FAIR, J-PARC, NICA

Neutron star observations give complementary
information at high density
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QCD phase diagram and the critical point

Theoretical approaches

>

>

T

First-principles methods do not work in Perturbative QCD

the region relevant for critical point L1 e Q.C\D

Phase diagram or even relevant phases
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May include spatially modulated phases

Can be accessed via the gauge/gravity
duality?

Neutron star
cores

Basic idea (bottom-up): use the gauge/gravity duality to extrapolate lattice (and
other) data to higher density

[DeWolfe et al. 1012.1864; Knaute et al. 1702.06731; Critelli et al. 1706.00455
Jokela, MJ, Remes 1809.07770; Demircik, Ecker, MJ 2112.12157

Cai, He, Li, Wang 2201.02004; Li, Liang, He, Li 2305.13874 ...]
[See also the talk by Mei Huang]
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2. Holographic models
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Generic holographic approach: fields

We want to describe holographically (chirally symmetric) QCD plasma (/Nf massless
flavors)
Most important (relevant and marginal) operators

» T, dual to the metric g,

» Gluon operator G2, dual to a scalar (the dilaton) ¢

2l
> Flavor currents 17, (1 % v5)1;, dual to the gauge fields (A/L/R),-j (with
i,j=1...N¢) - global U(N¢), x U(N¢)g of QCD promoted to gauge symmetry

> Havor-bilinears—p—duat-to-a-complex-seatar—; — irrelevant in chirally symmetric
phase

What are our options for the choice of 5D action?

6/18



Chern-Simons (CS) terms in holography

Chiral anomalies in QCD: consider the chiral U(N¢); x U(Nf)g coupled to external
fields AL, AR

» Under transformation with parameters A /g
iN¢
SQCDHSQCD"F oy 2/TI’[/\LFL/\FL—/\RFR/\FR—|- ]

Holographic counterpart
» External fields promoted to 5D gauge fields
» Gauge variation at the boundary must agree with the anomaly
» 5D CS term — unique when chiral symmetry intact [Witten hep-th/9802150]

.N 1
SCS:21462/Tr[iAL/\FL/\FLJrA/_/\A/_/\AL/\FDL
s

+ 1IOAL/\AL/\AL/\AL/\AL—(L<—> R)
» Generalizations (e.g. chirally broken) worked out

[Casero, Paredes, Kiritsis hep-th/0702155; Lau, Sugimoto 1612.09503;
MJ, Kiritsis, Nitti, Préau 2209.05868]
» Note: U(1)a anomaly is a separate issue — not needed here
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Generic holographic approach: actions

We write down expected (two-derivative) terms

S = Sgr + Smatter + SCS

where Scs is fixed by anomalies, and
4
S = MENZ [P /=t | R - 500+ Vy(o)]
Choice of Spatter less obvious. Options: Spmatter = SpBI OF Smatter = Sym, with

L Soer = MM [ V() Tr |/ det g, + w(@) (P + (L <+ R)|
2. Sym= MSNC/Z(qﬁ) Tr [F7 + F3]

> Background gauge fields sourced by pp = at small density, F; /g small
= DBI and YM reduce to the same choice

» Potentials (Vg, V¢, w or Vg, Z) to be fixed by QCD data
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Fitting the potentials to data

Potentials determined by comparison to lattice data
» Data for Yang-Mills (V)

» Data for full QCD (other potentials):

d? ap

du? lup=0 -

In case of DBI action we use two approaches

equation of state, X2 =

1. With confinement and phase transition (V-QCD)

2. Without confinement, direct fit to data
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3. Spatial Instability
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Inhomogeneity in holographic plasma?

Spatially modulated instability
[Nakamura, Ooguri, Park 0911.0679; (a0

Ooguri, Park 1011.4144] W ——
» Exponentially growing perturbation at g # 0:
a quasi-normal mode with Imw >0
» The Chern-Simons term can drive
such a modulated instability at finite density

Im(w)

Schematic fluctuation equation
! 2 2

/ f / n
0+ (A4 ) 00 + gtz (- 5 ) v =0
From CS term

= 0A] g £ i0A] = hol hi d.
(0 L/R T 10AL /R r = holographic coor .

» Ground state: Modulated 5D gauge fields dual to
modulated persistent chiral currents in field theory %
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Modulated instability in V-QCD

180 Deconfined phase |
Unstable
*..
100 - : NK’?}QS‘ B
The region where instability % 2
N 2 s
exists in V-QCD F “%,
[Cruz Rojas, Demircik, MJ 2405.02399] 501 1
Confined phase Unstable
» The Chern-Simons term is ‘ ‘ ‘ ‘ -, ‘
strong enough to create 0 100 200 300 400 500 600 700
H[MeV]

an instability in V-QCD (unsurprising)
» Instability is found at low T and large density (expected)
» Instability is also found at higher T, near the regime with critical point?! (a big
surprise)

» Estimate for transition and critical point from earlier work
[Demircik, Ecker, MJ 2112.12157};, ;¢



Model dependence: fitting uncertainty

Low-density instability would be phenomenologically highly interesting and potentially
testable
» There may be caveats and uncertainties (choices in fitting the data, model
dependence and reliability. . .)
» However, at low densities, expect that models strictly fixed by lattice data
» Important to check this! [Demircik, Jokela, MJ, Piispa 2405.02392]
160

Parameter depedence in
V-QCD: rather weak 140[ A X
» Onset of instability T

Deconfined phase

. . < [
solidly .dete.rmlned 3 120 — V-QCD 8b
by lattice fit = Jo0l — V-QCD 7a
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80+ 9
0 100 200 300 400 500

Hg(MeV)

13/18



Model dependence: other checks
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Vary fitting strategy
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» Only minor changes — in particular, DBI and Yang-Mills actions give essentially
identical results

> This means that the instability appears in a wide class of models in the literature
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Model dependence: strange quark mass

. 2
> Instability potentially sensitive to fit to x» = 37’; =0

» Lattice data shows mild flavor dependence [Borsanyi et al. 1112.4416]
> Naive test: fit instead of the full x» the light quark x2 (dashed curves) of the

Nf =2 + 1 lattice result = isolate the instability in the light quark sector
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Model dependence: strange quark mass

160
) Deconfined phase

140+ ' . 8
> 120} ] --- v-QcD 7a(lly
= DBI(II)
= — V-QCD 7a(l)

100 DBI(])

Confined phase
80+ .
0 100 200 300 400 500

Hq(MeV)
» Rather strong suppression of the instability!
> However, not a consistent check due to strange quark effects in lattice data
» Moreover, fit to strange quark y» would instead enhance instability
» Therefore further careful study is required 16/18



4. Conclusion
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Conclusion

» Holographic bottom-up QCD models anchored to lattice
data suffer from strong Nakamura-Ooguri-Park instability
» Model dependence weak, so perhaps also a feature of real QCD?

» Appears at high density, region potentially reached in neutron star cores and
neutron star mergers

» A surprise: also found at low density and high temperature, region reachable
by lattice or experiments

» Dependence on fitting procedure and choice of flavor action small at low
density — affects ALL models fitted to equation of state and Y5

» Flavor effects, in particular dependence on strange quark mass, expected to
be significant

» Next step, therefore: add separate flavors and strange quark mass — in
progress with Toshali Mitra — fitting already done

18/18



Thank you!



Generic holographic approach: fitting strategies

Potentials are determined by comparing with lattice results for QCD thermodynamics.
Two main strategies:

Strategy |: Include confined phase, with Sy, _shet = O(N?), and
the transition to a deconfined phase, with Sy, _shert = O(N2)
» Used in Improved Holographic QCD and V-QCD models

[Giirsoy, Kiritsis 0707.1324; Giirsoy, Kiritsis, Nitti 0707.13409;

] ] MJ, Kiritsis 1112.1261]
> Fit lattice data above T = T,

[Giirsoy, Kiritsis, Mazzanti, Nitti 0903.2859;
Jokela, MJ, Remes 1809.07770]
» Faithful to the behavior in the limit of large N,

Strategy II: Only deconfined black holes: no phase transition at
low density

» Fit lattice data at all temperatures
[Gubser, Nellore, Pufu, Rocha 0804.1950; Gubser, Nellore 0804.0434;
DeWolfe, Gubser, Rosen 1012.1864; .. .]
» Follows the behavior in the phase diagram of QCD (crossover at low density)

We study both approaches
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Fitting the models: setup

Solve numerically black hole geometries

1
2 _ _2A(r) 2 2, 42
ds®=e (f(r) dre — f(r)dt® + dx )

with a horizon f(r = ry) = 0 and a background gauge field
AL(r) = AR(r) = &(n)I
Black hole thermodynamics = equation of state

1
T = E|f’(rh)| s = 47TM§N3€3A(”’)

Relation between quark number n and chemical r’gtentlial (for YM action)
,u—CD(r—O)—n/p —_—
e’ Z(¢)
Numerical expansion = susceptibilities

_9p(T,p) 8 'n(T, )
Xk(Ta ,u) - 8,u’< - 8,u’<*1
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Constraining the potentials

In the UV (A — 0):

» UV expansions of potentials matched with perturbative QCD beta functions =
asymptotic freedom and logarithmic flow of the coupling and quark mass, as in
QCD

[Giirsoy, Kiritsis 0707.1324; MJ, Kiritsis 1112.1261]
In the IR (A — o0): various qualitative constraints

» Linear confinement, discrete glueball & meson spectrum, linear radial trajectories

» Existence of a “good” IR singularity

» Correct behavior at large quark masses

» Working potentials often string-inspired power-laws, multiplied by logarithmic

corrections (i.e, first guesses usually work!)
[Giirsoy, Kiritsis, Nitti 0707.1349; MJ, Kiritsis 1112.1261; Arean, latrakis, MJ, Kiritsis 1309.2286, 1609.08922;

MJ 1501.07272]
Final task: determine the potentials in the middle, A = O(1)
» Qualitative comparison to lattice/experimental data
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Ansatz for potentials, (x = 1)

Vo2
Ve(\) =12 [1 FVIA+ — 2 4 Vige /A (A /)3 /log(1 + )\/)\o)]

1+ X/ )Xo
W2>\2 —\
Vio(A\) = Wo + Wi + —20 1+ W, o/M A/ Ao)?
f0(A) o+ Wi +1+KM0+ RE (A/Xo)
wiA/Ao — _—Xo/Aw (wsA/Ao)*/?
— 1 0 s
Wiy T T T f log(1 + weA/ o)
o 1 4619
V7 orr20 2T 4665674
 8+3Wo 6488 4 999 Wy
WMi=—2 " W= 5

Fixed UV/IR asymptotics = fit parameters only affect details in the middle
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Fitting example: V-QCD (strategy )

Fit to lattice data near ;. = 0 with DBI action and fitting strategy | (with transition):
the V-QCD model (in the chirally symmetric phase) [MJ, Jokela, Remes, 1809.07770]
» Choose suitable Ansatze for the potentials, many parameters
» Parameters adjusted “by hand”
» Good description of lattice data — nontrivial result!
» Flat direction in the fit = a one-parameter family of models

Interaction measure E_T%p, Baryon number ,
241 flavors susceptibility yo2 = jﬂ’; -
[Data: Borsanyi et al. 1309.5258] [Data: Borsa;nyi et al. 1112.4416]
(e-3p)/T* xslT?
0.30
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0.20)
0.15
0.10
0.05
L
1.0 15 2.0 25 T
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Fitting example: direct fit (strategy II)

Use strategy Il (no phase transition) with both DBI and YM [Jokela, MJ, Piispa 2405.02394]

Systematic statistical fit to 20 SB e
1. Equation of state
15,
(through entropy density) . I Hotqep
=y
2. Cumulants x2 and xa 10 ws
— DBI
» (Here YM — EMD: s — BMD
for Abelian background,
. 150 200 250 300 350 400 450 500
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0.25, { HotQcD 0.06 1 HotQCDnt8
0.20 WB e
a2 s HotQCD12 < 004
) { HotQCDnt8
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How does the instability arise?

Looks quite different from Nakamura- el Deconfined phase ]
Ooguri-Park, where the onset was at nsavle
fixed p/ T...what is going on’ " %&%
= %,
» Also differs from result in A 4
VV| tten—S a ka |—S u g| m OtO Confined phase Unstable
[Ooguri, Park 1011.4144] .
. . 0 -~
> Look at the fluctuation equation o W W ww we w0 w70

' qn w? g
" A/ o / - =
v ( - f)¢ RN VEEZ Y Pk <f2 f)w 0
> Values of ¢ largest near horizon, and grow for smaller black holes

» Smallest black holes found near the deconfinement transition _
[Alho, MJ, Kajantie, Kiritsis, Rosen, Tuominen 1312.5199]

» Z(¢) determined by fit to y2: fast increase of x» with T
= fast decrease of Z with ¢

» Enhances instability strongly for small black holes
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