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Field theory, Gravity, String theory,  
Quantum information/chaos 

Holographic principle

300 km
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Deep Learning Bulk Spacetime from Boundary data
Holography

Quantum physics in 4D = Gravity in 5D
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Deep Learning Bulk Spacetime from Boundary data
Holography

Quantum physics in 4D = Gravity in 5D

ML Questions:  

Can we understand 
the extra (holographic) dimension 

as a deep neural network? 

Can we use a deep neural network 
as a useful tool for holography? 

Answer: 
Positive for both 
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Deep Learning as a methodology 
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Deep Learning as a methodology 

For  a difficult problem,  
once we are given a qualitative answer we can understand it more easily.

Traditional method: from Bulk to Boundary  
Intuition, principle (ex: symmetry), “genius” etc required to make a model 
From a model, data are produced 

AI method: from boundary to bulk 
Big data required 
Model yielding the answer is given by machine without any understanding 
Intuition, principle (ex: symmetry), etc implied by the model will be discovered by human

(for example, model of “T-linear resistivity + T2 -Hall angle together” )
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My own three motivations to study machine learning 

Surprised by Machine 
Physics motivation 
Quantum computing, brain and human, etc
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Why ML?   
Surprisingly, there are still many new ways to play Go!  

Likewise, machines may reveal unexpected new ways of understanding nature.

2016 March
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Why ML?   
Surprisingly, there are still many new ways to play Go!  

Likewise, machines may reveal unexpected new ways of understanding nature.

2016 March

Amazing
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Time to collaborate with Machine.

The status of ML as a “general” research tool 

It's time to use machine learning as a toolbox.  
We use Mathematica without fully understanding how it works.  

We don't feel guilty using Mathematica,  
so using machine learning isn't cheating either.

Knowing the answer (assisted by machines)  
will be helpful for real understanding.
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Stolen from Xun Chen’s talk yesterday  
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My own three motivations to study machine learning 

Surprised by Machine 
Physics motivation 
Quantum computing, brain and human, etc
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Some universal properties in CMT Anomalous Properties
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that the c-axis data11,17–20 for all of the single and double-
layer materials (Supplementary Table 2) are again well described
by a line with slope of unity. What is perhaps most remarkable is
that the a–b-plane and c-axis results may all be described by
the same universal line shown in Fig. 2, even though the two
results correspond to very different ranges of r s. The combined
data span nearly five orders of magnitude, from the insulating
behaviour along the c axis in the underdoped systems, to the
metallic behaviour in the a–b planes of the overdoped copper
oxides.
The scaling relation for the a–b planes can be interpreted in a

number of different ways. One of the most direct is the assumption
that all of the spectral weight (the area obtained from the integral of
the optical conductivity) associated with the free-carriers of the
normal state (nn) collapses into the superconducting condensate21

(n s ; nn) below T c. Allowing that the low-frequency conductivity
at T < T c can be described by the simple Drude theory for a metal,

j1(q) ¼ jdc/(1 þ q2t2) (where q is frequency), which has the
shape of a lorentzian centred at zero frequency with a width at
half-maximum given by the scattering rate 1/t, the area under
this curve may be approximated simply as j dc/t. Transport
measurements for the copper oxides22 suggest that 1/t near the
transition scales linearly with T c, so the strength of the condensate
is just r s / jdc T c, in agreement with the observed scaling relation.
This result requires that these materials approach the clean limit
(1/t ,, 2D, where 2D is the superconducting energy gap).

However, this approach cannot be applied to the properties along
the c axis, because it is generally conceded that transport in this
direction is incoherent, and therefore hopping rather than scatter-
ing governs the physics15. The quasi-two-dimensional nature of the
copper oxides, which often includes a semiconducting or activated
response of the resistivity along the c axis, has motivated the
description of the superconductivity in this direction in terms of
a Josephson-coupling picture16,17,23–26. The c-axis penetration depth
l is then determined by the Josephson current density J c and is
l 2 ¼ !c2/8pdeJ c, where J c ¼ (pD/2eRn)tanh(D/2kBT), d is the
separation between the planes, and Rn ¼ d/jdc is the normal-state
tunnelling resistance24. There is convincing evidence that the energy
gap in the copper oxides is d-wave in nature, containing nodes at the
Fermi surface27,28, making the determination of J c difficult. How-
ever, if the coupling between the planes originates at the (0,p), (p,0)
points29 where the gap is a maximum, D0, then we can approximate
D < D0. Furthermore, if D0 /Tc, then Jc /Tc=Rn and rs / jdcTc,
which yields the observed scaling behaviour in the c-axis direction.
Despite the different nature of the transport properties parallel and
perpendicular to the a–b planes, the universal scaling pertaining to
both directions is an unusual and surprising result that should
provide new insights into the origins of the superconductivity in
these materials. A

Figure 1 Plot of the superfluid density (rs) versus the product of the d.c. conductivity
(jdc) and the superconducting transition temperature (Tc) for a variety of copper oxides and

some simple metals. (jdc is measured just above the transition, and parallel to the

copper–oxygen (a–b) planes; data are shown on a log–log plot; see Supplementary

Table 1 for details, including errors.) The values for jdc and rs are obtained from optical

measurements of the reflectance. The reflectance is a complex quantity consisting of an

amplitude and a phase; in an experiment only the amplitude is usually measured.

However, if the reflectance is measured over a wide frequency range, the Kramers–

Kronig relation may be used to obtain the phase. Once the complex reflectance is

known, then other complex optical functions may be calculated (for example, the

dielectric function or the conductivity). The jdc used in this scaling relation has been

extrapolated from the real part of the optical conductivity jdc ¼ j1(q ! 0) at T < Tc.

For T ,, Tc, the response of the dielectric function to the formation of a condensate is

expressed purely by the real part, e1(q) ¼ e1 2 qps
2 /q 2, which allows the

superconducting plasma frequency qps to be calculated from qps
2 ¼ 2q 2e1(q) in the

q ! 0 limit, where qps
2 ¼ 4pn se

2/m* is proportional to the number of carriers in the

condensate. The strength of the condensate (rs) is simply rs ; qps
2 . The dashed and

dotted lines are described by rs ¼ (120 ^ 25)jdcTc. Within error, all the data for the

copper oxides are described by the dashed line. The data for the conventional

superconductors Nb and Pb, indicated by the atomic symbols within the circles, lie

slightly above the dashed line.

Figure 2 As Fig. 1 but for copper oxides only, and including data for the poorly conducting
c axis. The values for rs and jdc are obtained from optical measurements, as described in

Fig. 1 legend. In addition to the published results, new data are also included for

HgBa2CuO4þd and La22xSrxCuO4. Within error, all of the data fall on the same universal

(dashed) line with slope of unity, defined by rs ¼ 120jdcTc; the dotted lines are from

rs ¼ (120 ^ 25)jdcTc. See Supplementary Table 2 for details, including errors.

letters to nature

NATURE |VOL 430 | 29 JULY 2004 | www.nature.com/nature540 ©  2004 Nature  Publishing Group

Homes law ⇢s(T = 0) = C�DC(Tc)Tc
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Some universal properties in CMT
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Some universal properties in CMT

No concrete holography model of “T-linear resistivity + T2 -Hall angle together”  yet,  
even though there are many interesting holography models partly successful?
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ML Example: Holographic model

EMD(Einstein Maxwell Dilaton) model

Many variations

+ many colleagues here

[ArXiv:1005.4690][hep-th], [ArXiv:1401.5436][hep-th]
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ML Example: Holographic model

EMD(Einstein Maxwell Dilaton) model

Many variations

Something else
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ML Example: Holographic model

EMD(Einstein Maxwell Dilaton) model

Many variations

Something else

Regarding  
Sangjin’s question yesterday
Effective theory, chosen  

by simplicity and other observables
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ML Example: Holographic model

EMD(Einstein Maxwell Dilaton) model

Many variations

Something else
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My own three motivations to study machine learning 

Surprised by Machine 
Physics motivation 
Quantum computing, brain and human, etc



25

What I have done for my goal

Exercise 1: Metric from optical conductivity 
Exercise 2: Metric from entanglement entropy 
Problem classification and technique development in general
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Reference I
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Setup

What is the bulk metric giving the conductivity at boundary

AdS/Deep learning: optical conductivity
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What I have done for my goal

Exercise 1: Metric from optical conductivity 
Exercise 2: Metric from entanglement entropy 
Problem classification and technique development in general
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ArXiv:2404:07395

Reference II

Accepted in JHEP
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AdS/Deep learning: entanglement entropy

Gubser-Rocca caseSetup
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What I have done for my goal

Exercise 1: Metric from optical conductivity 
Exercise 2: Metric from entanglement entropy 
Problem classification and technique development in general
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Original Idea
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Reference I
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Problem classification

Differential equation

Integral equation

Complicated equations by “ChatGPT”

A(z)f′ ′ (z)+B(z)f′ (z)+C(z)f(z) = D(z)g(z)

E(z)g′ ′ (z)+F(z)g′ (z)+G(z)g(z) = H(z)f(z)

A(α) = ∫ F[ f1(r; α), f2(r; α), ⋯ ] dr

B(α) = ∫ G[ f1(r; α), f2(r; α), ⋯ ] dr

Inverse Problem 
Optimization problem

Ex) boundary transport  
by bulk fluctuation equations 

Ex) boundary entanglement entropy 
by bulk metric
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What is “Machine Learning” & “Deep Learning”?  

- Deep Learning 101: standard story 

Physics equation related Deep Learning I 

- Deep Learning for ODE: classical mechanics 

- AdS/Deep Learning: optical conductivity 

Physics equation related Deep Learning II 

- Deep Learning for Integral: classical electrostatics 

- AdS/Deep Learning: Entanglement entropy

Deep Learning Bulk Spacetime from Boundary data
Holography
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Deep Learning 101
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Deep Learning 101

Activation function

x1

x2

x3

y

W1

W2

W3 b

y = σ(W1x1 + W2x2 + W3x3 + b)

Weight Bias
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Standard Deep Learning

z(i+1)
j = σ(W (i)

jk ⋅ z(i)
k + b(i)

j ) ~2000 epoch

1 2 3 4 5 6

-3

-2

-1

1

2

3

4
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z(i+1)
j = σ(W (i)

jk ⋅ z(i)
k + b(i)

j ) ~2000 epoch

Standard Deep Learning

19 parameters

Ex) Gradient decent method
19 parameter space
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z(i+1)
j = σ(W (i)

jk ⋅ z(i)
k + b(i)

j ) ~2000 epoch

Standard Deep Learning

19 parameters
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Standard Deep Learning

z(i+1)
j = σ(W (i)

jk ⋅ z(i)
k + b(i)

j )

~800 epoch



42

Standard Deep Learning

z(i+1)
j = σ(W (i)

jk ⋅ z(i)
k + b(i)

j )

~800 epoch
71 parameters
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What is “Machine Learning” & “Deep Learning”?  

- Deep Learning 101: standard story 

Physics equation related Deep Learning I 

- Deep Learning for ODE: classical mechanics 

- AdS/Deep Learning: optical conductivity 

Physics equation related Deep Learning II 

- Deep Learning for Integral: classical electrostatics 

- AdS/Deep Learning: Entanglement entropy

Deep Learning Bulk Spacetime from Boundary data
Holography



44

Deep Learning for ODE: classical mechanics

m ··x = F(x)

·x = v , ·v =
1
m

F
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Deep Learning for ODE: classical mechanics

5 10 15 20

-10

-5

0

m ··x = F(x)

·x = v , ·v =
1
m

F

F(x)
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Deep Learning for ODE: classical mechanics

5 10 15 20
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m ··x = F(x)
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Deep Learning for ODE: classical mechanics

m ··x = F(x)

·x = v , ·v =
1
m

F
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Deep Learning for ODE: classical mechanics

m ··x = F(x)

·x = v , ·v =
1
m

F
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What is “Machine Learning” & “Deep Learning”?  

- Deep Learning 101: standard story 

Physics equation related Deep Learning I 

- Deep Learning for ODE: classical mechanics 

- AdS/Deep Learning: optical conductivity 

Physics equation related Deep Learning II 

- Deep Learning for Integral: classical electrostatics 

- AdS/Deep Learning: Entanglement entropy
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AdS/Deep learning: optical conductivity

Action

EOM

Background

Flucutation 
EOM I

Flucutation 
EOM II

A(z)f′ ′ (z)+B(z)f′ (z)+C(z)f(z) = F(z)

m ··x = F

A(z)f′ ′ (z)+B(z)f′ (z)+C(z)f(z) = D(z)g(z)

E(z)g′ ′ (z)+F(z)g′ (z)+G(z)g(z) = H(z)f(z)
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AdS/Deep learning: optical conductivity

Action

EOM

Background

Flucutation 
EOM I

Flucutation 
EOM II



52

AdS/Deep learning: optical conductivity

m ··x = F(x) ·x = v , ·v =
1
m

F
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AdS/Deep learning: optical conductivity
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AdS/Deep learning: optical conductivity



55

AdS/Deep learning: optical conductivity
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Setup

What is the bulk metric giving the conductivity at boundary

AdS/Deep learning: optical conductivity
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What is “Machine Learning” & “Deep Learning”?  

- Deep Learning 101: standard story 

Physics equation related Deep Learning I 

- Deep Learning for ODE: classical mechanics 

- AdS/Deep Learning: optical conductivity 

Physics equation related Deep Learning II 

- Deep Learning for Integral: classical electrostatics 

- AdS/Deep Learning: Entanglement entropy

Deep Learning Bulk Spacetime from Boundary data
Holography
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Deep Learning for integral: electrostatics
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Deep Learning for integral: electrostatics
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Deep Learning for integral: electrostatics
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What is “Machine Learning” & “Deep Learning”?  

- Deep Learning 101: standard story 

Physics equation related Deep Learning I 

- Deep Learning for ODE: classical mechanics 

- AdS/Deep Learning: optical conductivity 

Physics equation related Deep Learning II 

- Deep Learning for Integral: classical electrostatics 

- AdS/Deep Learning: Entanglement entropy
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AdS/Deep learning: entanglement entropy

A(α) = ∫ F[ f1(r; α), f2(r; α), ⋯ ] dr

B(α) = ∫ G[ f1(r; α), f2(r; α), ⋯ ] dr

ℓ(z*) = ∫
z*

0
dz

2z2

z4
* − z4

1
f (z)

C(z*) := − 1 + ∫
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0
dz ⋅
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z2
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z2

z2
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1
f (z)

− 1

σ̄ :=
σ(ℓ(z*))

s
=
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*
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C(z*)
z*

2
ℓ(z*)

+
4π

ℓ(z*)2

Γ( 3
4 )

Γ( 1
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AdS/Deep learning: entanglement entropy

RN Black holeℓ(z*) = ∫
z*

0
dz
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AdS/Deep learning: entanglement entropy

Gubser-Rocca caseSetup
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What is “Machine Learning” & “Deep Learning”?  

- Deep Learning 101: standard story 

Physics equation related Deep Learning I 

- Deep Learning for ODE: classical mechanics 

- AdS/Deep Learning: optical conductivity 

Physics equation related Deep Learning II 

- Deep Learning for Integral: classical electrostatics 

- AdS/Deep Learning: Entanglement entropy

Deep Learning Bulk Spacetime from Boundary data
Holography
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Ongoing and future work 

Methodology development 

- ResNet,  

- Neural ODE, Neural integral  

- PINN (Physics Informed Neural Network)  

- PDE 

Other physical quantities 

- ARPES: Fermionic spectral function 

- Quantum info: complexity, entanglement entropy, etc 

     - Applications to other physics problems (including ODE, PDE, Integral) 

Figuring out action itself for a specific problem 

- so far, the form of the action is fixed 

    - Linear T resistivity + T2 Hall angle together
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Towards holographic strange model

EMD(Einstein Maxwell Dilaton) model

Many variations

Something else
Hopefully  

at Gauge gravity duality 2025 
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Towards holographic strange model
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Quantum physics ~ Spacetime
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Thank you


