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Single particle energy 1s off resonance, so the perturbation theory 1s convergent

® Protect information! in Many-body system?
Naively, “off resonance™ does not apply since there are O(IN) states a state can tunnel to

Nevertheless, people find evidences that ETH 1s violated, [Nandkishore and Huse (2015))
known as the many-body localization

® A universality class—infinite-randomness fixed point?  [Paland Huse (2010)]
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Disorder in CMT: transport

® Disorder: translational symmetries are broken explicitly

Momentum conservation equation:

7T, 1
0,m; = enk; : «x D  Disorder strength
Tdis Tdis
Using m; = e ‘mdJ.
We find the Drude formula
2 D =0——>Reo ~ j(w)
o(w) = —
m(T;. — iw)

Electrical conductivity 1s finite at small frequency
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® Spatially random interaction X
[S. Kasahara et al., PRB (2010)]
PHYSICS

Universal theory of strange metals from spatially
random interactions

~Y ~Y
Aavishkar A. Patel?, Haoyu Guo>*>, llya Esterlis*®°, Subir Sachdev*’* Re o (w) T (w) 1 / | W ‘
Strange metals—ubiquitous in correlated quantum materials—transport electrical charge at low

temperatures but not by the individual electronic quasiparticle excitations, which carry charge in

ordinary metals. In this work, we consider two-dimensional metals of fermions coupled to quantum

critical scalars, the latter representing order parameters or fractionalized particles. We show that

at low temperatures (T), such metals generically exhibit strange metal behavior with a T-linear resistivity

arising from spatially random fluctuations in the fermion-scalar Yukawa couplings about a nonzero

spatial average. We also find a T In(1/T) specific heat and a rationale for the Planckian bound on

the transport scattering time. These results are in agreement with observations and are obtained in the

large N expansion of an ensemble of critical metals with N fermion flavors.
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A longstanding problem:

Controlled IR fixed points for strongly coupled systems with finite disorder

which can be made more complicated by
® Non-relativistic fixed point

® Fermi surface

This talk: A random fixed point with a perturbative quenched quantum disorder at finite density
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classical disorder: time-dependent

disorder 1s non-dynamical

quenched disorder: {

| Aharony and Narovlansky (2018)]

quantum disorder: time-independent /

Perturb a clean Sy by a spatially random field h(Z) that couples to a scalar operator O

S =S8+ / dt d%z h(x)O(z,t)

where h(z)h(y) =~ Dé(x — y).
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Harris criterion

n

D
Replica action: Sn = Z S0,4 > Z / d’z dt dt'O4(z,t)Op (z,t)
A AB

Let [z =—-1 [O]=A
® Dynamical scaling exponent 2 t] = z|x] e.g. Galilean symmetry 2z = 2
® Hyperscaling-violation 6 d—d—0 e.g. Fermi surface 6 =d — 1
D|=-2A+d—-0+2z

or |D|=2v

® Harris criterion: v < 0 (irrelevant), v = 0 (marginal), v > 0 (relevant)
[Harris (1974)]



Disordered CFT

CFT: z=1, 6=0

Sn=") Sou 12) Z/ d%z dt dt'O 4(z,t)Op (z,t')
A AB



Disordered CFT

CFT: z=1, 6=0
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® Marginal disorder A =d/2+1 (i.e. v = 0)
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CFT: z=1, 6=0

Sn = EA:SO,A 12) ;;/ d%z dt dt'O4(z,t)Op (z,t')

® Marginal disorder A =d/2+1 (i.e. v = 0)

—|Coor| 1
Oulz,t)Op (z,t') D Tooalx,t)0ap + - -+
A( ) B( ) Corr \t — t’\ oo,A( ) AB
[Aharony and Narovlansky (2018)]
® Lifshitz scaling
C
z:1+D| OOT|logb

Crr
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However, a line of fixed points for a marginal disorder?

At this new fixed point

d d d
A'%( I1>+( Il)(z*—1)> -1
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disorder v <0



Disordered CFT o — 14 plloor log b

Crr

This Lifshitz scaling was previously found using holographic duality [Hartnoll and Santos (2014)]
[Hartnoll, Ramirez and Santos (2016)]

However, a line of fixed points for a marginal disorder?

At this new fixed point

d d d
A'%( I1>—|—( Il)(z*—1)> -1
2 2 2 [Ganesan and Lucas (2020)]

[Ganesan, Lucas and Radzihovsky (2022)]

The scaling dimension of the disordered operator 1s renormalized, resulting 1n an irrelevant
disorder v <0

Contradiction: an irrelevant disorder cannot support the Lifshitz scaling!
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[ XYH, Sachdev and Lucas (2023)]



Disordered CFT

The above 1s for marginal disorder

| XYH, Sachdev and Lucas (2023)]



Disordered CFT

The above 1s for marginal disorder

By turning on a relevant disorder (v > 0)

_ d|Coor

D? — 2uD
Crr

Bp

| XYH, Sachdev and Lucas (2023)]



Disordered CFT

The above 1s for marginal disorder

By turning on a relevant disorder (v > 0)

d|C
gp = ACo0rl a5,
Crr
We find a Lifshitz fixed point
) 2vC C 2
Dt _ TT Z*:ll\OOT\D*:ll v
d‘COOT‘ CTT d

[ XYH, Sachdev and Lucas (2023)]



Disordered holography

Global symmetry on the boundary (QFT) is dual to —VYVe

gauge symmetry in the bulk T /

® stress tensor «— metric

® U(1) current «— U(1) gauge field

Einstein-Maxwell-Dilaton model

So = / d"z\/—g | (R —2(0®)* — V(®))

This model 1s known to support nonzero charge density and generic z, 6

[Huijse, Sachdev and Swingle (2012)]
[Lucas, Sachdev and Schalm (2014)]
[Lucas and Sachdev (2015)]



=

Disordered holography

- he
dered th h lica trick! —7
Disordered theory without using replica trick! [Hartnoll and Santos (2014)] — /
® disordered operator O «<— scalar field y Y(r — 0,t,2) ~ r"h(zx

The total action

B(®) encodes the scaling dimension [O] = A

[ XYH, Sachdev and Lucas (2023)]
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Holographic fixed point

Solve the bulk equations of motion

1) We are interested 1n the spatially homogeneous solution

inhomogeneity enters at O(D?)

Stress tensors

R 1
Rab > Jab — 5 (T,ajz1 + Ta% + Ta?’i)

2) We work 1n the IR scaling regime (r — o0)

gab(T) ~ r

Solve ODESs and 1gnore differences that are vanishingly small at IR (r — ©0)

confirmed by numerics
[ XYH, Sachdev and Lucas (2023)]
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Holographic fixed point

We find
. 2v ) )
2¥ ~ 2 d(z—@), 0" =6 D* xv
- . D\ v
UV-IR crossover energy 1s non-perturbatively large E. ~ (_)
%4
1)For z=1, 6 =0
2v
z5 =14 ¥ consistent with CFT perturbation
2)For z=1,0=0,d=2
=14+ 16 [Goldman, et al., (2020)]
Z = vV, UV — oldman, et al.,
32N

[ XYH, Sachdev and Lucas (2023)]



Summary & outlook

We find at a disordered fixed point at finite charge density

2F 2 (z—0), 0°=20

Outlook:

® Emergent scale invariance under inhomogeneous boundary condition using numerics

® Non-equilibrium fixed point?



