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Linear dynamical instabilities
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@ Linear dynamical instability: pole of the retarded Green's functions
crossing to the upper half frequency plane.

{GRw.(k), K]}t =0, Im(w,) > 0 = (Oa(t)) ~ ™+ grows

@ Occurs when eigenvalue of static susceptibility matrix changes sign
(local thermodynamic instability) provided 2°¢ law AS > 0 holds
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Scope of result

@ Applies to (super)fluids, magnetohydro, approximate symmetries,
etc. in the thermodynamic limit.

@ Holographic 2" order large N phase transitions.

@ Not covered: 1% order phase transitions, finite N 2°4 order phase
transitions (stochastic fluctuations), curved spaces (finite size).



Hydrodynamics

@ Effective theory valid at times and lengths long compared to local
equilibration scales, eg w, k < T.

@ On such scales, only operators O” protected by global symmetries
survive, gives rise to conservation laws for their densities (e, n, g/):
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Hydrodynamics

9:(0M) + 0;(j"™) =0

@ Spatial fluxes jA = (¢/,j7, 77) are fast operators and decay locally.

@ Constitutive relations for spatial fluxes: gradient expansion

(M) =7 A8D},)(08)  Djyy ~ (V)"

n>0



Hydrodynamic diffusion

de(ny +0:(j’y =0
@ Constitutive relation for spatial flux

() = =00 (0 — E') + O(£2,0°)

@ In thermal equilibrium, thermal timelike Killing vector 8* s.t.
T =1/\/—p? + gauge trafos A, — A, + VA

05AL = LorAy+ON=0], = (A=pA=0), = (E=0du),

eq

@ = 0pdgA; is an out-of-equilibrium gradient correction.



Hydrodynamic diffusion

de(n) +0;(j") =0, (j') = —00 (0" — E') + O(£2,0°)

@ Expand around equilibrium (n, 1) = (o, no) + 6(p, n)e~witikx
@ Solve (6n,6p) in terms of E' using 6n = Xl
@ Compute retarded Green’s function
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@ Diffusion pole w = —iD,k? in LHP if x,, > 0 (thermodynamic
stability) and o > 0 (positivity of entropy production):

A=Tos =09 (8’# — Ei) (Oip—E)>0



Neutral relativistic fluids in offshell formalism

V. TH =0

@ Offshell entropy current [Buarracuaryya'13,’14; HAEHL, LOGANAYAGAM &

RANGAMANI'14,15]:
A=V, (su"+5")+ BV, TH >0
@ Constitutive relation for stress-energy tensor (Landau frame)
TH = (e+p)u*u”+pgh” + THY PRV = Pyt gt uy T =0
@ Evaluate offshell entropy current:
A=—-THopg,, 088w = 2V 1By = Oleq
@ Parametrize first-order corrections:

= Tm = N(W)(aﬁ)(glggaﬂ



Linear dynamical stability of relativistic fluids

T = N @D, A= —05gu N Ddsg, s
@ Two independent transport coefficients 7, ( > 0
Fuv _ _Q P,uoéPz/B _ lPlLl/POLﬁ _ iP,uuPozﬁ(s
T > ( d 5Bguu 2d BEap

@ Both are out-of-equilibrium terms: d5g,,, =2V (,8,) = 0|eq.

By construction N)(@B) g symmetric and must be positive
definite: only out-of-equilibrium, dissipative transport
coefficients.

@ 2 sound modes and 1 diffusion mode:
€E+p -(77+C) 2 i77k2 .
=+ k—i~——*k =—— = Diag{Te,, e+
w ., i . , W . ,  XAB iag{ Ty, e+p}

@ All modes are stable (lhp) if xag > 0.
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Linear dynamical stability more generally?

@ At first sight, seems straightforward to show by computing location
of poles and divergence of entropy current.

@ Nevertheless, intractable for less simple cases, eg:

e non-boost invariant fluids [DE BOER, HARTONG, OBERS, SYBESMA &
VANDOREN'17,’20; NOVAK, SONNER & WITHERS'19; ARMAS & JAIN'20] (neutral: 16
coefficients; charged: 29 coefficients);

e relativistic superfluids (14 coefficients, [BHATTACHARYA, BHATTACHARYYA,

MINWALLA & YAROM'] I]).

@ Further, in some cases some transport coefficients appear in the
modes but do not affect their stability.
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Offshell formalism

8t<OA> + 8i<,jiA> _ 0’ J-Ai :_/,/3/ +]Ai

@ Divergence of offshell entropy current + coupling to external
sources sa = (8w, Aps - -+ ) [Araas & Jan20].
A = —jApsa = dsaNBogsg, NAP = Nr[1hs,]nd Aphs,ng =0

N,(,):fz Anhs,d >0

@ Njs: derivative corrections which do not vanish in thermal
equilibrium, captured by correcting the hydrostatic pressure

p=pda+p = O0'=04+04 = xas=xis+ a5

@ N,ns: out-of-equilibrium corrections o dgsa ~ 0;sa

A= 5BSAN,(1;‘5()/5BSB >0 { Nphs,a  positive-definite

Npps,ng  unconstrained



Sketch of stability proof [2407.07939]

NAB Ay =0
A = —jA5psa = dpsaN*Bopsg, NAB = /y,f‘fg,nd Anpps,nd =0
Nod Dahsd >0

@ Linearize eoms and Fourier transform:

AB _ : p(AB) 2 N1AB
—iwOA + MAE(q)x5Ls0€ =0, { M= iaNigps +q N
XAB = Xag + XaB

@ Poles are given by the eigenvalues M) of M. x~!

det [—iw+ M(q) - x"'] =0 = W = —imA
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Sketch of stability proof [2407.07939]
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Poles are given by the eigenvalues m(*) of M. y~!

det [—iw+ M(q)-x '] =0 = W = —imA

Positivity of N implies positivity of real part of eigenvalues of M.

A = oAl Bhsss > 0, MAB = ig(e) 4 g2 4B

@ Positivity of x (local thermodynamic stability) + A > 0 (2nd law)
= Rem>0 = Imw,<0
@ If x has a negative eigenvalue, pole in upper half plane: linear

dynamical instability caused by thermodynamic instability.



Example 1: superfluids at finite superflow
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@ Instabilities of superfluids at finite superflow fall into this category,
(2212.10410,2312.08243]. Matches previous holographic studies [auvano, Areax,

JIMENEZ-ALBA, LANDSTEINER & MELGAR’13; LaN, Liu, TIAN & ZHANG’20].
@ The Landau instability of weakly-coupled superfluids does as well.
@ See Yuping An’s talk later today for the co-flow and counterflow

instability of binary superfluids, [2411.01972).
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Example 2: holographic 2"¢ order phase transitions
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@ Probe complex scalar in Reissner-Nordstrom background

@ At T, xoo = d0/dsp diverges and changes sign + pole in upper
half plane: linear dynamical instability.

@ Stochastic fluctuations of O suppressed by large N: EFT of light

mode [HERZOG 10; BHATTACHARYA, BHATTACHARYYA & MINWALLA'11; DoNos & KAILIDIS‘22]?
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Example 3: Approximate symmetries

(O + 0 (i) = bapfA = A D —lopfA5s"

@ Symmetry-breaking currents can be expanded order by order in
(05" = " — 57 s.t. §s* = 0|, + usual gradient expansion.

@ Enhance the set of out-of-eq sources — (d554, Lerb05a)-
@ Update the matrix NV in A.

@ Model-independent algorithm for hydrodynamics with
approximate symmetries: magnetohydro, broken spatial translations,
superfluids with vortices... Recover known results this way.
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Example 3: Approximate spatial translations

Oeg' + 0 = L fE = AD Ly fE SV

— (707 4+ YHET) Lep, 6V — L AnD i — LepAO' T + ...
i'= v 2NV
si= svi+ NV + ...
g= pvi+ P N0V + ...

@ scale (2, ~ 0
@ 7 is a dissipative, non-hydrostatic transport coefficient: v > 0

@ YH, Ansg are non-dissipative, non-hydrodystatic transport

coefficients: sign unconstrained, contribute to modes but do not
affect stability.
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Example 3: Approximate spatial translations

Og + O =0y fE = AD L fESV

— (75’7 + 'yHeU) Loy OV — LepApO'pt — LapAsO'T + . ..
i= v+ BN+
s'= sV AV 4.
g = pvi+ P AoV + ...

@ Have been derived from hydro when translations are broken with a
scalar operator [Goureraux & suukra23] or a periodic chemical
potential [cuscver & Scnan24], including with a magnetic field.

@ Match to holographic results for linear axion models, Davison &
GOUTERAUX’15; BLAKE’15] and holographic lattices [CHAGNET & ScHALM'24].

@ Disorder? [ANDREEV, KIVELSON & SPIVAK'10; LucAs’15; HUANG, SACHDEV & Lucas "23, ...]
10



Example 3: Approximate spatial translations
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@ Out-of-equilibrium shifts of Drude weight and cyclotron frequency:

(n+ 2, A0)? n+ 202,
o(w) = oo+ v—iw(p+ 2y ST p+ B

@ Matches holography [DAVISON & GOUTERAUX’'15; BLAKE'15; CHAGNET & SCHALM'24]
and I|ke|y SYK-Yukawa models [Guo, VALENTINIS, SCHMALIAN, SACHDEV & PATEL’23]

@ Relevant for overdoped cuprates? Discrepancy between
thermodynamic and cyclotron Mass [Lecros, PosT, ... & ARMITAGE'22
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Summary and outlook

21

In hydro theories, thermodynamic stability }

positivity of entropy prod
= linear dynamical stability

Conversely, thermodynamic instab = linear dynamical instab.

Proof covers fluids, superfluids, crystalline solids, weak translation
breaking and magnetic fields...

Possible extensions: anomalous transport, higher form
symmetries, fractons...?

Landau instability of superfluids: thermodynamic instability.
Extends to non-trivial equilibrium states: miscible binary superfluids.
Immiscible binary superfluids [ax, L, Xia & zeve24; An, Li & Zive24]?

Model-independent hydrodynamics with approximate symmetry.



