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Linear dynamical instabilities

Linear dynamical instability: pole of the retarded Green’s functions
crossing to the upper half frequency plane.

{GR [ω⋆(k), k]}−1 = 0 , Im(ω⋆) > 0 ⇒ ⟨OA(t)⟩ ∼ eImω⋆t grows

Occurs when eigenvalue of static susceptibility matrix changes sign
(local thermodynamic instability) provided 2nd law ∆S ≥ 0 holds

χAB = δOA
δsB
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Scope of result

Applies to (super)fluids, magnetohydro, approximate symmetries,
etc. in the thermodynamic limit.

Holographic 2nd order large N phase transitions.

Not covered: 1st order phase transitions, finite N 2nd order phase
transitions (stochastic fluctuations), curved spaces (finite size).
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Hydrodynamics

Effective theory valid at times and lengths long compared to local
equilibration scales, eg ω, k ≲ T .

On such scales, only operators OA protected by global symmetries
survive, gives rise to conservation laws for their densities (ϵ, n, g j):

∂t⟨OA⟩ + ∂i⟨j iA⟩ = 0 , ⟨. . . ⟩ = 1
Z Tr

[
. . . eβH]
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Hydrodynamics

∂t⟨OA⟩ + ∂i⟨j iA⟩ = 0

Spatial fluxes jAi = (ϵi , j i , τ ij) are fast operators and decay locally.

Constitutive relations for spatial fluxes: gradient expansion

⟨jAi⟩ =
∑
n≥0

cABDi
(n)⟨OB⟩ Di

(n) ∼ (∇i)n
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Hydrodynamic diffusion

∂t⟨n⟩ + ∂i⟨j i⟩ = 0

Constitutive relation for spatial flux

⟨j i⟩ = −σ0
(
∂ iµ − E i) + O(ℓ2

eq∂2)

In thermal equilibrium, thermal timelike Killing vector βµ s.t.
T ≡ 1/

√
−β2 + gauge trafos Aµ 7→ Aµ + ∇µΛ

δBAµ = Lβν Aµ + ∂µΛ = 0|eq ⇒ (At = µ, Ax = 0)|eq ⇒ (E i = ∂ iµ)
∣∣
eq

⇒ σ0δBAi is an out-of-equilibrium gradient correction.
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Hydrodynamic diffusion

∂t⟨n⟩ + ∂i⟨j i⟩ = 0 , ⟨j i⟩ = −σ0
(
∂ iµ − E i) + O(ℓ2

eq∂2)

Expand around equilibrium (n, µ) = (µ0, n0) + δ(µ, n)e−iωt+ikx

Solve (δn, δµ) in terms of E i using δn = χnnδµ.

Compute retarded Green’s function

GR
nn(ω, k) ≡ δn

δAt
= iσ0k2

ω + iDnk2 , Dn = σ0/χnn .

Diffusion pole ω = −iDnk2 in LHP if χnn > 0 (thermodynamic
stability) and σ0 ≥ 0 (positivity of entropy production):

∆ ≡ T∂ts = σ0
(
∂ iµ − E i) (∂iµ − Ei) ≥ 0
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Neutral relativistic fluids in offshell formalism

∇µT µν = 0

Offshell entropy current [Bhattacharyya’13,’14; Haehl, Loganayagam &

Rangamani’14,’15]:

∆ ≡ ∇µ(suµ + s̃µ) + βν∇µT µν ≥ 0

Constitutive relation for stress-energy tensor (Landau frame)

T µν = (ϵ+p)uµuν+pgµν+T̃ µν , Pµν = uµuν+gµν , uµT̃ µν = 0

Evaluate offshell entropy current:

∆ = −T̃ µνδBgµν , δBgµν = 2∇(µβν) = 0|eq

Parametrize first-order corrections:

⇒ T̃ µν = Ñ(µν)(αβ)δBgαβ
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Linear dynamical stability of relativistic fluids

T̃ µν = Ñ(µν)(αβ)δBgαβ , ∆ = −δBgµνÑ(µν)(αβ)δBgαβ

Two independent transport coefficients η, ζ ≥ 0

T̃ µν = −η

2

(
PµαPνβ − 1

d PµνPαβ

)
δBgµν − ζ

2d PµνPαβδBgαβ

Both are out-of-equilibrium terms: δBgµν = 2∇(µβν) = 0|eq.

By construction Ñ(µν)(αβ) is symmetric and must be positive
definite: only out-of-equilibrium, dissipative transport
coefficients.

2 sound modes and 1 diffusion mode:

ω = ±
√

ϵ + p
Tcv

k−i (η + ζ)
ϵ + p k2 , ω = − iηk2

ϵ + p , χAB = Diag{Tcv , ϵ+p}

All modes are stable (lhp) if χAB > 0.
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Linear dynamical stability more generally?

At first sight, seems straightforward to show by computing location
of poles and divergence of entropy current.

Nevertheless, intractable for less simple cases, eg:
non-boost invariant fluids [de Boer, Hartong, Obers, Sybesma &

Vandoren’17,’20; Novak, Sonner & Withers’19; Armas & Jain’20] (neutral: 16
coefficients; charged: 29 coefficients);
relativistic superfluids (14 coefficients, [Bhattacharya, Bhattacharyya,

Minwalla & Yarom’11]).

Further, in some cases some transport coefficients appear in the
modes but do not affect their stability.
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Offshell formalism

∂t⟨OA⟩ + ∂i⟨j iA⟩ = 0 , jAi = jAi
id + j̃Ai

Divergence of offshell entropy current + coupling to external
sources sA = (gµν , Aµ, . . . ) [Armas & Jain’20].

∆ = −j̃AδBsA = δBsAÑABδBsB , ÑAB =


ÑAB

hs ∆hs = 0
Ñ [AB]

nhs,nd ∆nhs,nd = 0
Ñ(AB)

nhs,d ∆nhs,d > 0

Ñhs : derivative corrections which do not vanish in thermal
equilibrium, captured by correcting the hydrostatic pressure

p = pideal + p̃ ⇒ OA = OA
id + ÕA

hs ⇒ χAB = χid
AB + χ̃hs

AB

Ñnhs : out-of-equilibrium corrections ∝ δBsA ≃ ∂isA

⇒ ∆ = δBsAÑ(AB)
nhs,dδBsB ≥ 0

{
Ñnhs,d positive-definite
Ñnhs,nd unconstrained
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Sketch of stability proof [2407.07939]

∆ = −j̃AδBsA = δBsAÑABδBsB , ÑAB =


ÑAB

hs ∆hs = 0
ÑAB

nhs,nd ∆nhs,nd = 0
ÑAB

nhs,d ∆nhs,d > 0

Linearize eoms and Fourier transform:

−iωδOA + MAB(q)χ−1
BC δOC = 0 ,

{
MAB = iqN(AB)

id,hs + q2ÑAB
nhs ,

χAB = χid
AB + χ̃hs

AB

Poles are given by the eigenvalues m̃(A) of M · χ−1

det
[
−iω + M(q) · χ−1]

= 0 ⇒ ω
(A)
⋆ = −im̃(A)
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Sketch of stability proof [2407.07939]

Poles are given by the eigenvalues m̃(A) of M · χ−1

det
[
−iω + M(q) · χ−1]

= 0 ⇒ ω
(A)
⋆ = −im̃(A)

Positivity of Ñ implies positivity of real part of eigenvalues of M.

∆ = δBsAÑABδBsB ≥ 0 , MAB = iqN(AB)
id,hs + q2ÑAB

nhs

Positivity of χ (local thermodynamic stability) + ∆ ≥ 0 (2nd law)

⇒ Rem̃ ≥ 0 ⇒ Imω⋆ < 0

If χ has a negative eigenvalue, pole in upper half plane: linear
dynamical instability caused by thermodynamic instability.
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Example 1: superfluids at finite superflow

Instabilities of superfluids at finite superflow fall into this category,
[2212.10410,2312.08243]. Matches previous holographic studies [Amado, Arean,

Jimenez-Alba, Landsteiner & Melgar’13; Lan, Liu, Tian & Zhang’20].

The Landau instability of weakly-coupled superfluids does as well.

See Yuping An’s talk later today for the co-flow and counterflow
instability of binary superfluids, [2411.01972].
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Example 2: holographic 2nd order phase transitions
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Probe complex scalar in Reissner-Nordström background

At Tc , χOO ≡ δO/δsO diverges and changes sign + pole in upper
half plane: linear dynamical instability.

Stochastic fluctuations of O suppressed by large N: EFT of light
mode [Herzog’10; Bhattacharya, Bhattacharyya & Minwalla’11; Donos & Kailidis’22]?
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Example 3: Approximate symmetries

∂t⟨OA⟩ + ∂i⟨j iA⟩ = ℓebf A ⇒ ∆ ⊃ −ℓebf AδsA

Symmetry-breaking currents can be expanded order by order in
ℓebδsA ≡ sA − s̄a s.t. δsA = 0|eq + usual gradient expansion.

Enhance the set of out-of-eq sources 7→ (δBsA, ℓebδsA).

Update the matrix N in ∆.

Model-independent algorithm for hydrodynamics with
approximate symmetries: magnetohydro, broken spatial translations,
superfluids with vortices... Recover known results this way.
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Example 3: Approximate spatial translations

∂tg i + ∂iτ
ji = ℓebf g i

⇒ ∆ ⊃ −ℓebf g i
δv i


f g i = −

(
γδij + γHϵij) ℓebδv j − ℓebλn∂ iµ − ℓebλs∂

iT + . . .
j i = nv i + ℓ2

ebλnδv i + . . .
s i = sv i + ℓ2

ebλsδv i + . . .
g i = ρv i + ℓ2

ebλgδv i + . . .

scale ℓ2
eb ∼ ∂

γ is a dissipative, non-hydrostatic transport coefficient: γ ≥ 0

γH , λn,s,g are non-dissipative, non-hydrodystatic transport
coefficients: sign unconstrained, contribute to modes but do not
affect stability.
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Example 3: Approximate spatial translations

∂tg i + ∂iτ
ji = ℓebf g i

⇒ ∆ ⊃ −ℓebf g i
δv i


f g i = −

(
γδij + γHϵij) ℓebδv j − ℓebλn∂ iµ − ℓebλs∂

iT + . . .
j i = nv i + ℓ2

ebλnδv i + . . .
s i = sv i + ℓ2

ebλsδv i + . . .
g i = ρv i + ℓ2

ebλgδv i + . . .

Have been derived from hydro when translations are broken with a
scalar operator [Goutéraux & Shukla’23] or a periodic chemical
potential [Chagnet & Schalm’24], including with a magnetic field.

Match to holographic results for linear axion models, [Davison &

Goutéraux’15; Blake’15] and holographic lattices [Chagnet & Schalm’24].

Disorder? [Andreev, Kivelson & Spivak’10; Lucas’15; Huang, Sachdev & Lucas ’23, . . . ]

19



Example 3: Approximate spatial translations

Out-of-equilibrium shifts of Drude weight and cyclotron frequency:

σ(ω) = σ0 + (n + ℓ2
ebλn)2

γ − iω(ρ + ℓ2
ebλg ) , ωc = n + 2ℓ2

ebλn

ρ + ℓ2
ebλg

B

Matches holography [Davison & Goutéraux’15; Blake’15; Chagnet & Schalm’24]

and likely SYK-Yukawa models [Guo, Valentinis, Schmalian, Sachdev & Patel’23].

Relevant for overdoped cuprates? Discrepancy between
thermodynamic and cyclotron mass [Legros, Post, . . . & Armitage’22].
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Summary and outlook

In hydro theories, thermodynamic stability
positivity of entropy prod

}
⇒ linear dynamical stability

Conversely, thermodynamic instab ⇒ linear dynamical instab.

Proof covers fluids, superfluids, crystalline solids, weak translation
breaking and magnetic fields...

Possible extensions: anomalous transport, higher form
symmetries, fractons. . . ?

Landau instability of superfluids: thermodynamic instability.
Extends to non-trivial equilibrium states: miscible binary superfluids.
Immiscible binary superfluids [An, Li, Xia & Zeng’24; An, Li & Zeng’24]?

Model-independent hydrodynamics with approximate symmetry.
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