Bulk reconstruction and fine
structure of entanglement

Jia-Rui Sun (F&15%)

Gauge Gravity Duality 2024
Sanya, China
2024-11-30

with Y.-y. Lin, Y. Sun, C. Yu, J. Zhang, F. Chen, X. Fang, J.-C. Jin, L. h. Mo, Y. Zhou, P. Ye
JHEP 12 (2020) 083; CPC 46 (2022) 8, 085104, PRD 103 (2021) 12, 126002; JHEP 10
(2021) 164, JHEP 07 (2022) 009; CPC 48 (2024) 6, 065106, 2311.01997



Outline

* Bulk reconstruction in AdS/CFT

e Surface growth approach

* Surface growth, bit threads and EoP
* Entanglement contour, fine structure
* Hyperfine Rényi entropy

e Conclusions



Bulk reconstruction in AdS/CFT

The AdS/CFT correspondence and the more general gauge/gravity
duality provide a novel connection between different theories, one
is a higher dimensional gravitational theory, another is a quantum
field theory without gravity on the boundary.

The key equation in the AdS/CFT correspondence is

Ads[¢o( )] CFT[ o( =<expjd4x0()?) O()?)>

Important properties:

field/operator duality, strong/weak duality.

From the bulk to boundary--studying the strongly coupled systems

From the boundary to the bulk--an emergent picture of gravity



Bulk reconstruction--from the boundary to the bulk

bulk matter fields:

using the boundary operators to construct the bulk matter fields.

Banks, Douglas, Horowitz, Martinec, th/9808016;
Hamilton, Kabat, Lifschytz, and Lowe, th/0606141.

bex) = [ drK Wl o),
bulk local field <= boundary nonlocal operators

Entanglement wedge reconstruction

Headrick, Hubeny, Lawrence, Rangamani, 2014;
Dong, Harlow, Wall, 2016

WelA] := D[R A].

subregion-subregion duality.

It’s more difficult to construct the bulk geometry and the
gravitational dynamics from the boundary CFT.



bulk geometry and gravitational dynamics:

using MERA tensor networks to construct the AdS geometry
Swingle, 0905.1317; 1209.3304;

Qi, 1309.6282;

Almheiri, Dong, Harlow, 1411.7041;

Pastawski, Yoshida, Harlow, Preskill, 1503.06237; ) )
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The holographic entanglement entropy plays crucial role in

constructing bulk gravity from boundary quantum flelds/ @
Ryu and Takayanagi 2006 B
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The surface growth approach
Y-y Lin, JRS, Y Sun, 2010.01907; C VYu, F-Z Chen,Y-y Lin, JRS, Y Sun, 2010.03167

Is there a direct and more efficient way to construct the bulk

geometry and matter fields?

Besides, it is interesting to find a more refined structure in the
subregion-subregion duality, such as how a given region in the
entanglement wedge is dual to a boundary region?




The surface growth approach from tensor networks
Y-y Lin, JRS, Y Sun, 2010.01907

Motivated by Huygens' principle of wave propagation, we
proposed a novel surface growth scheme to reconstruct the bulk
geometry, which can be explicitly realized with the help of the
surface/state correspondence and the one shot entanglement
distillation method.




One shot entanglement distillation (OSED)
Bao, Penington, Sorce, Wall, 1812.01171

In quantum information theory, |¢) € Ha @ Hae,
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a single holographic state |¥) can
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tensor representation

i 18 I'I' 1 Ctli‘}_ 3"? (P ® 1[,1’ (|(,:}> R [{},)}
eS—0(VS)
m=0
LO(VS)

o) = 30 \/Ppa In) g5

n=0



Surface growth scheme--a special case
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the final surface growth picture which can be identified with
corresponds the OSED TN the MERA-like TN as
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the RT surface in the MERA-like tensor network, and the expression
of W tensor is
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More general surface growth scheme
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Direct growth of bulk minimal surfaces
C Yu, F-Z Chen,Y-y Lin, JRS, Y Sun, 2010.03167

The surface growth scheme can also be directly checked by the
growth of the bulk minimal surfaces layer by layer.

Pure AdS3 case

ds® = dp* + L? ( — cosh? '(dez + sinh? %drﬁz) :

EoM of bulk minimal curve (geodesics) is

. 9 - . 9 .

, sinh” p _ | sinh?p

¢ = xarctan | ———— +coshpy| ——— —1
sinh p, sinh” p,

F arctan (sinh ps) + ¢o.

for given angular size of the subsystem, different radial cutoff
corresponds to different turning position.



homogenous subregions, with inhomogenous subregions,
each subregion has with growing steps 300.
angle ¢=7/25 , the growing

steps are 300.



BTZ black hole case

0%

dr® + r?do?,

2
2 . 2
ds™ = ——Lgf(-r)dt o
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EoM of bulk geodesics is

L =
i(@—@o):—;m _T_g_
1

where 7. <71 <712 and o(r1) < ¢ < ¢(r2). Also, for given angular
size of the subsystem, different radial cutoff corresponds to
different turning position.
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homogenous subregions, with
each subregion has angle ¢=7r/25
cutoff surface is rc=5, the
growing steps are 1500.

minimal surfaces wich do not
surround the black hole
horizon, entanglement
plateaux phenomenon.



Surface growth, bit thread and EoP

Dividing a mixed quantum system into two parts, a quantity used
to describe correlations between 4, and 4, is called the
entanglement of purification (EoP) E,(4,: 4,)

let |w)eH,, ®H,, bea purification

of the density matrix
A’ A,
'OAlAz - TrAl'Az' W><W‘
Al A2 . .
The EoP is defined as

EP(AI:AZ) = min S(AlAfl),

|W>A1AIIA2A"2



A holographic dual of EoP is
Takayanagi, Umemoto, 2018

Ep(Ai:A;) = Area(I'y,.4,). areaof EWCS
4,

4,

The holographic EoP gives more refined description of
entanglement in the entanglement wedge, and it can be
natually regarded as a surface growth process.



EoP from surface growth mmm) OSED tensor network
mmm) new bit thread description of EoP

p(Va3) = P(’BAXGAQ)a which gives  §(2) + 8(3) = S(1) = 2F(2)y;
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EoP in surface growth in AdS/BCFT

X. Fang, F.-Z. Chen, JRS, 2403.12086

The EoP indicates a selection rule for surface growth in AdS/BCFT;
gives more refined description for the entanglement wedge.
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Entanglement contour, fine structure
Chen, Vidal, 1406.1471

Entanglement contour (EC): a local function s, (X) trying to
describe the fine structure the entanglement entropy in real space

A, S, :jSA(X)dX
A

Explicit examples of EC: Gaussian states, CFT, partial entanglement
entropy (PEE), e.g., s (4. ) of some subsystem of 4

SA( ) _“SA(X)dx



However, the bove requirements are not sufficient to uniquely
determine the PEE in general.

PEE proposal o wen, 1902.06905, 1803.05552; Kudler-Flam, MacCormack, Ryu,
1902.04654

sa (A2) = % (S12 + Sa3 — S1 — S3)

Holographically, PEE can be described by combination of extremal

surfaces and the bit threads. A,

Q Wen, 1803.05552 A
Y-y Lin, JRS, J Zhang, 2105.09176



Hyperfine Rényi entropy
L H Mo, Y Zhou, JRS, P Ye, 2311.01997

A natural question is to ask what is the entanglement contour for
the Rényi entropy?

We introduced a hyperfine structure for entanglement by exactly
decomposing the Rényi contour into the contributions from
particle-number cumulants in free fermion system.

S(A) = i0) — hi.k (%)
™n = 1 Tn = ™n =1
Sn(A)(Sn(A)) = sn(2)(5n ( ) = hngk(@) (hnik (7))

= g il = i (Bk(n)Ck(j)),

k=1

B(n)= —=1 % (Zm)kC(—k,nTH) is nonzero for even k,

- n—1 k! n



C, (]) is the density of cumulant on site j, it is a 2k-point function

k—1 (eXp(’i)\NA)’f’fﬁ
(exp(i)\NA» =0

N

n, is particle number operator on site j, and N, is the particle
number operator of A. A is a real number.

Ck(7) = (—i0x)

?

The first nonzero term is

Ca(J) = 2_i{ning) — (i) (1)
Properties:
« additivity B (0)+ 1, ()=, (U J)
* normalization S, =B, (k)C,
* exchange symmetry hn;k(i):hn;k(j)
* invariance under local unitary transformation
* post-measurement state entanglement



Application in lattice fermion model

We consider a Chern insulator model called Qi-Wu-Zhang model
H =3 GH (K)o
H(k) = (m + cosky +cosky)o, + A(sin kyo, +sinkyoy)
The energy gap closes at m = =2, forming Dirac point at
ke = ky =0and k, = k, = 7.
The energy gap closesat m = 0, forming Dirac point at
ks =0,ky =mand kz=m,ky=0.

The topological properties of the electronic band structure are
characterized by the Chern number.



et
'-:-"«!\.nm. . ir;:f::{rli:?;.:?? f-"i.: ) = ﬂ“ﬁ}‘{‘“m‘m m” mm

i
ity

R

Trivial
Gapped

(1]
o
oo

e
O o c T i iTtitl ””-‘“ffl.'nmm.
oo » i e
2 a . T
o © W T
o 8 \
o 8

Critical

Fermi
Surface

Distributions of RC and hyperfine RC for different energy spectrum:
k=2: dominant contribution; k>2

(trivial)gapped: ‘bowl’ shape; critical: corner vs hinge sites
Fermi surface: oscillation; topological: same as critical
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emergence of scaling law




The emergence of scaling law within topological gap regions

m € (—2,0) U (0,2), strongly suggest the existence of critical
edge states and a fundamental 1/2 mode in the entanglement
spectrum, which is the most entangled and correlated mode
--boundary EPR pair.

The distribution properties of hyperfine RC highlight the different
features of a mass gap, a critical Dirac cone, and a Fermi surface,
and they reveal an universal scaling behavior in the presence of
topological edge states.



Holographic realization of RC

Consider the boundary CFT is a d+1 dim Fermi gas,

S, A+ n "’

n

C, 6

+0(1)

then the hyperfine RC can be simplified as

Sn ()

hn;2($)

=14 o0(1),

where

hniae) = Be(n) / (@) ~ (a(a) )y,

Io(A;, Ag) =2 (S(Al) —f$ hl;g(:i:)d::z:) |

€A



for Dirac fermion
(A(z)n(y)) — (A(x))(A(y))

= — (Wr@YRW) WRrH)YR()) — WL (@Y @L GV ()
1 L]

" 2n2 (z—y)?

the dominant hyperfine structure is expressed as

1+n Y72 B 1 1
hnse(z) = ( ) / dy

6 Rye 2m°% (2 — y)?
_(1+n-1)( 1 1 )
12 R—& RB+a"

S, = fi:re drsp(z) =~ [(1+n') /6]1n 2£.

which gives the central charge c=1.



To find the holographic duality of the hyperfine RC, it’s convenient
to use the refined Rényi entropy

S anan((’”’_l)Sﬂ)

n
which is dual to the cosmic brane in AdS spacetime, and the tension

of the braneis T, =(n—1)/(4nG)
Dong, 1601.06788

Interesting, the refined Rényi entropy is equivalent to the von
Neumann entropy of a new density matrix p, = 0o/, /tr 0/,

oy c 1 .
Sn(pﬂ) — _,RZaﬂ(E lOg tr p/—l)

~T

= log tr p’; — no, logtr p’y

= —tr p‘f} log p‘f},
tr p'y tr p'y




Then we obtain the refined Rényi contour

5, (x) :nzan((’”"l)snmj

n

Furthermore, using the entanglement Hamiltonian, the refined Rényi
contour can be expressed from the particle number fluctuation

pa=y alPh)(h| =e K

p
T 21012\ /0/sP
Entanglement Hamiltonian: K4 = Z —Inag |y ) (P4
p
(n) a’" g
= N L L p 4 — _

p

Entanglement Hamiltonian: f{'gl) —nK, Wwith T==.



Then we obtain
2

su@) > haa@)=1 [ dyl{i()n) ~ () aw)]

:372, A

Now using the HEE, the holographic duality for Rényi entropy is just
the bulk extremal surface (RT surface) for the refined Rényi entropy.

For AdS_3 case, using the Rindler method to map the extremal
surface of subregion A to the horizon area entropy

dr?
ds® = 2rdudv + —.
S ruv+4r2

ds? = du*? + r*2du*dv* + dv*? + 1)

—92n?2

N =
" 12(n2? — 2) + 4n2uv + 21,/12(1 — n?) — 4n2uv + nt(u + v)?)

—92n?

NP = ‘
12(n? — 2) + 4n?uv + 20, \/12(1 — n?) — 4n’uv + n*(u +v)?)




As n increases,
C(n) decreases.

For n>1, c(n) are
outside the
entanglement
wedge of the
n=1 extremal
surface (EE),
which indicates
the Rényi
entanglement
wedge can
probe more
information of
the bulk
spacetime.




Conclusions

*The surface growth approach provides an efficient and refined
way to build the bulk geometry in the entanglement wedge far
away from the boundary;

*By combining the surface growth approach and the bit threads,
we give a new and more reasonable bit thread description for the
holographic EoP;

*EoP gives more refined description in surface growth, and also
provides a selection rule for it;

*We derive the hyperfine structure of Rényi contour from particle
number cumulants for free fermions;

*The hyperfine Rényi contour shows many interesting features:
such as can be used to characterized the topological edge states;



*The holographic duality of the hyperfine Rényi contour, the Rényi
entanglement wedge give new tool to study the bulk reconstruction
and more refined description for subregion-subregion duality;

*The connection between surface growth approach and the
entanglement contour description requires further study.
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