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Line of reasoning

Purpose: Demonstrate how Einstein equation arises in CFT2.

Strategy:

1 Metric ⇔ Geodesic. They can be derived from each other.

2 (Metric version) Einstein equation ⇒ Geodesic version Einstein equation.

3 (Mixed state) RT formula: Geodesic = Entanglement Entropy

If both quantities are finite, thereby making this equality exact, we would have:

4 Geodesic version Einstein equation ⇒ Entanglement Entropy Einstein equation.
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Metric ⇔ Geodesic

Given a metric, we know how to compute the geodesic distance between two points.
On the other hand, the metric can also be extracted from geodesics. Consider a
geodesic x(τ), τ ∈ [0, t] connecting two points x(τ = 0) and x′(τ = t). L(x, x′) is the
geodesic length. Recall geodesics are defined as curves whose tangent vector is parallel
transported

∇τ
�È

gijẊiẊj
�

=
d

dτ

È
gijẊiẊj = 0.

The Synge’s world function is a biscalar of x and x′, defined as,

σ(x, x′) :=
1

2
L2(x, x′) =

1

2

�Z t

0

dτ

É
gµν

dxµ

dτ

dxν

dτ

�2

=
1

2
gµν

dxµ

dτ

dxν

dτ

���
any point

t2

t→0−−−→
1

2
gµν∆Xµ∆Xν

So, the metric is
gµν = −[σµν′ ] := − lim

x′→x
∂x′ν ∂xµσ(x, x′),

or
gµν = [σµν ] := lim

x′→x
∇xµ∂xνσ(x, x′).

where we defined the coincidence limit [Ω] := limx′→x Ω(x, x′) for any bitensor
Ω(x, x′).
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Metric ⇔ Geodesic

gµν = −[σµν′ ] := − lim
x′→x

∂x′ν ∂xµσ(x, x′),

or
gµν = [σµν ] := lim

x′→x
∇xµ∂xνσ(x, x′).

Note σµ := ∂xµσ is a vector with respect to point x, but is a scalar for point x′. So,
σµν := ∇ν∂µσ involves covariant derivatives, whereas σµν′ := ∂ν′∂µσ does not. We
thus conclude

Metric⇔ Geodesic

Note: the geodesics should be arbitrary and the ends are free to move in the bulk.
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Metric ⇔ Geodesic

Note raising or lowering indices and taking the limit commute. Some identities for the
Synge’s world function

σµσ
µ = 2σ.

gµν = [σµν ] = −[σµν′ ]

.

[σαµβν ] =
1

3

�
Rανβµ +Rαβνµ

�
.

Σµν := [σαβ σαµβν ] = gαβ [σαµβν ] =
1

3
Rµν .

Σ := [σµνσαβ σαµβν ] = gµνΣµν =
1

3
R.
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Geodesic version Einstein equation

With respect to metric, we have Einstein action and equation

SE =
1

16πG

Z
dDx

p
−g(R− 2Λ),

Rµν −
1

2
gµν R+ Λgµν = 0, (1)

where D = d+ 1 is the spacetime dimension. We only address vacuum with Λ 6= 0.
Thus contracting gµν with eqn. (1), we find R = 2D

D−2
Λ and the Einstein equation

can also be put into

Rµν −
1

D
gµν R = 0.

So, the geodesic version Einstein equation is

Σµν −
1

D
[σµν ] Σ = 0,

taking the identical form as the metric Einstein equation.
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Line of reasoning

We now entering the trickiest part, RT formula:

Geodesic = Entanglement entropy

Once this relations is built, we can use the geodesic version Einstein equation

Σµν −
1

D
[σµν ] Σ = 0,

to get the dynamical equation of Entanglement Entropy.
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Entanglement in QM

Entanglement in quantum mechanics, for example, the triplet and singlet:8><
>:

|11〉 = | ↑↑〉, No entangling,
|1− 1〉 = | ↓↓〉, No entangling,

|10〉 = 1√
2

�
| ↑↓〉+ | ↓↑〉

�
Entangling,

|00〉 = 1√
2

�
| ↑↓〉 − | ↓↑〉

�
Entangling

Define density matrix

ρtot = |Ψ〉〈Ψ|, ρ1 = Tr2 ρtot, and S1 = −Trρ1 log ρ1, S2 = S1.

No entangling state |11〉:

ρtot = |11〉〈11|, ρ1 = Tr2 ρtot =

�
1 0
0 0

�
, and S1 = −Trρ1 log ρ1 = 0.

Entangling singlet |00〉:

ρtot = |00〉〈00|, ρ1 = Tr2 ρtot =
1

2

�
1 0
0 1

�
, and S1 = −Trρ1 log ρ1 = log 2.
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Entanglement in QFT

Entanglement in D = d+ 1 QFT, taking a time-slice Σ = A ∪ Ā, subregion A
entangles with Ā,

d = 1 system，

AĀ Ā

d = 2 system

A

Σ

Ā

The entanglement entropy (EE) SA is defined as

ρtot =
1

Z
|Ψ〉〈Ψ|, ρA = TrĀρtot, SA = −TrρA log ρA,
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Holography

The holographic principle states that the data of gravity are stored in its lower
dimensional boundary which looks like a holographic image.

Inspired by AdS/CFT and Bekenstein-Hawking entropy, Ryu and Takayanagi
(2006,PRL) proposed an equivalence between the entanglement entropy (EE) of
CFTD and the minimal surface area in AdSD+1,

SA =
Area (γA)

4GD+1
N

.

This RT formula was for pure state in the original proposal.

General relativity: Gravitational force is an illusion of spacetime curvature.

It from qubit: spacetime structure emerges from quantum entanglements.
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RT formula for pure state

As D = 2, we have AdS3/CFT2, the minimal surfaces are geodesics. The simplest
configuration is the plain CFT2/Poincare AdS3,

Figure: ε is the UV cutoff, ` >> ε is the entangling segment.

On a time slice, for an interval ∆x = ` >> ε = z1 = z2,

L` =
c

6
cosh−1 ∆x2 + z2

1 + z2
2

2z1z2
'
c

3
log

`

ε
= SA(`)

Q: Can we apply “Geodesic = EE” to get the EOM of EE now? — Negative!
The reasons are:

The geodesics are attached on the boundary — one special class.

Both sides of the equality are divergent — too loose to make assertions.
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Mixed states

The geodesics are attached on the boundary — one special class.

Both sides of the equality are divergent — too loose to make assertions.

The two problems are really just one. Imagine, if the geodesics are not constrained to
the boundary, i.e. the end points are free to move in the bulk, we certainly have
arbitrary geodesics and the equality should be exact.

This is what we need!

To this end, let us turn to mixed states, which have the pure states as limits.
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Mixed states: introduction

Pictorially, a bipartite mixed state is

Q: What are the entanglement between disconnected segments A and B, i.e.
S(A : B) and its holographic dual?

1 As C,D → 0, we recover the pure state.

2 Since A and B are not complementary, ρAB is not pure, but mixed.

3 In order to calculate S(A : B), we need to make A and B complementary
somehow, and then construct a pure state ψAB .

4 Though only bipartite is concerned, the following derivations are generic since
general multipartites are composed of bipartites.
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Mixed states: EWCS, the holographic dual

Takayanagi and Umemoto (nature phys 2017) proposed:

SvN (A : B) = EW (A : B),

where EW (A : B) is the Entanglement wedge cross section (EWCS) in the bulk,

EWCS EW (A : B) for A : B is obtained by minimizing the length of LAB , turning
out to be:

EW (A : B) =
c

6
log
�
1 +

2

z
+ 2

É
1

z
(
1

z
+ 1)

�
, z =

(a2 − a1)(b2 − b1)

(b1 − a2)(b2 − a1)
.

This geodesic with finite length, and free moving ends, is precisely what we need!
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Mixed states: two approaches to calculate S(A : B)

There are two approaches to make A and B complementary and then calculate
SvN (A : B):

1 Purification (Takayanagi and Umemoto:2017 Nature Phys): Replace unknown C
and D by arbitrary states Ā and B̄, define S(A : B) := minĀB̄ S(AĀ : BB̄)
optimizing over Ā and B̄. — very hard to do in practice.
Reflected entropy SR (Dutta and Faulkner:2019JHEP) was introduced by choosing Ā, B̄ as CPT of A,B

respectively. They proved SR = 2EW .

2 Subtraction (Jiang, Wu, Wang, Yang:2406.09033): Simply subtract unknown C
and D from the system in a covariant way. Yes, we confirmed
SvN (A : B) = EW (A : B), it is an exact equality, both sides are finite.
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Our subtraction approach: calculation

Figure: Bipartite mixed state in CFT2 on a time slice. Geodesic γ1 is completely fixed by ξ1 and ξ2 , geodesic γ2 is completely
fixed by ξ3 and ξ4 . From the Ultra-parallel theorem in hyperbolic geometry, as the shortest curve connecting γ1 and γ2 , LAB is a

geodesic and unique. (x, z) and (x′, z′) are completely fixed by all four ξi ’s. The EWCS of A,B is defined as LAB , which
equals the CFT entanglement entropy between segments A and B, i.e. SvN (A : B) = EW (A : B) = LAB .

Thus we now have an exact equality with both sides finite

SvN(A : B) =
c

6
log

�
1 +

2

z
+ 2

É
1

z
(
1

z
+ 1)

�
= EW (A : B),

In the limit `A = ξ3 − ξ2 = ` and `C = `D = ε→ 0, this entanglement entropy
simplifies to the pure state infinite one

SvN(A : B) =
c

3
log

`

ε
.

17 / 29



Dynamics of entanglement entropy: Einstein equation

So, we now have

SvN(A : B) = EW (A : B) = LAB(x(ξi), z(ξi);x
′(ξi), z

′(ξi)),

and mixed states are the general configurations to quantify entanglement. Defining

χ :=
1

2
S2

vN, gij := [χij ], Rij :=
�
χk`χki`j

�
, R := [χijRij ], (2)

where the derivatives i, j · · · are with respect to four ξi’s on the boundary, we are
ready to obtain the dynamic equation of CFT2 entanglement entropy

Rij −
1

D
gijR = 0, (3)

which is precisely the Einstein equation! Since all the quantities and parameters in this
equation belong to CFT, it is indeed a CFT dynamical equation for the entanglement
entropy.
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Dynamics of entanglement entropy: Einstein equation

We can make the cosmological constant explicit in the equation,

Rij −
1

2
gijR+

Λ

3
gij = 0,

from which a relation between the cosmological constant and CFT2 entropy is found

Λ =
3(D − 2)

2D
R

D=3−−−→ Λ =
1

2
R =

1

2

�
χijχk`χki`j

�
.

So, the cosmological constant is not really a free parameter, but determined by the
CFT entanglement entropy.
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Dynamics of entanglement entropy: Einstein equation

Now, given an EE, extracting the metric only becomes a trivial procedure:

gij = −[χij′ ] = −
h�1

2
S2

vN

�
ij′

i
,

where i, j′ are ordinary derivatives since they act on different ends. This had been a
very hard job from the pure state EE previously.

We see the metric is a derived but not a fundamental quantity. Perhaps this is why
gravity is non-renormalizable and we should not try to quantize the metric itself.

Moreover, since the ordinary QFT and the induced gravity are linked through
entanglement entropy, it is now possible to unify the black hole thermodynamics and
Einstein equation.

20 / 29



RG equation as a geometric identity

For a classically scale-invariant theory living on a D-dimensional manifold M with the
metric ds2 = γabdx

adxb, the Callan-Symanzik RG equation is:�
`
∂

∂`
− 2

Z
M
γab

δ

δγab

�
logZCFT = 0,

where ` is the length scale. Using the replica trick and Rényi entropy

S
(n)
vN =

1

1− n
log

h
ZMn

(ZM)n

i
,

where Mn is the replicated manifold, one can show the RG equation for the
entanglement entropy is

`
∂

∂`
SvN =

c

6
.

The constant c
6

on the right hand side is for D = 3.
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RG equation as a geometric identity

In any geometry, not limited to gravity, there is an identity for the world function,

gµνσµσν = 2σ, σ(x, x′) =
1

2
L2(x, x′). (4)

In AdS3, except the vertical ones, any other geodesic is a segment of a semi-circle,

(x− x0)2 + z2 = r2.

We can map a semi-circle to a vertical line by the isometries of AdS3.

(x, z)→ (x̃, z̃) :=
� x− x0 + r

(x− x0 + r)2 + z2
−

1

2r
,

z

(x− x0 + r)2 + z2

�
.

In terms of (x̃, z̃), the semi-circle is a vertical line σ = σ(0, z̃1; 0, z̃2). Now, apply the
geometric identity (4),

z2
�
(∂xσ)2 + (∂zσ)2

�
= z̃2(∂z̃σ)2 = 2σ.

Obviously, z̃ is the renormalization scale `. Including the coupling c = 3RAdS/2G
(3),

substituting σ = 1
2
L2 = 1

2
S2

vN, we thus have in both bulk geometry and boundary CFT

`
∂

∂`
SvN =

c

6
,

precisely the RG equation.
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Realization of ER=EPR

We now give a mathematical realization of ER=EPR (JWWY arXiv:2411.18485).

Briefly, we derived the Einstein-Rosen bridge from the quantum entanglement in the
thermofield double CFT.

Consider the thermofield double state, an entangled pure state of two copies of
thermal CFT2,

|TFD〉 =
X
n

e−
β
2
En |nL〉 ⊗ |nR〉.

Split the systems as in the figure,

x

τ

aR bR

aL bL

x

τ

aR bR

aL bL

A B C D

Figure: The density matrices ρAB and ρCD , indicate two different configurations for disjoint
subsystems in the entangled TFD state, respectively.

Both ρAB and ρCD are mixed states.
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Realization of ER=EPR

Using the subtraction approach (JWWY arXiv:2406.09033), we obtain

SvN(A : B) =
c

6
arccosh

��
u2 + 1

� �
u′2 + 1

�
cosh (φ′ − φ)− 4uu′

(u2 − 1) (u′2 − 1)

�
.

So, the induced metric is

ds2 =
�
− lim
x′→x

∂x′i∂xj
�1

2
S2

vN

��
dxidxj =

4

(1− u2)2
du2 +

�
1 + u2

1− u2

�2

dφ2,

precisely revealing a geometry in which two spatial subregions (u < 0 and u > 0) are
connected by a wormhole throat located at u = 0. This metric is the T = 0 (u = −v)
slice of the eternal black hole in Kruskal coordinates:

ds2 = −
4

(1 + uv)2
dudv +

�
1− uv
1 + uv

�2

dφ2.

The RT surfaces of SvN(A : B) and SvN(C : D) are:

C
F
T

L

C
F
T

R
x

A A

B B

Figure: The red line is the RT surface of SvN(C : D), the horizon. The blue line indicates the RT
surface of SvN(A : B).
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Realization of ER=EPR: Bekenstein-Hawking entropy of the wormhole

As for SvN(C : D), setting aL = aR = a and bL = bR = b, we find

SvN(C : D) =
2πr+

4G(3)
=

A

4GN
,

precisely the Bekenstein-Hawking entropy of the wormhole, with A = 2πr+ and the

parameter relations in AdS/CFT
|a−b|
β

=
r+
`

.

quotient

SvN (C : D)

C D

wormhole
horizon

C D

Figure: Left panel: An entanglement wedge is bounded by two cyan geodesics. The purple line is
the EWCS. Right panel: A wormhole can be prepared by identifying two cyan geodesics of the
entanglement wedge.
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Realization of ER=EPR: Raamsdonk’s conjecture

Furthermore, we find as 1/T = β →∞,

SvN (C : D) =
πc

3β
|a− b| → 0, and SvN (A : B) ∼

c

3
log β →∞,

which provides a quantitative verification of Raamsdonk’s conjecture that classically
connected spacetime emerges from quantum entanglement.

wormhole
horizon

C D

disentangle
β →∞

SvN (C : D)→ 0

SvN (A : B)→∞

Figure: Disentangle the degrees of freedom in C and D by decreasing the temperature. The
proper length between the corresponding spacetime regions increases to infinity, while the horizon
area decreases to zero.
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Summary and discussion

We derived Einstein equation in CFT2, which is the dynamics of EE.

We proved that the RG equation is a geometrical identity. This explains why all
QFTs share the same RG equation.

So, the logic is:
Given a CFT2, its EE generates a D = 3 gravity.
In this 3D curved spacetime, a 3D QFT can live and its EE(?) generates a 4D
geometry.
Same pattern carries on to high dimensions.
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Summary and discussion

We have focused on AdS. Nevertheless, as long as RT formula holds, such as in
dS, the derivations apply with the same fashion.

Our derivations are for CFT2. For higher dimensions, there could be two
possibilities.

1 Still EE satisfies Einstein equation. However, since the entangling surfaces are no longer
points but co-dimension two surfaces, it is not obvious how to impose derivatives and
taking the coincidence limit.

2 More promising approach is to identify the dual CFT quantity of the bulk geodesics.
This dual quantity automatically satisfies Einstein equation.

Our results make “gravity as entropic force” straightforward. We explicitly
realized ER=EPR.

We showed that the metric gij = −[ 1
2

(S2
vN)ij′ ] is a derived but not a

fundamental quantity. Perhaps this is why gravity is non-renormalizable and we
should not try to quantize the metric itself.

In physics, energy dominates and links everything. But now, we tend to believe
the fundamental object in physics is entropy.
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Thank you!
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