Exotic Hadron Spectroscopy From Quarkless to Multiquark States

Jung Keun Ahn (Korea University)

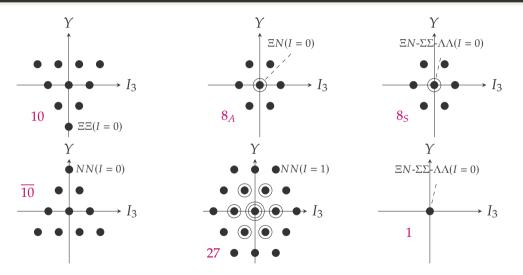
Toward Drip Line of Multiquark States

0 Glueballs

○ *H* dibaryon in (K^-, K^+) , γd , and Λp reactions ○ Θ^+ , P_s , and $P_{\overline{s}}(\Theta^*)$ in γp , γd , $\pi^- p$, $K^+ p$, and $K^+ d$ reactions

○ $\Lambda(1405)$, $\Sigma(1670)$, $\Xi(1690)$ in γp and K^-p reactions

 $\bigcirc \ \Omega^* \left(\Omega(2470) \to \Omega \pi \pi \right) \\ \bigcirc \ \overline{p}p \to \phi \phi, \ K^* \overline{K}^*, \ \gamma \gamma^* \\ \bigcirc \ \gamma^* \gamma \to p \overline{p}, \ \Lambda \overline{\Lambda}$


• Vector meson production near threshold:

$$\frac{\sigma(\pi^- p \to \phi n)}{\sigma(\gamma p \to \phi p)} \gg \frac{\sigma(\pi^- p \to J/\psi n)}{\sigma(\gamma p \to J/\psi p)}$$

 고려대학교

 KOREA UNIVERSITY

Dibaryon Multiplets in SU(3)_{*f*}

The Most Promising Candidate in the Strange Sector

H-dibaryon

• The H-Dibaryon (J = 0, I = 0) is a stable SU(3)_f singlet hexaquark state consisting of *uuddss* quarks due to QCD color magnetic force.

○ **H** is named after Hexa-quark states.

VOLUME 38, NUMBER 5 PHYSICAL REVIEW LETTERS

31 JANUARY 1977

Perhaps a Stable Dihyperon*

R. L. Jaffe†

Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305, and Department of Physics and Laboratory of Nuclear Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (Received 1 November 1976)

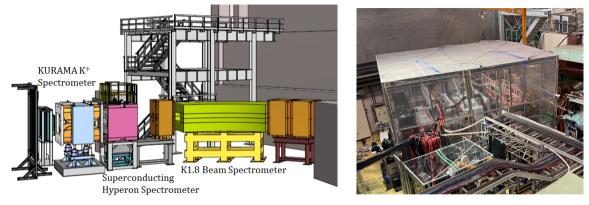
In the quark bag model, the same gluon-exchange forces which make the proton lighter than the $\Delta(1236)$ bind six quarks to form a stable, flavor-singlet (with strangeness of $-2) J^P = 0^+$ dihyperon (*H*) at 2150 MeV. Another isosinglet dihyperon (*H**) with $J^P = 1^+$ at 2335 MeV should appear as a bump in $\Lambda\Lambda$ invariant-mass plots. Production and decay systematics of the *H* are discussed.

The History of H-Dibaryon Searches

- 1977 Deeply-bound di-hyperon predicted by R. Jaffe
- 1980-2000 No evidence for the deeply-bound *H* from KEK, BNL, and CERN
 - experimental efforts by more than 80 MeV
 - **2001** Mass constraint from observation of ${}^{6}_{\Lambda\Lambda}$ He (E373)
- 1998,2007 Enhanced ΛΛ production near threshold was reported from
 E224 and E522 at KEK-PS
 - 2011 LQCD calculations predict the H-dibaryon near $m_{\Lambda\Lambda}$
- 2013-2015 No evidence for $H \to \Lambda p \pi^-$ and $H \to \Lambda \Lambda$ in high-energy
 - e^+e^- , pp and AA experiments
 - 2021 LQCD calculations point to the mass of the H-dibaryon
 - very close to ΞN threshold ($m_{\pi} \approx 146$ MeV)
 - 2021 J-PARC E42 has successfully completed with HypTPC.
 - 2024 We are nearing the final stage of data analysis.

H-Dibaryon Search at J-PARC : E42

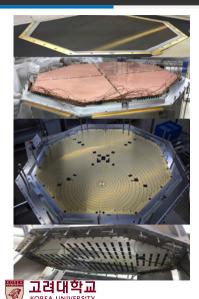
The existence of the H-dibaryon still awaits definitive experimental confirmation or exclusion.


- \bigcirc Weakly-bound : $H \rightarrow \Lambda p \pi^-$
- Virtual state : $\Lambda\Lambda$ or Ξ^-p threshold effect
- \bigcirc Resonance : Breit-Wigner peak in $\Lambda\Lambda$ and Ξ^-p masses

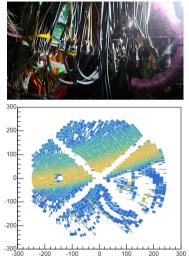
J-PARC-E42 experiment

- 1. in $\Lambda p\pi^-$, $\Lambda\Lambda$ and Ξ^-p channels
- **2**. by tagging the S = -2 system production
- 3. via (K^-, K^+) reactions at 1.8 GeV/*c* with a diamond target
- 4. with Hyperon Spectrometer : 1 MeV $\Lambda\Lambda$ mass resolution

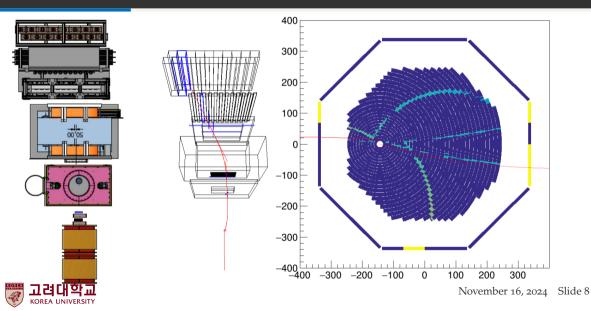
E42 Detector for the *H*-Dibaryon Search

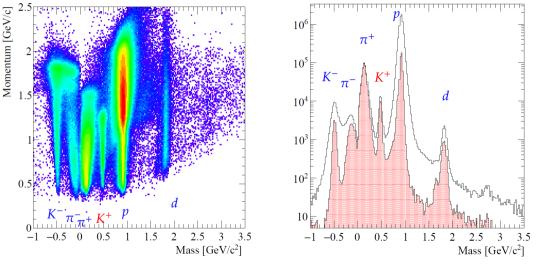


(*K*[−], *K*⁺) reaction events are tagged by the K1.8 beam and the KURAMA spectrometers.
 Decays of the *S* = −2 system are reconstructed using the Superconducting Hyperon


Spectrometer.

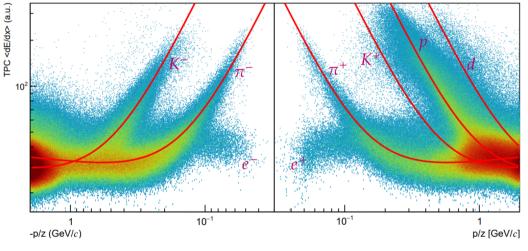
Hyperon Time Projection Chamber (HypTPC)



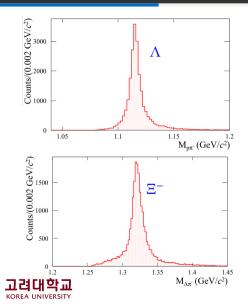


November 16, 2024 Slide 7

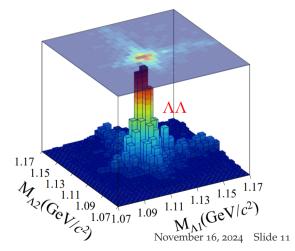
¹² $C(K^-, K^+)$ Reaction Event



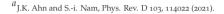
Scattered Particles at Forward Angles

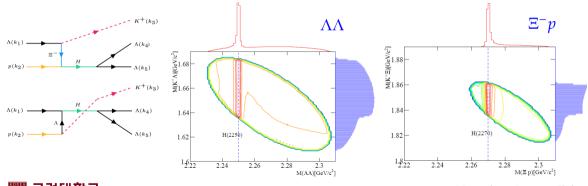


Particle Identification with HypTPC

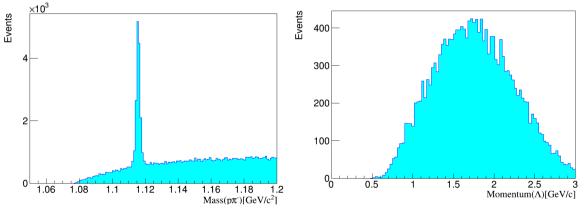


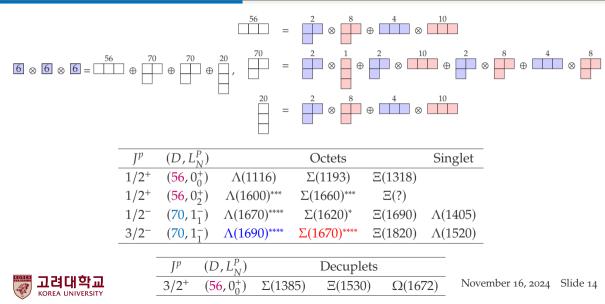
H-Dibaryon Search Experiment (J-PARC E42)



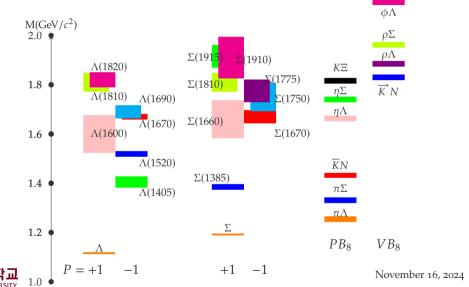

 We are nearing the final step in opening the box.

H-**Dibaryon in** Λp **Reaction**

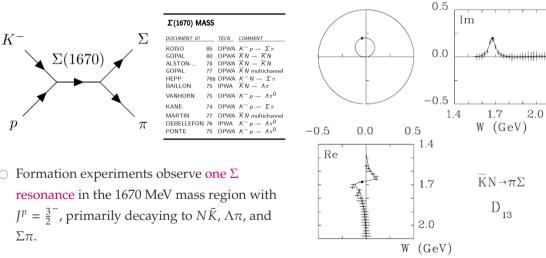

 \bigcirc $\Lambda p \rightarrow K^+X$ reaction at 2.83 GeV/*c* within the effective Lagrangian approach. ^{*a*}


High-momentum Λ Beam from Photoproduction

- \bigcirc LEPS collected approximately 10⁵ \land hyperons in $p\pi^-$ mass at forward angles.
- The Λ momentum range reached 3 GeV/*c* to make the $\Lambda p \rightarrow HK^+$ reaction viable.



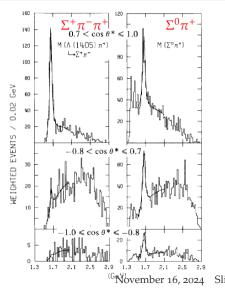
Low-lying Hyperons in the Quark Model



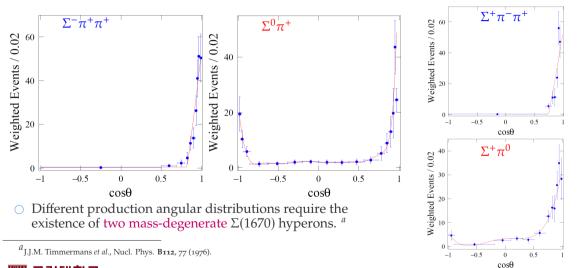
Λ^* and Σ^* Resonances


지려대학교 KOREA UNIVERSITY Slide 15

$\Sigma(1670)$ in Formation Experiments

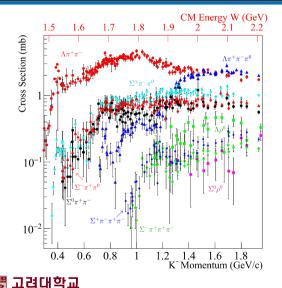

$\Sigma(1670)$ in Production Experiments

(1670) (PRODUCTION EXPERIMENTS)					
DOCUMENT ID		TECN	CHG	COMMENT	
CARROLL	76	DPWA		lsospin-1 total σ	
HEPP	76	DBC	-	K ⁻ N 1.6-1.75 GeV/c	
APSELL	74	HBC		K ⁻ p 2.87 GeV/c	
BERTHON	74	HBC	0	Quasi-2-body σ	
AGUILAR	70B	HBC		$K^- \rho \rightarrow \Sigma \pi \pi$ 4 GeV	
AGUILAR	70B	HBC		$K^- \rho \rightarrow \Sigma 3\pi$ 4 GeV	
ALVAREZ	63	HBC	+	K ⁻ p 1.51 GeV/c	
FERRERSORIA	81	OMEG	-	π ⁻ p 9,12 GeV/c	
TIMMERMANS76		HBC	+	K ⁻ p 4.2 GeV/c	
BUGG	68	CNTR		$K^- p$, d total σ	
PRIMER	68	HBC	+	See BARNES 69E	
ALEXANDER	62C	HBC	-0	π ⁻ p 2-2.2 GeV/c	

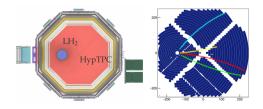

• Production experiments have found evidence for two Σ resonances in this mass region with similar mass and width. This evidence is based on a difference in the production angular distributions of $\Sigma(1670)$ decaying to $\Sigma\pi$ and to $\Sigma\pi\pi$.

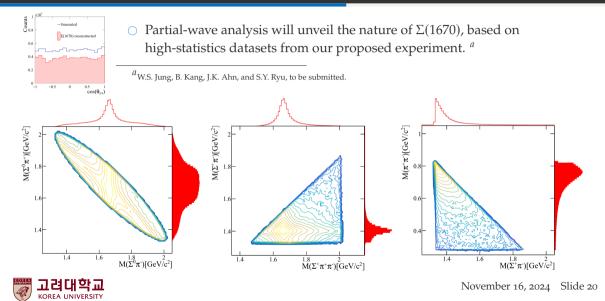
Slide 17

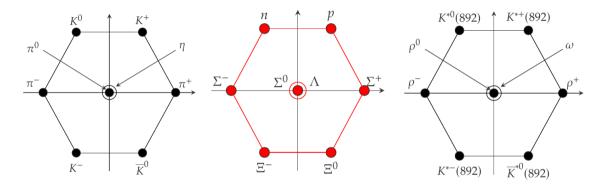
$\Sigma(1670)$ in Production Experiments



November 16, 2024

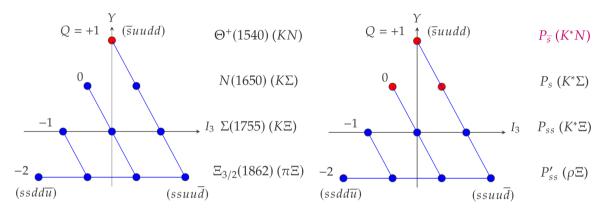

Slide 18


$\Sigma(1670)$ Formation and Production in K^-p Reactions


 \bigcirc High-statistics measurement is required to reconfirm the existence of two $\Sigma(1670)$ resonances and to unveil the nature of these states.

Possible Measurement of $\Sigma(1670)$ with Hyperon Spectrometer

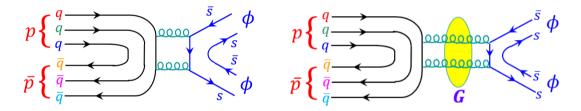
Pentaquark States in SU(3)_f Antidecuplets



 \bigcirc For meson octet and baryon octet members, one can make the SU(3)_f pentaquark multiplets:

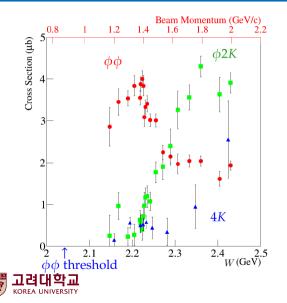
 $8 \otimes 8 = 1 \oplus 8_S \oplus 8_A \oplus 10 \oplus \overline{10} \oplus 27$

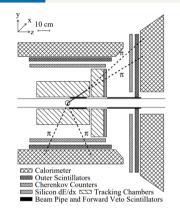
Pentaquark States in SU(3)_f Antidecuplets



• Observation of new pentaquark states $P_s(K^*\Sigma, \phi N)$ will support the existence of the $P_{\bar{s}}(K^*N)$ state on the top corner of the $\overline{10}$ weight diagram.

$\overline{p}p \rightarrow \phi \phi$ Reaction


○ The reaction $\overline{p}p \rightarrow \phi\phi$ may proceed via two gluon emission from $\overline{q}q$ annihilation.



○ All three valence quarks in *p* annihilate with the corresponding three antiquarks in \overline{p} to produce a purely gluonic state from which $\phi\phi$ is formed. This should be OZI-suppressed without an intermediate resonant gluonic state (glueball).

 $\overline{p}p \rightarrow \phi \phi$ (JETSET)

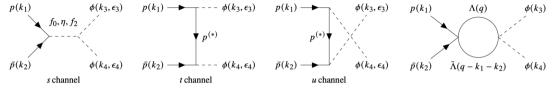
○ JETSET observed unexpectedly large magnitude for $\overline{p}p \rightarrow \phi\phi$ cross section ^{*a*}.

^{*a*} JETSET, Il Nouvo Cimento 107, 2329 (1994); JETSET, Phys. Rev. D 57, 5370 (1998). November 16, 2024 Slide 24

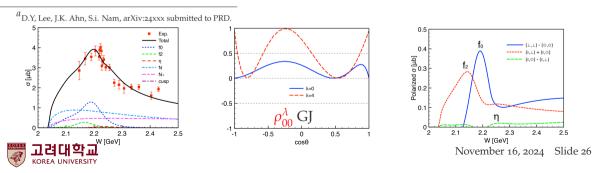
Reaction Mechanisms for $\overline{p}p \rightarrow \phi \phi$

- A substantial OZI rule violation could be the signal of interesting new physics.
 - 1. Production of glueballs
 - 2. Coupling to four quark states involving \overline{ss} such as $\phi(2170)/X(2239)^a$.
 - 3. Non-strange quark component of the ϕ meson, due to the actual mixing of the vector meson singlet and octet:^{*b*}

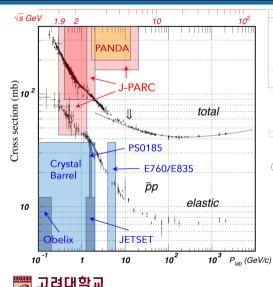
$$\sigma(\overline{p}p \to \phi\phi) = \tan^4 \delta \cdot \sigma(\overline{p}p \to \omega\omega) \approx 10 \text{ nb},$$


- 4. The presence of substantial \overline{ss} content in $\overline{p}p$ wave functions,
- 5. Instanton induced interactions between quarks
- 6. Hadron production and its rescattering in which each individual transition is OZI-allowed,
- 7. Baryon exchange in *t* and *u* channel diagrams.

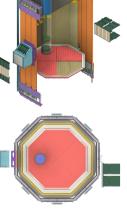
 $^{^{}b}$ The angle $\delta(=\Theta_{i}-\Theta)$ denotes the difference between the ideal mixing angle $\Theta_{i} = 35.3^{\circ}$ (sin $\Theta_{i} = 1/\sqrt{3}$) and the mixing angle Θ between (ϕ , ω) mesons and the SU(3) states (ω_{0} , ω_{8}).



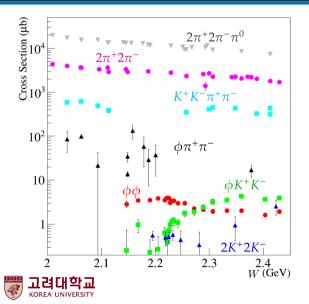
^{*a*}H.-W. Ke and X.-Q. Li, Phys. Rev. D 99, 036014 (2019); Q.-F. Lü et al., Chinese Phys. C 44, 024101 (2020).


$\overline{p}p \rightarrow \phi \phi$ Reaction

• A new theoretical calculation shows that spin observables (spin-density matrix elements, spin correlation between two ϕ mesons) may pin down the individual process contributions. ^{*a*}



Antiproton Beam Facilites and Experiments

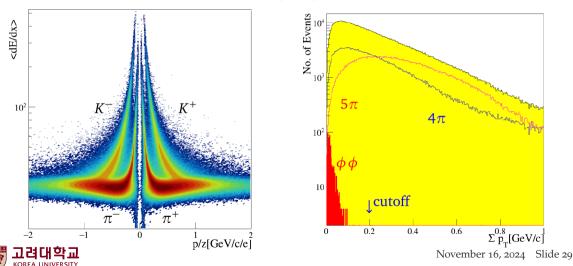


Hyperon Spectrometer *p* Beam Traject

The J-PARC K1.8BR beamline delivered $2 \times 10^5 \overline{p}$ per spill during the 5.2 s duration (40 kHz) in the 50 kW operation and can provide 64 kHz at 80 kW.

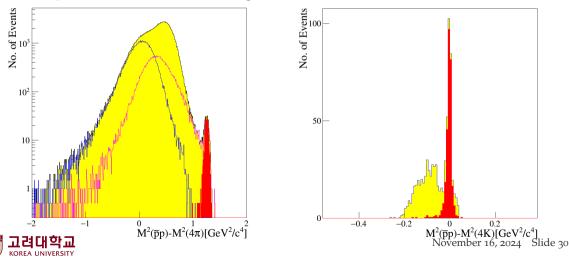
Background $\overline{p}p \rightarrow 4$ -prong Reactions

$\overline{p}p$ Reactions	$p_{\rm thre}^{\rm lab}$ (GeV/c)	
$2\pi^+2\pi^-\pi^0$	0	
$2\pi^+2\pi^-$	0	
$K^+K^-\pi^+\pi^-$	0	
$\phi \pi^+ \pi^-$	0	
$2K^{+}2K^{-}$	0.662	
ϕK^+K^-	0.767	
$\phi\phi$	0.866	
$\overline{p}p\pi^{+}\pi^{-}$	1.219	
$\overline{p}p\phi$	3.403	

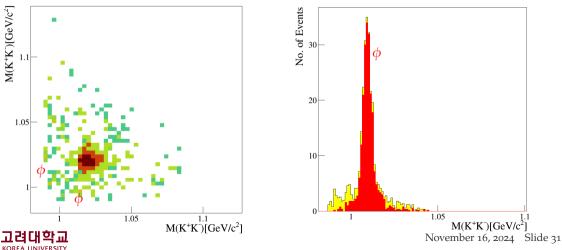

 Multipion production processes dominate pp reactions with four charged-particle emission. ^a

Slide 28

^{*a*}V. Flaminio, W.G. Moorhead, D.R.O. Morrison, N. Riviore, CERN-HERA 84-01, 17, April 1984. November 16, 2024


Particle ID and Momentum Balance Constraints

 \odot The 5 π events are then further rejected by requiring transverse momentum balance.


Event Selection with Energy Balance Contraints

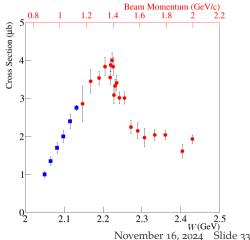
• Energy balance constraints in the center-of-mass energy $(\Delta m^2 = (p_{\overline{p}} + p_p)^2 - (\sum_{i=1}^4 p_i)^2 = 0$, where p_i denotes a four-momentum of particle *i*) between the initial and final states.

Reconstructed $\phi\phi$ **Events**

○ From two K^+ and two K^- tracks, the correct pair of two oppositely charged kaons is chosen by selecting the pair with a mass closer to M_{ϕ} . from M_{ϕ} .

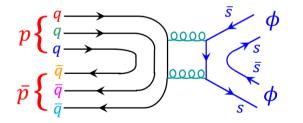
- \odot For the 80 kW MR operation the trigger rate is 0.046 Hz.
- Background processes $(2\pi^+2\pi^-, 2\pi^+2\pi^-\pi^0)$ are largely suppressed by imposing kinematic constraints and ensuring excellent π/K separation of the HypTPC.
- Reconstruction efficiency for the $\phi \phi$ events ($\varepsilon_{\text{recon}} = 0.6$).
- Assuming the accelerator operates constantly 90% of the time ($\varepsilon_{acc} = 0.9$), the number of $\phi \phi$ events ($\sigma = 3 \mu b$) collected in a day is

 $\overline{N_{2\phi}} = 0.046/s \cdot \varepsilon_{acc} \cdot \varepsilon_{recon} \cdot Br(\phi \rightarrow K^+ K^-)^2 \cdot 8.64 \times 10^4 \text{ s/d}$ $\approx 5.2 \times 10^2/d$


Beam Time Request (J-PARC P104)

 \odot We are requesting 6.5 days of beam time. Three days will be dedicated to the high-statistics data collection at 1.15 GeV/*c* to measure spin observables.

The $\phi\phi$ Collaboration


- Korea University
 (J.K. Ahn / spokesperson)
- RCNP/OU, RARIS/Tohoku, RIKEN, GWU, CERN
- KEK, Tohoku, ASRC/JAEA, KNU
- O PKNU, Inha, Soongsil, Giessen

Double ϕ **Production in** $\overline{p}p$ **Reactions near Threshold**

- The proposed experiment is meant as a feasibility study and independent confirmation of the enhancement of the production cross section near the threshold.
- Detailed studies of the production mechanism are the perspective for future work, both in theory and experiment.

