The Asian Nuclear Physics Association (ANPhA)

Search for Hoyle-analog state in light nuclei

Bo Zhou (周波)

Fudan University

Nov. 16, 2024

Huizhou, Guangdong, China

outline

¹²C clustering structure
 5α condensate state
 3α+p clustering in ¹³N
 Summary and Prospect

Nuclear Cluster Physics

Ikeda diagram of light nuclei

<u>Clustering in heavy nuclei ?</u>

https://physics.aps.org/articles/v3/8

Cluster states of ¹²**C**

Shape/Structure of the ¹²C

D J Marín-Lámbarri, et al., PRL 113, 012502 (2014)

Hoyle state of ¹²C

 $12C(0_2^+)$

$$\Psi_{3\alpha}^{\text{THSR}} = \mathcal{A} \left\{ \exp \left[-\frac{2}{B^2} (\mathbf{X}_1^2 + \mathbf{X}_2^2 + \mathbf{X}_3^2) \right] \phi(\alpha_1) \phi(\alpha_2) \phi(\alpha_3) \right\}$$

= $\exp \left(-\frac{6}{B^2} \mathbf{\xi}_3^2 \right) \mathcal{A} \left\{ \exp \left(-\frac{4}{3B^2} \mathbf{\xi}_1^2 - \frac{1}{B^2} \mathbf{\xi}_2^2 \right) \phi(\alpha_1) \phi(\alpha_2) \phi(\alpha_3) \right\},$
 $\mathbf{\xi}_1 = \mathbf{X}_1 - \frac{1}{2} (\mathbf{X}_2 + \mathbf{X}_3), \qquad \mathbf{\xi}_2 = \mathbf{X}_2 - \mathbf{X}_3, \qquad \mathbf{\xi}_3 = \frac{1}{3} (\mathbf{X}_1 + \mathbf{X}_2 + \mathbf{X}_3)$

 3α Bose-Einstein state

THSR, PRL 87, 192501 (2001)

Nonlocalized cluster motion of 3α clusters in ^{12}C

We really obtained the single high-accuracy THSR-type wave functions for 3⁻ and 4⁻ states,

$$\propto \mathcal{A}\{\exp[-\frac{(\boldsymbol{\xi}_1 - \boldsymbol{S}_1)^2}{b^2 + 2\boldsymbol{\beta}^2} - \frac{(\boldsymbol{\xi}_2 - \boldsymbol{S}_2)^2}{3/4 \ (b^2 + 2\boldsymbol{\beta}^2)}]\phi(\alpha_1)\phi(\alpha_2)\phi(\alpha_3)\}$$

Size parameters β obtained by variational calculations.

 $N\alpha$ nuclei

Search for the 5α condensate state

3α condensate	4α condensate	5a condensate		
(Hoyle state)	(0_6^+ state)	(?)		
2001 (THSR)	2008~ (OCM,THSR)	2019~		

study of alpha condensate in finite nuclei

Alpha condensate in ¹⁶O

Multi- α condensation

25 ₁ Dilute multi- α cluster condensed states with spherical (a) 20· E(¹²C)~ 0.0 MeV and axially deformed shapes are studied with the Gross-E(¹⁶O)~ 2 MeV Pitaevskii equation and Hill-Wheeler equation where the 15 α cluster is treated as a structureless boson, () 10-10-E(²⁰Ne)~ 3 Me it is predicted to exist in heavier self-conjugate 4N nuclei up to *N*=10. 5 0 T. Yamada and P. Schuck, Phys. Rev. C 69, 024309 (2004). 10 2 12

Some candidates for α condensate were found from experiments for ¹²C and ¹⁶O.

Rev. Mod. Phys. 89, 011002 (2017).

No experimental signatures for α condensation were observed

Phys. Rev. C 100, 034320 (2019)

An experimental way of testing Bose-Einstein condensation of clusters in the atomic nucleus is reported. The enhancement of cluster emission and the multiplicity partition of possible emitted clusters could be direct signatures for the condensed states.

Recent experiment for 5α condensation

Search for the 5α condensate state

To solve the configurations problem:

$$\Psi(\beta_1,\beta_2) = \int d^3R_1 d^3R_2 d^3R_3 d^3R_4 d^3R_5 \operatorname{Exp}\left[-\frac{1/2S_1^2 + 2/3S_2^2 + 3/4S_3^2}{\beta_1^2} - \frac{4/5S_4^2}{\beta_2^2}\right] \Phi^{\mathrm{B}}(R_1,R_2,R_3,R_4,R_5)$$

$$= n_0 \mathscr{A}\left\{ \exp\left[-\frac{2\xi_1^2 + 8/3\xi_2^2 + 3\xi_3^2}{2(b^2 + 2\beta_1^2)}\right] \exp\left[-\frac{16/5\xi_4^2}{2(b^2 + 2\beta_2^2)}\right] \prod_{i=1}^5 \varphi_i^{\text{int}}(\alpha) \right\}$$

where the conventional Brink cluster wave function Φ^{B} ,

$$\Phi^{\mathrm{B}}(R_1, R_2, R_3, R_4, R_5) = \frac{1}{\sqrt{20!}} \mathscr{A}[\phi_1(R_1) \dots \phi_5(R_2) \dots \phi_{20}(R_5)],$$

$$\propto \phi_g \mathscr{A} \bigg\{ \exp\left[-\frac{2(\xi_1 - S_1)^2 + 8/3(\xi_2 - S_2)^2 + 3(\xi_3 - S_3)^2}{2b^2}\right] \exp\left[-\frac{16/5(\xi_4 - S_4)^2}{2b^2}\right] \prod_{i=1}^5 \varphi_i^{\text{int}}(\alpha) \bigg\},$$

Schematic illustrations of two distinct microscopic cluster models. a, The convention with the single-nucleon wave function, cluster model of Φ^{B} , in which the inter-cluster variables $\{S_i\}$ are the Jacobi coordinates of $\{R_i\}$. Container picture for $4\alpha + \alpha$ cluster structure of ²⁰Ne. The β_1 is the size variable for the descripti 4α and β_2 for the description of the relative motion between 4α and α clusters.

$$\phi_i(R_k) = (\frac{1}{\pi b^2})^{\frac{3}{4}} e^{-\frac{1}{2b^2}(r_i - R_k)^2} \chi_i \tau_i.$$

To solve the interaction problem:

The Hamiltonian for ²⁰Ne in this work can be written as:

$$\mathcal{H} = -rac{\hbar^2}{2M} \sum_i
abla_i^2 - T_G + \sum_{i < j} V_{ij}^C + \sum_{i < j} V_{ij}^{(2)} + \sum_{i < j < k} V_{ijk}^{(3)},$$

The effective nucleon-nucleon potential part is taken a Gaussian form, which is expressed as: (, 2)

$$V_{ij}^{(2)} = \sum_{n} v_n^{(2)} \exp\left\{-\left(\frac{r_{ij}}{r_n^{(2)}}\right)^2\right\} \left(W_n^{(2)} + M_n^{(2)}P_{ij}\right)$$

and

$$\begin{split} V_{ijk}^{(3)} &= \sum_{n} v_{n}^{(3)} \exp\left\{-\left(\frac{r_{ij}}{r_{n}^{(3)}}\right)^{2} - \left(\frac{r_{jk}}{r_{n}^{(3)}}\right)^{2}\right\} \\ &\times (W_{n}^{(3)} + M_{n}^{(3)}P_{ij})(W_{n}^{(3)} + M_{n}^{(3)}P_{jk}) \end{split}$$

Tohsaki F1 three-body interaction was used.

A. Tohsaki, Phys. Rev. C 49, 1814 (1994).

To solve the resonance problem:

Radius-Constraint Method,

$$\begin{split} & \sum_{\beta_{1}^{'},\beta_{2}^{'}} \left\langle \widehat{\Phi}_{4\alpha+\alpha}^{0^{+}}(\beta_{1},\beta_{2}) \middle| \sum_{i=1}^{1} \frac{1}{20} (r_{i} - X_{G})^{2} \middle| \widehat{\Phi}_{4\alpha+\alpha}^{0^{+}}(\beta_{1}^{'},\beta_{2}^{'}) \right\rangle \\ & g^{(\gamma)} \left(\beta_{1}^{'},\beta_{2}^{'} \right) \\ & = \{ R^{(\gamma)} \} g^{(\gamma)} \left(\beta_{1},\beta_{2} \right) \left\langle \widehat{\Phi}_{4\alpha+\alpha}^{0^{+}}(\beta_{1},\beta_{2}) \middle| \widehat{\Phi}_{4\alpha+\alpha}^{0^{+}}(\beta_{1}^{'},\beta_{2}^{'}) \right\rangle \\ & \Psi_{GCM}^{0^{+}} = \sum_{\beta_{1},\beta_{2}} g^{(\gamma)} \left(\beta_{1},\beta_{2} \right) \widehat{\Phi}_{4\alpha+\alpha}^{0^{+}}(\beta_{1}^{'},\beta_{2}^{'}) \end{split}$$

Here $R^{(\gamma)} \leq R_{cut}$ and R_{cut} is the radius cut-off parameter.

Stabilization Method

Above the 5alpha threshold: $0_{15}^+ \sim 0_{19}^+$

To solve the resonance problem

$$y(a) = \sqrt{\frac{20!}{4!16!}} \left\langle \left[\left[\Psi_{gcm}^{0_s^+}({}^{16}\text{O})\varphi_5(\alpha) \right]_{0^+} Y_{00}(\hat{\xi}_4) \right]_{0^+} \frac{\delta(\xi_4 - a)}{\xi_4^2} \right| \Psi_{gcm}^{0_\lambda^+}({}^{20}\text{Ne}) \right\rangle$$

Five 0⁺ states above the threshold

B. Zhou, Y. Funaki, H. Horiuchi, Y-G Ma, G. Röpke, P. Schuck, A. Tohsaki & T. Yamada, Nat. Commun. 14, 8206 (2023).

The 5α condensate state

B. Zhou, Y. Funaki, H. Horiuchi, Y-G Ma, G. Röpke, P. Schuck, A. Tohsaki & T. Yamada, Nat. Commun. 14, 8206 (2023).

The decay scheme and connections

B. Zhou, Y. Funaki, H. Horiuchi, Y-G Ma, G. Röpke, P. Schuck, A. Tohsaki & T. Yamada, Nat. Commun. 14, 8206 (2023).

The 6α clustering structure probed by Inelastic Scattering

 6α condensed state was searched for in the highly excited region.

- 6α condensed state is expected at 5 MeV above the 6α threshold. $- E_x \sim 28.5 + 5 = 33.5$ MeV
- No significant structure suggesting the 6α condensed state.
 - Several small structures indistinguishable from the statistical fluctuation. → Need more statistics.

A. Tohsaki et al. / Nuclear Physics A738 (2004) 259–263

261

Table 1

The independent number of permutations for each kernel. Here, the case of the norm kernel for 24 Mg is added. The final row shows a full number of permuations without any reduction for the norm kernel.

	$^{8}\text{Be}(2\alpha)$	$^{12}C(3\alpha)$	${}^{16}O(4\alpha)$	$^{20}Ne(5\alpha)$	$^{24}Mg(6\alpha)$
norm	3	9	35	185	1614
kinetic	7	34	242	2546	
two-body	9	58	669	10912	
three-body	40	366	6773	156617	
$(n!)^4$	16	1296	3.32×10^{5}	2.07×10^{8}	2.79×10^{11}

Remains challenging in theoretical calculations

PLB,848 (2024)

KAWABATA Takahiro

Editors' Suggestion Featured in Physics

Observation of the Exotic 0^+_2 Cluster State in ⁸He

Z. H. Yang^{1,2,*,†} Y. L. Ye^{1,*,‡} B. Zhou^{3,4,5} H. Baba,² R. J. Chen,⁶ Y. C. Ge,¹ B. S. Hu^{1,1} H. Hua,¹ D. X. Jiang,¹ M. Kimura,^{2,5,7} C. Li,² K. A. Li,⁶ J. G. Li⁰,¹ Q. T. Li⁰,¹ X. Q. Li,¹ Z. H. Li,¹ J. L. Lou⁰,¹ M. Nishimura,² H. Otsu,² D. Y. Pang,⁸ W. L. Pu,¹ R. Qiao,¹ S. Sakaguchi,^{2,9} H. Sakurai,² Y. Satou,¹⁰ Y. Togano,² K. Tshoo,¹⁰ H. Wang,^{2,11} S. Wang,² K. Wei,¹ J. Xiao,¹ F. R. Xu[®],¹ X. F. Yang[®],¹ K. Yoneda,² H. B. You,¹ and T. Zheng¹ School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China ²RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan ratory of Nuclear Physics and Ion-beam Application (MOE), Institute of Modern Physics, Fudan University, - - Shanghai 200433, -China-Research Center for $\Phi(\boldsymbol{B}, b_n) \propto \mathcal{A} \left\{ \exp \left[-\frac{4\boldsymbol{\xi}_1^2}{3\boldsymbol{B}^2} - \frac{3\boldsymbol{\xi}_2^2}{2\boldsymbol{B}^2} \right] \times \phi_{\alpha}(b_{\alpha})\phi_{\frac{1}{2}n}(b_n)\phi_{\frac{2}{2}n}(b_n) \right\},^a$ PTEP Prog. Theor. Exp. Phys. 2018, 041D01 (10 pages) DOI: 10.1093/ptep/pty034 $\Psi(\mathbf{r}) = \Phi_{g}(\mathbf{r}_{a})\Phi_{\text{int}}(\mathbf{r}_{i} - \mathbf{r}_{i})$ Letter New trial wave function for the nuclear cluster $\Psi_{\text{new}} = \widehat{L}_{n-1}(\beta)\widehat{G}_n(\beta_0)\widehat{D}(Z)\Phi_0(r)$ structure of nuclei $= \int d^{3} \widetilde{T}_{1} \cdots d^{3} \widetilde{T}_{n-1} \exp\left[-\sum_{i=1}^{n-1} \frac{\widetilde{T}_{i}^{2}}{\beta_{i}^{2}}\right] \int d^{3} R_{1} \cdots d^{3} R_{n} \exp\left[-\sum_{i=1}^{n} (\frac{A_{i}}{\beta_{0}^{2} - 2b_{i}^{2}})(R_{i} - Z_{i} - T_{i})^{2}\right] \Phi_{0}(r - R)$ Bo Zhou* Institute for International Collaboration, Hokkaido University, Sapporo 060-0815, Japan Department of Physics, Hokkaido University, Sapporo 060-0810, Japan $= n_0 \exp[-\frac{A}{\beta_0^2} X_g^2] \mathcal{A}\{\prod^{n-1} \exp[-\frac{1}{2B_i^2} (\boldsymbol{\xi}_i - \boldsymbol{S}_i)^2] \prod^n \phi_i^{\text{int}}(b_i)\}.$ *E-mail: bo@nucl.sci.hokudai.ac.jp Received December 5, 2017; Revised February 21, 2018; Accepted March 2, 2018; Published April 16, 2018 center-of-mass problem is given. In the new approach, the widths a tool for studying the cluster correlations

0.3

0.2

Clustering structure of $3\alpha + p$ in ¹³N

Hoyle-analog state in ¹³N

to be submitted

Hoyle-analog state in ¹³N

PHYSICAL REVIEW C 109, 054308 (2024)

Cluster structure of $3\alpha + p$ states in ¹³N

J. Bishop[®],^{1,2} G. V. Rogachev,^{1,3,4} S. Ahn,⁵ M. Barbui[®],¹ S. M. Cha,⁵ E. Harris[®],^{1,3} C. Hunt,^{1,3} C. H. Kim[®],⁶ D. Kim,⁵ S. H. Kim,⁶ E. Koshchiy[®],¹ Z. Luo,^{1,3} C. Park[®],⁵ C. E. Parker[®],¹ E. C. Pollacco[®],⁷ B. T. Roeder,¹ M. Roosa[®],^{1,3} A. Saastamoinen,¹ and D. P. Scriven[®],^{1,3}
¹Cyclotron Institute, Texas A&M University, College Station, Texas 77843, USA
²School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
³Department of Physics & Astronomy, Texas A&M University, College Station, Texas 77843, USA
⁴Nuclear Solutions Institute, Texas A&M University, College Station, Texas 77843, USA
⁵Center for Exotic Nuclear Studies, Institute for Basic Science, 34126 Daejeon, Republic of Korea
⁶Department of Physics, Sungkyunkwan University, Suwon 16419, Republic of Korea
⁷IRFU, CEA, Université Paris-Saclay, F-91191 Gif-Sur-Yvette, France

Background: Cluster states in ¹³N are extremely difficult to measure due to the unavailability of ${}^{9}B + \alpha$ elastic-scattering data.

Purpose: Using β -delayed charged-particle spectroscopy of ¹³O, clustered states in ¹³N can be populated and measured in the $3\alpha + p$ decay channel.

Methods: One-at-a-time implantation and decay of ¹³O was performed with the Texas Active Target Time Projection Chamber. $149\beta 3\alpha p$ decay events were observed and the excitation function in ¹³N reconstructed **Results:** Four previously unknown α -decaying excited states were observed in ¹³N at an excitation energy of 11.3, 12.4, 13.1, and 13.7 MeV decaying via the $3\alpha + p$ channel.

Conclusions: These states are seen to have a $[{}^{9}B(g.s) \otimes \alpha/p + {}^{12}C(0_{2}^{+})], [{}^{9}B(\frac{1}{2}^{+}) \otimes \alpha], [{}^{9}B(\frac{5}{2}^{+}) \otimes \alpha]$, and $[{}^{9}B(\frac{5}{2}^{+}) \otimes \alpha]$ structure, respectively. A previously seen state at 11.8 MeV was also determined to have a $[p + {}^{12}C(g.s.)/p + {}^{12}C(0_{2}^{+})]$ structure. The overall magnitude of the clustering is not able to be extracted, however, due to the lack of a total width measurement. Clustered states in ${}^{13}N$ (with unknown magnitude) seem to persist from the addition of a proton to the highly α -clustered ${}^{12}C$. Evidence of the $\frac{1}{2}^{+}$ state in ${}^{9}B$ was also seen to be populated by decays from ${}^{13}N^{*}$.

This obtained state corresponds to the state observed at 11.3 MeV

Hoyle-analog state in ¹³N

Two-body overlap function (Two-body RWA) $[\alpha \otimes [\alpha \otimes \alpha]_0]_0 \otimes [0 \otimes 0]_0$ 12 12 12 0.30 0.30 0.30 ¹²C. 0⁺ 0.30 ¹²C, 0⁺2 ¹²C, 0⁺₃ ¹²C, 0⁺ 11 L1=0, L23=0 11 11 L1=0, L23=0 11 L1=0, L23=0 L1=0, L23=0 10 10 10 10 SF=0.303 SF=0.713 SF=0.712 SF=0.364 0.20 0.20 0.20 0.20 9 9 9 9 8 8 8 8 0.10 0.10 0.10 0.10 7 7 7 7 *a*₁ (fm) a_1 (fm) *a*₁ (fm) a_1 (fm) 6 0.00 6 0.00 6 0.00 6 0.00 5 5 5 5 -0.10 -0.10 -0.10 -0.10 4 4 3 3 3 -0.20 -0.20 -0.20 -0.20 2 2 2 1 1 -0.30 -0.30 -0.30 -0.30 0 0 0 9 10 1 12 8 9 10 11 12 0 5 6 2 8 9 10 11 12 8 9 10 11 12 0 1 2 3 5 6 7 2 3 7 3 5 7 2 3 5 6 7 4 1 4 0 1 6 0 1 4 a_{23} (fm) a_{23} (fm) a_{23} (fm) a_{23} (fm) 12 12 12 12 0.30 ¹²C, 0⁺ 0.30 ¹²C, 0⁺₂ 0.30 ¹²C, 0⁺₃ 0.30 ¹²C, 0⁺ 11 11 11 11 L₁=2, L₂₃=2 L1=2, L23=2 L1=2, L23=2 L1=. L23 2 10 10 10 10 SF=0.252 SF=0.109 SF=0.093 SF=0.499 0.20 0.20 0.20 0.20 9 9 9 9 8 8 8 8 0.10 0.10 0.10 0.10 7 7 7 7 *a*₁ (fm) a_1 (fm) a_1 (fm) a_1 (fm) 0.00 6 0.00 6 6 0.00 6 0.00 5 5 5 5 -0.10 -0.10 -0.10 -0.10 3 3 3 3 -0.20 -0.20 -0.20 -0.20 2 2 2 2 1 -0.30 -0.30 -0.30 -0.30 0 0 0 0 8 9 10 11 12 9 10 11 12 8 9 10 11 12 9 10 11 12 2 3 4 5 6 7 0 2 3 4 5 6 7 8 2 3 4 5 6 7 2 3 4 5 6 7 8 0 1 1 0 1 0 1 a_{23} (fm) a_{23} (fm) a_{23} (fm) a_{23} (fm) $\left\langle \frac{\delta(r_1 - a_1)\delta(r_2 - a_2)}{r_1^2 r_2^2} \left| [Y_{l_1}(\hat{r}_1) \otimes Y_{l_2}(\hat{r}_2)]_L \otimes \left[\Phi_{C_1}^{j_1 \pi_1} \otimes \left[\Phi_{C_2}^{j_2 \pi_2} \otimes \Phi_{C_3}^{j_3 \pi_3} \right]_{j_{23}} \right|_{j_{123}} \right|$ A! $\mathcal{Y}_c^{J\pi}(a_1, a_2) = \sqrt{}$ $\Psi_M^{J\pi}$

Summary and Prospect

rich clustering structure

evolution of structure of ²⁰Ne

explore novel clustering structure of light nuclei

理论物理专款上海核物理理论研究中心 Shanghai Research Center for Theoretical Nuclear Physics

Thanks for my collaborators

and your attentions.

