Asian activities in the LHC-ALICE experiment

Qiye Shou (Fudan University, Shanghai)

The 2024 ANPhA Meeting, Huizhou

THE LARGE HADRON COLLIDER AT CERN

ALICE Collaboration: 40 countries, 171 institutes 2002 members, 1034 scientific author

Heavy-ion collisions

Quark-gluon plasma: criticality, collectivity, chirality

Heavy-ion collisions

LHC	RHIC
Pb-Pb 2.76 TeV Pb-Pb 5.02 TeV	Au+Au BES (7-62 GeV) Au+Au 200 GeV Cu+Cu Isobar (Zr+Zr)
Xe-Xe 5.44 TeV O-O	U+U 192 GeV Isobar (Ru+Ru)
pPb 5.02 TeV pPb 8.16 TeV	p(d)+Au 200 GeV Cu+Au

4

ALICE Asia

ALICE Asia community:

- ➢ 45 institutes (26% of total)
- ➤ 425 members (21% of total)

ALICE China

- Central China Normal University (Wuhan) member of LHCb, STAR
 - Cluster: China University of Geosciences
- China Institute of Atomic Energy (Beijing)
- Fudan University (Shanghai) member of CMS, STAR
- University of Science and Technology of China (Hefei) member of ATLAS, STAR

International collaboration

International collaboration

Commonly interested physics analyses and technology development China, India, South Korea: collective motions China, Japan: dileptons All countries: detectors, hardware, computing

Communications between juniors, exchanging PhD students

Common culture background, time zone, personality. Good for the juniors.

➢ Joint grants NSFC - JSPS - NRF : A3 Foresight Program NSFC - JSPS (中日) 二国間交流事業 共同研究・セミナー

Space-Time Evolution and Resulting Novel Phenomena of Ultra-Intense Magnetic Field in Non-Central High-Energy Nucleus-Nucleus Collisions (QS from Fudan + K. Shigaki from Hiroshima)

we aim to strengthen the cooperation, which has become particularly important in recent years, and form the core of the ALICE experiment's Asia Group, leading to new physical results.

Asian Triangle Heavy-Ion Conference (ATHIC)

1st: ATHIC 2006, Seoul, South Korea 2nd: ATHIC 2008, Tsukuba, Japan 3rd: ATHIC 2010, Wuhan, China 4th: ATHIC 2012, Pusan, South Korea 5th: ATHIC 2014, Osaka, Japan 6th: ATHIC 2016, New Delhi, India 7th: ATHIC 2018, Hefei, China 8th: ATHIC 2021, Incheon, South Korea 9th: ATHIC 2023, Hiroshima, Japan 10th: ATHIC 2025, Berhampur, India

Studies of collective flow at ALICE

Azimuthally anisotropic emission of final state hadrons

Collectivity and anisotropic flow

$$E\frac{\mathrm{d}^{3}N}{\mathrm{d}^{3}\mathbf{p}} = \frac{1}{2\pi} \frac{\mathrm{d}^{2}N}{p_{\mathrm{t}}\mathrm{d}p_{\mathrm{t}}\mathrm{d}y} \left(1 + 2\sum_{n=1}^{\infty} v_{n} \cos[n(\varphi - \Psi_{\mathrm{RP}})] \right)$$
$$\mathbf{v}_{n}(p_{\mathrm{t}}, y) = \langle \cos[n(\varphi - \Psi_{\mathrm{RP}})]$$

Testing dynamic features and evolution of the QGP in Pb-Pb collisions

JHEP 05(2023)243

Mass ordering and the meson-baryon grouping imply the dynamical evolution of the colliding system
 The number of constituent quarks (NCQ) scaling only holds approximately

Testing dynamic features and evolution of the QGP in Pb-Pb collisions

Can be tested by the hydrodynamical expansion + hadron production through quark coalescence + jet fragmentation

Do we expect the collectivity in small collision systems?

 \succ The magnitudes of v_n in pp and p-Pb are similar as in Pb–Pb at low multiplicities

Mass ordering and the meson-baryon grouping remain valid in p-Pb and pp collisions, indicating the partonic collectivity

- Mass ordering and the meson–baryon grouping for all centrality
- \succ Decrease to zero at high p_T range
- > NCQ scaling barely holds
- What is the "small" (pA, pp, ee...) and "dilute" (lower multiplicity) limit of onset of collectivity?

Imagining the nuclear structure in Pb-Pb and Xe-Xe collisions

Imagining the nuclear structure in Pb-Pb and Xe-Xe collisions

 \succ v₂-[p_T] correlation is a powerful tool to imagine the initial nuclear structure

Imagining the nuclear structure in Pb-Pb and Xe-Xe collisions

Systematic study on the centrality dependence of various flow observables in Xe–Xe and Pb–Pb collisions, aiming at revealing the nuclear structure/initial geometry

Studies of anomalous chiral effects at ALICE

P/CP symmetry in weak interaction

- Before 1950s, no one suspected the P/CP symmetry, until the Θ - τ puzzle: Similar features but different parity values $\Theta \rightarrow \pi^+ + \pi^\circ$, $\tau \rightarrow \pi^+ + \pi^+ + \pi^-$
- C.N. Yang and T.D. Lee first noticed this. C.S. Wu did the experiment with Co6o β decay: Regardless of the left- or right-handed, β prefer to emit along the opposite direction of spin P violation in weak interaction!
- Cronin and Fitch further confirmed the CP violation in weak interaction.

C.S. Wu

P/CP symmetry in strong interaction?

- Strong CP problem
 Why does QCD seem to preserve CP symmetry?
 No known reason in QCD for it to necessarily be conserved
- In this century, it is proposed that the chiral anomaly is possible in strong interaction and can be tested in **heavy-ion collisions**

Strong magnetic field in HIC

- Thinking human brain: 10⁻¹² Tesla
- Earth's magnetic field:
- Refrigerator magnet:
- Loudspeaker magnet:
- Levitating frogs:
- Strongest field in Lab:
- Typical neutron star:

© 2022. The Author(s). Published by the American Astronomical Society

• Magnetar:

OPEN ACCESS

Heavy-ion collisions:

• Early Universe:

Detecting the magnetic field

仮想光子(低質量電子対)偏光測定 磁場に対する<u>電子・陽電子対の崩壊面</u>の向きに着目

2014/2/12

Theoretical proposal of anomalous chiral effects

Chiral magnetic effect (CME)	$J_V = \mu_A \mathbf{B}$	Out-of-plane electric dipole moment		
Chiral separation effect (CSE)	$J_{\mathrm{A}} = \mu_{\mathrm{V}} \mathbf{B}$			
Chiral electric separation effect (CESE)	$J_{\rm A} = \sigma ({\rm eE})$	In-plane electric dipole moment		
Chiral vortical effect (CVE)	$J = μ_5$ ω	Out-of-plane baryonic dipole moment		
Chiral magnetic wave (CMW)	CSE + CME	Out-of-plane electric quadrupole moment		
Chiral vortical wave (CVW)		Out-of-plane baryonic quadrupole moment		

Importance:

- Topological structure of vacuum gauge fields
- Possible local violation of P and/or CP symmetries in strong interactions

Experimental search for anomalous chiral effects

CME

Possible effect: Out-of-plane electric dipole moment Observables: δ, γ correlator

CMW

Possible effect: Out-of-plane quadrupole dipole moment Observables: Charge asymmetry dependent v₂

CVE

Possible effect: Out-of-plane baryonic dipole moment Observables: PID δ, γ correlator

ALICE Measurements of the CMW

The background: Local Charge Conservation

- In the CME/CMW studies, flow serves as a carrier, conveying the initial charge separation (sig or bg) to the final state
- Are the LCC background same for the CME and the CMW measurements?

Extract the CMW signal

• $f_{CMW} = 0.08 \pm 0.06$ is experimentally extracted for the first time

Description of the LCC background

- Local charge conservation: charges are locally balanced
- The source can be either primordial or secondary (resonance decay)
- Example :

• In the CME/CMW studies, flow serves as a carrier, conveying the initial charge separation (sig or bg) to the final state

Description of the LCC background

To investigate the signal and the background, we need a model which can cover:

Model	Flow	LCC	Can import CME signal	Can import CMW signal
HIJING, PYTHIA	X	\checkmark		
AMPT	\checkmark	X (non-dynamical)	\checkmark	\checkmark
AVFD	\checkmark	\checkmark	\checkmark	X
BW+LCC	\checkmark	\checkmark	\checkmark	\checkmark

Improved configuration of the BW+LCC

Improvement: correct multiplicity and LCC strength

TABLE I. List of the modified BW parameters for Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$.

	Centrality	0–5 %	5–10 %	10–20 %	20–30 %	30–40 %	40–50 %	50-60 %	60–70 %
1	$\overline{T_{\rm kin}}$	111.34	106.96	104.78	107.37	111.63	115.14	118.14	128.20
1	R_x/R_y	0.956	0.934	0.905	0.872	0.845	0.823	0.807	0.786
İ	$ ho_0$	1.262	1.267	1.254	1.226	1.196	1.148	1.087	0.994
Į	ρ_2	0.054	0.063	0.11	0.135	0.15	0.145	0.121	0.115
Ň	$N_{ m ch} (\eta < 0.8)$	2290	1858	1334	904	608	369	222	117
Ĭ,	f _{LCC}	0.71	0.62	0.58	0.56	0.54	0.48	0.47	0.46

 $T \rightarrow$ spectra, production; $R \rightarrow$ initial eccentricity

 ρ_0 radial flow, ρ_2 elliptic flow \rightarrow experimental v_2

 N_{ch} multiplicity \rightarrow experimental multiplicity (mean and width of the NBD)

 f_{LCC} fraction of the pair production \rightarrow balance function (and δ)

Pure data-driven: all parameters are determined based on experimental results. Now, inclusive spectra (no PID in this work), v2, mult., BF are all comparable with data.

Single production: 4 Pair production: 3 $f_{LCC} = 3/7 \approx 0.43$

Revisit CME/CMW observables with the improved BW+LCC

- The CME and the CMW observables can be simultaneously and perfectly described within 10% deviation.
- Unify studies of the CME and the CMW for the first time.
- The measured results of the CME and the CMW at 5 TeV can be interpreted to the great extent by the LCC, but this is not the end of the story.

Further constraint with imported signals

Is it possible that signals are hidden in the ~10% deviation? Import the signals by switching charges of the signal produced particles.

Above plane: net charge = -2 Below plane: net charge = 2 CME+LCC coexist

Further constraint with imported signals

TABLE II.	The impact of	four key	parameters	on the	CME a	and
the CMW obse	rvables.					

	$\Delta\delta$	$\Delta\gamma$	Slope
Mult. 📐	7	7	_
$f_{\rm LCC}$	$\mathbf{\lambda}$	$\mathbf{\lambda}$	\searrow
$S_{\rm CME} \nearrow$	\searrow	7	_
S _{CMW} <i>7</i>	_	_	1

To accommodate γ and slope, f_{LCC} should be reduced, resulting in the decrease of $\delta,$ so multiplicity should be reduced.

Test above within experimental limits to quantify the maximum allowable strength of the signals.

Set (I): switch charges 0-3 times in each event based on multiplicity, **acceptable** Set (II): always switch charges 3 times in each event, **too strong**

Extracted maximum fraction: f_{CME} <13%, f_{CMW} <2%

Thank you for your attention!

