

**University of Chinese Academy of Sciences** 



# 协变轨道-自旋耦合方案

#### 报告人:景豪杰 2024-06-06 第97期强子物理在线论坛

VILLIFFFFFFFF

JHEP 06 (2023) 039 景豪杰, 贲迪, 吴蜀明, 吴佳俊, 邹冰松. Nucl.Phys.A 1040 (2023) 122761 李晓宇, 董相坤, 景豪杰. arXiv 2405.06576 景豪杰, 吴蜀明, 吴佳俊.





**University of Chinese Academy of Sciences** 

# 01

### Introduction

Motivation

**©** Review of the covariant L-S scheme



### Motivation

- QCD is the fundamental theory of strong interactions
  - Asymptotic freedom and color confinement
  - Non-perturbative in the low energy region
  - EFT: hadrons as the basic d.o.f.
- Hadron spectral physics: classifying hadrons
  - Traditional quark model: mesons and baryons



• Exotic states:



[https://itp.cas.cn/kxyj/kydt/202103/t20210331\_5987996.html]

• XYZ states, Pc states, Tcc states, etc.



PDG, Prog. Theor. Exp. Phys. 2022, 083C01 (2022)



M. Gell-Mann, Phys.Lett. 8, 214-215 (1964) G. Zweig, CERN Report No.8182/TH.401 (1964)

#### Motivation

- Basic properties of hadrons
  - Intrinsic properties: mass, lifetime, spin, parity, charge, etc.
  - Observables: cross section, invariant mass distribution, angular distribution, etc.
- Beijing Electron Positron Collider (BEPC) [http://bepclab.ihep.cas.cn/bepczz/zxfzt/]
  - Main goals: tau-charm physics and synchrotron radiation







#### The injector

The storage ring

#### **Beijing Spectrometer III (BESIII)**

#### Motivation

- Partial Wave Analysis (PWA)
  - a standard method for extracting spin and parity from angular distributions
- Commonly used PWA formalism

| multipole analysis        | Mesons and baryons: systematization and methods of analysis. (2008)<br>A.V.Anisovich, V.V.Anisovich, etc. (see Appendix 5.C. Multipoles)                                                                                    |                                                                                                                                                                                                    |  |  |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| helicity scheme           | K.C.Chou and M.I.Shirokov, J.Exptl.Theoret.Phys. (U.S.S.R.) 34,1230-1239 (1958)<br>M.Jacob and G.C.Wick, Annals of Physics,7,4,404-428(1959)<br>S.U.Chung, SPIN FORMALISMS [https://suchung.web.cern.ch/spinfm1.pdf] (2014) |                                                                                                                                                                                                    |  |  |
| covariant effective Lagra | ngian approach                                                                                                                                                                                                              | M.Benmerrouche, etc. Phys.Rev.Lett. 77, 4716-4719 (1996)<br>K.Nakayama, J.Speth, T.S.H.Lee, Phys.Rev.C 65, 045210 (2002)<br>W.H.Liang, P.N.Shen, J.X.Wang and B.S.Zou, J.Phys.G 28, 333-343 (2002) |  |  |
| covariant L-S scheme      | <b>B.S.Zou and D.V.Bug</b><br><b>B.S.Zou and F.Hussa</b>                                                                                                                                                                    | g, Eur.Phys.J.A,16,537-547 (2003)<br>in, Phys.Rev.C.67.015204 (2003)                                                                                                                               |  |  |

- Why covariant L-S scheme?
  - ✓ manifest Lorentz covariant form: convenient for multistep chain processes
  - ✓ with definite L-S quantum numbers: convenient for including L dependent form factors

#### **Review of the covariant L-S scheme**



**Pure spin wave function** for fermion pairs

$$egin{aligned} \psi^{(n)}_{\mu_1\cdots\mu_n} &= ar{u}_{\mu_1\cdots\mu_n}(p_B,s_B)\gamma_5 v(p_C,s_C) & \Psi^{(n+1)}_{\mu_1\cdots\mu_{n+1}} &= ar{u}_{\mu_1\cdots\mu_n}(p_B,s_B)igg(\gamma_{\mu_{n+1}}-rac{r_{\mu_{n+1}}}{m_A+m_B+m_C}igg)v(p_C,s_C) & \phi^{(n)}_{\mu_1\cdots\mu_n} &= ar{u}(p_B,S_B)u_{\mu_1\cdots\mu_n}(p_A,S_A) & \Phi^{(n+1)}_{\mu_1\cdots\mu_{n+1}} &= ar{u}(p_B,s_B)\gamma_5 ilde{\gamma}_{\mu_{n+1}}u_{\mu_1\cdots\mu_n}(p_A,s_A) + \cdots \end{aligned}$$

- **Orbital angular momentum tensor**  ${ ilde t}^{(L)}_{\mu_1\cdots\mu_L}$
- Lorentz structures ٠

 $\phi_{\mu_1\cdots\mu_S}$ 

٠

 $(p_A)_\mu, \; g_{\mu
u}, \; \epsilon_{\mu
u
ho\sigma}$ 

#### For radiative decay process of baryons:

• additional conditions due to gauge invariance

S.Dulat and B.S.Zou, Eur.Phys.J.A, 26,125-134 (2005) S.Dulat, J.J.Wu and B.S.Zou, PhysRevD.83.094032 (2011)





**University of Chinese Academy of Sciences** 

# 02

### **Theoretical Part**

Relativistic spin wave function (SWF)

Lorentz covariant coupling structure
 Alternative
 Alternative



- Klein–Fock–Gordon equation (1926)
  - for spinless particles O.Klein, Z.Phys. 37, 895-906 (1926)

W.Gordon, Z.Phys. 40, 1, 117-133 (1926) V.Fock, Z.Phys. 39, 226-232 (1926)



• Dirac equation (1928)

 $ig(\Box+m^2)\psi=0$ 

• for spin-1/2 particles P.A.M.Dirac, Proc.Roy.Soc.Lond.A 117 (1928)

 $(i\gamma^\mu\partial_\mu+m)(i\gamma^
u\partial_
u-m)\psi=0$ 

- Majorana equation (1932)
  - for spin-1/2 particles E.Majorana, Nuovo.Cim. 9, 335-344 (1932)

$$(i\gamma^\mu\partial_\mu-m)\psi=0$$



- The Dirac–Fierz–Pauli formalism (1936~1939)
  - for spin-(1/2+n) particles

$$p_{\gamma \dotlpha} A^{\dotlpha \doteta_1 \doteta_2 \cdots eta_n}_{\epsilon_1 \epsilon_2 \cdots \epsilon_n} = m B^{\doteta_1 \doteta_2 \cdots eta_n}_{\gamma \epsilon_1 \epsilon_2 \cdots \epsilon_n} 
onumber \ p^{\gamma \dotlpha} B^{\doteta_1 \doteta_2 \cdots eta_n}_{\gamma \epsilon_1 \epsilon_2 \cdots \epsilon_n} = m A^{\dotlpha eta_1 eta_2 \cdots eta_n}_{\epsilon_1 \epsilon_2 \cdots \epsilon_n}$$

P. A. M. Dirac, Proc.Roy.Soc.Lond.A 155 (1936) M. Fierz, W. Pauli, Proc.Roy.Soc.Lond.A 173 (1939)

- Rarita–Schwinger equations (1941)
  - for spin-(1/2+k) particles

$$egin{array}{lll} (i\gamma^lpha\partial_lpha-m)\psi_{\mu_1\dots\mu_k}=0&\gamma^lpha\psi_{lpha\mu_2\dots\mu_k}=0\ \partial^lpha\psi_{lpha\mu_2\dots\mu_k}=0&\psi^lpha_{lpha\mu_3\dots\mu_k}=0 \end{array}$$

W. Rarita, J. Schwinger, Phys.Rev. 60, 61 (1941)





- Group theoretical discussion by Bargmann and Wigner (1948)
  - Casimir operators of the Poincaré group

$$C_1 = p^\mu p_\mu ~~~ C_2 = rac{1}{2} M_{\mu
u} M^{\mu
u} p_lpha p^lpha - M_{\mulpha} M^{
ulpha} p^\mu p_
u \,,$$

• Classified by irreducible representation (IRREP)

 $[P_s]$   $C_1 > 0 \& C_2 \ge 0$ : Particles of finite mass and spin s.

 $[O_s]$   $C_1 = 0 \& C_2 = 0$ : Particles of zero rest mass and discrete spin.

 $[O(\Xi)]$  and  $[O'(\Xi)]$   $C_1 = 0 \& C_2 = \Xi^2 > 0$ : Particles of zero rest mass and continuous spin.

• Bargmann-Wigner equations for spin-(N/2) particles (N=1,2,3...)

 $ig(i\gamma_k^\mu\partial_\mu-mig)\psi=0 \quad (k=1,2,\cdots,N)$ 

V. Bargmann, E. P. Wigner, Proc.Nat.Acad.Sci. 34, 211 (1948)



- Weinberg's general causal fields (1964~1969)
  - Poincaré invariance + Causality + Cluster decomposition
  - The IRREP  $(s_L, s_R) [L_p \simeq SU(2)_L \otimes SU(2)_R]$  can describe

particles with spin s  $(|s_L - s_R| \le s \le s_L + s_R)$ .

• Equations of motion : eliminating excess d.o.f. in SWFs

- Joos–Weinberg equation (1962~1964)
  - for spin-j particles (j=1/2, 1, 3/2, 2, ...)

 $ig(\,i^{2j}\gamma^{\mu_1\mu_2\cdots\mu_{2j}}\,\partial_{\mu_1}\partial_{\mu_2}\cdots\partial_{\mu_{2j}}+m^{2j}\,ig)\psi=0$ 

H.Joos, Fortsch.Phys. 10. 65-146 (1962) S.Weinberg, Phys.Rev. 133, B1318 (1964)

| Rep.                                                      | Physical correspondence                                |
|-----------------------------------------------------------|--------------------------------------------------------|
| (0,0)                                                     | Lorentz scalar                                         |
| $\left(rac{1}{2},0 ight)\oplus\left(0,rac{1}{2} ight)$  | ${ m Dirac}\ { m spinor}\ { m for}\ { m spin}\ 1/2$    |
| $\left(rac{1}{2},rac{1}{2} ight)$                       | Lorentz four-vector                                    |
| $(1,0)\oplus(0,1)$                                        | Maxwell fields                                         |
| $\left(rac{3}{2},0 ight)\oplus\left(0,rac{3}{2} ight)$  | Joos-Weinberg spinor for spin $3/2$                    |
| (1,1)                                                     | ${\rm Lorentz\ order-2\ traceless\ symmetric\ tensor}$ |
| $\left(1,rac{1}{2} ight)\oplus \left(rac{1}{2},1 ight)$ | Rarita-Schwinger spinor for spin $3/2$                 |
| $(2,0)\oplus(0,2)$                                        | Einstein fields                                        |
| •                                                         |                                                        |

S.Weinberg, Phys.Rev. 133, B1318 (1964) S.Weinberg, Phys.Rev. 134, B882 (1964)

S.Weinberg, Phys.Rev. 181, 1893 (1969)

#### **SWF for massive particle**

• A massive particle can be stationary  $p_{\mu} = \Lambda_{\mu}^{\nu} k_{\nu} \left[\Lambda = R \cdot B_z \cdot R^{-1}, \ k_{\mu} = (m, 0, 0, 0)_{\mu}\right]$ 

$$egin{aligned} C_{L/R} &= \left(J_1 \pm i K_1
ight)^2 + \left(J_2 \pm i K_2
ight)^2 + \left(J_3 \pm i K_3
ight)^2 & C_{\mathrm{U}(1)} = J_3 \ & L_p & \longrightarrow & \mathrm{SU}(2) & \longrightarrow & \mathrm{U}(1) \ & C_{\mathrm{SU}(2)} = J_1^2 + J_2^2 + J_3^2 & \end{array}$$

Eigenfunction Method: J.Q.Chen, M.J.Gao, and G.Q.Ma, Rev. Mod. Phys. 57, 211(1985)

$$\begin{pmatrix} C_{L/R} \end{pmatrix}_{\alpha}^{\beta} u_{\beta}^{\sigma}(s) = s_{L/R} \left( s_{L/R} + 1 \right) u_{\alpha}^{\sigma}(s) \\ (C_{SU(2)} )_{\alpha}^{\beta} u_{\beta}^{\sigma}(s) = s(s+1) u_{\alpha}^{\sigma}(s) \\ (C_{U(1)} )_{\alpha}^{\beta} u_{\beta}^{\sigma}(s) = \sigma u_{\alpha}^{\sigma}(s) \end{pmatrix} \xrightarrow{D_{\alpha}^{\beta}(R) u_{\beta}^{\sigma}(s) = u_{\beta}^{\sigma'}(s) D_{\sigma'}^{(s)\sigma}(R) \\ D_{\alpha}^{\beta}(R) u_{\beta}^{\sigma'}(s) D_{\sigma'}^{(s)\sigma}(R^{-1}) = u_{\alpha}^{\sigma}(s) \end{pmatrix} \xrightarrow{u_{\alpha}^{\sigma}(\mathbf{p}, s) \equiv D_{\alpha}^{\beta}(\Lambda) u_{\beta}^{\sigma}(s)$$

• The general form of a three-particle amplitude

 $\mathcal{A}_{\sigma_{1}}^{\sigma_{2}\sigma_{3}}(\mathbf{p}_{1},\mathbf{p}_{2},\mathbf{p}_{3}) = \Gamma_{\alpha_{1}}^{\alpha_{2}\alpha_{3}}(\mathbf{p}_{1},\mathbf{p}_{2},\mathbf{p}_{3}) \ \bar{u}_{\sigma_{1}}^{\alpha_{1}}(\mathbf{p}_{1},s_{1}) u_{\alpha_{2}}^{\sigma_{2}}(\mathbf{p}_{2},s_{2}) u_{\alpha_{3}}^{\sigma_{3}}(\mathbf{p}_{3},s_{3})$ 

• Covariant tensor (COVTEN)





• Invariant tensor (INVTEN)

**R.Penrose graphical notation: Applications of negative dimensional tensors (1971)** 



• The projection properties of INVTEN  $[i]\otimes [j] = [k_1]\oplus [k_2]\oplus \cdots$ 

$$T^{ijk}X_{ij} \stackrel{g\in G}{\longrightarrow} T^{ijk} \ ilde{X}_{ij} = T^{ijk} \ D_i^{\ i'}(g) \ D_j^{\ j'}(g) \ X_{i'j'} = D^k_{\ k'}(g) \ T^{i'j'k'}X_{i'j'}$$

• Reducibility of COVTEN

$$X_{ij}=x^{k_1}T_{ijk_1}+x^{k_2}T_{ijk_2}+\cdots \hspace{0.2cm} ext{with}\hspace{0.2cm}x^{k_n} \overset{g\in G}{\longrightarrow} ilde{x}^{k_n}=D_{k'_n}{}^{k_n}(g)x^{k'_n}$$



 $\tilde{X}$ 

 $T_{[k]}$ 

X

=

 $T_{[k]}$ 

- COVTEN can be further decomposed into INVTEN
  - > INVTEN cannot be further decomposed
  - > INVTENs are also called irreducible tensors (IRTENs)



- Clebsch–Gordan coefficients (CGCs) are order-3 IRTENs
  - Example: CGCs of SU(2)

$$\left[C_{j_1j_2}^j
ight]_{m_1m_2}^m \stackrel{g\in\mathrm{SU}(2)}{\longrightarrow} D_{m'}^{(j)m}ig(g^{-1}ig) \ D_{m_1}^{(j_1)m'_1}(g) \ D_{m_2}^{(j_2)m'_2}(g) \ \left[C_{j_1j_2}^j
ight]_{m'_1m'_2}^{m'} = \left[C_{j_1j_2}^j
ight]_{m_1m_2}^m$$



• The general form of a three-particle amplitude

$$\mathcal{A}_{\sigma_{1}}^{\sigma_{2}\sigma_{3}}\left(\mathbf{p}_{1},\mathbf{p}_{2},\mathbf{p}_{3}\right) = \Gamma_{\alpha_{1}}^{\alpha_{2}\alpha_{3}}\left(\mathbf{p}_{1},\mathbf{p}_{2},\mathbf{p}_{3}\right) \,\bar{u}_{\sigma_{1}}^{\alpha_{1}}\left(\mathbf{p}_{1},s_{1}\right) u_{\alpha_{2}}^{\sigma_{2}}\left(\mathbf{p}_{2},s_{2}\right) u_{\alpha_{3}}^{\sigma_{3}}\left(\mathbf{p}_{3},s_{3}\right)$$



SPTs are building blocks for constructing Lorentz covariant coupling structure!





**University of Chinese Academy of Sciences** 

# 03

## **Application in PWA**

Partial wave decomposition of amplitudes

Construction of partial wave amplitudes



• The pure-orbital (L) and pure-spin (S) component



• Example: amplitude with spin-1/2  $\mathcal{A}(\mathbf{k}_1,\mathbf{p}_2^*,\mathbf{p}_3^*) = \epsilon_\mu(\mathbf{k}_1)\bar{u}(\mathbf{p}_2^*)\Gamma^\mu(\mathbf{k}_1,\mathbf{p}_2^*,\mathbf{p}_3^*)v(\mathbf{p}_3^*)$ 

$$egin{aligned} \mathcal{A}(\mathbf{k}_1,\mathbf{p}_2^*,\mathbf{p}_3^*) &= \epsilon_\mu(\mathbf{k}_1) ig\langle \underbrace{ar{U}_2 \Gamma^\mu(\mathbf{k}_1,\mathbf{p}_2^*,\mathbf{p}_3^*) U_3}_{ ext{idiad}} \underbrace{v(\mathbf{k}_3) ar{u}(\mathbf{k}_2)}_{ ext{idiad}} ig
angle & \quad egin{aligned} ar{u}(\mathbf{p}_2^*) &= ar{u}(\mathbf{k}_2) ar{U}_2 \\ v(\mathbf{p}_3^*) &= U_3 \, v(\mathbf{k}_3) \end{aligned}$$

• Example: amplitude with spin-1/2  $\mathcal{A}(\mathbf{k}_1,\mathbf{p}_2^*,\mathbf{p}_3^*) = \epsilon_\mu(\mathbf{k}_1)\bar{u}(\mathbf{p}_2^*)\Gamma^\mu(\mathbf{k}_1,\mathbf{p}_2^*,\mathbf{p}_3^*)v(\mathbf{p}_3^*)$ 

$$egin{aligned} \mathcal{A}(\mathbf{k}_1,\mathbf{p}_2^*,\mathbf{p}_3^*) &= \epsilon_\mu(\mathbf{k}_1) ig\langle \underbrace{ar{U}_2 \Gamma^\mu(\mathbf{k}_1,\mathbf{p}_2^*,\mathbf{p}_3^*) U_3}_{ ext{idiad}} \underbrace{v(\mathbf{k}_3) ar{u}(\mathbf{k}_2)}_{ ext{idiad}} ig
angle & \quad egin{aligned} ar{u}(\mathbf{p}_2^*) &= ar{u}(\mathbf{k}_2) ar{U}_2 \ v(\mathbf{p}_3^*) &= U_3 \, v(\mathbf{k}_3) \end{aligned}$$

$$\left[\left(\frac{1}{2},0\right)\oplus\left(0,\frac{1}{2}\right)\right]\otimes\left[\left(\frac{1}{2},0\right)\oplus\left(0,\frac{1}{2}\right)\right]=(0,0)_L\oplus(0,0)_R\oplus(1,0)\oplus(0,1)\oplus\left(\frac{1}{2},\frac{1}{2}\right)_L\oplus\left(\frac{1}{2},\frac{1}{2}\right)_R\oplus\left(\frac{1}{2},\frac{1}{2}\right)_R\oplus\left(\frac{1}{2},\frac{1}{2}\right)_R\oplus\left(\frac{1}{2},\frac{1}{2}\right)_R\oplus\left(\frac{1}{2},\frac{1}{2}\right)_R\oplus\left(\frac{1}{2},\frac{1}{2}\right)_R\oplus\left(\frac{1}{2},\frac{1}{2}\right)_R\oplus\left(\frac{1}{2},\frac{1}{2}\right)_R\oplus\left(\frac{1}{2},\frac{1}{2}\right)_R\oplus\left(\frac{1}{2},\frac{1}{2}\right)_R\oplus\left(\frac{1}{2},\frac{1}{2}\right)_R\oplus\left(\frac{1}{2},\frac{1}{2}\right)_R\oplus\left(\frac{1}{2},\frac{1}{2}\right)_R\oplus\left(\frac{1}{2},\frac{1}{2}\right)_R\oplus\left(\frac{1}{2},\frac{1}{2}\right)_R\oplus\left(\frac{1}{2},\frac{1}{2}\right)_R\oplus\left(\frac{1}{2},\frac{1}{2}\right)_R\oplus\left(\frac{1}{2},\frac{1}{2}\right)_R\oplus\left(\frac{1}{2},\frac{1}{2}\right)_R\oplus\left(\frac{1}{2},\frac{1}{2}\right)_R\oplus\left(\frac{1}{2},\frac{1}{2}\right)_R\oplus\left(\frac{1}{2},\frac{1}{2}\right)_R\oplus\left(\frac{1}{2},\frac{1}{2}\right)_R\oplus\left(\frac{1}{2},\frac{1}{2}\right)_R\oplus\left(\frac{1}{2},\frac{1}{2}\right)_R\oplus\left(\frac{1}{2},\frac{1}{2}\right)_R\oplus\left(\frac{1}{2},\frac{1}{2}\right)_R\oplus\left(\frac{1}{2},\frac{1}{2}\right)_R\oplus\left(\frac{1}{2},\frac{1}{2}\right)_R\oplus\left(\frac{1}{2},\frac{1}{2}\right)_R\oplus\left(\frac{1}{2},\frac{1}{2}\right)_R\oplus\left(\frac{1}{2},\frac{1}{2}\right)_R\oplus\left(\frac{1}{2},\frac{1}{2}\right)_R\oplus\left(\frac{1}{2},\frac{1}{2}\right)_R\oplus\left(\frac{1}{2},\frac{1}{2}\right)_R\oplus\left(\frac{1}{2},\frac{1}{2}\right)_R\oplus\left(\frac{1}{2},\frac{1}{2}\right)_R\oplus\left(\frac{1}{2},\frac{1}{2}\right)_R\oplus\left(\frac{1}{2},\frac{1}{2}\right)_R\oplus\left(\frac{1}{2},\frac{1}{2}\right)_R\oplus\left(\frac{1}{2},\frac{1}{2}\right)_R\oplus\left(\frac{1}{2},\frac{1}{2}\right)_R\oplus\left(\frac{1}{2},\frac{1}{2}\right)_R\oplus\left(\frac{1}{2},\frac{1}{2}\right)_R\oplus\left(\frac{1}{2},\frac{1}{2}\right)_R\oplus\left(\frac{1}{2},\frac{1}{2}\right)_R\oplus\left(\frac{1}{2},\frac{1}{2}\right)_R\oplus\left(\frac{1}{2},\frac{1}{2}\right)_R\oplus\left(\frac{1}{2},\frac{1}{2}\right)_R\oplus\left(\frac{1}{2},\frac{1}{2}\right)_R\oplus\left(\frac{1}{2},\frac{1}{2}\right)_R\oplus\left(\frac{1}{2},\frac{1}{2}\right)_R\oplus\left(\frac{1}{2},\frac{1}{2}\right)_R\oplus\left(\frac{1}{2},\frac{1}{2}\right)_R\oplus\left(\frac{1}{2},\frac{1}{2}\right)_R\oplus\left(\frac{1}{2},\frac{1}{2}\right)_R\oplus\left(\frac{1}{2},\frac{1}{2}\right)_R\oplus\left(\frac{1}{2},\frac{1}{2}\right)_R\oplus\left(\frac{1}{2},\frac{1}{2}\right)_R\oplus\left(\frac{1}{2},\frac{1}{2}\right)_R\oplus\left(\frac{1}{2},\frac{1}{2}\right)_R\oplus\left(\frac{1}{2},\frac{1}{2}\right)_R\oplus\left(\frac{1}{2},\frac{1}{2}\right)_R\oplus\left(\frac{1}{2},\frac{1}{2}\right)_R\oplus\left(\frac{1}{2},\frac{1}{2}\right)_R\oplus\left(\frac{1}{2},\frac{1}{2}\right)_R\oplus\left(\frac{1}{2},\frac{1}{2}\right)_R\oplus\left(\frac{1}{2},\frac{1}{2}\right)_R\oplus\left(\frac{1}{2},\frac{1}{2}\right)_R\oplus\left(\frac{1}{2},\frac{1}{2}\right)_R\oplus\left(\frac{1}{2},\frac{1}{2}\right)_R\oplus\left(\frac{1}{2}\right)_R\oplus\left(\frac{1}{2},\frac{1}{2}\right)_R\oplus\left(\frac{1}{2}\right)_R\oplus\left(\frac{1}{2}\right)_R\oplus\left(\frac{1}{2}\right)_R\oplus\left(\frac{1}{2}\right)_R\oplus\left(\frac{1}{2}\right)_R\oplus\left(\frac{1}{2}\right)_R\oplus\left(\frac{1}{2}\right)_R\oplus\left(\frac{1}{2}\right)_R\oplus\left(\frac{1}{2}\right)_R\oplus\left(\frac{1}{2}\right)_R\oplus\left(\frac{1}{2}\right)_R\oplus\left(\frac{1}{2}\right)_R\oplus\left(\frac{1}{2}\right)_R\oplus\left(\frac{1}{2}\right)_R\oplus\left(\frac{1}{2}\right)_R\oplus\left(\frac{1}{2}\right)_R\oplus\left(\frac{1}{2}\right)_R\oplus\left(\frac{1}{2}\right)_R\oplus\left(\frac{1}{2}\right)_R\oplus\left(\frac{1}{2}\right)_R\oplus\left(\frac{1}{2}\right)_R\oplus\left(\frac{1}{2}\right)_R\oplus\left(\frac{1}{2}\right)_R\oplus\left(\frac{1}{2}\right$$

$$v(\mathbf{k}_3)ar{u}(\mathbf{k}_2) = A + B\gamma_5 + C_\mu\gamma^\mu + D_\mu\gamma_5\gamma^\mu + E_{\mu
u}\sigma^{\mu
u}$$

• Example: amplitude with spin-1/2  $\mathcal{A}(\mathbf{k}_1,\mathbf{p}_2^*,\mathbf{p}_3^*) = \epsilon_\mu(\mathbf{k}_1)\bar{u}(\mathbf{p}_2^*)\Gamma^\mu(\mathbf{k}_1,\mathbf{p}_2^*,\mathbf{p}_3^*)v(\mathbf{p}_3^*)$ 

$$egin{aligned} \mathcal{A}(\mathbf{k}_1,\mathbf{p}_2^*,\mathbf{p}_3^*) &= \epsilon_\mu(\mathbf{k}_1) \langle \, \underbrace{ar{U}_2 \Gamma^\mu(\mathbf{k}_1,\mathbf{p}_2^*,\mathbf{p}_3^*) U_3}_{ ext{idiad}} \, \underbrace{v(\mathbf{k}_3) ar{u}(\mathbf{k}_2)}_{ ext{idiad}} \, 
angle \, & \quad ar{u}(\mathbf{p}_2^*) = ar{u}(\mathbf{k}_2) \, ar{U}_2 \ v(\mathbf{p}_3^*) &= U_3 \, v(\mathbf{k}_3) \ \end{split}$$

 $\mathcal{A}(\mathbf{k}_1, \mathbf{p}_2^*, \mathbf{p}_3^*) = \epsilon_{\mu}(k_1) [A \left\langle \bar{U}_2 \Gamma^{\mu} U_3 \right\rangle + B \left\langle \bar{U}_2 \Gamma^{\mu} U_3 \gamma_5 \right\rangle + C_{\nu} \left\langle \bar{U}_2 \Gamma^{\mu} U_3 \gamma^{\nu} \right\rangle + D_{\nu} \left\langle \bar{U}_2 \Gamma^{\mu} U_3 \gamma_5 \gamma^{\nu} \right\rangle + E_{\nu \rho} \left\langle \bar{U}_2 \Gamma^{\mu} U_3 \sigma^{\nu \rho} \right\rangle]$ 

$$\left[\left(\frac{1}{2},0\right)\oplus\left(0,\frac{1}{2}\right)\right]\otimes\left[\left(\frac{1}{2},0\right)\oplus\left(0,\frac{1}{2}\right)\right]=(0,0)_L\oplus(0,0)_R\oplus(1,0)\oplus(0,1)\oplus\left(\frac{1}{2},\frac{1}{2}\right)_L\oplus\left(\frac{1}{2},\frac{1}{2}\right)_R$$

$$v(\mathbf{k}_3)ar{u}(\mathbf{k}_2) = A + B\gamma_5 + C_\mu\gamma^\mu + D_\mu\gamma_5\gamma^\mu + E_{\mu
u}\sigma^{\mu
u}$$

• Example: amplitude with spin-1/2  $\mathcal{A}(\mathbf{k}_1,\mathbf{p}_2^*,\mathbf{p}_3^*) = \epsilon_\mu(\mathbf{k}_1)\bar{u}(\mathbf{p}_2^*)\Gamma^\mu(\mathbf{k}_1,\mathbf{p}_2^*,\mathbf{p}_3^*)v(\mathbf{p}_3^*)$ 

$$egin{aligned} \mathcal{A}(\mathbf{k}_1,\mathbf{p}_2^*,\mathbf{p}_3^*) &= \epsilon_\mu(\mathbf{k}_1) ig\langle \underbrace{ar{U}_2 \Gamma^\mu(\mathbf{k}_1,\mathbf{p}_2^*,\mathbf{p}_3^*) U_3}_{ ext{idiad}} \underbrace{v(\mathbf{k}_3) ar{u}(\mathbf{k}_2)}_{ ext{idiad}} ig
angle & \quad egin{aligned} ar{u}(\mathbf{p}_2^*) &= ar{u}(\mathbf{k}_2) ar{U}_2 \ v(\mathbf{p}_3^*) &= U_3 \, v(\mathbf{k}_3) \end{aligned}$$

 $\mathcal{A}(\mathbf{k}_1,\mathbf{p}_2^*,\mathbf{p}_3^*) = \epsilon_\mu(k_1) [Aig\langle ar{U}_2\Gamma^\mu U_3ig
angle + Big\langle ar{U}_2\Gamma^\mu U_3\gamma_5ig
angle + C_
uig\langle ar{U}_2\Gamma^\mu U_3\gamma^
uig
angle + D_
uig\langle ar{U}_2\Gamma^\mu U_3\gamma_5\gamma^
uig
angle + E_{
u
ho}ig\langle ar{U}_2\Gamma^\mu U_3\sigma^{
u
ho}ig
angle ]$ 

$$iggl\{ \Gamma^\mu = \gamma^\mu iggr\} = iggl\{ ar{U}_2 \gamma^\mu U_3 iggr> = 0 \quad iggl\{ ar{U}_2 \gamma^\mu U_3 \gamma_5 iggr> = 0 \quad iggl\{ ar{U}_2 \gamma^\mu U_3 \sigma^{
u
ho} iggr> = 0 \quad D_
u iggl\{ ar{U}_2 \gamma^\mu U_3 \gamma_5 \gamma^
u iggr> = 0 \quad iggr\}$$

• Example: amplitude with spin-1/2  $\mathcal{A}(\mathbf{k}_1,\mathbf{p}_2^*,\mathbf{p}_3^*) = \epsilon_\mu(\mathbf{k}_1)\bar{u}(\mathbf{p}_2^*)\Gamma^\mu(\mathbf{k}_1,\mathbf{p}_2^*,\mathbf{p}_3^*)v(\mathbf{p}_3^*)$ 

$$egin{aligned} \mathcal{A}(\mathbf{k}_1,\mathbf{p}_2^*,\mathbf{p}_3^*) &= \epsilon_\mu(\mathbf{k}_1) ig\langle \underbrace{ar{U}_2 \Gamma^\mu(\mathbf{k}_1,\mathbf{p}_2^*,\mathbf{p}_3^*) U_3}_{ ext{idiad}} \underbrace{v(\mathbf{k}_3) ar{u}(\mathbf{k}_2)}_{ ext{idiad}} ig
angle & egin{aligned} ar{u}(\mathbf{p}_2^*) &= ar{u}(\mathbf{k}_2) ar{U}_2 \ v(\mathbf{p}_3^*) &= U_3 \, v(\mathbf{k}_3) \end{aligned}$$

 $C_{\mu} = P_{\mu}{}^{
u}(S=1)C_{
u}$ 

**S=1** 

 $\mathcal{A}(\mathbf{k}_1, \mathbf{p}_2^*, \mathbf{p}_3^*) = \epsilon_\mu(k_1) [A \left\langle \bar{U}_2 \Gamma^\mu U_3 \right\rangle + B \left\langle \bar{U}_2 \Gamma^\mu U_3 \gamma_5 \right\rangle + C_\nu \left\langle \bar{U}_2 \Gamma^\mu U_3 \gamma^\nu \right\rangle + D_\nu \left\langle \bar{U}_2 \Gamma^\mu U_3 \gamma_5 \gamma^\nu \right\rangle + E_{\nu\rho} \left\langle \bar{U}_2 \Gamma^\mu U_3 \sigma^{\nu\rho} \right\rangle ]$ 

$$egin{aligned} \Gamma^{\mu}=\gamma^{\mu} \ &\left=0 \quad \left=0 \quad \left=0 \quad D_{
u}\left=0 \end{aligned}$$

 $C_{\mu}=rac{1}{4}ar{u}(\mathbf{k}_{2})\gamma_{\mu}v(\mathbf{k}_{3})$ 

Spin part:

• Example: amplitude with spin-1/2  $\mathcal{A}(\mathbf{k}_1,\mathbf{p}_2^*,\mathbf{p}_3^*) = \epsilon_\mu(\mathbf{k}_1)\bar{u}(\mathbf{p}_2^*)\Gamma^\mu(\mathbf{k}_1,\mathbf{p}_2^*,\mathbf{p}_3^*)v(\mathbf{p}_3^*)$ 

$$egin{aligned} \mathcal{A}(\mathbf{k}_1,\mathbf{p}_2^*,\mathbf{p}_3^*) &= \epsilon_\mu(\mathbf{k}_1) ig\langle \underbrace{ar{U}_2 \Gamma^\mu(\mathbf{k}_1,\mathbf{p}_2^*,\mathbf{p}_3^*) U_3}_{ ext{idiad}} \underbrace{v(\mathbf{k}_3) ar{u}(\mathbf{k}_2)}_{ ext{idiad}} ig
angle & \quad egin{aligned} ar{u}(\mathbf{p}_2^*) &= ar{u}(\mathbf{k}_2) ar{U}_2 \ v(\mathbf{p}_3^*) &= U_3 \, v(\mathbf{k}_3) \end{aligned}$$

$$\mathcal{A}(\mathbf{k}_1,\mathbf{p}_2^*,\mathbf{p}_3^*) = \epsilon_\mu(k_1) [Aig\langle ar{U}_2\Gamma^\mu U_3ig
angle + Big\langle ar{U}_2\Gamma^\mu U_3\gamma_5ig
angle + C_
uig\langle ar{U}_2\Gamma^\mu U_3\gamma^
uig
angle + D_
uig\langle ar{U}_2\Gamma^\mu U_3\gamma_5\gamma^
uig
angle + E_{
u
ho}ig\langle ar{U}_2\Gamma^\mu U_3\sigma^{
u
ho}ig
angle ]$$

$$\left[ \Gamma^{\mu} = \gamma^{\mu} 
ight] = \left\{ ar{U}_2 \gamma^{\mu} U_3 
ight
angle = 0 \quad \left\langle ar{U}_2 \gamma^{\mu} U_3 \gamma_5 
ight
angle = 0 \quad \left\langle ar{U}_2 \gamma^{\mu} U_3 \sigma^{
u
ho} 
ight
angle = 0 \quad D_
u \left\langle ar{U}_2 \gamma^{\mu} U_3 \gamma_5 \gamma^{
u} 
ight
angle = 0$$

| Spin part: | $C_\mu = rac{1}{4}ar{u}({f k}_2)\gamma_\mu v({f k}_3)$ | $C_\mu = {P_\mu}^ u (S=1) C_ u$ | S=1 |  |
|------------|---------------------------------------------------------|---------------------------------|-----|--|
|------------|---------------------------------------------------------|---------------------------------|-----|--|

$$\left(rac{1}{2},rac{1}{2}
ight)\otimes\left(rac{1}{2},rac{1}{2}
ight)=(0,0)\oplus(1,0)\oplus(0,1)\oplus(1,1)$$

$$egin{split} ig[T_{(0,0)}ig]^{\mu
u,\mu'
u'} &= rac{1}{4}g^{\mu
u}g^{\mu'
u'}\ ig[T_{[(1,0)\oplus(0,1)]}ig]^{\mu
u,\mu'
u'} &= rac{1}{2}\left(g^{\mu\mu'}g^{
u
u'} - g^{\mu
u'}g^{
u\mu'}
ight)\ ig[T_{(1,1)}ig]^{\mu
u,\mu'
u'} &= rac{1}{2}\left(g^{\mu\mu'}g^{
u
u'} + g^{\mu
u'}g^{
u\mu'}
ight) - rac{1}{4}g^{\mu
u}g^{\mu'
u'} \end{split}$$

• Example: amplitude with spin-1/2  $\mathcal{A}(\mathbf{k}_1,\mathbf{p}_2^*,\mathbf{p}_3^*) = \epsilon_\mu(\mathbf{k}_1)\bar{u}(\mathbf{p}_2^*)\Gamma^\mu(\mathbf{k}_1,\mathbf{p}_2^*,\mathbf{p}_3^*)v(\mathbf{p}_3^*)$ 

$$egin{aligned} \mathcal{A}(\mathbf{k}_1,\mathbf{p}_2^*,\mathbf{p}_3^*) &= \epsilon_\mu(\mathbf{k}_1) ig\langle \underbrace{ar{U}_2 \Gamma^\mu(\mathbf{k}_1,\mathbf{p}_2^*,\mathbf{p}_3^*) U_3}_{ ext{idiad} omega} \underbrace{v(\mathbf{k}_3) ar{u}(\mathbf{k}_2)}_{ ext{idiad} omega} ig
angle & egin{aligned} ar{u}(\mathbf{p}_2^*) &= ar{u}(\mathbf{k}_2) ar{U}_2 \ v(\mathbf{p}_3^*) &= U_3 \, v(\mathbf{k}_3) \end{aligned}$$

 $\mathcal{A}(\mathbf{k}_1, \mathbf{p}_2^*, \mathbf{p}_3^*) = \epsilon_\mu(k_1) [A \left\langle \bar{U}_2 \Gamma^\mu U_3 \right\rangle + B \left\langle \bar{U}_2 \Gamma^\mu U_3 \gamma_5 \right\rangle + C_\nu \left\langle \bar{U}_2 \Gamma^\mu U_3 \gamma^\nu \right\rangle + D_\nu \left\langle \bar{U}_2 \Gamma^\mu U_3 \gamma_5 \gamma^\nu \right\rangle + E_{\nu\rho} \left\langle \bar{U}_2 \Gamma^\mu U_3 \sigma^{\nu\rho} \right\rangle ]$ 

$$egin{aligned} \Gamma^\mu = \gamma^\mu \ & \left< ar{U}_2 \gamma^\mu U_3 
ight> = 0 \quad \left< ar{U}_2 \gamma^\mu U_3 \gamma_5 
ight> = 0 \quad \left< ar{U}_2 \gamma^\mu U_3 \sigma^{
u
ho} 
ight> = 0 \quad D_
u \left< ar{U}_2 \gamma^\mu U_3 \gamma_5 \gamma^
u 
ight> = 0 \end{aligned}$$

| Spin part: | $C_\mu = rac{1}{4}ar{u}({f k}_2)\gamma_\mu v({f k}_3)$ | $C_\mu = {P_\mu}^ u (S=1) C_ u$ | <b>S=1</b> |  |
|------------|---------------------------------------------------------|---------------------------------|------------|--|
|------------|---------------------------------------------------------|---------------------------------|------------|--|

**Orbital part:**  $\left\langle \bar{U}_2 \gamma^{\mu} U_3 \gamma^{\nu} \right\rangle = P^{\nu\mu}_{\alpha\beta} (L=0) C^{\alpha\beta}_0 + P^{\nu\mu}_{\alpha\beta} (L=1) C^{\alpha\beta}_1 + P^{\nu\mu}_{\alpha\beta} (L=2) C^{\alpha\beta}_2$  **L=0,1,2** 

• Example: amplitude with spin-1/2  $\mathcal{A}(\mathbf{k}_1,\mathbf{p}_2^*,\mathbf{p}_3^*) = \epsilon_\mu(\mathbf{k}_1)\bar{u}(\mathbf{p}_2^*)\Gamma^\mu(\mathbf{k}_1,\mathbf{p}_2^*,\mathbf{p}_3^*)v(\mathbf{p}_3^*)$ 

$$egin{aligned} \mathcal{A}(\mathbf{k}_1,\mathbf{p}_2^*,\mathbf{p}_3^*) &= \epsilon_\mu(\mathbf{k}_1) ig\langle \underbrace{ar{U}_2 \Gamma^\mu(\mathbf{k}_1,\mathbf{p}_2^*,\mathbf{p}_3^*) U_3}_{ ext{idiad}} \underbrace{v(\mathbf{k}_3) ar{u}(\mathbf{k}_2)}_{ ext{idiad}} ig
angle & \quad egin{aligned} ar{u}(\mathbf{p}_2^*) &= ar{u}(\mathbf{k}_2) ar{U}_2 \ v(\mathbf{p}_3^*) &= U_3 \, v(\mathbf{k}_3) \end{aligned}$$

$$\mathcal{A}(\mathbf{k}_1,\mathbf{p}_2^*,\mathbf{p}_3^*) = \epsilon_\mu(k_1) [Aig\langle ar{U}_2\Gamma^\mu U_3ig
angle + Big\langle ar{U}_2\Gamma^\mu U_3\gamma_5ig
angle + C_
uig\langle ar{U}_2\Gamma^\mu U_3\gamma^
uig
angle + D_
uig\langle ar{U}_2\Gamma^\mu U_3\gamma_5\gamma^
uig
angle + E_{
u
ho}ig\langle ar{U}_2\Gamma^\mu U_3\sigma^{
u
ho}ig
angle ]$$

$$iggl\{ \Gamma^\mu = \gamma^\mu iggr\} = igl\{ ar{U}_2 \gamma^\mu U_3 igr
angle = 0 \quad igl\langle ar{U}_2 \gamma^\mu U_3 \gamma_5 igr
angle = 0 \quad igl\{ ar{U}_2 \gamma^\mu U_3 \sigma^{
u
ho} igr
angle = 0 \quad D_
u igl\langle ar{U}_2 \gamma^\mu U_3 \gamma_5 \gamma^
u igr
angle = 0$$

| Spin part: | $C_\mu = rac{1}{4}ar{u}({f k}_2)\gamma_\mu v({f k}_3)$ | $C_\mu = {P_\mu}^ u (S=1) C_ u$ | <b>S=1</b> |
|------------|---------------------------------------------------------|---------------------------------|------------|
|------------|---------------------------------------------------------|---------------------------------|------------|

**Orbital part:** 
$$\langle \bar{U}_2 \gamma^{\mu} U_3 \gamma^{\nu} \rangle = P^{\nu\mu}_{\alpha\beta} (L=0) C^{\alpha\beta}_0 + P^{\nu\mu}_{\alpha\beta} (L=1) C^{\alpha\beta}_1 + P^{\nu\mu}_{\alpha\beta} (L=2) C^{\alpha\beta}_2$$
 **L=0,1,2**

Total angular momentum:  $\mathcal{A}(\mathbf{k}_{1},\mathbf{p}_{2}^{*},\mathbf{p}_{3}^{*}) = \epsilon_{\mu}(\mathbf{k}_{1})C_{\nu}\langle \bar{U}_{2}\gamma^{\mu}U_{3}\gamma^{\nu}\rangle \equiv \epsilon_{\mu}(\mathbf{k}_{1})\left(\mathcal{A}_{0}^{\mu}+\mathcal{A}_{1}^{\mu}+\mathcal{A}_{2}^{\mu}\right)$  $P^{\mu}_{\ \nu}(J=1)\mathcal{A}_{0}^{\nu} = \mathcal{A}_{0}^{\mu} \quad P^{\mu}_{\ \nu}(J=0)\mathcal{A}_{1}^{\nu} = \mathcal{A}_{1}^{\mu} \quad P^{\mu}_{\ \nu}(J=1)\mathcal{A}_{2}^{\nu} = \mathcal{A}_{2}^{\mu} \quad \mathbf{J=0,1} \quad \blacksquare \qquad \boxed{^{3}P_{0} \ ^{3}S_{1} \ ^{3}D_{1}}$ 

• Example: amplitude with spin-1/2

• Pure SWF for fermion pairs in  $V o B ar{B}$ 

$$egin{aligned} & \left[ {}^1S_0 
ight] \; \psi^{(0)} = ar{u}(p_B,s_B) \gamma_5 v(p_C,s_C) \ & \left[ {}^3S_1 
ight] \; \Psi^{(1)}_{\mu_1} = ar{u}(p_B,s_B) igg( \gamma_{\mu_1} - rac{r_{\mu_1}}{m_A + m_B + m_C} igg) v(p_C,S_C) \end{aligned}$$

B.S.Zou and F.Hussain, Phys.Rev.C.67.015204 (2003)

 One can obtain partial wave amplitudes through the linear combination of various Lorentz structures.

| Lorentz structure                                            | Partial wave components $(^{2S+1}L_J)$                                                                                 |
|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| $ar{\psi}_2\psi_1$                                           | ${}^{3}P_{0}$<br>${}^{1}S_{0}$                                                                                         |
| $ar{\psi}_2\gamma_5\psi_1$                                   | ${}^{1}S_{0}$ ${}^{3}P_{0}$                                                                                            |
| $ar{\psi}_2\gamma_\mu\psi_1$                                 | ${}^{3}P_{0} \; {}^{3}S_{1} \; {}^{3}D_{1} \\ {}^{1}S_{0} \; {}^{1}P_{1} \; {}^{3}P_{1}$                               |
| $ar{\psi}_2\gamma_5\gamma_\mu\psi_1$                         | ${}^{3}P_{1}  {}^{1}S_{0}  {}^{1}P_{1} \ {}^{3}P_{0}  {}^{3}S_{1}  {}^{3}D_{1}$                                        |
| $ar{\psi}_2\sigma_{\mu u}\psi_1$                             | ${}^{1}P_{1} \; {}^{3}S_{1} \; {}^{3}P_{1} \; {}^{3}D_{1} \\ {}^{1}P_{1} \; {}^{3}S_{1} \; {}^{3}P_{1} \; {}^{3}D_{1}$ |
| $ar{\psi}_2 \stackrel{\leftrightarrow}{\partial}_\mu \psi_1$ | ${}^3S_1  {}^3P_0   {}^3D_1 \ {}^1S_0$                                                                                 |
| $\partial_{\mu}\left(ar{\psi}_{2}\psi_{1} ight)$             | ${}^{3}P_{0}$<br>${}^{1}S_{0}$ ${}^{1}P_{1}$                                                                           |
|                                                              | :                                                                                                                      |

• Example: amplitude with spin-3/2

➤ With the increase of spin, the amount of computation will increase dramatically.

It is useful to consider how to construct the Lorentz covariant partial wave amplitude.

| Lorentz structure                           | Partial wave components $(^{2S+1}L_J)$                                                                                                                       |
|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| alizada                                     | ${}^5D_0 \; {}^3P_1 \; {}^5P_1 \; {}^5F_1$                                                                                                                   |
| $\psi_2\psi_1\mu$                           | ${}^3P_0 \; {}^3S_1 \; {}^3D_1$                                                                                                                              |
| $a\overline{h}_{2} \sim a/2$                | ${}^3P_0 \; {}^3S_1 \; {}^3D_1$                                                                                                                              |
| $\psi_2\gamma_5\psi_1\mu$                   | ${}^5D_0  {}^3P_1  {}^5P_1  {}^5F_1$                                                                                                                         |
| alle or alle                                | $^{5}D_{0}\ ^{3}S_{1}\ ^{3}P_{1}\ ^{5}P_{1}\ ^{3}D_{1}\ ^{5}D_{1}\ ^{5}S_{2}\ ^{3}D_{2}\ ^{5}D_{2}$                                                          |
| $\psi 2$ $\gamma  u \psi 1 \mu$             | ${}^3P_0 \; {}^3S_1 \; {}^3P_1 \; {}^5P_1 \; {}^3D_1 \; {}^5D_1 \; {}^3P_2 \; {}^5P_2$                                                                       |
| alle or or alle                             | ${}^3P_0 \; {}^3S_1 \; {}^3P_1 \; {}^5P_1 \; {}^3D_1 \; {}^5D_1 \; {}^3P_2 \; {}^5P_2$                                                                       |
| $\psi 2 /5 /  u \psi 1 \mu$                 | ${}^5D_0 \; {}^3S_1 \; {}^3P_1 \; {}^5P_1 \; {}^3D_1 \; {}^5D_1 \; {}^5S_2 \; {}^3D_2 \; {}^5D_2$                                                            |
| $a\overline{h}a$ $a/h$                      | ${}^{3}P_{0}  {}^{5}D_{0}  {}^{3}S_{1}  {}^{3}P_{1}  {}^{5}P_{1}  {}^{3}D_{1}  {}^{5}D_{1}  {}^{5}S_{2}  {}^{3}P_{2}  {}^{5}P_{2}  {}^{3}D_{2}  {}^{5}D_{2}$ |
| $\varphi_{2}\sigma_{\nu\rho}\varphi_{1\mu}$ | ${}^{3}P_{0}  {}^{5}D_{0}  {}^{3}S_{1}  {}^{3}P_{1}  {}^{5}P_{1}  {}^{3}D_{1}  {}^{5}D_{1}  {}^{5}S_{2}  {}^{3}P_{2}  {}^{5}P_{2}  {}^{3}D_{2}  {}^{5}D_{2}$ |
| $a\overline{l}$ $$ $a/b$                    | $^{5}D_{0}\ ^{3}S_{1}\ ^{3}P_{1}\ ^{5}P_{1}\ ^{3}D_{1}\ ^{5}D_{1}\ ^{5}F_{1}\ ^{5}S_{2}\ ^{3}D_{2}\ ^{5}D_{2}\ ^{5}G_{2}$                                    |
| $\psi_2   \mathcal{O}_{ \nu}  \psi_{1 \mu}$ | ${}^3P_0  {}^3S_1  {}^3D_1$                                                                                                                                  |
| $\partial \left(a\overline{b}a/b$           | ${}^5D_0 \; {}^3P_1 \; {}^5P_1 \; {}^5F_1$                                                                                                                   |
| $O_{\nu}(\psi_2\psi_1\mu)$                  | ${}^{3}P_{0} \; {}^{3}S_{1} \; {}^{3}P_{1} \; {}^{3}D_{1} \; {}^{3}P_{2} \; {}^{3}F_{2}$                                                                     |
| :                                           | •                                                                                                                                                            |
| <b>3</b> 0                                  | •                                                                                                                                                            |

#### **Construction of partial wave amplitudes**

- Lorentz covatiant partial wave formulas (PWFs)
  - **C-scheme**  $\mathcal{C}_{\sigma_1}^{\sigma_2\sigma_3}(\mathbf{k}_1,\mathbf{p}_2^*,\mathbf{p}_3^*;L,S) = \Gamma_{\alpha_1}^{\alpha_2\alpha_3}(\mathbf{k}_1,\mathbf{p}_2^*,\mathbf{p}_3^*;L,S) \ \bar{u}_{\sigma_1}^{\alpha_1}(s_1) \ u_{\alpha_2}^{\sigma_2}(\mathbf{p}_2^*,s_2) \ u_{\alpha_3}^{\sigma_3}(\mathbf{p}_3^*,s_3)$

Consistent with the covariant tensor amplitude.

S.U.Chung, Phys.Rev.D.57.431-442(1998) B.S.Zou and D.V.Bugg, Eur.Phys.J.A,16,537-547 (2003)

$$\textbf{H-scheme} \quad \left| \begin{array}{c} \mathcal{H}_{\sigma_1}^{\sigma_2\sigma_3}(\mathbf{k}_1,\mathbf{p}_2^*,\mathbf{p}_3^*;L,S) = \Gamma_{\alpha_1}^{\alpha_2\alpha_3}(\mathbf{k}_1,\mathbf{p}_2^*,\mathbf{p}_3^*;L,S) \ \bar{u}_{\sigma_1}^{\alpha_1}(s_1) \ u_{\alpha_2}^{\sigma_2}(s_2) \ u_{\alpha_3}^{\sigma_3}(s_3) \end{array} \right.$$

Consistent with the helicity amplitude.

K.C.Chou and M.I.Shirokov, J.Exptl.Theoret.Phys. (U.S.S.R.) 34,1230-1239 (1958) M.Jacob and G.C.Wick, Annals of Physics,7,4,404-428(1959)

C-scheme and H-scheme are equivalent with each other in the non-relativistic limit.





**University of Chinese Academy of Sciences** 

# 04

## **About massless particle**

• SWF for massless particles and gauge invariance (GI)

• Weight function

• A massless particle can not be stationary

$$p_{\mu} = \tilde{\Lambda}_{\mu}^{\nu} k_{\nu} \left[ \tilde{\Lambda} = R \cdot B_{z}, \ k_{\mu} = (\kappa, 0, 0, \kappa)_{\mu} \right]$$

$$\begin{array}{c} C_{L/R} = \left(J_{1} \pm iK_{1}\right)^{2} + \left(J_{2} \pm iK_{2}\right)^{2} + \left(J_{3} \pm iK_{3}\right)^{2} \\ \hline \\ L_{p} \longrightarrow E(2) \longrightarrow U(1) \\ \hline \\ C_{E(2)} = \left(J_{1} - K_{2}\right)^{2} + \left(J_{2} + K_{1}\right)^{2} \\ \hline \\ (C_{E(2)})_{\alpha}^{\ \beta} \ h_{\beta}^{\sigma}(\tilde{s}) = s_{L/R} \left(s_{L/R} + 1\right) \ h_{\alpha}^{\sigma}(\tilde{s}) \\ \hline \\ (C_{U(1)})_{\alpha}^{\ \beta} \ h_{\beta}^{\sigma}(\tilde{s}) = \sigma \ h_{\alpha}^{\sigma}(\tilde{s}) \\ \hline \\ (C_{U(1)})_{\alpha}^{\ \beta} \ h_{\beta}^{\sigma}(s, \tilde{s}) = \sigma \ h_{\alpha}^{\sigma}(\tilde{s}) \\ \hline \\ (C_{U(1)})_{\alpha}^{\ \beta} \ h_{\beta}^{\sigma}(s, \tilde{s}) = s(s+1) \ h_{\alpha}^{\sigma}(s, \tilde{s}) \\ \hline \\ (C_{U(1)})_{\alpha}^{\ \beta} \ h_{\beta}^{\sigma}(s, \tilde{s}) = s(s+1) \ h_{\alpha}^{\sigma}(s, \tilde{s}) \\ \hline \\ (C_{U(2)})_{\alpha}^{\ \beta} \ h_{\beta}^{\sigma}(s, \tilde{s}) = s(s+1) \ h_{\alpha}^{\sigma}(s, \tilde{s}) \\ \hline \\ (C_{U(1)})_{\alpha}^{\ \beta} \ h_{\beta}^{\sigma}(s, \tilde{s}) = s(s+1) \ h_{\alpha}^{\sigma}(s, \tilde{s}) \\ \hline \\ (Ker \left(X_{\alpha} \ \beta\right) = [\alpha] \ \text{Automatically meet GI} \\ \hline \end{array}$$

• Example: spin-1 massless particle

 $egin{aligned} & [lpha] = \left(rac{1}{2},rac{1}{2}
ight) & ext{Potential} \ A_\mu \ & X = \left(egin{aligned} 0 & 0 & 0 & -rac{1}{4} \ 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 \ -rac{1}{4} & 0 & 0 & 0 \ \end{pmatrix} \end{aligned}$  $[lpha] = (1,0) \oplus (0,1) ext{ Field strength } F_{\mu
u}$  $X=0 \qquad \ker X = [lpha]$ Automatically meet GI  $\ker X = ig\{arepsilon_{\mu}^{\sigma} \mid \sigma = \pm 1ig\} igsqceq [lpha]$  $D_\mu{}^
u(\Lambda)arepsilon_
u^\sigma({f p}^*)=e^{i heta(\Lambda)}arepsilon_\mu^\sigma({f p})+\lambda(\Lambda,\sigma)p_\mu$  $= \left[ D_lpha^{\ eta}(\Lambda) \ h^\sigma_eta({f p}^*,s, ilde s) = e^{i heta(\Lambda)} \ h^\sigma_lpha({f p},s, ilde s) + ( ext{Non physical d.o.f.}) 
ight]$ Gauge transformation is needed

• The pure-orbital (L) and pure-spin (S) component

pure-orbital part

pure-spin part

• PWF including massless particles

 $\mathcal{A}^{\sigma_{2}\sigma_{3}}_{\sigma_{1}}(\mathbf{k}_{1},\mathbf{p}_{2}^{*},\mathbf{p}_{3}^{*};L,S) = \Gamma^{lpha_{2}lpha_{3}}_{lpha_{1}}(\mathbf{k}_{1},\mathbf{p}_{2}^{*},\mathbf{p}_{3}^{*};L,S) \ ar{u}^{lpha_{1}}_{\sigma_{1}}(s_{1}) \ u^{\sigma'_{2}}_{lpha_{2}}(s_{2}) \ u^{\sigma'_{3}}_{lpha_{3}}(s_{3}) \ D^{(s_{2})\sigma_{2}}_{\sigma'_{2}}(R_{2^{*}}) \ D^{(s_{3})\sigma_{3}}_{\sigma'_{3}}(R_{3^{*}})$ 

#### • Example: $J/\psi \rightarrow \gamma f_2$

- the possible (L,S) combinations are (0,1), (2,1), (2,2), (2,3), (4,3)
- according to the PWF in the previous slide, one has (in helicity basis)

> only 3 of the 5 amplitudes are linearly independent !

### Weight function

#### • The number of linear independent (L,S) bases

| Range                           | $N_0(s_1; s_2, s_3)$                      | $N_1(s_1; s_2, s_3)$     | $N_2(s_1; s_2, s_3)$ | $N_3(s_1;s_2,s_3)$ |
|---------------------------------|-------------------------------------------|--------------------------|----------------------|--------------------|
| $s_1 < s_2 - s_3$               | $\frac{(2s_1+1)(2s_3+1)}{n(s_1;s_2,s_3)}$ | 0                        | 0                    | 0                  |
| $s_1 = s_2 - s_3$               |                                           | $2(s_1 - s_2 + s_3 + 1)$ | 2                    | 2                  |
| $ s_2 - s_3  < s_1 < s_2 + s_3$ |                                           |                          |                      | 0                  |
| $s_1 = s_3 - s_2$               | $(2s_1+1)(2s_2+1)$                        | $2(2s_1+1)$              |                      | 2                  |
| $s_1 < s_3 - s_2$               |                                           |                          | 0                    | 0                  |
| $s_1 = s_2 + s_3$               | $(2s_2+1)(2s_3+1)$                        | $2(2s_3+1)$              | 4                    | 2                  |
| $s_1 > s_2 + s_3$               |                                           |                          |                      | 0                  |

 $n(s_1; s_2, s_3) = -(s_1^2 + s_2^2 + s_3^2) + 2(s_1s_2 + s_2s_3 + s_1s_3) + s_1 + s_2 + s_3 + 1$ 

#### • Weight function for choosing (L,S) bases

**One massless particle:**  $W(s_1, s_2, s_3, L, S) = F_S(s_1, s_2, s_3, S)$ 

**Two or three massless particles:**  $W(s_1, s_2, s_3, L, S) = F_S(s_1, s_2, s_3, S) + F_L(s_1, s_2, s_3, L, S) + F_{\sigma}(s_1, s_2, s_3, L, S)$ 

$$F_{S}(s_{1}, s_{2}, s_{3}, S) = -(s_{2} + s_{3} + 1)|S - s_{1}| + S$$

$$F_{L}(s_{1}, s_{2}, s_{3}, L, S) = -2(s_{2} + s_{3} + 1)^{2}|L - |S - s_{1}| - \frac{1}{2}|$$

$$F_{\sigma}(s_{1}, s_{2}, s_{3}, L, S) = \begin{cases} -2(s_{2} + s_{3} + 1)^{2}(s_{1} + s_{2} + s_{3}) & \text{for } (C_{s_{1}}^{LS})_{s_{2} \pm s_{3}}^{0 + s_{2} \pm s_{3}} = 0 \\ 0 & \text{for others} \end{cases}$$

- **Example:**  $J/\psi \rightarrow \gamma f_2$ 
  - the possible (L,S) combinations are (0,1), (2,1), (2,2), (2,3), (4,3)
  - according to the PWF in the previous slide, one has (in helicity basis)

s1 = 1; s2 = 1; s3 = 2; WFunc1[s1\_, s2\_, s3\_, S\_, L\_] := - (s2 + s3 + 1) Abs[S - s1] + S;

WFunc1[s1, s2, s3, 1, 0]
WFunc1[s1, s2, s3, 1, 2]
WFunc1[s1, s2, s3, 2, 2]
WFunc1[s1, s2, s3, 3, 2]
WFunc1[s1, s2, s3, 3, 4]

> only 3 of the 5 amplitudes are linearly independent !





**University of Chinese Academy of Sciences** 

# 05

## **About numerical calculation**



#### **About numerical calculation**

- Currently commonly used PWA package (PKG) on BESIII
  - □ FDC-PWA:协变有效拉氏量方法下协变振幅的自动化计算
    - (王建雄研究员、平荣刚研究员@IHEP) [https://www1.ihep.ac.cn/wjx/pwa] (2000)
  - □ GPUPWA:协变 L-S 方案下分波振幅的自动化计算 (刘北江研究员@IHEP)
    - ▶支持矢量介子的强衰变和辐射衰变过程 [https://sourceforge.net/projects/gpupwa/] (2011)
  - □ TF-PWA: 螺旋度方案下分波振幅的自动化计算 [https://tf-pwa.readthedocs.io] (2020) (蒋艺、刘寅睿、钱文斌教授、吕晓睿教授、郑阳恒教授@UCAS)
- Automatic calculation of PWF under the covariant L-S scheme
  - PKG for calculating PWF under C/H-scheme based on C++ (与吴蜀明博士@UCAS合作) [https://github.com/Wu-ShuMing/PWFs] (2024)
  - Crosscheck our PKG with the TF-PWA (与蒋艺@UCAS, 马润秋@IHEP 和王石@LZU合作)

#### **About numerical calculation**

- Building blocks for numerical calculation
  - **PWF** in the c.m. frame

•

 $R_i =$ 

 $\frac{\psi_i}{2} =$ 

 $\hat{\mathbf{n}}_i =$ 

$$\begin{array}{ll} \mathbf{H}_{-\mathrm{scheme:}} & \left[ \left[ \mathcal{H}_{L,S}^{*} \right]_{\sigma_{1}}^{\sigma_{2}\sigma_{3}} = \frac{\left| \mathbf{p}_{2}^{*} \right|^{L}}{\sqrt{2s_{1}+1}} \left( C_{S}^{SL} \right)_{\sigma_{1}}^{\sigma_{3}\sigma_{L}} \left( C_{S}^{s_{2}s_{3}} \right)_{\sigma_{S}}^{\sigma_{2}\sigma_{3}} \mathcal{Y}_{L,\sigma_{L}} \left( \hat{\mathbf{p}}_{2}^{*} \right) \right) \\ \mathbf{e}_{2}^{*} \mathbf{e}_{2}^{*} \mathbf{e}_{3}^{*} \mathbf{e}_{3}^{*} \mathbf{e}_{3}^{*} \mathcal{I}_{\sigma_{2}}^{*} \left( \mathbf{e}_{2}^{*} \right)_{\sigma_{S}}^{*} \mathcal{I}_{\sigma_{S}}^{*} \left( \mathbf{p}_{2}^{*} \right) \\ \mathbf{e}_{2}^{*} \mathbf{e}_{3}^{*} \mathbf{e}_{3}^{*} \mathbf{e}_{3}^{*} \mathcal{I}_{\sigma_{2}}^{*} \mathbf{e}_{3}^{*} \mathcal{I}_{\sigma_{S}}^{*} \left( \mathbf{p}_{2}^{*} \right) \\ \mathbf{e}_{2}^{*} \mathbf{e}_{3}^{*} \mathbf{e}_{3}^{*} \mathbf{e}_{3}^{*} \mathbf{e}_{3}^{*} \mathcal{I}_{\sigma_{2}^{*}}^{*} \mathbf{e}_{3}^{*} \mathbf{e}_{3}^{*} \mathbf{e}_{3}^{*} \mathcal{I}_{\sigma_{3}^{*}}^{*} \mathbf{e}_{3}^{*} \mathbf{e}_{3}^{*} \mathbf{e}_{3}^{*} \mathbf{e}_{3}^{*} \mathbf{e}_{3}^{*} \mathbf{e}_{3}^{*} \mathbf{e}_{3}^{*} \mathbf{e}_{3}^{*} \mathbf{e}_{3}^{*} \mathbf{e}_{3}^{*}} \\ \mathbf{e}_{2}^{*} \mathbf{e}_{3}^{*} \mathbf{e}_{3$$





University of Chinese Academy of Sciences

# 06

## Summary and outlook



**The covariant L-S scheme is one of the commonly used PWA schemes in BESIII.** 

PWFs can be systematically constructed by using the IRTENs.

**Both helicity scheme and covariant L-S scheme can be constructed within this framework.** 

**Constructing a PKG for calculating PWFs under the covariant L-S scheme.** 

**Try to incorporate contributions from loop diagrams within the existing framework.** 

**Other research related to PWA.** 



## 感请各位老师同学批评指正!

FTERSTREET FTERST

#### **Back Up**

The scaling transformation:

$$\mathcal{I}^{(s)\sigma}_{\sigma'}(\mathbf{p}) = \sum_{\sigma''} D^{(s)\sigma''}_{\sigma'}ig(R_{\hat{\mathbf{p}}}ig) Iig(|\mathbf{p}|,s,\sigma''ig) D^{(s)\sigma}_{\sigma''}ig(R_{\hat{\mathbf{p}}}^{-1}ig),$$

where  $D_{\sigma'}^{(s)\sigma}(R)$  is the Wigner- *D* matrix;  $R_{\hat{\mathbf{p}}}$  is a rotation that rotates the *z*-axis in  $\hat{\mathbf{p}}$ ;

 $I(|\mathbf{p}|, s, \sigma'')$  is the scale of the dilation.

The explicit form of the dilation scale is  $I(|\mathbf{p}|, s, \sigma) = 2^{-(2s+1)}(2s+1)(s-\sigma)!(s+\sigma)! V(|\mathbf{p}|, s, \sigma).$ 

The value of  $V(|\mathbf{p}|, s, \sigma)$  is shown in Eq. (A2) for integer s and shown in Eq. (A3) for half-integer s:

$$\frac{\min\left(\sigma + \frac{s}{2}, \frac{s}{2}\right)}{\sum_{\substack{k=\max\left(\sigma - \frac{s}{2}, -\frac{s}{2}\right)}} \frac{\sqrt{\pi} \, s! \, \vartheta^{2k-\sigma}}{\left(s + \frac{1}{2}\right)! \left(\frac{s}{2} - k\right)! \left(\frac{s}{2} + k\right)! \left(\frac{s}{2} + k - \sigma\right)! \left(\frac{s}{2} - k + \sigma\right)!}.$$
(A2)
$$\frac{\min\left(\sigma + \frac{2s-1}{4}, \frac{2s+1}{4}\right)}{\sum_{\substack{k=\max\left(\sigma - \frac{2s-1}{4}, -\frac{2s+1}{4}\right)} \frac{\sqrt{\pi} \left(s - \frac{1}{2}\right)! \left(\vartheta^{2k-\sigma} - \vartheta^{\sigma-2k}\right)}{s! \left(\frac{s}{2} - k + \frac{1}{4}\right)! \left(\frac{s}{2} + k + \frac{1}{4}\right)! \left(\frac{s}{2} + k - \sigma - \frac{1}{4}\right)! \left(\frac{s}{2} - k + \sigma - \frac{1}{4}\right)!}.$$
(A3)
$$\vartheta_{i} = \begin{cases} (|\mathbf{p}_{i}| + E_{i})/m_{i} & \text{for massive particle} \\ |\mathbf{p}_{i}|/|\mathbf{k}_{i}| & \text{for massless particle} \end{cases}$$

**Example 2**:  $\left(\frac{1}{2}, \frac{1}{2}\right) \otimes \left(\frac{1}{2}, \frac{1}{2}\right) = (0, 0) \oplus (1, 0) \oplus (0, 1) \oplus (1, 1)$ .

$$\begin{split} & \left(\frac{1}{2},\frac{1}{2}\right) \otimes \left(\frac{1}{2},\frac{1}{2}\right) \ \mapsto \ (0,0) \ : \ \ T^{\mu\nu} = \ \left(C_0^{\frac{1}{2}\frac{1}{2}}\right)_0^{l_1l_2} \left(C_0^{\frac{1}{2}\frac{1}{2}}\right)_0^{r_1r_2} T_{l_1r_1}^{\mu} T_{l_2r_2}^{\nu}, \\ & \left(\frac{1}{2},\frac{1}{2}\right) \otimes \left(\frac{1}{2},\frac{1}{2}\right) \ \mapsto \ (1,0) \ : \ \ T_l^{\mu\nu} = \ \left(C_1^{\frac{1}{2}\frac{1}{2}}\right)_l^{l_1l_2} \left(C_0^{\frac{1}{2}\frac{1}{2}}\right)_0^{r_1r_2} T_{l_1r_1}^{\mu} T_{l_2r_2}^{\nu}, \\ & \left(\frac{1}{2},\frac{1}{2}\right) \otimes \left(\frac{1}{2},\frac{1}{2}\right) \ \mapsto \ (0,1) \ : \ \ T_r^{\mu\nu} = \ \left(C_0^{\frac{1}{2}\frac{1}{2}}\right)_0^{l_1l_2} \left(C_1^{\frac{1}{2}\frac{1}{2}}\right)_r^{r_1r_2} T_{l_1r_1}^{\mu} T_{l_2r_2}^{\nu}, \\ & \left(\frac{1}{2},\frac{1}{2}\right) \otimes \left(\frac{1}{2},\frac{1}{2}\right) \ \mapsto \ (1,1) \ : \ \ T_{\mu^2}^{\mu\nu} = \ U_{\mu^2}^{l_r} \left(C_1^{\frac{1}{2}\frac{1}{2}}\right)_l^{l_1l_2} \left(C_1^{\frac{1}{2}\frac{1}{2}}\right)_r^{r_1r_2} T_{l_1r_1}^{\mu} T_{l_2r_2}^{\nu}, \end{split}$$

The above ir.tens can be expressed in a familiar way (only contains the Lorentz four-vector indices) as follows,

$$(T_{(0,0)})^{\mu\nu,\mu'\nu'} = T^{\mu\nu}T^{\mu'\nu'} = \frac{1}{4} g^{\mu\nu}g^{\mu'\nu'},$$

$$(T_{[(1,0)\oplus(0,1)]^+})^{\mu\nu,\mu'\nu'} \equiv T_l^{\mu\nu}T^{l\mu'\nu'} + T_r^{\mu\nu}T^{r\mu'\nu'} = \frac{1}{2} \left(g^{\mu\mu'}g^{\nu\nu'} - g^{\mu\nu'}g^{\nu\mu'}\right),$$

$$(T_{[(1,0)\oplus(0,1)]^-})^{\mu\nu,\mu'\nu'} \equiv T_l^{\mu\nu}T^{l\mu'\nu'} - T_r^{\mu\nu}T^{r\mu'\nu'} = \frac{i}{2} \epsilon^{\mu\nu\mu'\nu'},$$

$$(T_{(1,1)})^{\mu\nu,\mu'\nu'} = T_{\mu^2}^{\mu\nu}T^{\mu^2\mu'\nu'} = \frac{1}{2} \left(g^{\mu\mu'}g^{\nu\nu'} + g^{\mu\nu'}g^{\nu\mu'}\right) - \frac{1}{4} g^{\mu\nu}g^{\mu'\nu'}.$$

Example 3:  $[(\frac{1}{2}, 0) \oplus (0, \frac{1}{2})] \otimes [(\frac{1}{2}, 0) \oplus (0, \frac{1}{2})] = (0, 0)_L \oplus (0, 0)_R \oplus (1, 0) \oplus (0, 1) \oplus (\frac{1}{2}, \frac{1}{2})_L \oplus (\frac{1}{2}, \frac{1}{2})_R.$ 

$$\begin{split} \left[ \left(\frac{1}{2}, 0\right) \oplus \left(0, \frac{1}{2}\right) \right] \otimes \left[ \left(\frac{1}{2}, 0\right) \oplus \left(0, \frac{1}{2}\right) \right] & \mapsto (0, 0)_{L} : (T_{L})^{ab}, \\ \left[ \left(\frac{1}{2}, 0\right) \oplus \left(0, \frac{1}{2}\right) \right] \otimes \left[ \left(\frac{1}{2}, 0\right) \oplus \left(0, \frac{1}{2}\right) \right] & \mapsto (0, 0)_{R} : (T_{R})^{ab}, \\ \left[ \left(\frac{1}{2}, 0\right) \oplus \left(0, \frac{1}{2}\right) \right] \otimes \left[ \left(\frac{1}{2}, 0\right) \oplus \left(0, \frac{1}{2}\right) \right] & \mapsto (1, 0) : T_{l}^{ab}, \\ \left[ \left(\frac{1}{2}, 0\right) \oplus \left(0, \frac{1}{2}\right) \right] \otimes \left[ \left(\frac{1}{2}, 0\right) \oplus \left(0, \frac{1}{2}\right) \right] & \mapsto (0, 1) : T_{r}^{ab}, \\ \left[ \left(\frac{1}{2}, 0\right) \oplus \left(0, \frac{1}{2}\right) \right] \otimes \left[ \left(\frac{1}{2}, 0\right) \oplus \left(0, \frac{1}{2}\right) \right] & \mapsto \left(\frac{1}{2}, \frac{1}{2}\right)_{L} : (T_{L})_{\mu}^{ab}, \\ \left[ \left(\frac{1}{2}, 0\right) \oplus \left(0, \frac{1}{2}\right) \right] \otimes \left[ \left(\frac{1}{2}, 0\right) \oplus \left(0, \frac{1}{2}\right) \right] & \mapsto \left(\frac{1}{2}, \frac{1}{2}\right)_{R} : (T_{R})_{\mu}^{ab}, \end{split}$$

## Example 3: $[(\frac{1}{2}, 0) \oplus (0, \frac{1}{2})] \otimes [(\frac{1}{2}, 0) \oplus (0, \frac{1}{2})] = (0, 0)_L \oplus (0, 0)_R \oplus (1, 0) \oplus (0, 1) \oplus (\frac{1}{2}, \frac{1}{2})_L \oplus (\frac{1}{2}, \frac{1}{2})_R.$

$$\begin{aligned} (T_L)^{ab} &= \left( C_0^{\frac{1}{2}\frac{1}{2}} \right)_0^{l_1 l_2} \left( C_0^{00} \right)_0^{r_1 r_2} (U_L)_{l_1 r_1}^a (U_L)_{l_2 r_2}^b, \\ (T_R)^{ab} &= \left( C_0^{00} \right)_0^{l_1 l_2} \left( C_0^{\frac{1}{2}\frac{1}{2}} \right)_0^{r_1 r_2} (U_R)_{l_1 r_1}^a (U_R)_{l_2 r_2}^b, \\ T_l^{ab} &= \left( C_1^{\frac{1}{2}\frac{1}{2}} \right)_l^{l_1 l_2} \left( C_0^{00} \right)_0^{r_1 r_2} (U_L)_{l_1 r_1}^a (U_L)_{l_2 r_2}^b, \\ T_r^{ab} &= \left( C_0^{00} \right)_0^{l_1 l_2} \left( C_1^{\frac{1}{2}\frac{1}{2}} \right)_r^{r_1 r_2} (U_R)_{l_1 r_1}^a (U_R)_{l_2 r_2}^b, \\ (T_L)_\mu^{ab} &= \left( C_{\frac{1}{2}}^{\frac{1}{2}0} \right)_l^{l_1 l_2} \left( C_{\frac{1}{2}}^{\frac{1}{2}0} \right)_r^{r_1 r_2} T_\mu^{lr} (U_L)_{l_1 r_1}^a (U_R)_{l_2 r_2}^b, \\ (T_R)_\mu^{ab} &= \left( C_{\frac{1}{2}}^{0\frac{1}{2}} \right)_l^{l_1 l_2} \left( C_{\frac{1}{2}}^{\frac{1}{2}0} \right)_r^{r_1 r_2} T_\mu^{lr} (U_R)_{l_1 r_1}^a (U_L)_{l_2 r_2}^b, \end{aligned}$$

Example 3:  $[(\frac{1}{2}, 0) \oplus (0, \frac{1}{2})] \otimes [(\frac{1}{2}, 0) \oplus (0, \frac{1}{2})] = (0, 0)_L \oplus (0, 0)_R \oplus (1, 0) \oplus (0, 1) \oplus (\frac{1}{2}, \frac{1}{2})_L \oplus (\frac{1}{2}, \frac{1}{2})_R.$ 

Similarly, the above ir.tens can be expressed in a familiar way (only contains the Lorentz four-vector indices and Dirac spinor indices) as follows,

$$\begin{pmatrix} T_{(0,0)} + \end{pmatrix}^{ab} = (T_L)^{ab} + (T_R)^{ab} \equiv g^{ab}, \\ \begin{pmatrix} T_{(0,0)} - \end{pmatrix}^{ab} = (T_L)^{ab} - (T_R)^{ab} = g^{ac} (\gamma_5)_c^{\ b}, \\ \begin{pmatrix} T_{[1,0]} + \end{pmatrix}^{ab,\mu\nu} = T_l^{ab} T^{l\mu\nu} + T_r^{ab} T^{r\mu\nu} = \frac{-i}{\sqrt{2}} g^{ac} (\sigma^{\mu\nu})_c^{\ b}, \\ \begin{pmatrix} T_{[1,0]} - \end{pmatrix}^{ab,\mu\nu} = T_l^{ab} T^{l\mu\nu} - T_r^{ab} T^{r\mu\nu} = \frac{-i}{\sqrt{2}} g^{ac} (\gamma_5 \sigma^{\mu\nu})_c^{\ b} \\ \begin{pmatrix} T_{(\frac{1}{2},\frac{1}{2})} + \end{pmatrix}_{\mu}^{ab} = (T_L)_{\mu}^{ab} + (T_R)_{\mu}^{ab} = \frac{1}{\sqrt{2}} g^{ac} (\gamma_5 \gamma_{\mu})_c^{\ b}, \\ \begin{pmatrix} T_{(\frac{1}{2},\frac{1}{2})} - \end{pmatrix}_{\mu}^{ab} = (T_L)_{\mu}^{ab} - (T_R)_{\mu}^{ab} = \frac{1}{\sqrt{2}} g^{ac} (\gamma_{\mu})_c^{\ b}, \end{cases}$$

,

where  $g^{ab}$  is the *metric* of Dirac spinor space, the explicit form is  $g^{ab} = [(-i\sigma^2) \oplus (-i\sigma^2)]^{ab}$ .

**Example 4 :** Consider the spin projection tensors  $P_{\beta}^{\alpha_1 \alpha_2}(\mathbf{p}; \chi_1, \chi_2, s)$  with  $[\beta] = [\alpha_1] \equiv [\alpha]$ and  $[\alpha_2] = (0, 0)$ .

$$P_{\alpha}^{\alpha'}(\mathbf{p};\chi_1,\chi_2,s) = \sum_{\sigma=-s}^{s} u_{\alpha}^{\sigma}(\mathbf{p};\chi_1,s) \bar{u}_{\sigma}^{\alpha'}(\mathbf{p};\chi_2,s).$$

By employing the orthogonal-normalization relation

$$\bar{u}^{\alpha}_{\sigma}(\mathbf{p};\chi,s) \, u^{\sigma'}_{\alpha}(\mathbf{p};\chi'^*,s) = \delta_{\sigma}^{\sigma'} \, \delta_{\chi\chi'},$$

one will get

$$P_{\alpha}^{\ \alpha'}(\mathbf{p};\chi_{1},\chi_{2}^{*},s) u_{\alpha'}^{\sigma}(\mathbf{p};\chi_{1},s') = \delta_{\chi_{1}\chi_{2}} \delta_{ss'} u_{\alpha}^{\sigma}(\mathbf{p};\chi_{1},s),$$

such equations are so-called relativistic motion equations of spin-s particles under rep.  $[\alpha]$ .

$$\begin{split} & \swarrow \quad [\alpha] = (0,0) \ \& \ s = 0 : \ \mathsf{Klein-Gordon\ equation}. \\ & \And \quad [\alpha] = \left[ \left( \frac{1}{2}, 0 \right) \oplus \left( 0, \frac{1}{2} \right) \right] \ \& \ s = \frac{1}{2} : \ \mathsf{Dirac\ equation}. \\ & \And \quad [\alpha] = \left( \frac{1}{2}, \frac{1}{2} \right) \ \& \ s = 1 : \ \mathsf{Proca\ equation}. \\ & \And \quad [\alpha] = \left[ \left( \frac{1}{2}, 0 \right) \oplus \left( 0, \frac{1}{2} \right) \right] \otimes \left( \frac{1}{2}, \frac{1}{2} \right) \ \& \ s = \frac{3}{2} : \ \mathsf{Rarita-Schwinger\ equation\ for\ spin-\frac{3}{2}.} \\ & \cdots \ \text{ and so on.} \end{split}$$

**Example 5**: The pure-orbital wave function  $\tilde{t}_{\mu_1\cdots\mu_L}^{(L)}$  between two particles  $(q_\mu = p_{1\mu} - p_{2\mu})$ . Consider the spin projection tensor of **Example 4** with  $[\alpha] = \left(\frac{L}{2}, \frac{L}{2}\right) \equiv [\mu^L]$ ,

$$P_{\mu L}^{\nu L}\left(\mathbf{p};[\mu^{L}],[\mu^{L}],s\right) = \sum_{\sigma=-s}^{s} u_{\mu L}^{\sigma}\left(\mathbf{p};[\mu^{L}],s\right) \bar{u}_{\sigma}^{\nu L}\left(\mathbf{p};[\mu^{L}],s\right).$$

Because of the following direct product decomposition,

$$\underbrace{\left(\frac{1}{2},\frac{1}{2}\right)\otimes\left(\frac{1}{2},\frac{1}{2}\right)\otimes\cdots\otimes\left(\frac{1}{2},\frac{1}{2}\right)}_{L} = \left(\frac{L}{2},\frac{L}{2}\right)\oplus\cdots \mapsto T^{\mu^{L}}_{\mu_{1}\cdots\mu_{L}},$$

the indices  $\mu^L$  and  $\nu^L$  can be replaced by Lorentz indices as follows,

$$P_{\mu_{1}\cdots\mu_{L}}^{\nu_{1}\cdots\nu_{L}}\left(\mathbf{p};[\mu^{L}],[\mu^{L}],s\right) = T_{\mu_{1}\cdots\mu_{L}}^{\mu^{L}} T_{\nu^{L}}^{\nu_{1}\cdots\nu_{L}} P_{\mu^{L}}^{\nu^{L}}\left(\mathbf{p};[\mu^{L}],[\mu^{L}],s\right)$$

The triangle relation under ir.rep  $[\mu^L]$  is  $0 \le s \le L$ , take s = L and one will get

$$\tilde{t}^{(L)}_{\mu_1\cdots\mu_L} = P^{\nu_1\cdots\nu_L}_{\mu_1\cdots\mu_L} \left(\mathbf{p}; [\mu^L], [\mu^L], L\right) q_{\nu_1}\cdots q_{\nu_L},$$

where the Lorentz indices  $\mu_1 \cdots \mu_L$  are symmetrical and traceless.