

Berry Phase in Axion Physics

In collaboration with Qing-Hong Cao, Shuailiang Ge and Yandong Liu

2024.09.09 威海

junchenwang@stu.pku.edu.cn

Jun-Chen Wang

Jun-Chen Wang

Berry Phase

$$i\frac{\partial}{\partial t} |\psi\rangle = \underline{H}(t) |\psi\rangle \qquad \left\{ \begin{array}{c} \xi_{\rm dy} \\ \xi_{\rm dy} \end{array} \right\}$$

Fime dependent system
$$\left\{ \begin{array}{c} \xi_{\rm by} \\ \xi_{\rm Be} \end{array} \right\}$$

junchenwang@stu.pku.edu.cn

Can axions induce the Berry phase?

Jun-Chen Wang

Berry Phase in Axion Physics

Jun-Chen Wang

Berry Phase in Axion Physics

$H(t) = \mathbf{V}(t) \cdot \mathbf{j}$

Scenario I: Take the axion-fermion system as an example

Scenario II: Take the axion-photon system as an example

Scenario I: vector's direction changes with time

Scenario II: vector's magnitude changes with time

- **Two scenarios are applicable for both systems**

Scenario One: Direction

$$\frac{gq}{m_f^2} (\mathbf{E} \times \mathbf{p}) \cdot \sigma + (\gamma - 1) \frac{\mathbf{a} \times \mathbf{v}}{v^2} \cdot \sigma$$

Proton Ring Experiment Graham et al. 2017, PRD

$$\sim \mathcal{O}\left(\frac{g_f^2/f_a^2}{|B-\omega|}\right) \sim 10^{-36}$$

Very small val

Scenario One: Direction

Q: Why the Berry phase is so small

A: Very large Standard Model background

Resonance Condition

$$GB + vE\left(G - \frac{1}{\gamma^2 - 1}\right) =$$
$$\gamma = \frac{1}{1 - v^2} \quad G = \frac{g - 2}{2}$$

Scenario Two: Magnitude

- Focus on the situation where η_a changes with time
- Assume photons propagate along the z direction

$$H_{\gamma} = \frac{g_{\gamma}}{2f_a} \eta_a(t) \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \longrightarrow U_{\gamma}(t) = \begin{pmatrix} \cos\left(\frac{g_{\gamma}}{2f_a}\Delta a\right) & -\sin\left(\frac{g_{\gamma}}{2f_a}\Delta a\right) \\ \sin\left(\frac{g_{\gamma}}{2f_a}\Delta a\right) & \cos\left(\frac{g_{\gamma}}{2f_a}\Delta a\right) \end{pmatrix}$$

where $\Delta a(t) = \tilde{a}(t) + At$

$$\xi_{\text{Berry}} = m \frac{g_{\gamma}}{2f_a} \left[\tilde{a}(T) - \tilde{a}(0) \right], \ m = \pm 1$$

junchenwang@stu.pku.edu.cn

which means the Berry phase must be zero for a closed loop.

Jun-Chen Wang

Scenario Two: Magnitude

Quantization of the axion: shift symmetry

 $\tilde{a}(t+T) = \tilde{a}(t) + 2\pi N_w f_a$ $a \sim a + 2\pi f_a$ $\xi_{\text{Berry}} = m \frac{g_{\gamma}}{2f_a} \left[\tilde{a}(T) - \tilde{a}(0) \right]$ $\xi_{\text{Berry}} = m\pi g_{\gamma} N_w, \ m = \pm 1$ Winding number The non-zero winding number can be realized by the axion string, axion domain wall, etc.

Choi et al. 2024, PRL

Jain et al. 2021, JCAP

Jun-Chen Wang

Application of The Berry Phase

Generalized symmetry research

Jun-Chen Wang

- axion physics.
- Hamiltonian and research two different scenarios
- the generalized symmetry of the axion.

We perform a systematical study on the Berry phase in the

We find the unified form of axion-fermion and axion-photon

Measuring the Berry phase which can help us understand

Thank You!

Back Up

 $\mathscr{L}_{a\gamma} = \frac{1}{4} \frac{g_{\gamma}}{f_{\alpha}} a F^{\mu\nu} \tilde{F}_{\mu\nu}$

Fundamental Symmetry : Shift Syr

Generalized Symmetry

Higher Group Sym

 $K \equiv \gcd(6, 36E)$

junchenwang@stu.pku.edu.cn

$$g_{\gamma} \sim \frac{\alpha}{2\pi} \frac{E}{N}$$

metry $\rightarrow N \in \frac{1}{2}\mathbb{Z}, E \in \frac{1}{36}\mathbb{Z}$

$$\begin{array}{l} \text{metry} \rightarrow \frac{48N + 36E}{K} \not\equiv 0 \pmod{K} \end{array}$$

Non-Invertible Symmetry $\rightarrow 36E \not\equiv 0 \pmod{6}$ Choi et al. 2024, PRL

Jun-Chen Wang

The Lagrangian in axion physics

$$\mathscr{L}_{a\gamma} = \frac{1}{4} \frac{g_{\gamma}}{f_a} a F^{\mu\nu} \tilde{F}_{\mu\nu}$$

	a	$F^{\mu u} ilde{F}_{\mu u}$
CP Parity		-1
T Parity	-1	-1

Back Up

For a non-degenerate quantum system with time reversal symmetry, the Berry phase must be zero.

Baggio et al. 2017, JHEP

Time reversal symmetry

No Berry phase

Jun-Chen Wang

	Proton Ring Exp
How to make particles move	Electromagnetic Field
How to probe	Mesure protons'
the axion field	spin
How to satisfy	Electromagnetic
the resonance	Field

New Hamiltonian

If $\overleftrightarrow{\chi}$ is proportional to S_z , the first and second terms of H_{γ} could cancel out, and $ilde{H}_{\!\gamma}$ will be dominated by the axion term

junchenwang@stu.pku.edu.cn

Back Up

$$\overleftrightarrow{\varepsilon} = \varepsilon_n \overleftrightarrow{I} - rS^z = \begin{pmatrix} \varepsilon_n & ir \\ -ir & \varepsilon_n \\ 0 & 0 \end{pmatrix}$$

The optical medium we want is just the birefringence medium

Wr **Resonance Condition** $2\epsilon_n$ All parameters can be Ω : photons' angular velocity tuned experimentally

 ω : photons' energy

junchenwang@stu.pku.edu.cn

\mathcal{E}_n

Jun-Chen Wang

Theoretical prediction

Experimental precision : 10^{-9} rad Rowe et al. 2017, Rev.Sci.Instrum.

It is promising to probe the axion by the photon ring experiment !

junchenwang@stu.pku.edu.cn

Jun-Chen Wang

