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Abstract

The superradiant instabilities of Kerr(-Newman) black holes with charged or
uncharged massive spin-0 fields are calculated analytically to the next-to-leading
order in the limit of α ~ 𝑟𝑔𝜇 ≪ 1 [1, 2, 3]. The next-to-leading order (NLO) result has

a compact form and is in good agreement with existing numerical calculations [4, 5].

[1]. S. S. Bao, QX and H. Zhang, Phys. Rev. D 106 (2022) no.6, 064016

[2]. S. S. Bao, QX and H. Zhang, Phys. Rev. D 107 (2023) no.6, 064037

[3]. S. L. Detweiler, Phys. Rev. D 22 (1980), 2323-2326

[4]. H. Furuhashi and Y. Nambu, Prog. Theor. Phys. 112 (2004), 983-995

[5]. S. R. Dolan, Phys. Rev. D 76 (2007), 084001



3

• Study the stability of spinning BHs.
• The search of axion-like-particles.
• The superradiant boson clouds could

modify the gravitational waveform of
two-BH-merger events.

• The gravitation wave signals generated
by the spinning boson clouds around the
host BHs.

[6] A. Arvanitaki, S. Dubovsky. Phys.Rev.D 83 (2011) 044026

Black Hole Superradiance

Applied in many research frontiers

Introduction

Figure 1: The spinning black hole “feeds” superradiant states
copy from Ref. [6]

Boson condensate could form around a rotating black hole (BH) if the boson’s Compton wavelength is comparable
to the size of the BH horizon. If a light scalar boson exists with a proper value of mass, it could form gravitational
bound states around spinning BHs (引力原子). The bound states can continuously extract energy and angular
momentum from the host BHs until the angular momentum of the BH is below some critical value.

( Superradiance condition: 0 < 𝜔 < 𝜔𝑐 )
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Analytic Solution

Klein-Gordon equation

Scalars in Kerr-Newman spacetime

The phenomenological study of BH superradiance depends on the accurate determination of the bound 
state's eigenfrequency 𝜔. 

where µ and 𝑞 are the mass and electric 
charge of the scalar field, respectively. 

with

The equation ∆= 0 gives two event horizons 

at 𝑟± = 𝑟𝑔 ± 𝑏 with 𝑏 = 𝑟𝑔
2 − 𝑎2 − 𝑄2.

Eq. (1)

Eq. (2)

Eq. (3)

Eq. (4)
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Analytic Solution

Radial equation

The scalars can be written with the separation of variables

where Λ𝑙𝑚 is the separation constant which has the expanded form Λ𝑙𝑚 = 𝑙 𝑙 + 1 + 𝒪(𝛼4). 

Inserting it into Eq. (4)

Eq. (5)

Eq. (6)
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Analytic Solution

Asymptotic matching method

The basic idea of this method is to first obtain two solutions of the radial equation in large 𝑟

and small 𝑟 respectively. The two solutions have an overlap region in the small 𝛼 limit.
Then according to the same behavior for these two solution in the overlap region, we can
obtain the eigenequation of 𝜔, which can be solved numerically or perturbatively.

where 𝜔1𝛿𝜆 is the imaginary part of 𝜔.

It is convenient to define

Eq. (7)𝜔 = 𝜔0 + 𝜔1𝛿𝜆,
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Analytic Solution

Large 𝑟 limit

The radial function at the 𝑟 ≫ 𝑟𝑔 limit can be simplified as 

where

Eq. (8)

Eq. (9)

and the solution can be written in terms of the confluent hypergeometric function up to an arbitrary 
normalization,

Eq. (10)

Here, 𝑙′ = 𝑙 + 𝜖, 𝜖~𝒪(𝛼2) plays the role of a regulator in LO.
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Analytic Solution

Small 𝑟 limit

It is more convenient to write the radial function in terms of 𝑧 = (𝑟 − 𝑟+)/2𝑏 in the small 𝑟 limit, 

where

Eq. (11)

Eq. (12)

in which,

Eq. (13)
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Analytic Solution

Eq. (11) can be simplified as,

The solution is,

Eq. (14)

Eq. (15)

up to an arbitrary normalization.
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Analytic Solution

Matching two solutions

Two solutions have an overlapped region in the limit 𝛼 ≪ 1.

The ratio of the coefficients of the 𝑟𝑙
′

and 𝑟−𝑙
′−1 should be the same for the two solutions in the overlap 

region. After some algebra, one can arrive at,

Eq. (15)

Eq. (9)

with
Eq. (16)

Eq. (17)
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Figure 2: Comparison of the numerical result and the analytic approximation. The solid

curves and the dashed curves are from Eq. (17) and Ref. [3], respectively. The numerical

values from Ref. [4].

[3]. S. L. Detweiler, Phys. Rev. D 22 (1980), 2323-2326.
[5]. S. R. Dolan, Phys. Rev. D 76 (2007), 084001
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The second NLO contribution is from the asymptotic radial wave function at small r. The potential 𝑈(𝑧) defined
in Eq. (12) can be approximated by 𝑝2 − 𝑙′(𝑙′ + 1)𝑧 𝑧 + 1 + 𝑧𝑑, where 𝑑 is defined as,

The first NLO correction appears as 𝜖 in the asymptotic radial wave function at large r, which is given in Eq. (9). It
can be calculated from the definition of 𝑙′ = 𝑙 + 𝜖. Here, 𝜖~𝒪(𝛼2) plays the role of a regulator in LO.

Eq. (18)

Eq. (19)

Thus, the corresponding 
radial function at NLO is,

Eq. (20)

Next-to-leading-order approximation

Here
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where Γ𝑝𝑑 is defined as,

Following similar matching steps, the NLO contribution of 𝛿𝜆 could be obtained after some algebra,

Eq. (21)

Eq. (22)

Next-to-leading-order approximation
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Figure 3: Comparison of the numerical result

and the improved analytic approximations in

Eq.(21) for 𝑛 = 0, 1,2 and 𝑙 = 𝑚 = 1.

Results
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Figure 4: Comparison of the numerical result and the analytic approximations for 𝑛 = 0, 𝑙 = 𝑚 = 1, 𝑎 = 0.98, and 𝑄 = 0.01, with

𝑟𝑔 chosen to be 1 for compacity. The imaginary part of 𝜔 is plotted as a function of the scalar field charge 𝑞. The dashed (solid) curves

are the LO (NLO) approximations and the scattered dots are numerical results taken from Fig. 6 in Ref. [4]. The curves with different

colors correspond to different values of 𝜇, labeled above the corresponding curves with the same color.

[4]. H. Furuhashi and Y. Nambu, Prog. Theor. Phys. 112 (2004), 983-995

Results
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Figure 5: Copy from arXiv: 2406.10337. The |211⟩ superradiance rate (times the gravitational radius, 𝑀), computed using

different methods. For benchmark values of 𝑀 = 10 M⊙ and 𝑎∗ = 0.99, they compare the continued fraction method (CFM;

orange line), implementation of the next-to-leading-order corrections (NLO; dashed, red line).
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Summary

⚫ From the LO analytic approximation given by Ref. [3], the percentage error at small 𝛼 increases
with the BH spin parameter 𝑎 and/or charge 𝑄. We find there is a NLO term which is enhanced by

a factor of
1

𝑏
. For such nearly extremal BHs, this term can be as important as the LO contribution.

So, for the case of Kerr BHs, by comparing the NLO solution to the numerical result, we find they
agree to each other at small 𝛼 with different values of 𝑎.

⚫ For the case of KNBHs, the percentage error of the NLO increases with 𝛼, from a few percent for
𝛼~0.1 to about 50% for 𝛼~0.4.

[3]. S. L. Detweiler, Phys. Rev. D 22 (1980), 2323-2326.
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Appendix 

The wave version of the Penrose process
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Appendix 

Schrodinger-like equation Critical frequency
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Appendix 

Eigenfrequency
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Appendix 

Missing factor
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