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Abstract

The superradiant instabilities of Kerr(-Newman) black holes with charged or
uncharged massive spin-0 fields are calculated analytically to the next-to-leading
order in the limit of a ~ 1, < 1 [1, 2, 3]. The next-to-leading order (NLO) result has
a compact form and is in good agreement with existing numerical calculations [4, 5].
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Introduction

Boson condensate could form around a rotating black hole (BH) if the boson’s Compton wavelength is comparable
to the size of the BH horizon. If a light scalar boson exists with a proper value of mass, it could form gravitational
bound states around spinning BHs (5| /JJ&F). The bound states can continuously extract energy and angular
momentum from the host BHs until the angular momentum of the BH is below some critical value.

( Superradiance condition: 0 < w < w, )

Applied in many research frontiers

e Study the stability of spinning BHs.

* The search of axion-like-particles.

e The superradiant boson clouds could gravitons N\ N
modify the gravitational waveform of
two-BH-merger events.

 The gravitation wave signals generated
by the spinning boson clouds around the
host BHs.

Figure 1: The spinning black hole “feeds” superradiant states
copy from Ref. [6]

[6] A. Arvanitaki, S. Dubovsky. Phys.Rev.D 83 (2011) 044026
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The phenomenological study of BH superradiance depends on the accurate determination of the bound

state's eigenfrequency w.

Scalars in Kerr-Newman spacetime

ds* = — (1 — 22 Qz) dt* + Ed? + Y4 db?
. [ (% 1 a?) + (2ryr — C;‘Z)az sin” 6‘] sin? B’
B 2(2r,r —gj)a sin’ Hdm% tq. (1)
with 32 =% 4 g% cos® 0, Eq. (2)
A=r?— 2ryr + a® + QQ. Eq. (3)

The equation A= 0 gives two event horizons

atry =1, b withb=\/rgz—a2—Q2.

Klein-Gordon equation

{vn 'Er!}jln }(T‘“ ]"[’jfin){ﬂ ’u_zf'_j: = (), Eq (4)

where p and g are the mass and electric
charge of the scalar field, respectively.
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Radial equation

The scalars can be written with the separation of variables

( Iﬁ q}—jfhu(f}shn(”) i ‘L”. EQ(S)

Inserting it into Eq. (4)

dr dr

1 1Rm 5, o !
AL (&f : ) o+ [u_-‘l (:-"‘3 + n“f)J — dar,rmw + a‘m?* (,u r* + a‘w® + J'L;m) &] R, =0, Eq.(6)

where A, is the separation constant which has the expanded form Ay, = [(L + 1) + O(a?).
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Asymptotic matching method

The basic idea of this method is to first obtain two solutions of the radial equation in large r
and small r respectively. The two solutions have an overlap region in the small a limit.
Then according to the same behavior for these two solution in the overlap region, we can
obtain the eigenequation of w, which can be solved numerically or perturbatively.

It is convenient to define
w = wy + w04, Eq. (7)

where w04 is the imaginary part of w.
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Large r limit

The radial function at the r >> 1, limit can be simplified as

d? 2 2
—(rR) + |(w* — u°) +

= - +0( )| rR=0, Eq.(8)

:r .j»l 2

2(2r,w? —rop? —qQuw)  U(l'+1)

and the solution can be written in terms of the confluent hypergeometric function up to an arbitrary
normalization,

R(r)=e " 2r)' U +1 -\ 21U +2:2k7), Eq. (9)

where

2 2
2r w” —ropt — qQuw

A= 2. Eqg. (10)

K

Here, ' =1+ €, e~0(a?) plays the role of a regulator in LO.
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Small r limit

It is more convenient to write the radial function in terms of z = (r — r.)/2b in the small r limit,

d dR _
3(2—4—1)5 !Z(Z—Fl)E] —|—U(Z)R=U, EC](ll)
where
U(z) =p° + 2 [% (?"+~’-v‘ - ;;j — %rg ) — (Apn + ‘ri,uz + a’w?) + ?(am +ryqQ — a*w — 3riw)

+ 2% (a*w?* — Ap + 2p%a® — 3;L2?“i - 6-?"3_&)2 +2Q%1* + ¢°Q* — 67 qQuW) Eq. (12)
+ 4250 [rop® + 2ry (w? — p?) — qQu] + 42%b% (w? — p?),

in which,

(W — we). Eq. (13)
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Eqg. (11) can be simplified as,

d dR mr
The solution is,
r—r+ o rog r—r+
R(r) = o | U, +1;1 — 2ip; — : Eq. (15)
r—r_ 20

up to an arbitrary normalization.



3"'v'f)ngt

SHANDONG UNIVERSITY

Matching two solutions

Two solutions have an overlapped region in the limit a <« 1.

£q. (9) r—0 (QHVIX—QF-1%J, (meJ‘JTCR’+]JT_r_y

T(—1 — ) Ty

r—+00 (26)~ VT (20 4+ 1) r+(2mf+ﬁw—mf—1)_$_l
> T T .
(' + 1)1’ + 1 — 2ip) T(—1" — 2ip)L(=1")

Eqg. (15)

The ratio of the coefficients of the 7'" and 7~! =1 should be the same for the two solutions in the overlap
region. After some algebra, one can arrive at,

, , with
\ _ To(2wg — p7) — gQuo Eq. (16)
V1 — wp (0 : o141 (n+ 20+ 1)Y(
A = —ip (4kb)? T H + 4p?) Eq. (17)
v iy 9,2 2y 2 ., .
n "'gwnwlﬁ(ﬁ: Zw:;)w qQu w1 SAO Lo ((5)\(11))2) nt (20120 +1)!
.L —
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Figure 2: Comparison of the numerical result and the analytic approximation. The solid
curves and the dashed curves are from Eq. (17) and Ref. [3], respectively. The numerical
values from Ref. [4].
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The first NLO correction appears as € in the asymptotic radial wave function at large r, which is given in Eq. (9). It
can be calculated from the definition of I’ = [ + €. Here, e~0(a?) plays the role of a regulator in LO.

—8r2:2 + Q%2 + 8rgqQu — ¢2Q’
_ srgu +Qg12!:1?gq9ﬂ ¢°Q L O(ad). Eq. (18)

The second NLO contribution is from the asymptotic radial wave function at small r. The potential U(z) defined
in Eq. (12) can be approximated by p? — I'(l' + 1)z(z + 1) + zd, where d is defined as,

d= (Aryp —2qQ)p — 2(Arg — 74 )rgp” + 2uqQ(Ary — 74 ) — ¢°Q° + O(a”). Eg. (19)

Here U'(I' +1) = Apn + 477 (p” — 3w°) + a*(w* — p?) + Q*°(2w* — ¢° — p*) + 8ryqQu.

(r—r )V

Thus, the corresponding R(r) = (r —r, ) 211 ( —U'—ip+/d—p? £q. (20)
radial function at NLO is, oy q-
U'4+1—ip++/d—p31—2ip; — 2b+)'

12
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Following similar matching steps, the NLO contribution of 64 could be obtained after some algebra,

| d e\ (b 0(n+ 2 +2)T,,
AL = — - - — ip L
2 2 n! [D(2U + VT2 + 2)]

: Eq. (21)

where [}, is defined as,

2
‘F(I’+1+ip+-\/d—pz)l“(l’+1+ip— d,—p?)‘ [(1+ 26)I7(1 — 2¢)

de -

T(1l—ip—+/d—p?—el(l+ip+/d—p>+e)T(L—ip+/d—p? —e (1 +ip—Jd—p*>+¢€)

Eqg. (22)

13
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Figure 3: Comparison of the numerical result
and the improved analytic approximations in
Eq.(21)forn = 0,1,2andl=m = 1.

=
(&

|
é

|
<
.

Im (wana) J-'F Im (ﬂ-’num) -1
S
(o]

|
=
=}

0.10 015 020 025 030 035 040 045

0.0

-0.2¢

—0.4}

~0.6 L— ' - - ' SR
0.10 015 020 025 030 035 040 045

GMpu



A NL

SHANDONG UNIVERSITY

107 [~

Im (w)
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0,l=m=1,a = 0.98,and Q = 0.01, with

Figure 4: Comparison of the numerical result and the analytic approximations for n
1, chosen to be 1 for compacity. The imaginary part of w is plotted as a function of the scalar field charge q. The dashed (solid) curves

are the LO (NLO) approximations and the scattered dots are numerical results taken from Fig. 6 in Ref. [4]. The curves with different
colors correspond to different values of u, labeled above the corresponding curves with the same color.
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Figure 5: Copy from . The |211) superradiance rate (times the gravitational radius, M), computed using

different methods. For benchmark values of M = 10 M® and a* = 0.99, they compare the continued fraction method (CFM;
orange line), implementation of the next-to-leading-order corrections (NLO; dashed, red line).
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Summary

From the LO analytic approximation given by Ref. [3], the percentage error at small a increases
with the BH spin parameter a and/or charge Q. We find there is a NLO term which is enhanced by

1 . . I
a factor of Pt For such nearly extremal BHs, this term can be as important as the LO contribution.

So, for the case of Kerr BHs, by comparing the NLO solution to the numerical result, we find they
agree to each other at small a with different values of a.

For the case of KNBHs, the percentage error of the NLO increases with «, from a few percent for
a~0.1 to about 50% for a~0.4.

17
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The wave version of the Penrose process

Kerr: has Killing vector £ = 0,

TIL A dxu A A
Killing energy E = —pHt, = —m——t, = —mv#t,

is conserved along geodesic

Exterior region Ergo-region
t: timelike t: spacelike
E=-mvtt, >0 E = —mv¥t,

Can be +

19



Schrodinger-like equation Critical frequency

To obtain a constraint on the parameters that allow

superradiance, we change to the tortoise coordinates, In the region close to the outer horizon r,, the potential

has the asymptotic form,

r? +a?
d’.i"t = A d?'._. lim V(T} = —(DJ - 'f-\'-:'{r_':}2 -+ O(T - 'r-l—)u

Ty

with which the interesting region r € (ry,+00) corre-
sponds to r. € (—o0,+00). We also define,

R.(ry) =12+ a?R(r).
(rs) r*+ a*Rir) ~ ma+qQry  ma+qQry

Then Eq. (6) can be rewritten into a Schridinger-like o Tl?l— +a2 2Ty — Q2
equation,

where the critical frequency is defined as

d*R.(r.)

dr?

- V(T)R* [:T"*) =0,

where the effective potential is,

2 2
am + qQr Ap
Vir)=— -
(r) (w a? + r? ) a? + r?
(a2 +r2)2 [2amw — Ay + a*(p? — w?)]
A[A+2r(r—ry)]  3A%72
(a2 +1r2)3 (a2 + r2)%

20



Eigenfrequency
U'+1—=X=—n-48)\ (35)

where |[§A|] < 1 and n is zero or a positive integer.
Following the convention in literature, we also define
n = n-+ [+ 1. Then the above relation is re-expressed as
A=n+e+ oA At LO of a, it reduces to A = 72 + JA.

\ — i'“g(z"f"JrE]! - HE) — qQuy

U2 — wg
4 Toowa (i — ) —aQun 530 4 ((67©)2)
(n? — wg)3/2

(37)

On the other hand, we have A = i +JA(?) from Eq. (35).
Then it is straightforward to get,

rg(2wg — p?) — qQuo

3, 2
Wi

= i, (38a)

M

rowow (31 — 2wg) — gQu’wr
(W2 — wg)?/?

=1.  (38b)

(D) 2
Wy 1 freu— qQ 4
o | I e
" 7 ( - ) + O(a”)
ff‘~"l[1”}I ('-'" o= GQ)E 4
- — + O(a”)
e n

21



Missing factor

The calculation with the regulator is straightforward
since both I" functions are well defined. One could safely
use I'(1 + z) = zI'(z) repeatedly and get,

o D(=20—1—2¢)
e—0  I['(—l—¢)
— lim (=l —€)...(—e)'(1 — 2¢)
e—0 (=21 —1—2¢)...(—2¢)I'(1 —¢)
(=L
2020+ 1)

(A1)

This result could also be obtained without the regula-
tor. The following steps are provided by an anonymous
referee and we list them here to show the readers a dif-
ferent way of doing the calculation. The key formula is

e e

2 n! 2

(A2)

which is valid when n is a positive odd integer. We will
also use I'(2)['(z + 1/2) = 2'72* /7 ['(2z). Then

r(=20-1) 1 (-2 27 —20+1
L(=)  (-2A-1)T(=l) (2= ( 2
9—2l-1 (—1 )3223 L/m(l—1)!
T (“2—1)/r (20 —1)!
( 1)!+1£|
2020+ 1)

(A3)
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