第十三届新物理研讨会

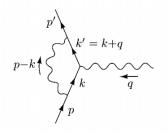
Possible new physics indicated by loops: The Higgs mass and the Einstein gravity

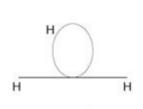
Lian-Bao Jia (贾连宝)

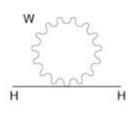
SWUST(西南科技大学)

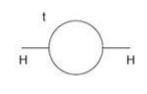
Weihai 2024.09.09

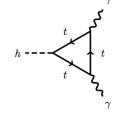
Based on arXiv:2305.18104, 2403.09487

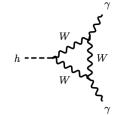












Outline:

- I. Background
- II. Free flow of ideas --- UV-free scheme
- III. The hierarchy problem of Higgs mass
- IV. Graviton loop in Einstein gravity
- V. Summary and outlook

I. Background: New physics

- 1) Neutrino mass
- 2) CP violation and baryon asymmetry
- 3) The hierarchy problem of Higgs mass
- 4) Quantization of Einstein gravity
- 5) Dark matter and dark energy

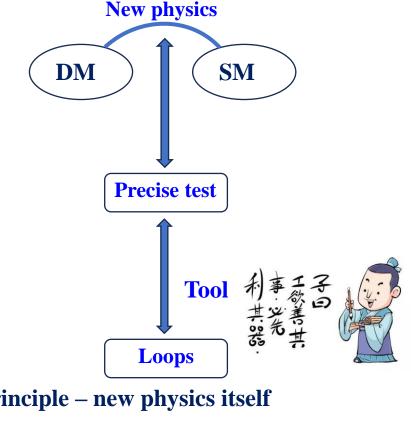
New Physics = New Particles

New Physics = New Phenomena!

New Physics = New Principles !!

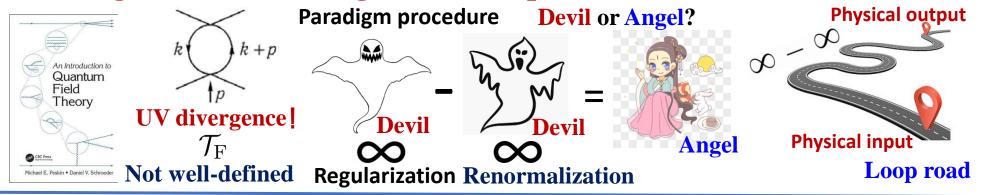
E.g., Special Relativity, Photo-electronic Effect, GR, P and CP Violations,

He 2023



New phenomena/principle – new physics itself

I. Background: UV divergences of loops



Log divergence is OK, power-law divergence is problematic Two devils over the renormalization building

Next

II. Free flow of ideas --- UV-free scheme

UV-free scheme

arXiv:2305.18104 A presumption:

Newton's Laws of Motion

Low-energy corrections

Loop

UV regions (Planck scale)

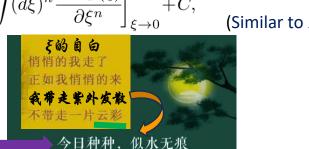
Negligible?!

Regularization & renormalization

Loop

breakthrough: **Derivative** method

A conceptual



The physical contributions of loops are finite with

contributions from UV regions being insignificant.

To obtain the physical results of loops, an equation is introduced

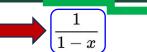
 $\mathcal{T}_{\mathrm{F}} \longrightarrow \mathcal{T}_{\mathrm{P}} = \left[\int d\xi_1 \cdots d\xi_i \frac{\partial \mathcal{T}_{\mathrm{F}}(\xi_1, \cdots, \xi_i)}{\partial \xi_1 \cdots \partial \xi_i} \right]_{\{\xi_1, \cdots, \xi_i\} \to 0} + C$

 $\text{or } \mathcal{T}_{\mathrm{P}} \! = \! \left[\int \! (d\xi)^n \frac{\partial^n \mathcal{T}_{\mathrm{F}}(\xi)}{\partial \xi^n} \right]_{\xi \to 0} \! + \! C, \qquad \text{(Similar to } E_p = -\frac{\mathit{GMm}}{r} \! + \! C)$

(primary antiderivative + boundary constant)

Negligible

e. g. $f(x)=1+x^1+x^2+x^3+x^4+...$



真的吗

UV-free scheme:

assume that the physical transition amplitude \mathcal{T}_{P} with propagators can be described by an equation of

$$\mathcal{T}_{P} = \left[\int d\xi_{1} \cdots d\xi_{i} \frac{\partial \mathcal{T}_{F}(\xi_{1}, \cdots, \xi_{i})}{\partial \xi_{1} \cdots \partial \xi_{i}} \right]_{\{\xi_{1}, \cdots, \xi_{i}\} \to 0} + C, (1) \qquad \mathcal{T}_{P}(s) = \left[\int d\xi \frac{\partial \mathcal{T}_{F}(\xi)}{\partial \xi} \right]_{\xi \to 0} + C_{1}$$

a. Tree-level:

the photon propagator $\frac{-ig_{\mu\nu}}{n^2+i\epsilon}$,

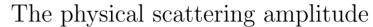
$$\mathcal{T}_{\mathrm{F}}(\xi) = \frac{-ig_{\mu\nu}}{p^2 + \xi + i\epsilon}, \, \frac{\partial \mathcal{T}_{\mathrm{F}}(\xi)}{\partial \xi} = \frac{-ig_{\mu\nu}(-1)}{(p^2 + \xi + i\epsilon)^2},$$

$$\left[\int d\xi \frac{\partial \mathcal{T}_{F}(\xi)}{\partial \xi}\right] = \frac{-ig_{\mu\nu}}{p^2 + \xi + i\epsilon}, \text{ with } C = 0$$

$$\mathcal{T}_{\rm P} = \left[\int d\xi \frac{\partial \mathcal{T}_{\rm F}(\xi)}{\partial \xi} \right]_{\xi \to 0} = \frac{-ig_{\mu\nu}}{p^2 + i\epsilon}$$

the gauge field propagator restored

b. Loop-level Log: ϕ^4 theory



$$\mathcal{T}_{P}(s) = \left[\int d\xi \frac{\partial \mathcal{T}_{F}(\xi)}{\partial \xi} \right]_{\xi \to 0} + C_{1}
= \left[\frac{-\lambda^{2}}{2} \int d\xi \int \frac{d^{4}k}{(2\pi)^{4}} \frac{-i}{(k^{2} - m^{2} + \xi)^{2}} \frac{i}{(k+q)^{2} - m^{2}} \right]_{\xi \to 0} + C_{1},
\mathcal{T}_{P}(s) = \frac{-i\lambda^{2}}{32\pi^{2}} \int_{0}^{1} dx \log[m^{2} - x(1-x)s] + C_{1}.$$

A freedom of ξ in propagators

Considering the renormalization conditions, $s = 4m^2$,

$$t = u = 0.$$
 \longrightarrow $C_1 = \frac{i\lambda^2}{32\pi^2} \int_0^1 dx \log[m^2 - 4m^2x(1-x)].$

No troublesome UV divergence in loop calculations!

In massless limit
$$\mathcal{T}_{\mathrm{P}} \! = \! \mathcal{T}_{\mathrm{P}}(s) + \mathcal{T}_{\mathrm{P}}(t) + \mathcal{T}_{\mathrm{P}}(u)$$

In massless limit
$$\mathcal{T}_{P} = \mathcal{T}_{P}(s) + \mathcal{T}_{P}(t) + \mathcal{T}_{P}(u)$$

$$s = -t = -u = \mu^{2} = \frac{i\lambda^{2}}{32\pi^{2}} \left(\log \frac{\mu^{2}}{s} + \log \frac{\mu^{2}}{-t} + \log \frac{\mu^{2}}{-u}\right)$$
the n -point physical correlation function $G_{P}^{(n)}$ can be set

by the physical field $\phi_{\rm P}(x)$ with $\phi_{\rm P}(x) = Z^{1/2}\phi(x,\mu)$, and the rescaling factor Z is finite here. The local correlation function $G^{(n)}$ (shorthand for a full expression $G^{(n)}(\phi,\lambda,m,\cdots,\mu)$ in the perturbation expansion can be written as $G^{(n)} = Z^{-n/2}G_{\rm p}^{(n)}$. Considering $\frac{dG_{\rm p}^{(n)}}{du} = 0$, the variation of μ in the massless limit can be described by a relation

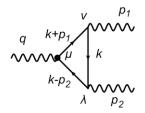
$$(\mu \frac{\partial}{\partial \mu} + \beta \frac{\partial}{\partial \lambda} + n\gamma)G^{(n)} = 0.$$

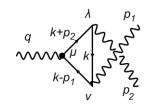
This is the form of the Callan-Symanzik equation [5, 6], and we have another picture about it in UV-free scheme. The μ -dependent term in UV-free scheme is from the boundary constant C. For the ϕ^4 theory in the massless limit, the one-loop result of the parameter γ is zero $(\mathcal{T}_{P}^{2p}=0)$. The beta function can be derived by Eq. (10), with the result

 $\beta = -i\mu \frac{\partial}{\partial \mu} \mathcal{T}_{P}$ $= \frac{3\lambda^{2}}{16\pi^{2}} + \mathcal{O}(\lambda^{3}).$

An illustration:

electron physical charge $e = e_0 + \Delta e = e_\mu + \Delta e_\mu$





γ^5 the original

$$\partial_{\mu} j^{\mu 5} = i q_{\mu} \mathcal{T}_{P}^{\mu \nu \lambda} \epsilon_{\nu}^{*}(p_{1}) \epsilon_{\lambda}^{*}(p_{2})$$

$$= -\frac{e^{2}}{16\pi^{2}} (\frac{2}{3} - 2\log r) \varepsilon^{\alpha \nu \beta \lambda} F_{\alpha \nu} F_{\beta \lambda}$$
If $C_{0} = \frac{2}{3}$

$$\text{SM self-consistent}$$

Taking $C_0 = 2 \log r$

charge values of quarks coincidence, or correlation?

two-loop transition

$$\mathcal{T}_{P} = \left[\int d\xi \frac{\partial \mathcal{T}_{F}(\xi)}{\partial \xi} \right]_{\xi \to 0} + C$$

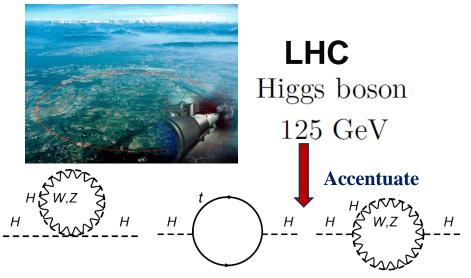
$$= \left[\frac{(-i\lambda)^{3}}{2} \int d\xi \int \frac{d^{4}k_{A}}{(2\pi)^{4}} \frac{d^{4}k_{B}}{(2\pi)^{4}} \frac{i}{k_{A}^{2} - m^{2}} \frac{i}{(k_{A} + q)^{2} - m^{2}} \right]_{\xi \to 0} + C$$

$$\text{with } q = p_{1} + p_{2}$$

Log divergences are OK

UV physics being free

III. The hierarchy problem (c. Loop-level Λ^2 , Λ^4)



The hierarchy problem

$$M_H^2 = (M_H^0)^2 + \frac{3\Lambda^2}{8\pi^2 v^2} \left[M_H^2 + 2M_W^2 + M_Z^2 - 4m_t^2 \right]$$

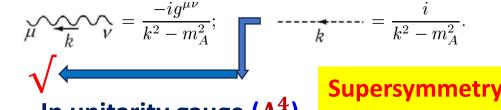
Fine-tuning!

A real problem for renormalization!

Power-law divergences (Λ^2 , Λ^4)

For W, Z

In Feynman-'t Hooft gauge (Λ^2)



In unitarity gauge (Λ^4)

$$\underbrace{\mu} \underbrace{k} \underbrace{\nu} = \frac{-i}{k^2 - m_A^2} \left(g^{\mu\nu} - \frac{k^\mu k^\nu}{m_A^2} \right)$$

Large Devil (Higgs mass)

Power-law divergences (
$$\Lambda^2$$
, Λ^4)

In UV-free scheme

Higgs in the first diagram

$$\mathcal{T}_{P}^{H1} = \left[\int d\xi_{1} d\xi_{2} \frac{\partial \mathcal{T}_{F}^{H1}(\xi_{1}, \xi_{2})}{\partial \xi_{1} \partial \xi_{2}} \right]_{\{\xi_{1}, \xi_{2}\} \to 0} + C$$

$$= \left[(-3i) \frac{m_{H}^{2}}{2v^{2}} \int d\xi_{1} d\xi_{2} \int \frac{d^{4}k}{(2\pi)^{4}} \right]$$

$$\times \frac{2i}{(k^{2} - m_{H}^{2} + \xi_{1} + \xi_{2})^{3}} \Big]_{\{\xi_{1}, \xi_{2}\} \to 0} + C. \quad \text{when}$$

After integral, one has

$$\mathcal{T}_{P}^{H1} = i \frac{3m_{H}^{4}}{32\pi^{2}v^{2}} (\log \frac{1}{m_{H}^{2}} + 1) + C$$
$$= i \frac{3m_{H}^{4}}{32\pi^{2}v^{2}} (\log \frac{\mu^{2}}{m_{H}^{2}} + 1).$$

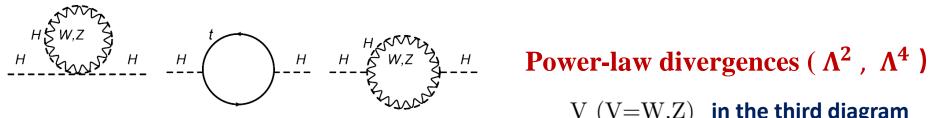
V (V=W,Z) in unitary gauge

$$\mathcal{T}_{P}^{V1} = \left[\int d\xi_{1} d\xi_{2} d\xi_{3} \frac{\partial \mathcal{T}_{F}^{V1}(\xi_{1}, \xi_{2}, \xi_{3})}{\partial \xi_{1} \partial \xi_{2} \partial \xi_{3}} \right]_{\{\xi_{1}, \xi_{2}, \xi_{3}\} \to 0} + C$$

$$= \left[i \frac{2m_{V}^{2}}{v^{2} s_{V}} \int d\xi_{1} d\xi_{2} d\xi_{3} \int \frac{d^{4}k}{(2\pi)^{4}} g_{\mu\nu} \right] \times \frac{6i(g^{\mu\nu} - k^{\mu}k^{\nu}/m_{V}^{2})}{(k^{2} - m_{V}^{2} + \xi_{1} + \xi_{2} + \xi_{3})^{4}} \right]_{\{\xi_{1}, \xi_{2}, \xi_{3}\} \to 0} + C ,$$

where the symmetry factor s_V is $s_V = 1$, 2 for W, Z respectively. After integral, one has

$$\mathcal{T}_{P}^{V1} = i \frac{2m_V^2}{v^2 s_V} \frac{m_V^2}{16\pi^2} (3\log\frac{1}{m_V^2} + \frac{5}{2}) + C$$
$$= i \frac{2m_V^2}{v^2 s_V} \frac{3m_V^2}{16\pi^2} (\log\frac{\mu^2}{m_V^2} + \frac{5}{6}) .$$



V (V=W,Z) in the third diagram

top quark loop

Higgs in the third diagram

$$\begin{split} \mathcal{T}_{\mathrm{P}}^{\,t} &= -\frac{3m_t^2}{v^2} \frac{i}{4\pi^2} \!\! \int_0^1 \!\! dx [m_t^2 - p^2 x (1-x)] \\ &\times \!\! \left(3 \log \frac{1}{m_t^2 - p^2 x (1-x)} + 2 \right) + C \\ &= \!\! -\frac{3m_t^4}{v^2} \frac{3i}{4\pi^2} \!\! \int_0^1 \!\! dx [1 - \frac{p^2}{m_t^2} x (1-x)] \\ &\times \!\! \left(\log \frac{\mu^2}{m_t^2 - p^2 x (1-x)} + \frac{2}{3} \right). \end{split}$$

$$\mathcal{T}_{P}^{H3} = \frac{9m_{H}^{4}}{2v^{2}} \frac{i}{16\pi^{2}} \int_{0}^{1} dx \log \frac{1}{m_{H}^{2} - x(1-x)p^{2}} + 0$$

$$= i \frac{9m_{H}^{4}}{32\pi^{2}v^{2}} \int_{0}^{1} dx \log \frac{\mu^{2}}{m_{H}^{2} - x(1-x)p^{2}}.$$

Considering μ in the electroweak scale,

125 GeV Higgs can be obtained without fine-tuning, i.e., an alternative interpretation within SM.

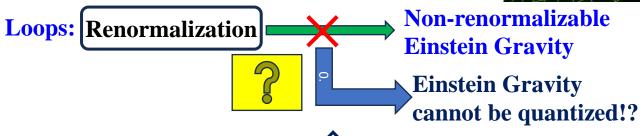
$\mathcal{T}_{\rm P}^{V3} = \frac{4m_V^4}{v^2 s_V} \frac{6i}{16\pi^2} \int_0^1 dx \left(\left[\frac{1}{2} - \frac{p^2}{m_V^2} (x - x^2 + \frac{1}{12}) \right] \right)$ $$\begin{split} T_{\rm P} &= -\frac{\iota}{v^2} \frac{1}{4\pi^2} \int_0^{\infty} dx \left[m_t^2 - p^2 x (1-x) \right] \\ &\times (3 \log \frac{1}{m_t^2 - p^2 x (1-x)} + 2) + C \\ &= -\frac{3m_t^4}{v^2} \frac{3i}{4\pi^2} \int_0^1 dx \left[1 - \frac{p^2}{m_t^2} x (1-x) \right] \end{split} \\ &= -\frac{3m_t^4}{v^2} \frac{3i}{4\pi^2} \int_0^1 dx \left[1 - \frac{p^2}{m_t^2} x (1-x) \right] \end{split} \\ &= -\frac{3m_t^4}{v^2} \frac{3i}{4\pi^2} \int_0^1 dx \left[1 - \frac{p^2}{m_t^2} x (1-x) \right] \end{split} \\ &= -\frac{3m_t^4}{v^2} \frac{3i}{4\pi^2} \int_0^1 dx \left[1 - \frac{p^2}{m_t^2} x (1-x) \right] \\ &= -\frac{3m_t^4}{v^2} \frac{3i}{4\pi^2} \int_0^1 dx \left[1 - \frac{p^2}{m_t^2} x (1-x) \right] \\ &= -\frac{3m_t^4}{v^2} \frac{3i}{4\pi^2} \int_0^1 dx \left[1 - \frac{p^2}{m_t^2} x (1-x) \right] \\ &= -\frac{3m_t^4}{v^2} \frac{3i}{4\pi^2} \int_0^1 dx \left[1 - \frac{p^2}{m_t^2} x (1-x) \right] \\ &= -\frac{3m_t^4}{v^2} \frac{3i}{4\pi^2} \int_0^1 dx \left[1 - \frac{p^2}{m_t^2} x (1-x) \right] \\ &= -\frac{3m_t^4}{v^2} \frac{3i}{4\pi^2} \int_0^1 dx \left[1 - \frac{p^2}{m_t^2} x (1-x) \right] \\ &= -\frac{3m_t^4}{v^2} \frac{3i}{4\pi^2} \int_0^1 dx \left[1 - \frac{p^2}{m_t^2} x (1-x) \right] \\ &= -\frac{3m_t^4}{v^2} \frac{3i}{4\pi^2} \int_0^1 dx \left[1 - \frac{p^2}{m_t^2} x (1-x) \right] \\ &= -\frac{3m_t^4}{v^2} \frac{3i}{4\pi^2} \int_0^1 dx \left[1 - \frac{p^2}{m_t^2} x (1-x) \right] \\ &= -\frac{3m_t^4}{v^2} \frac{3i}{4\pi^2} \int_0^1 dx \left[1 - \frac{p^2}{m_t^2} x (1-x) \right] \\ &= -\frac{3m_t^4}{v^2} \frac{3i}{4\pi^2} \int_0^1 dx \left[1 - \frac{p^2}{m_t^2} x (1-x) \right] \\ &= -\frac{3m_t^4}{v^2} \frac{3i}{4\pi^2} \int_0^1 dx \left[1 - \frac{p^2}{m_t^2} x (1-x) \right] \\ &= -\frac{3m_t^4}{v^2} \frac{3i}{4\pi^2} \int_0^1 dx \left[1 - \frac{p^2}{m_t^2} x (1-x) \right] \\ &= -\frac{3m_t^4}{v^2} \frac{3i}{4\pi^2} \int_0^1 dx \left[1 - \frac{p^2}{m_t^2} x (1-x) \right] \\ &= -\frac{3m_t^4}{v^2} \frac{3i}{4\pi^2} \int_0^1 dx \left[1 - \frac{p^2}{m_t^2} x (1-x) \right] \\ &= -\frac{3m_t^4}{v^2} \frac{3i}{4\pi^2} \int_0^1 dx \left[1 - \frac{p^2}{m_t^2} x (1-x) \right] \\ &= -\frac{3m_t^4}{v^2} \frac{3i}{4\pi^2} \int_0^1 dx \left[1 - \frac{p^2}{m_t^2} x (1-x) \right] \\ &= -\frac{3m_t^4}{v^2} \frac{3i}{4\pi^2} \int_0^1 dx \left[1 - \frac{p^2}{m_t^2} x (1-x) \right] \\ &= -\frac{3m_t^4}{v^2} \frac{3i}{4\pi^2} \int_0^1 dx \left[1 - \frac{p^2}{m_t^2} x (1-x) \right] \\ &= -\frac{3m_t^4}{v^2} \frac{3i}{4\pi^2} \int_0^1 dx \left[1 - \frac{p^2}{m_t^2} x (1-x) \right] \\ &= -\frac{3m_t^4}{v^2} \frac{3i}{4\pi^2} \left[\frac{m_t^2}{v^2} \right] \\ &= -\frac{3m_t^4}{v^2} \frac{3i}{4\pi^2} \left[\frac{m_t^2}{v^2} \left[\frac{m_t^2}{v^2} \right] \\ &= -\frac{3m_t^4}{v^2} \frac{3i}{4\pi^2} \left[\frac{m_t^2}{v^2} \right] \\ &= -\frac{3m_t^4}{v^2} \frac{3i}{4\pi^2} \left[\frac{m_t^2$$ $=\frac{m_V^4}{v^2s_V}\frac{3i}{2\pi^2}\int_0^1 dx \left(\left[\frac{1}{2}-\frac{p^2}{m_V^2}(x-x^2+\frac{1}{12})\right]\right)$ $+\frac{p^4}{m_V^4}\frac{x(1-x)(20x-20x^2-1)}{12}\Big]\log\frac{\mu^2}{m_V^2-x(1-x)p^2}$ $+\frac{1}{12}-\frac{p^2(22x(1-x)-1)}{12m_{\perp}^2}-\frac{p^4x(1-x)(-21x(1-x)+1)}{12m_{\perp}^4}$

Power-law divergences are OK in UV-free scheme!

IV. Graviton loop in Einstein gravity

Huge Devil (Gravity)

$$S = \int d^4 X \sqrt{-g} \left[-\frac{2}{\kappa^2} R + \mathcal{L}_{\mathrm{M}} \right] \quad g_{\mu\nu} = \eta_{\mu\nu} + \kappa h_{\mu\nu}$$



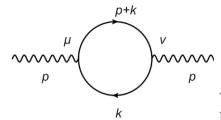
Plan B:

Another alternative method UV-free scheme

For the primary antiderivative ξ -dependent choice

$$\mathcal{T}_{\mathbf{P}}^{t2n} = A \left[\frac{(\xi + \Delta)^n}{n!} (\log |\xi + \Delta| - (\sum_{l=1}^n \frac{1}{l})) \right]_{\xi \to 0} + C_1$$

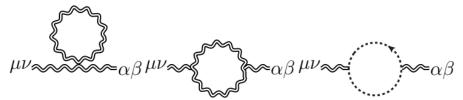
$$= A \frac{\Delta^n}{n!} \log |\Delta| + C.$$



$$\mathcal{T}_{P}^{\mu\nu} = -\frac{ie^2}{2\pi^2} \int_0^1 dx (p^{\mu}p^{\nu} - g^{\mu\nu}p^2) x (1-x) \times \log(m^2 - p^2 x (1-x)) + C^{\mu\nu},$$

with the Ward identity automatically preserved by the primary antiderivative.

One-loop propagator



The $\mu\nu \leftrightarrow \alpha\beta$ asymmetry involved at one-loop level in a particle propagation means that time reversal is not invariant in quantum gravity, i.e. an arrow of time at the microscopic level.

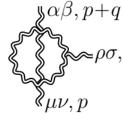
$$\begin{split} \mathcal{T}_{\mathrm{P}}^{b} &= \frac{(2i\kappa)^{2}}{2} \frac{i}{16\pi^{2}} \int_{0}^{1} \! dx (-\frac{1}{4}) \Big\{ \frac{1}{16} [40x^{2}(1-x)^{2}p^{\mu}p^{\nu}p^{\alpha}p^{\beta} \\ &+ 2p^{2}((1-2x)^{2}(15x^{2}-15x-2)(p^{\mu}p^{\nu}\eta^{\alpha\beta}+p^{\alpha}p^{\beta}\eta^{\mu\nu}) \\ &+ (10x^{4}-20x^{3}+17x^{2}-7x+2)(p^{\nu}p^{\beta}\eta^{\mu\alpha}+p^{\mu}p^{\beta}\eta^{\nu\alpha} \\ &+ p^{\nu}p^{\alpha}\eta^{\mu\beta}+p^{\mu}p^{\alpha}\eta^{\nu\beta})) + p^{4}((115x^{4}-230x^{3}+103x^{2} \\ &+ 12x+1)\eta^{\mu\nu}\eta^{\alpha\beta} + (85x^{4}-170x^{3}+139x^{2}-54x+3) \\ &\times (\eta^{\mu\alpha}\eta^{\nu\beta}+\eta^{\mu\beta}\eta^{\nu\alpha}))] \log \frac{1}{-p^{2}x(1-x)} \Big\} + C_{b}^{\mu\nu\alpha\beta} \, . \end{split}$$

$$\mathcal{T}_{\mathrm{P}}^{c} = (-1)(i\kappa)^{2} \frac{4i}{16\pi^{2}} \int_{0}^{1} dx (-\frac{1}{4}) \left\{ \frac{1}{4} [4(4x^{4} - 8x^{3} + 2x^{2} + 2x + 1)p^{\mu}p^{\nu}p^{\alpha}p^{\beta} + p^{2}((8x^{4} - 16x^{3} + 4x^{2} + 4x - 1) \times (p^{\nu}p^{\beta}\eta^{\mu\alpha} + p^{\mu}p^{\beta}\eta^{\nu\alpha} + p^{\nu}p^{\alpha}\eta^{\mu\beta} + p^{\mu}p^{\alpha}\eta^{\nu\beta}) + 2x(14x^{3} - 24x^{2} + 13x - 4)p^{\mu}p^{\nu}\eta^{\alpha\beta} + 2p^{\alpha}p^{\beta}\eta^{\mu\nu} \times (14x^{4} - 32x^{3} + 25x^{2} - 6x - 1)) + p^{4}(2x(11x^{3} - 22x^{2} + 13x - 2)(\eta^{\mu\alpha}\eta^{\nu\beta} + \eta^{\mu\beta}\eta^{\nu\alpha}) + (12x^{4} - 24x^{3} + 16x^{2} - 4x + 1)\eta^{\mu\nu}\eta^{\alpha\beta})] \log \frac{1}{-p^{2}x(1 - x)} \right\} + C_{c}^{\mu\nu\alpha\beta},$$

n-loop with overlapping divergences

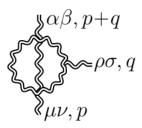
$$\mathcal{T}_{\mathbf{P}}^{t2n} = A \frac{\Delta^n}{n!} \log|\Delta| + C$$

superficial degree of divergence
$$2n+2$$
 $\mathcal{T}_{P}^{t2n} = A \frac{\Delta^n}{n!} \log |\Delta| + C$ $\mathcal{T}_{P}^{total} = \mathcal{T}_{P}^{t2(n+1)} + \mathcal{T}_{P}^{t2n} + \cdots + \mathcal{T}_{P}^{t2} + \mathcal{T}_{P}^{t2n} + \cdots + \mathcal{T}_{P}^{t2n} +$



Here Δ_0 is $\Delta_0 = b^2 - ac$, with a = z + (1-z)x(x-1), b = yzq + (1-z)x(x-1)p, $c = yzq^2 + (1-z)x(x-1)p^2$. A_3, A_2, A_1, A_0 are coefficients related to sextic, quartic, quadratic, logarithmic divergence inputs respectively.

arXiv: 2403.09487



$$A_{3} = \frac{z-1}{64a^{8}} \left([440a^{2} + a(1564x^{2} + 1300x + 23)(z-1) \right)$$

$$+4(281x^{4} - 562x^{3} + 683x^{2} - 402x + 273)(z-1)^{2}]$$

$$\times \eta^{\mu\nu} (\eta^{\alpha\rho}\eta^{\beta\sigma} + \eta^{\alpha\sigma}\eta^{\beta\rho}) + [744a^{2} + a(1932x^{2} + 44x + 1203)(z-1) + 4(297x^{4} - 594x^{3} + 1563x^{2} - 1266x + 673)(z-1)^{2}] \eta^{\rho\sigma} (\eta^{\alpha\nu}\eta^{\beta\mu} + \eta^{\alpha\mu}\eta^{\beta\nu}) + [440a^{2} + a(1564x^{2} - 1100x + 2423)(z-1) + 4(281x^{4} - 562x^{3} + 683x^{2} - 402x + 273)(z-1)^{2}] \eta^{\alpha\beta} (\eta^{\mu\rho}\eta^{\nu\sigma} + \eta^{\mu\sigma}\eta^{\nu\rho}) + [1032a^{2} + a(3396x^{2} - 3020x + 801)$$

$$\times (z-1) + 4(591x^{4} - 1182x^{3} + 1101x^{2} - 510x + 215)$$

$$\times (z-1)^{2}] (\eta^{\alpha\rho}\eta^{\beta\nu}\eta^{\mu\sigma} + \eta^{\alpha\nu}\eta^{\beta\rho}\eta^{\mu\sigma} + \eta^{\alpha\nu}\eta^{\beta\sigma}\eta^{\mu\rho} + \eta^{\alpha\sigma}\eta^{\beta\nu}\eta^{\mu\rho} + \eta^{\alpha\rho}\eta^{\beta\mu}\eta^{\nu\sigma} + \eta^{\alpha\mu}\eta^{\beta\rho}\eta^{\nu\sigma} + \eta^{\alpha\mu}\eta^{\beta\sigma}\eta^{\nu\rho} + \eta^{\alpha\sigma}\eta^{\beta\mu}\eta^{\nu\rho}) + [1696a^{2} + a(4844x^{2} + 848x + 4147)$$

$$\times (z-1) + 4(787x^{4} - 1574x^{3} + 2521x^{2} - 1734x + 795)(z-1)^{2}] \eta^{\alpha\beta}\eta^{\mu\nu}\eta^{\rho\sigma} \right).$$

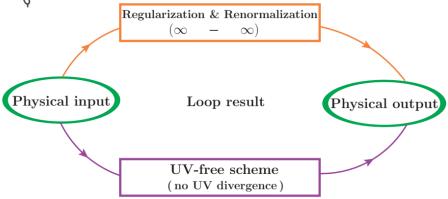
Parameter A_0 (l = p + q)In the case of $p^2 = l^2 = 0$, the result is

 $A_0 = -\frac{(z-1)^3}{64\sigma^8} \left\{ 16y^3z^3[a^3(8x^2-8x+7) - 2a^2(4x^4-8x^3+16x^2-12x+11)yz + a(14x^4-28x^3+53x^2-39x+28)y^2z^2 + a(14x^4-28x^3+53x^2-39x+28)y^2z^2 + a(14x^4-28x^3+36x^2-39x+28)y^2z^2 + a(14x^4-3x^2+36x^2-$

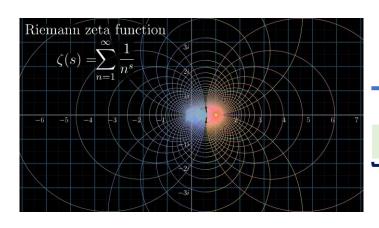
 $-14(x^2 - x + 1)^2 y^3 z^3 |q^{\alpha} q^{\beta} q^{\mu} q^{\nu} q^{\rho} q^{\sigma} - 8 y^2 z^2 |q^4 (6 - 9x + 9x^2) + a^2 (x - 1)x(47 - 75x + 83x^2 - 16x^3 + 8x^4)y(1 - z)z$ $-41x^2)(1-z) + (-7 + 14x - 6x^2 - 16x^3 + 8x^4)yz)[(p^{\rho}q^{\alpha}q^{\beta}q^{\mu}q^{\nu}q^{\sigma} + p^{\sigma}q^{\alpha}q^{\beta}q^{\mu}q^{\nu}q^{\sigma}) + 8y^2z^2[a^4(7 - 9x + 9x^2) - 28x^2]$ $-28x^{4}yz) + a^{3}((x - 1)x(-3 + 29x - 29x^{2})(1 - z) + (-7 - 9x + x^{2} + 16x^{3} - 8x^{4})yz) + a^{2}yz((x - 1)x(-9 - 21x + 13x^{2} + 16x^{2} - 16x^{2})x^{2}) + a^{2}yz((x - 1)x(-9 - 21x + 13x^{2} + 16x^{2} - 16x^{2})x^{2}) + a^{2}yz((x - 1)x(-9 - 21x + 13x^{2} + 16x^{2} - 16x^{2})x^{2}) + a^{2}yz((x - 1)x(-9 - 21x + 13x^{2} + 16x^{2} - 16x^{2})x^{2}) + a^{2}yz((x - 1)x(-9 - 21x + 13x^{2} + 16x^{2} - 16x^{2})x^{2}) + a^{2}yz((x - 1)x(-9 - 21x + 13x^{2} + 16x^{2} - 16x^{2})x^{2}) + a^{2}yz((x - 1)x(-9 - 21x + 13x^{2} + 16x^{2} - 16x^{2})x^{2}) + a^{2}yz((x - 1)x(-9 - 21x + 13x^{2} + 16x^{2} - 16x^{2})x^{2}) + a^{2}yz((x - 1)x(-9 - 21x + 13x^{2} + 16x^{2} - 16x^{2})x^{2}) + a^{2}yz((x - 1)x(-9 - 21x + 13x^{2} + 16x^{2} - 16x^{2})x^{2}) + a^{2}yz((x - 1)x(-9 - 21x + 13x^{2} + 16x^{2} - 16x^{2})x^{2}) + a^{2}yz((x - 1)x(-9 - 21x + 13x^{2} + 16x^{2})x^{2}) + a^{2}yz((x - 1)x(-9 - 21x + 13x^{2} + 16x^{2})x^{2}) + a^{2}yz((x - 1)x(-9 - 21x + 13x^{2} + 16x^{2})x^{2}) + a^{2}yz((x - 1)x(-9 - 21x + 13x^{2} + 16x^{2})x^{2}) + a^{2}yz((x - 1)x(-9 - 21x + 13x^{2})x^{2}) + a^{2}yz((x - 1)x(-9$ $+16x^3 - 8x^4$) $(1-z) + (12 - 17x + 37x^2 - 40x^3 + 20x^4)yz$) $[(p^3 g^\alpha g^\mu g^\nu g^\rho g^\sigma + p^\alpha g^\beta g^\mu g^\nu g^\rho g^\sigma) - 4yz$] $[2a^5 + 56(x-1)^2]$ $\times x^{2}(1-x+x^{2})^{2}y^{3}(1-z)^{2}z^{3}-a^{4}(9(x-1)x(1-z)+2(3-7x+7x^{2})yz)+2a(x-1)xy^{2}(1-z)z^{2}((x-1)x(-35+29x+7x^{2})yz)+2a(x-1)xy^{2}(1-z)z^{2}(x-1)x(-35+29x+7x^{2})yz+2a(x-1)xy^{2}(1-z)z^{2}(x-1)x(-35+29x+7x^{2})yz+2a(x-1)xy^{2}(1-z)z^{2}(x-1)x(-35+29x+7x^{2})yz+2a(x-1)xy^{2}(1-z)z^{2}(x-1)x(-35+29x+7x^{2})yz+2a(x-1)xy^{2}(1-z)z^{2}(x-1)x(-35+29x+7x^{2})yz+2a(x-1)xy^{2}(1-z)z^{2}(x-1)x(-35+29x+7x^{2})yz+2a(x-1)xy^{2}(1-z)z^{2}(x-1)x(-35+29x+7x^{2})yz+2a(x-1)xy^{2}(1-z)z^{2}(x-1)x(-35+29x+7x^{2})yz+2a(x-1)xy^{2}(x-1)x(-35+29x+7x^{2})yz+2a(x-1)xy^{2}(x-1)x(-35+29x+7x^{2})yz+2a(x-1)xy^{2}(x-1)x(-35+29x+7x^{2})yz+2a(x-1)xy^{2}(x-1)x(-35+29x+7x^{2})yz+2a(x-1)xy^{2}(x-1)x(-35+29x+7x^{2})yz+2a(x-1)xy^{2}(x-1)x(-35+29x+7x^{2})yz+2a(x-1)xy^{2}(x-1)x(-35+29x+7x^{2})yz+2a(x-1)xy^{2}(x-1)x(-35+29x+7x^{2})yz+2a(x-1)x(-35+29x+7x^{2})yz+2a(x-1)x(-35+29x+7x^{2})yz+2a(x-1)x(-35+29x+7x^{2})yz+2a(x-1)x(-35+29x+7x^{2})x(-35+29x+7x^{2})x(-35+29x+7x^{2})x(-35+29x+7x^{2})x(-35+29x+7x^{2})x(-35+29x+7x^{2})x(-35+29x+7x^{2})x(-35+29x+7x^{2})x(-35+29x+7x^{2})x(-35+29x+7x^{2})x(-35+29x+7x^{2})x(-35+29x+7x^{2})x(-35+29x+7x^{2})x(-35+29x+7x^{2})x(-35+29x+7x^{2})x(-35+29x+7x^{2})x(-35+29x+7x^{2})x(-35+29x+7x^{2})x(-35+29x+7x^{2})x(-35+29x+7x^{2})x(-35+29x+7x^{2})x(-35+29x+7x^{2})x(-35+29x+7x^{2})x(-35+29x+7x^{2})x(-35+29x+7x^{2})x(-35+29x+7x^{2})x(-35+29x+7x^{2})x(-35+29x+7x^{2})x(-35+29x+7x^{2})x(-35+29x+7x^{2})x(-35+29x+7x^{2})x(-35+29x+7x^{2})x(-35+29x+7x^{2})x(-35+29x+7x^{2})x(-35+29x+7x^{2})x(-35+29x+7x^{2})x(-35+29x+7x^{2})x(-35+29x+7x^{2})x(-35+29x+7x^{2})x(-35+29x+7x^{2})x(-35+29x+7x^{2})x(-35+29x+7x^{2})x(-35+29x+7x^{2})x(-35+29x+7x^{2})x(-35+29x+7x^{2})x(-35+29x+7x^{2})x(-35+29x+7x^{2})x(-35+29x+7x^{2})x(-35+29x+7x^{2})x(-35+29x+7x^{2})x(-35+29x+7x^{2})x(-35+29x+7x^{2})x(-35+29x+7x^{2})x(-35+29x+7x^{2})x(-35+29x+7x^{2})x(-35+29x+7x^{2})x(-35+29x+7x^{2})x(-35+29x+7x^{2})x(-35+29x+7x^{2})x(-35+29x+7x^{2})x(-35+29x+7x^{2})x(-35+29x+7x^{2})x(-35+29x+7x^{2})x(-35+29x+7x^{2})x(-35+29x+7x^{2})x(-35+29x+7x^{2})x(-35+29x+7x^{2})$ $-17x^2 - 24x^3 + 12x^4)(1-z) + (14 - 45x + 73x^2 - 56x^3 + 28x^4)yz) + a^2(x-1)xy(1-z)z(10(x-1)x(5-6x+6x^2)) + a^2(x-1)xy(1-z)z(10(x-2)x(1-z)z(10(x-2)x(1-z)z(10(x-2)x(1-z)z(10(x-2)x(1-z)z(10(x-2)x(1-z)z(10(x-2)x(1-z)z(10(x-2)x(1-z)z(10(x-2)x(1-z)z(10(x-2)x(1-z)z(10(x-2)x(1-z)z(10(x-2)x(1-z)z(10(x-2)x(1-z)z(10(x-2)x(1-z)z(10(x-2)x(1-z)z(10(x-2)x(1-z)z(10(x-2)x(1-z)z(10(x-2)x(1-z)z(10(x-2)x(1-z)z(10(x-2)x(1-z)z(10(x-2)x(1-z)z(10(x-2)x(1-z)z(10(x-2)x(1-z)z(10(x-2)x(1-z)z(10(x-2)x(1-z)z(10(x-2)x(1-z)z(10(x-2)x(1-z)z(10(x-2)x(1-z)z(10(x-2)x(1-z)z(10(x-2)x(1-z)z(10(x-2)x(1-z)z(10(x-2)x(1-z)z(10(x-2)x(1-z)z(10(x-2)x(1-z)z(10(x-2)x(1-z)z(10(x-2)x(1-z)z(10(x-2)x(1-z)z(10(x-2)x(1-z)z(10(x-2)x(1-z)z(10(x-2)x(1-z)z(10(x-2)x(1-z)z(10(x-2)x(1-z)z(10(x-2)x(1-z)z(10(x-2$ $\times(1-z) + (-38 + 31x + 9x^2 - 80x^3 + 40x^4)yz) + 2a^3(-3(x-1)^2x^2(1-z)^2 + (x-1)x(17 - 18x + 18x^2)y(1-z)z$ $+6x^{2}) + 28(x - 1)^{2}x^{2}(1 - x + x^{2})^{2}y^{3}(1 - z)^{2}z^{3} + 2a^{4}((x - 1)x(7 - x + x^{2})(1 - z) + (-21 + 34x - 30x^{2} - 8x^{3} + 4x^{4})$ $\times yz$) + 2a(x - 1)xy²(1 - z)z²(3(x - 1)x(-7 + 6x - 2x² - 8x³ + 4x⁴)(1 - z) + (14 - 45x + 73x² - 56x³ + 28x⁴)yz) $+a^{3}(2(x-1)^{2}x^{2}(3+2x-2x^{2})(1-z)^{2}+(x-1)x(-47+107x-91x^{2}-32x^{3}+16x^{4})y(1-z)z+(53-50x+30x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}+32x^{2}$ $+40x^{3} - 20x^{4})y^{2}z^{2}) + a^{2}yz((x-1)^{2}x^{2}(-30 + 87x - 79x^{2} - 16x^{3} + 8x^{4})(1-z)^{2} + (x-1)x(11 - 30x + 34x^{2} - 8x^{3})x^{2} + 3x^{2}x^{2} + 3x^{$ $+4x^{4})y(1-z)z + 2(-8-11x+25x^{2}-28x^{3}+14x^{4})y^{2}z^{2})|p^{\alpha}p^{\beta}q^{\mu}q^{\nu}q^{\rho}q^{\sigma}-8[a^{6}+28(x-1)^{3}x^{3}(1-x+x^{2})^{2}y^{3}(1-z)^{3}+2(x-1)^{3}x^{3}(1-x+x^{2})^{2}y^{3}(1-z)^{3}+2(x-1)^{3}x^{3}(1-x+x^{2})^{2}y^{3}(1-z)^{3}+2(x-1)^{3}x^{3}(1-x+x^{2})^{2}y^{3}(1-z)^{3}+2(x-1)^{3}x^{3}(1-x+x^{2})^{2}y^{3}(1-z)^{3}+2(x-1)^{3}x^{3}(1-x+x^{2})^{2}y^{3}(1-z)^{3}+2(x-1)^{3}x^{3}(1-x+x^{2})^{2}y^{3}(1-z)^{3}+2(x-1)^{3}x^{3}(1-x+x^{2})^{2}y^{3}(1-z)^{3}+2(x-1)^{3}x^{3}(1-x+x^{2})^{2}y^{3}(1-z)^{3}+2(x-1)^{3}x^{3}(1-x+x^{2})^{2}y^{3}(1-z)^{3}+2(x-1)^{3}x^{3}(1-x+x^{2})^{2}y^{3}(1-z)^{3}+2(x-1)^{3}x^{3}(1-x+x^{2})^{2}y^{3}(1-z)^{3}+2(x-1)^{3}x^{3}(1-x+x^{2})^{2}y^{3}(1-z)^{3}+2(x-1)^{3}x^{3}(1-x+x^{2})^{2}y^{3}(1-z)^{3}+2(x-1)^{3}x^{3}(1-x+x^{2})^{2}y^{3}(1-z)^{3}+2(x-1)^{3}x^{3}(1-x+x^{2})^{2}y^{3}(1-z)^{3}+2(x-1)^{3}x^{3}(1-x+x^{2})^{2}y^{3}(1-z)^{3}+2(x-1)^{3}x^{3}(1-x+x^{2})^{2}y^{3}(1-z)^{3}+2(x-1)^{3}x^{3}(1-x+x^{2})^{2}y^{3}(1-z)^{3}+2(x-1)^{3}x^{3}(1-x+x^{2})^{2}y^{3}(1-z)^{3}+2(x-1)^{3}x^{3}(1-x+x^{2})^{2}y^{3}(1-z)^{3}+2(x-1)^{3}x^{3}(1-x+x^{2})^{2}y^{3}(1-x+x^{2})^{2}+2(x-1)^{3}x^{3}(1-x+x^{2})^{2}+2(x-1)^{3}x^{3}(1-x+x^{2})^{2}+2(x-1)^{3}x^{3}(1-x+x^{2})^{2}+2(x-1)^{3}x^{3}(1-x+x^{2})^{2}+2(x-1)^{3}x^{3}(1-x+x^{2})^{2}+2(x-1)^{3}x^{3}(1-x+x^{2})^{2}+2(x-1)^{3}x^{3}(1-x+x^{2})^{2}+2(x-1)^{3}x^{3}(1-x+x^{2})^{2}+2(x-1)^{3}x^{3}(1-x+x^{2})^{2}+2(x-1)^{3}x^{3}(1-x+x^{2})^{2}+2(x-1)^{3}x^{3}(1-x+x^{2})^{2}+2(x-1)^{3}x^{3}(1-x+x^{2})^{2}+2(x-1)^{3}x^{3}(1-x+x^{2})^{2}+2(x-1)^{3}x^{3}(1-x+x^{2})^{2}+2(x-1)^{3}x^{3}(1-x+x^{2})^{2}+2(x-1)^{3}x^{3}(1-x+x^{2})^{2}+2(x-1)^{3}x^{3}(1-x+x^{2})^{2}+2(x-1)^{3}x^{3}(1-x+x^{2})^{2}+2(x-1)^{3}x^{3}(1-x+x^{2})^{2}+2(x-1)^{3}x^{3}(1-x+x^{2})^{2}+2(x-1)^{3}x^{3}(1-x+x^{2})^{2}+2(x-1)^{3}x^{3}(1-x+x^{2})^{2}+2(x-1)^{3}x^{3}(1-x+x^{2})^{2}+2(x-1)^{3}x^{3}(1-x+x^{2})^{2}+2(x-1)^{3}x^{3}(1-x+x^{2})^{2}+2(x-1)^{3}x^{3}(1-x+x^{2})^{2}+2(x-1)^{3}x^{3}(1-x+x^{2})^{2}+2(x-1)^{3}x^{3}(1-x+x^{2})^{2}+2(x-1)^{3}x^{3}(1-x+x^{2})^{2}+2(x-1)^{3}x^{3}(1-x+x^{2})^{2}+2(x-1)^{3}x^{3}$ $\times z^3 + a^5(2(x-1)x(1-x+x^2)(1-z) + (-2-5x+5x^2)yz) + 2a(x-1)^2x^2y^2(1-z)^2z^2((x-1)x(-14+4x+15x^2)) + 2a(x-1)^2x^2y^2(1-z)^2((x-1)x(-14+4x+15x^2)) + 2a(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2(x-1)^2x^2($ $-38x^{3} + 19x^{4})(1 - z) + (14 - 45x + 73x^{2} - 56x^{3} + 28x^{4})yz) + a^{4}((1 - 2x)^{2}(x - 1)^{2}x^{2}(1 - z)^{2} + (x - 1)x(7 - 8x + 8x^{2})x^{2}) + a^{4}(1 - 2x)^{2}(1 - z)^{2}x^{2} + (x - 1)x(7 - 8x + 8x^{2})x^{2} + (x$ $\times y(1-z)z + (1+8x-16x^3+8x^4)y^2z^2 + a^2(x-1)xy(1-z)z((x-1)^2x^2(-1+12x-12x^2)(1-z)^2 + 3(x-1)x$ $\times(-1 - 11x + 39x^2 - 56x^3 + 28x^4)y(1 - z)z + 2(-8 - 11x + 25x^2 - 28x^3 + 14x^4)y^2z^2) + a^3(x - 1)x(1 - z)(2(x - 1)^2)$ $+p^{\alpha}p^{\beta}p^{\sigma}q^{\mu}q^{\nu}q^{\rho}) + 8y^{2}z^{2}[8a^{4}(1-2x+2x^{2})-28(x-1)x(1-x+x^{2})^{2}y^{3}(1-z)z^{3} + ay^{2}z^{2}((x-1)x(49-88x+142x^{2})+3x^{2}y^{2})]$ $-108x^{3} + 54x^{4})(1-z) + (-14 + 45x - 73x^{2} + 56x^{3} - 28x^{4})yz) + a^{3}(12(x-1)x(1-x+x^{2})(1-z) + (-31 + 88x - 104x^{2})x^{2} + 6x^{2} + 6x^{2}$ $+32x^3 - 16x^4yz + 2a^2yz((x-1)x(-16 + 21x - 29x^2 + 16x^3 - 8x^4)(1-z) + (17 - 51x + 69x^2 - 36x^3 + 18x^4)yz]$ $\times (p^{\nu} g^{\alpha} g^{\beta} g^{\mu} g^{\rho} g^{\sigma} + p^{\mu} g^{\alpha} g^{\beta} g^{\nu} g^{\rho} g^{\sigma}) - 4yz[2a^{5}(6-11x+11x^{2}) + 56(x-1)^{2}x^{2}(1-x+x^{2})^{2}y^{3}(1-z)^{2}z^{3} + a^{2}(x-1)x^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}(1-z)^{2}y^{3}($ $\times y(1-z)z((x-1)x(68-113x+129x^2-32x^3+16x^4)(1-z)+(-26+117x-213x^2+192x^3-96x^4)yz)+a^4((x-1)x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x^2+12x$ $\times x(-11 + 52x - 52x^2)(1 - z) + 2(-4 + 7x + x^2 - 16x^3 + 8x^4)yz) + 2a(x - 1)xy^2(1 - z)z^2(-5(-1 + x)x(7 - 12x + 20x^2))$ $-16x^3 + 8x^4$) $(1-z) + (14-45x+73x^2-56x^3+28x^4)yz) + a^3(-2(x-1)^2x^2(12-37x+37x^2)(1-z)^2 + (x-1)x^2(12-37x+37x^2)(1-z)^2 + (x-1)x^2(12-27x+37x^2)(1-z)^2 + (x-1)x^2(12-27x^2) + (x-1)x^2(12-27x^2)(1-z)^2 + (x-1)x^2(12$ $\times (27 - 31x + 63x^2 - 64x^3 + 32x^4)y(1 - z)z - 2(2 - 3x + 11x^2 - 16x^3 + 8x^4)y^2z^2)](p^{\nu}p^{\rho}q^{\alpha}q^{\beta}q^{\mu}q^{\sigma} + p^{\nu}p^{\sigma}q^{\alpha}q^{\beta}q^{\mu}q^{\rho})$ $+p^{\mu}p^{\rho}q^{\alpha}q^{\beta}q^{\nu}q^{\sigma}+p^{\mu}p^{\sigma}q^{\alpha}q^{\beta}q^{\nu}q^{\rho})-4yz[-6a^{5}(3-5x+5x^{2})+56(x-1)^{2}x^{2}(1-x+x^{2})^{2}y^{3}(1-z)^{2}z^{3}+a^{4}((x-1)x+x^{2})^{2}y^{3}(1-z)^{2}z^{3}+a^{4}((x-1)x+x^{2})^{2}y^{3}(1-z)^{2}z^{3}+a^{4}((x-1)x+x^{2})^{2}y^{3}(1-z)^{2}z^{3}+a^{4}((x-1)x+x^{2})^{2}y^{3}(1-z)^{2}z^{3}+a^{4}((x-1)x+x^{2})^{2}y^{3}(1-z)^{2}z^{3}+a^{4}((x-1)x+x^{2})^{2}y^{3}(1-z)^{2}z^{3}+a^{4}((x-1)x+x^{2})^{2}y^{3}(1-z)^{2}z^{3}+a^{4}((x-1)x+x^{2})^{2}y^{3}(1-z)^{2}z^{3}+a^{4}((x-1)x+x^{2})^{2}y^{3}(1-z)^{2}z^{3}+a^{4}((x-1)x+x^{2})^{2}y^{3}(1-z)^{2}z^{3}+a^{4}((x-1)x+x^{2})^{2}y^{3}(1-z)^{2}z^{3}+a^{4}((x-1)x+x^{2})^{2}y^{3}(1-z)^{2}z^{3}+a^{4}((x-1)x+x^{2})^{2}y^{3}(1-z)^{2}z^{3}+a^{4}((x-1)x+x^{2})^{2}y^{3}(1-z)^{2}z^{3}+a^{4}((x-1)x+x^{2})^{2}y^{3}+a^{4}((x-1)x+x^{2})^{2}y^{3}+a^{4}((x-1)x+x^{2})^{2}y^{3}+a^{4}((x-1)x+x^{2})^{2}y^{3}+a^{4}((x-1)x+x^{2})^{2}y^{3}+a^{4}((x-1)x+x^{2})^{2}y^{3}+a^{4}((x-1)x+x^{2})^{2}y^{3}+a^{4}((x-1)x+x^{2})^{2}y^{3}+a^{4}((x-1)x+x^{2})^{2}y^{3}+a^{4}((x-1)x+x^{2})^{2}y^{3}+a^{4}((x-1)x+x^{2})^{2}y^{3}+a^{4}((x-1)x+x^{2})^{2}y^{3}+a^{4}((x-1)x+x^{2})^{2}y^{3}+a^{4}((x-1)x+x^{2})^{2}y^{3}+a^{4}((x-1)x+x^{2})^{2}y^{3}+a^{4}((x-1)x+x^{2})^{2}y^{3}+a^{4}((x-1)x+x^{2})^{2}y^{3}+a^{4}((x-1)x+x^{2})^{2}y^{3}+a^{4}((x-1)x+x^{2})^{2}y^{3}+a^{4}((x-1)x+x^{2})^{2}y^{3}+a^{4}((x-1)x+x^{2})^{2}y^{3}+a^{4}((x-1)x+x^{2})^{2}y^{3}+a^{4}((x-1)x+x^{2})^{2}y^{3}+a^{4}((x-1)x+x^{2})^{2}y^{3}+a^{4}((x-1)x+x^{2})^{2}y^{3}+a^{4}((x-1)x+x^{2})^{2}y^{3}+a^{4}((x-1)x+x^{2})^{2}y^{3}+a^{4}((x-1)x+x^{2})^{2}y^{3}+a^{4}((x-1)x+x^{2})^{2}y^{3}+a^{4}((x-1)x+x^{2})^{2}y^{3}+a^{4}((x-1)x+x^{2})^{2}y^{3}+a^{4}((x-1)x+x^{2})^{2}y^{3}+a^{4}((x-1)x+x^{2})^{2}y^{3}+a^{4}((x-1)x+x^{2})^{2}y^{3}+a^{4}((x-1)x+x^{2})^{2}y^{3}+a^{4}((x-1)x+x^{2})^{2}y^{3}+a^{4}((x-1)x+x^{2})^{2}y^{3}+a^{4}((x-1)x+x^{2})^{2}y^{3}+a^{4}((x-1)x+x^{2})^{2}y^{3}+a^{4}((x-1)x+x^{2})^{2}y^{3}+a^{4}((x-1)x+x^{2})^{2}y^{3}+a^{4}((x-1)x+x^{2})^{2}y^{3}+a^{4}((x-1)x+x^{2})^{2}+a^{4}((x-1)x+x^{2})^{2}+a^{4}((x-1)x+x^{2})^{2}+a^{4}((x-1)x$ $\times (-11 - 32x + 32x^2)(1 - z) + 2(27 - 44x + 52x^2 - 16x^3 + 8x^4)yz) + 2a(x - 1)xy^2(1 - z)z^2((x - 1)x(-42 + 67x - 95x^2) + 2x^2(-12x^2 - 12x^2)x^2(-12x^2 - 12x^2 - 12x^2)x^2(-12x^2 - 12x^2 - 12x^2)x^2(-12x^2 - 12x^2 - 12x^2)x^2(-12x^2 - 12x^2 - 12x^2 - 12x^2)x^2(-12x^2 - 12x^2 +56x^3 - 28x^4$) $(1 - z) + 2(14 - 45x + 73x^2 - 56x^3 + 28x^4)yz) + a^2yz((x - 1)^2x^2(7 + 36x - 20x^2 - 32x^3 + 16x^4)(1 - z)^2$ $-8(x-1)x(13-29x+43x^2-28x^3+14x^4)y(1-z)z+4(10-21x+35x^2-28x^3+14x^4)y^2z^2)-2a^3((x-1)^2x^2(-3x^2-28x^3+14x^4)y^2z^2)-2a^3((x-1)^2x^2(-3x^2-28x^3+14x^4)y^2z^2)-2a^3((x-1)^2x^2(-3x^2-28x^3+14x^4)y^2z^2)-2a^3((x-1)^2x^2(-3x^2-28x^3+14x^4)y^2z^2)-2a^3((x-1)^2x^2(-3x^2-28x^3+14x^4)y^2z^2)-2a^3((x-1)^2x^2(-3x^2-28x^3+14x^4)y^2z^2)-2a^3((x-1)^2x^2(-3x^2-28x^3+14x^4)y^2z^2)-2a^3((x-1)^2x^2(-3x^2-28x^3+14x^4)y^2z^2)-2a^3((x-1)^2x^2(-3x^2-28x^3+14x^4)y^2z^2)-2a^3((x-1)^2x^2(-3x^2-28x^3+14x^4)y^2z^2)-2a^3((x-1)^2x^2(-3x^2-28x^3+14x^4)y^2z^2)-2a^3((x-1)^2x^2(-3x^2-28x^3+14x^4)y^2z^2)-2a^3((x-1)^2x^2(-3x^2-28x^3+14x^4)y^2z^2)-2a^3((x-1)^2x^2(-3x^2-28x^3+14x^4)y^2z^2)-2a^3((x-1)^2x^2(-3x^2-28x^3+14x^4)y^2z^2)-2a^3((x-1)^2x^2(-3x^2-28x^3+14x^4)y^2z^2)-2a^3((x-1)^2x^2(-3x^2-28x^3+14x^4)y^2z^2)-2a^3((x-1)^2x^2(-3x^2-28x^3+14x^4)y^2z^2)-2a^3((x-1)^2x^2(-3x^2-28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+28x^2+2$ $+31x - 31x^{2})(1-z)^{2} + (x-1)x(-21+17x-33x^{2}+32x^{3}-16x^{4})y(1-z)z + (35-57x+85x^{2}-56x^{3}+28x^{4})y^{2}z^{2})$ $\times (p^{\beta}p^{\nu}q^{\alpha}q^{\mu}q^{\rho}q^{\sigma} + p^{\alpha}p^{\nu}q^{\beta}q^{\mu}q^{\rho}q^{\sigma} + p^{\beta}p^{\mu}q^{\alpha}q^{\nu}q^{\rho}q^{\sigma} + p^{\alpha}p^{\mu}q^{\beta}q^{\nu}q^{\rho}q^{\sigma}) - 4[56(x-1)^{3}x^{3}(1-x+x^{2})^{2}y^{3}(1-z)^{3}z^{3} + 2a^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3}y^{3}(1-z)^{3$ $\times ((x-1)^2x^2(1-z) + (1-x+x^2)yz) - a^4(x-1)x(1-z)((x-1)x(1-z) + 4(x-1)x^2(1-z) - 4(x-1)x^3(1-z)$ $+73x^{2} - 56x^{3} + 28x^{4}yz$ + $a^{2}(x - 1)xy(1 - z)z((x - 1)^{2}x^{2}(37 - 41x + 41x^{2})(1 - z)^{2} - 2(x - 1)x(38 - 71x + 99x^{2})$ $-56x^3 + 28x^4)y(1-z)z + 4(10-21x+35x^2-28x^3+14x^4)y^2z^2) + a^3(x-1)x(1-z)((x-1)^2x^2(-5-2x+2x^2) + a^3(x-1)^2x(1-z)((x-1)^2x^2(-5-2x+2x^2) + a^3(x-1)^2x(1-z)((x-1)^2x^2(-5-2x+2x^2) + a^3(x-1)^2x(1-z)((x-1)^2x^2(-5-2x+2x^2) + a^3(x-1)^2x(1-z)((x-1)^2x^2(-5-2x+2x^2) + a^3(x-1)^2x(1-z)((x-1)^2x^2(-5-2x+2x^2) + a^3(x-1)^2x(1-z)((x-1)^2x^2(-5-2x+2x^2) + a^3(x-1)^2x(1-z)((x-1)^2x(1-z)(x-2x+2x^2) + a^3(x-1)^2x(1-z)(x-2x+2x^2) + a^3(x-1)^2x(1-z)(x-2x+2x^2) + a^3(x-1)^2x(1-x^2)(x-2x+2x^2) + a^3(x-1)^2x(1-x^2)(x-2x+2x^2) + a^3(x-1)^2x(1-x^2)(x-2x+2x^2) + a^3(x-1)^2x(1-x^2)(x-2x+2x^2) + a^3(x-2x+2x^2)(x-2x+2x^2) + a^3(x-2x+2x+2x^2)(x-2x+2x^2) + a^3(x-2x+2x^2)(x-2x+2x^2) + a^3(x-2x+2x^2) + a^3(x-2x+2$ $\times (1-z)^2 + 8(x-1)x(6-x+x^2)y(1-z)z - 2(25-36x+50x^2-28x^3+14x^4)y^2z^2) |(p^{\theta}p^{\nu}p^{\theta}q^{\sigma}+p^{\alpha}p^{\nu}p^{\rho}q^{\theta}q^{\theta}+p^{\alpha}p^{\nu}p^{\rho}q^{\theta}q^{\theta}+p^{\alpha}p^{\nu}p^{\rho}q^{\sigma}q^{\theta}q^{\sigma}+p^{\alpha}p^{\nu}p^{\rho}q^{\sigma}q^{\theta}q^{\sigma}+p^{\alpha}p^{\nu}p^{\rho}q^{\sigma}q^{\theta}q^{\sigma}+p^{\alpha}p^{\nu}p^{\rho}q^{\sigma}q^{\rho}q^{\sigma}+p^{\alpha}p^{\nu}p^{\rho}q^{\sigma}q^{\rho}q^{\sigma}+p^{\alpha}p^{\nu}p^{\rho}q^{\sigma}q^{\rho}q^{\sigma}+p^{\alpha}p^{\nu}p^{\rho}q^{\sigma}q^{\rho}q^{\sigma}+p^{\alpha}p^{\nu}p^{\rho}q^{\sigma}q^{\rho}q^{\sigma}+p^{\alpha}p^{\nu}p^{\rho}q^{\sigma}q^{\rho}q^{\sigma}+p^{\alpha}p^{\nu}p^{\rho}q^{\sigma}q^{\rho}q^{\sigma}+p^{\alpha}p^{\nu}p^{\rho}q^{\sigma}q^{\rho}q^{\sigma}+p^{\alpha}p^{\nu}p^{\rho}q^{\sigma}q^{\rho}q^{\sigma}+p^{\alpha}p^{\nu}p^{\rho}q^{\sigma}q^{\rho}q^{\sigma}+p^{\alpha}p^{\nu}p^{\rho}q^{\sigma}q^{\rho}q^{\sigma}+p^{\alpha}p^{\nu}p^{\rho}q^{\sigma}q^{\rho}q^{\sigma}+p^{\alpha}p^{\nu}p^{\rho}q^{\sigma}q^{\rho}q^{\sigma}+p^{\alpha}p^{\nu}p^{\rho}q^{\sigma}q^{\rho}q^{\sigma}+p^{\alpha}p^{\nu}p^{\rho}q^{\sigma}q^{\rho}q^{\sigma}+p^{\alpha}p^{\nu}p^{\rho}q^{\sigma}q^{\rho}q^{\sigma}+p^{\alpha}p^{\nu}p^{\rho}q^{\sigma}q^{\rho}q^{\sigma}+p^{\alpha}p^{\nu}p^{\rho}q^{\sigma}q^{\rho}q^{\sigma}+p^{\alpha}p^{\nu}p^{\rho}q^{\sigma}q^{\rho}q^{\sigma}+p^{\alpha}p^{\nu}p^{\rho}q^{\sigma}q^{\rho}q^{\sigma}+p^{\alpha}p^{\nu}p^{\rho}q^{\sigma}q^{\rho}q^{\sigma}+p^{\alpha}p^{\nu}p^{\rho}q^{\sigma}q^{\rho}q^{\sigma}+p^{\alpha}p^{\nu}q^{\sigma}q^{\rho}q^{\sigma}+p^{\alpha}p^{\nu}p^{\rho}q^{\sigma}q^{\rho}q^{\sigma}+p^{\alpha}p^{\nu}p^{\rho}q^{\sigma}q^{\rho}q^{\sigma}+p^{\alpha}p^{\nu}p^{\rho}q^{\sigma}q^{\rho}q^{\sigma}+p^{\alpha}p^{\nu}p^{\rho}q^{\sigma}q^{\rho}q^{\sigma}+p^{\alpha}p^{\nu}p^{\rho}q^{\sigma}q^{\rho}q^{\sigma}+p^{\alpha}p^{\nu}p^{\rho}q^{\sigma}q^{\rho}q^{\sigma}+p^{\alpha}p^{\nu}p^{\rho}q^{\sigma}q^{\rho}q^{\sigma}+p^{\alpha}p^{\nu}p^{\rho}q^{\sigma}q^{\rho}q^{\sigma}+p^{\alpha}p^{\nu}p^{\rho}q^{\sigma}q^{\rho}q^{\sigma}+p^{\alpha}p^{\nu}p^{\rho}q^{\sigma}q^{\rho}q^{\sigma}+p^{\alpha}p^{\nu}p^{\rho}q^{\sigma}q^{\rho}q^{\sigma}+p^{\alpha}p^{\nu}p^{\rho}q^{\sigma}q^{\rho}q^{\sigma}+p^{\alpha}p^{\nu}p^{\rho}q^{\sigma}q^{\rho}q^{\sigma}+p^{\alpha}p^{\nu}p^{\rho}q^{\sigma}q^{\rho}q^{\sigma}+p^{\alpha}p^{\nu}p^{\rho}q^{\sigma}q^{\rho}q^{\sigma}+p^{\alpha}p^{\nu}q^{\rho}q^{\sigma}+p^{\alpha}p^{\nu}q^{\rho}q^{\sigma}+p^{\alpha}p^{\nu}q^{\rho}q^{\sigma}+p^{\alpha}p^{\nu}q^{\rho}q^{\sigma}+p^{\alpha}p^{\nu}q^{\rho}q^{\sigma}+p^{\alpha}p^{\nu}q^{\rho}q^{\sigma}+p^{\alpha}p^{\nu}q^{\rho}q^{\sigma}+p^{\alpha}p^{\nu}q^{\rho}q^{\sigma}+p^{\alpha}p^{\nu}q^{\rho}q^{\sigma}+p^{\alpha}p^{\nu}q^{\rho}q^{\sigma}+p^{\alpha}p^{\nu}q^{\rho}q^{\sigma}+p^{\alpha}p^{\nu}q^{\rho}q^{\sigma}+p^{\alpha}p^{\nu}q^{\rho}q^{\rho}+p^{\alpha}q^{\rho}q^{\rho}+p^{\alpha}q^{\rho}q^{\rho}+p^{\alpha}q^{\rho}q^{\rho}+p^{\alpha}q^{\rho}q^{\rho}+p^{\alpha}q^{\rho}q^{\rho}+p^{\alpha}q^{\rho}q^{\rho}+p^{\alpha}q^{\rho}q^{\rho}+p^{\alpha}q^{\rho}q^{\rho}+p^{\alpha}q^{\rho}q^{\rho}+p^{\alpha}q^{\rho}+p^{\alpha}q^{\rho}+p^{\alpha}q^{\rho}+p^{\alpha}q^{\rho}+p^{\alpha}q^{\rho}+p^{\alpha}q^{\rho}+p^{\alpha}q^{\rho}+p^{\alpha}q^{\rho}+p^{\alpha}q^{\rho}+p^{\alpha}q^{\rho}+p^{\alpha}q^{\rho}+p^{\alpha}q^{\rho}+p^{\alpha}q^{\rho}+p^{\alpha}q^{\rho}+p^{\alpha}q^{\rho}+p^{\alpha}q^{\rho}+p^{\alpha}q^{\rho}+p^{\alpha}q^{\rho}+p^{\alpha}q^{\rho}+p^{\alpha$ $+x^{2}$) $-56(x-1)^{3}x^{3}(1-x+x^{2})^{2}y^{3}(1-z)^{3}z^{3} + 2a^{5}((x-1)x(3-8x+8x^{2})(1-z) + (2-21x+13x^{2}+16x^{3}-8x^{4})$ $\times yz$) + 2a(x - 1)²x²y²(1 - z)²z²((x - 1)x(35 - 46x + 48x² - 4x³ + 2x⁴)(1 - z) - 3(14 - 45x + 73x² - 56x³ + 28x⁴) $\times yz$) + $a^{4}(4(x-1)^{2}x^{2}(1-5x+5x^{2})(1-z)^{2}+(x-1)x(61-104x+56x^{2}+96x^{3}-48x^{4})y(1-z)z+2(1+9x+19x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^{2}+3x^$ $-56x^3 + 28x^4 + y^2 z^2 - 2a^2(x - 1)xy(1 - z)z((x - 1)^2 x^2 - 29 + 75x - 67x^2 - 16x^3 + 8x^4)(1 - z)^2 + (x - 1)x(-35 + 66x^2 - 16x^3 + 8x^4)(1 - z)^2 + (x - 1)x(-35 + 66x^2 - 16x^3 + 8x^4)(1 - z)^2 + (x - 1)x(-35 + 66x^2 - 16x^3 + 8x^4)(1 - z)^2 + (x - 1)x(-35 + 66x^2 - 16x^3 + 8x^4)(1 - z)^2 + (x - 1)x(-35 + 66x^2 - 16x^3 + 8x^4)(1 - z)^2 + (x - 1)x(-35 + 66x^2 - 16x^3 + 8x^4)(1 - z)^2 + (x - 1)x(-35 + 66x^2 - 16x^3 + 8x^4)(1 - z)^2 + (x - 1)x(-35 + 66x^2 - 16x^3 + 8x^4)(1 - z)^2 + (x - 1)x(-35 + 66x^2 - 16x^2 + 16x^2 +$

21 pages

Why does the UV-free scheme still hold for power-law divergences?



Two alternative routes of concern



The hierarchy problem

(a) New particles (TeV) needed to cancel out UV contributions of loops to the Higgs mass

(b) An interpretation within SM

- (a) Equivalent transformation of the loop integral from UV divergence to UV divergence mathematically expressed form (regularization), with renormalization required to remove the UV divergence.
- (b) Analytic continuation of the transition amplitude from UV divergent \mathcal{T}_{F} to UV converged \mathcal{T}_{P} (the UV-free scheme here), without UV divergences in calculations.

UV-free scheme Analytic continuation

$$\mathcal{T}_{\mathrm{F}} \longrightarrow \mathcal{T}_{\mathrm{P}} = \left[\int (d\xi)^n \frac{\partial^n \mathcal{T}_{\mathrm{F}}(\xi)}{\partial \xi^n} \right]_{\xi \to 0} + C,$$

Finite input Tree level **Loop finite**

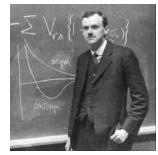
Originally well-defined

Loop Loop Λ^2 , Λ^4 , Λ^6 , ...

UV divergence input (continuation)

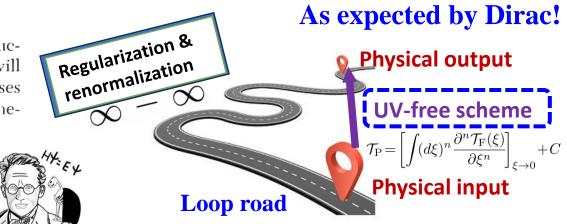
Verified

To be verified



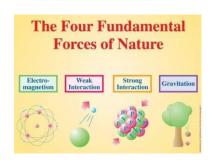
P. A. M. Dirac I believe the successes of the renormalization theory will be on the same footing as the successes of the Bohr orbit theory applied to one-electron problems.

 $\Delta x \cdot \Delta p \sim$



Schemes	Tree level	Loop finite	Loop Log	Loop Λ^2 , Λ^4 , Λ^6 ,
Regularization & renormalization $(\infty-\infty)$			OK	Problematic
UV-free scheme $(T_F -> T_P)$	ОК	OK	OK	OK

Both loops of the renormalizable Standard Model and non-renormalizable Einstein gravity being OK!



V. Summary and outlook

A. An alternative method --- UV-free scheme: Finite loop results obtained without UV divergences, the original γ^5 matrix, and effective for loop Log and power—law divergence inputs.

B. To the hierarchy problem of the 125 GeV Higgs, an alternative interpretation without fine-tuning within SM.

C. It is possible to incorporate Einstein gravity into the framework of QFT.

Outlook:

It is the beginning of a new alternative method.

Thank you!

ALL ROADS ROME

ROME

ROME

ROME ROME