Dec.8 - Dec.12 2024 / Nanjing, China

Machine learning-based line shape analysis of exotic hadron candidates

Denny Lane Sombillo

National Institute of Physics, University of the Philippines Diliman

LM Santos, VAA Chavez, DLBS, JPG (2025) 52 015104

DAO Co, VAA Chavez, DLBS, arXiv:2403.18265 Accepted in PRD

DLBS, Y Ikeda, T Sato, A Hosaka PRD 102 016024 (2020) DLBS, Y Ikeda, T Sato, A Hosaka Few-Body Syst. 62, 52 (2021)

DLBSombillo / 2024.12.09-12

East Asian Workshop on Exotic Hadrons 2024

East Asian Workshop on Exotic Hadrons 2024 — 东亚奇特强子态研讨会 — /

Hadron spectroscopy - line shape interpretation

- Many observations of possible new states.
- Some are near hadron-hadron thresholds.

Hadron spectroscopy - line shape interpretation

DLBSombillo / 2024.12.09-11

Deep learning: proof of principle

Benchmarked on the known nucleon-nucleon bound state Given only the s-wave cross section, the origin of enhancement can be unambiguously identified.

Use different (unitary, analytic) background to help DNN distinguish bound and virtual enhancements.

For near-threshold pole: $k \cot \delta \sim -1/a$ (constant)

$$|f(k)|^{-2} = |k \cot \delta - ik|^2 \sim \frac{1}{a^2} + k^2$$

Not possible to distinguish bound vs virtual pole enhancements.

S-matrix can have distant singularities on the unphysical sheet.

ds
$$S(k) = \exp\left[2i\delta_{bg}(k)\right]\frac{k+i\gamma}{k-i\gamma}; \quad \delta_{bg} = \alpha \tan^{-1}\left(\frac{1}{k}\right)$$

4

Deep learning: proof of principle

$$S(k) = \exp\left[2i\delta_{bg}(k)\right]\frac{k}{k}$$

DLBSombillo / 2024.12.09-11

East Asian Workshop on Exotic Hadrons 2024

DLBS, YI, TS, AH PRD 102 016024 (2020) DLBS, YI, TS, AH Few-Body Syst. 62, 52 (2021)

5

Kinematical vs Dynamical enhancements

inherently ambiguous.

2. Generate the training dataset Triangle singularity

- Pole of S-matrix
 - 1 pole in 2nd RS
 - 1 pole in 4th RS
 - 1 pole each in 2nd and 3rd RS

3. Design a set of DNN to solve the classification problem

DLBSombillo / 2024.12.09-11

ML framework

4. Train, test, and validate the DNN 5. Use the trained DNN to interpret the experimental data

(Single) Triangle mechanism

The amplitude has no singularity (no pole)

DLBSombillo / 2024.12.09-11

$$\frac{q^{2}f(q) dq}{p_{1}^{2} + q^{2} - \sqrt{m_{2}^{2} + q^{2}} + i\epsilon} \frac{M \text{ Bayar, F Ace}}{dz}$$

$$\frac{dz}{dz}$$

$$\frac{dz}{dz}$$

$$\frac{dz}{dz}$$

$$m_{C}^{2} \in \left[(m_{2}^{2} + m_{3}^{2})^{2}, \frac{M_{A}m_{3}^{2} - M_{B}^{2}m_{2}}{M_{A} - m_{2}} + M_{A}m_{2} \right]$$

No need to introduce new hadron to explain the enhancement.

Mass condition - crucial in generating mock dataset

(Single) Triangle mechanism

Good fit but with unrealistic $\Gamma \sim 1 {
m MeV}$ for $D_{
m c}^{**}$

 $D_s^{**-}(3288)$ Not in PDG

Other possible Triangle Mechanism

DLBSombillo / 2024.12.09-11

TS interpretation for the $P_{c\bar{c}}(4312)^+$ - ruled out LHCb, PRL 122 222001 (2019)

General S-matrix parametrization

$$S_{11}(p_1, p_2) = \prod_m \frac{D_m(-p_1, p_2)}{D_m(p_1, p_2)}$$

KJ Le Couteur, Proc. Roy. Soc (London) A256 (1960) RG Newton J. Math. Phys. 2, 188 (1961)

$$p_k \to q_k; \quad s = q_k^2 + \epsilon_k^2; \quad \omega = \frac{q_1 + q_2}{\sqrt{\epsilon_2^2 - \epsilon_1^2}} \quad \frac{1}{\omega} = \frac{q_1}{\sqrt{\epsilon_2^2 - \epsilon_1^2}}$$

One pole per $D_m(q_1, q_2)$: ω_m

 $D_m(q_1, q_2) = D_m(\omega) \qquad \text{M Kato, Ann. Phys., 31 1 (1965)}$ $= \frac{1}{\omega^2} \left(\omega - \omega_m \right) \left(\omega + \omega_m^* \right) \left(\omega - \omega_{\bar{m}} \right) \left(\omega + \omega_{\bar{m}}^* \right)$

 $\omega_{\bar{m}}$ needed only to ensure $\lim_{\omega \to \infty} S_{11} \to 1;$

$$|\omega_m \omega_{\bar{m}}| = 1$$

- Poles are introduced independently.
- Cusp at the threshold can be controlled via pole placement.

LMS, DLBS PRC 108 045204 (2023)

General S-matrix parametrization

$$S_{11}(p_1, p_2) = \prod_m \frac{D_m(-p_1, p_2)}{D_m(p_1, p_2)}$$

KJ Le Couteur, Proc. Roy. Soc (Lo1.5RG Newton J. Math. Phys. 2, 18810

$$p_k \rightarrow q_k; \quad s = q_k^2 + \epsilon_k^2; \quad \omega = \frac{q_1 + q_2}{\sqrt{\epsilon_2^2 - \epsilon_1^2}}$$

One pole per $D_m(q_1, q_2)$: ω_m

 $D_m(q_1, q_2) = D_m(\omega) \qquad \text{M Kato, Ann. Phys., 31 1 (1965)}$ $= \frac{1}{\omega^2} \left(\omega - \omega_m \right) \left(\omega + \omega_m^* \right) \left(\omega - \omega_{\bar{m}} \right) \left(\omega + \omega_{\bar{m}}^* \right)$

 $\omega_{\bar{m}}$ needed only to ensure $\lim_{\omega \to \infty} S_{11} \to 1;$

$$|\omega_m \omega_{\bar{m}}| = 1$$

- Poles are introduced independently.
- Cusp at the threshold can be controlled via pole placement.

LMS, DLBS PRC 108 045204 (2023)

Sample training datasets

Triangle singularity

Parameter	Range of values [MeV]
$m_{\Lambda_b^0}$	5619.60 ± 0.17
m_{K^-}	493.677 ± 0.016
$m_{\Lambda_c^+}$	2286.46 ± 0.14
$m_{ar{D}^{st 0}}$	2006.85 ± 0.05
$m_{J/\psi}$	3096.9 ± 0.006
$m_{D_s^{stst}}$	$[3209.80,\ 3315.00]$
$m_{\Lambda}*$	[2490.00, 2522.70]
Λ	[2000.0, 2500.0]
ε	[1.0, 10.0]

Pole-based enhancements

 $T_2 - 50 \le \operatorname{Re} E_{\text{pole}} \le 4350$ all RS $-100 \le \text{Im} E_{\text{pole}} < 0$ [bt] & [bb] $0 < \operatorname{Im} E_{\text{pole}} \le 100$ [tb]

 $4 \times 10,000$ Training dataset generated

4×320 Testing dataset generated

DLBSombillo / 2024.12.09-11

Training performance

Model	Optimizer and Architecture
DNN 1	AdaGrad: 150-[250-100]-4
DNN 2	AdaGrad: 150-[250-100-50]-4
DNN 3	AdaGrad: 150-[250-250-250]-4
DNN 4	AMSGrad: 150-[250-100]-4
DNN 5	AMSGrad: 150-[250-100-50]-4
DNN 6	AMSGrad: 150-[250-250-250]-4
DNN 7	SMORMS3: 150-[250-100]-4
DNN 8	SMORMS3: 150-[250-100-50]-4
DNN 9	SMORMS3: 150-[250-250-250]-4

The classification task is non-trivial.

DLBSombillo / 2024.12.09-11

Confusion Matrix

DLBSombillo / 2024.12.09-11

Generate a different set of 320 validation dataset per classification.

		Λ_b^0 Λ^*
bel	Description	Jhu
C	Triangle mechanism	
1	1 pole in 2nd RS	J/ψ
2	1 pole in 4th RS	
3	1 pole in 2nd and 1 pole in 3rd RSs	

Slight confusion between TS and BW-like line shapes.

If the experimental data will favor either the TS or class 3, further analysis must be done.

Inference stage (snapshot ensemble)

Model	TS	1 pole in RS2	1 pole in RS4	1 pole each in RS2 & RS4
DNN 1	261	1930	0.248	804
DNN 2	18.4	1998	969	14.5
DNN 3	0.653	2960	0	36
DNN 4	0	2990	0	14.2
DNN 5	0	2660	0	337
DNN 6	0.436	2999	0	0.891
DNN 7	1	2590	0	414
DNN 8	0	2999	0	1.06
DNN 9	0	2970	0	127

- Bootstrapped 3000 line shapes from the experimental data. (Uniform distribution)
- Feed to the DNN state at epoch n
- Get the mean count
 - TS is ruled out by pure line shape analysis!
 - It is possible to distinguish kinematical cusp vs pole despite the presence of experimental uncertainty.
 - The data favored the polebased interpretation: 1 pole in 2nd RS

DAO Co, VAA Chavez, DLBS, arXiv:2403.18265

 y_{n_N}

DNN designed to probe the pole structure is difficult to train.

Label	S-matri	x pol	e con	figura	tion		
0	no nearb	y pole					
1	1 pole in	[bt]					
2	2 poles in	n $[bt]$					
:	:	:	:	:			
32	1 pole in	[bt], 2	poles	in [bb]	and 1	pole in	[tb]
33	1 pole in	[bt], 1	pole	in $[bb]$	and 2 j	poles in	[tb]
34	1 pole in	[bt], 1	pole	in $[bb]$	and 1 p	pole in [tb]

DLBSombillo / 2024.12.09-11

There is an ambiguity in the line shape of T_{11} .

Different pole structures can give rise to the same line shape.

DLBSombillo / 2024.12.09-11

Maybe unlikely to happen -

to produce ambiguous pole structure, the poles must have the same position.

DLBSombillo / 2024.12.09-11

Slight variation in the line shape

Experimental uncertainty might hide them.

18

$$\frac{dN}{d\sqrt{s}} = \rho(s) \left[|F(s)|^2 + B(s) \right];$$

$$F(s) = \alpha_1 T_{11}(s) + \alpha_2 T_{21}(s)$$

$$S_{11}(\omega) = \prod_m \frac{D_m(-1/\omega)}{D_m(\omega)} \qquad S_{11}S_{22} - S_{12}S_{21} = \prod_m \frac{D_m(-\omega)}{D_m(\omega)}$$

$$S_{22}(\omega) = \prod_m \frac{D_m(1/\omega)}{D_m(\omega)} \qquad \hat{S} = \hat{1} + 2i\hat{T}$$

DLBSombillo / 2024.12.09-11

East Asian Workshop on Exotic Hadrons 2024

LM Santos, VAA Chavez, DLBS, JPG (2025) 52 015104

Class label	S-matrix pole configuration
0	1 pole on $[bt]$
1	1 pole on $[bb]$
2	1 pole on $[tb]$
3	1 pole on $[bt]$ and 1 pole on $[bb]$
4	1 pole on $[bb]$ and 1 pole on $[tb]$
5	1 pole on $[bb]$, 1 pole on $[tb]$, 1 pole on $[bt]$
6	2 poles on $[bb]$, 1 pole on $[tb]$
7	1 pole on $[bb]$, 2 poles on $[tb]$

LM Santos, VAA Chavez, DLBS, JPG (2025) 52 015104

LM Santos, VAA Chavez, DLBS, JPG (2025) 52 015104

Conclusion and Outlook

- It is possible to distinguish kinematical enhancements with dynamical pole-based enhancements despite the presence of experimental uncertainty.
- To fully utilized the power of ML, use it a as a model-selection framework. • Multi-parameter of a DNN can be used to cover a wider model space.
- Using the ML approach, we have shown that
 - $P_{c\bar{c}}(4312)^+$ is NOT due to (single) triangle singularity
 - $P_{c\bar{c}}(4312)^+$ is a possible true resonance that is contaminated by the coupled-channel interaction of $\Sigma_c \overline{D}$ (having a virtual state) with $J/\psi p$.

Outlook

- Apply the method to other near-threshold phenomena.
- Apply the method to correlation function.

Thank you for your attention.

• Include the Double Triangle Singularity interpretation in the ML model-selection framework.

Back Up: General parametrization

$$S_{11}(p_1, p_2) = \prod_{m} \frac{D_m(-p_1, p_2)}{D_m(p_1, p_2)}$$

KJ Le Couteur, Proc. Roy. Soc (London) A256 (1960) RG Newton J. Math. Phys. 2, 188 (1961)

ERE - Scattering length approx. $D(p_1, p_2)$ can only vanish when the \bar{p}_1 and \bar{p}_2 have $D(p_1, p_2) = (M_{11} - ip_1) (M_{22} - ip_2) - M_{12}^2$ opposite imaginary parts. <u>W Frazer and A Hendry, Phys. Rev., 134, B1307 (1964)</u>

Flatté-like parametrization $D(p_1, p_2) = E - M + ip_1 + i\gamma_2 p_2$ $(p_1 -$

We need a general parametrization:

- Pole position can be controlled and RS can be assigned.
- Poles are independent of each other.

Shadow poles may appear on the physical sheet. RJ Eden, JR Taylor, Phys. Rev. 133, B1575 (1974)

$$-i\beta_{1}^{2} - \alpha_{1}^{2} + \lambda \left[\left(p_{2} - i\beta_{2} \right)^{2} - \alpha_{2}^{2} \right] = 0$$

$$\left[\left(p_{1} - i\beta_{1} \right)^{2} - \alpha_{1}^{2} \right] \left[\left(p_{1} - i\beta_{1} \frac{1 - \lambda}{1 + \lambda} \right)^{2} - \left(\alpha_{1}^{2} + \frac{4\lambda\beta_{2}^{2}}{(1 + \lambda)^{2}} \right) \right] = 0$$

$$\left[\left(p_{2} - i\beta_{2} \right)^{2} - \alpha_{2}^{2} \right] \left[\left(p_{2} + i\beta_{2} \frac{1 - \lambda}{1 + \lambda} \right)^{2} - \left(\alpha_{2}^{2} + \frac{4\lambda\beta_{1}^{2}}{(1 + \lambda)^{2}} \right) \right] = 0$$
Main pole
Shadow poles

Back Up: $P_{c\bar{c}}(4312)^+$

decaying into J/\u03c6pp

Pole in 4th RS -Virtual state of $\Sigma_c \overline{D}$ coupled to $J/\psi p$

In contrast with the analysis of JPAC in 2019 JPAC, PRL 123 092001 (2019)

GlueX: J/ψ photo-production 2023 result - structure found in the J/ψ -p cross-section GlueX, PRC 108 025201 (2023)

The dip structure can be interpreted as a resonance that interfere with the non-resonant background. I Strakovsky, et al, PRC 108 015202 (2023)

No contribution from the $\Sigma_c D$ - cannot be interpreted as molecular.

CERN@70

Back Up: $P_{c\bar{c}}(4457)^+$

DLBSombillo / 2024.12.09-11

DNN model	Optimizer and architecture		
DNN 1	AdaGrad: 200-[350-250]-4		
DNN 2	AdaGrad: 200-[350-300-250]-4		
DNN 3	AdaGrad: 200-[350-400-350]-4		
DNN 4	AMSGrad: 200-[350-250]-4		
DNN 5	AMSGrad: 200-[350-300-250]-4		
DNN 6	AMSGrad: 200-[350-400-350]-4		
DNN 7	SMORMS3: 200-[350-250]-4		
DNN 8	SMORMS3: 200-[350-300-250]-4		
DNN 9	SMORMS3: 200-[350-400-350]-4		

DAO Co and DLBS, arXiv:2411.14044

Back Up: $P_{c\bar{c}}(4457)^+$

DAO Co and DLBS, arXiv:2411.14044

DLBSombillo / 2024.12.09-11

Back Up: $P_{c\bar{c}}(4457)^+$

	Triangle	1 pole in [bt]	1 pole in [tb]	1 pole each in [<i>bt</i>] and [<i>bb</i>]
DNN 1	376	320	1	2303
DNN 2	36	0	0	2964
DNN 3	14	287	1008	1691
DNN 4	181	317	0	2502
DNN 5	0	0	0	3000
DNN 6	0	0	0	3000
DNN 7	0	0	0	3000
DNN 8	12	2	0	2986
DNN 9	0	5	0	2995

DLBSombillo / 2024.12.09-11

East Asian Workshop on Exotic Hadrons 2024

DAO Co and DLBS, arXiv:2411.14044

