Radiative decays of χ_{c1} states in effective field theory approach

- Center of Excellence in High Energy Physics and Astrophysics Suranaree University of Technology
 - In collaboration with
- Attaphon Kaewsnod, Kai Xu, Zheng Zhao, Nopmanee Supanam, Ayut Limphirat, Yupeng Yan

East Asian Workshop on Exotic Hadrons 2024 一东亚奇特强子态研讨会—/

Dec.8 - Dec.12 2024 / Nanjing, China

Thanat Sangkhakrit

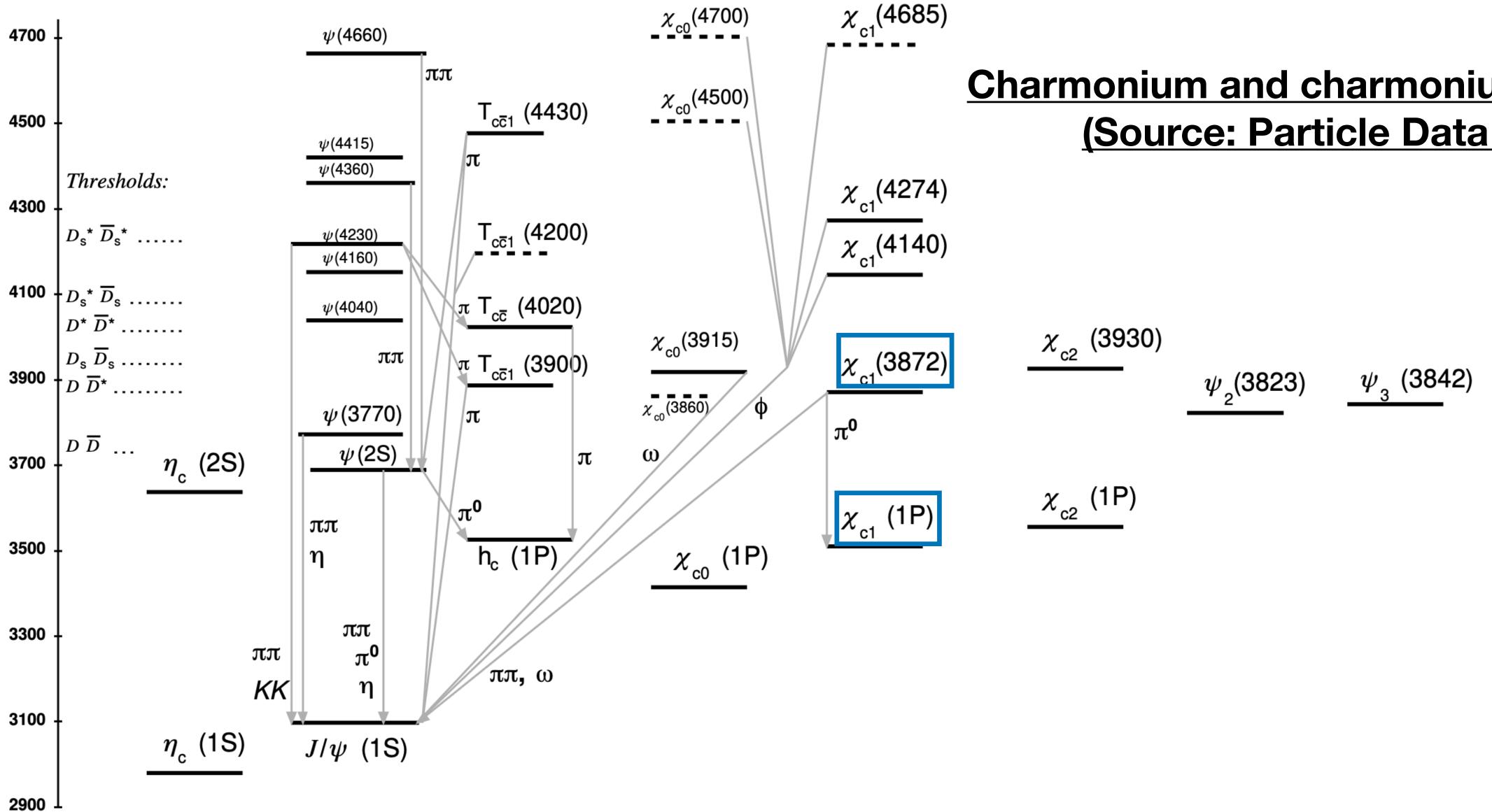
Contents

- Introduction
 - Charmonium and charmonium-like states
 - $\chi_{c1}(3872)$
 - Theoretical interpretations
 - Future experiments at JLAB
- Formalism
 - Radiative decay modes of χ_{c1} states
 - Effective Lagrangians
 - Coupling constants
- Results
 - Branching fraction of radiative decay mode $\chi_{c1}(1P) \rightarrow J/\psi\gamma$

 - Comparison with other models
- Summary

• Branching fractions of radiative decay modes $\chi_{c1}(3872) \rightarrow J/\psi\gamma$ and $\chi_{c1}(3872) \rightarrow \psi(2S)\gamma$

Mass (MeV)



 $J^{PC} = 0^{-+}$ 1^{--} 1^{+-} 0^{++}

Charmonium and charmonium-like states (Source: Particle Data Group)

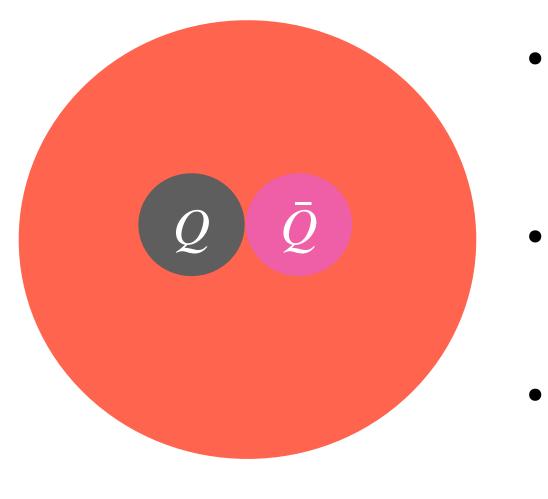
Introduction $\chi_{c1}(3872)$

 $(m_{D^0} + m_{D^{*0}}) - m_{\chi_{c1}(3872)} = (0.00 \pm 0.18) \text{ MeV}$

$I^{G}(J^{PC}) = 0^{+}(1^{++})$

 $\frac{\mathscr{B}\left[\chi_{c1}(3872) \to J/\psi\pi^{+}\pi^{-}\pi^{0}\right]}{\mathscr{B}\left[\chi_{c1}(3872) \to J/\psi\pi^{+}\pi^{-}\right]} = \begin{cases} 1.0 \pm 0.4 \pm 0.3 & \text{Belle}, \\ 1.6^{+1.4}_{-0.3} \pm 0.2 & \text{BESIII}, \\ 0.7 \pm 0.3 & B^{+} \text{ events, BaBar}, \\ 1.7 \pm 1.3 & B^{0} \text{ events, BaBar}. \end{cases}$

Physics Reports 1019 (2023)



- $\chi_{c1}(3872)$ is hypothesized to be the first radial excitation of the axial vector charmonium $\chi_{c1}(2P)$, aligning with the traditional $c\bar{c}$ quark model Models predict the $\chi_{c1}(2P)$ state near the mass of $\chi_{c1}(3872)$, though theoretical mass predictions often differ from experimental results
- a $\chi_{c1}(2P)$ assignment

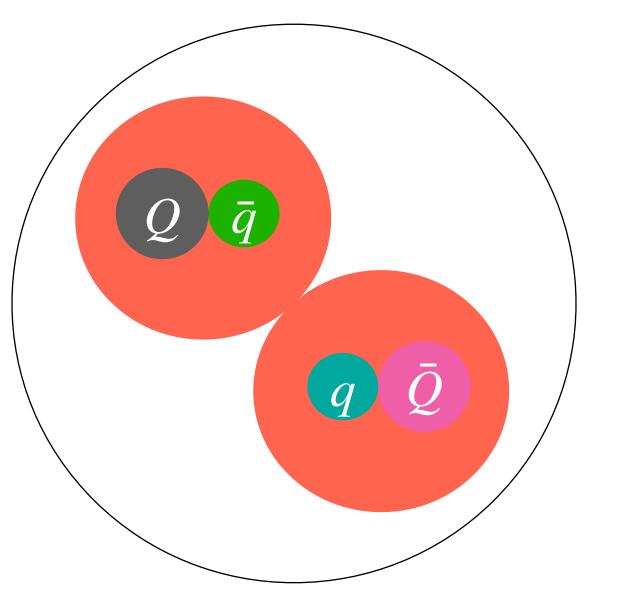
Issues

- The experimentally observed mass of X(3872) precisely coincides with the $D^0 \overline{D}^{*0}$ threshold, \bullet which is unexplained in the pure charmonium model
- The quark model fails to account for large isospin-violating decays (e.g., $J/\psi\rho$ and $J/\psi\omega$) \bullet that suggest strong $D^0 \overline{D}^{*0}$ dynamics

Theoretical interpretations Radial excitation of the axial vector charmonium

Spin-parity $J^{PC} = 1^{++}$ is consistent with quark model expectations for

Theoretical interpretations Molecular scheme



- Treats $\chi_{c1}(3872)$ as a bound $D^0 \overline{D}^{*0}$ state, where the mass proximity to the $D^0 \overline{D}^{*0}$ threshold is natural
- Explains large isospin-violating decay ratios through the mixing of \bullet charged and neutral components
- Weinberg's compositeness criterion indicates a dominant ulletmolecular component (~70%)

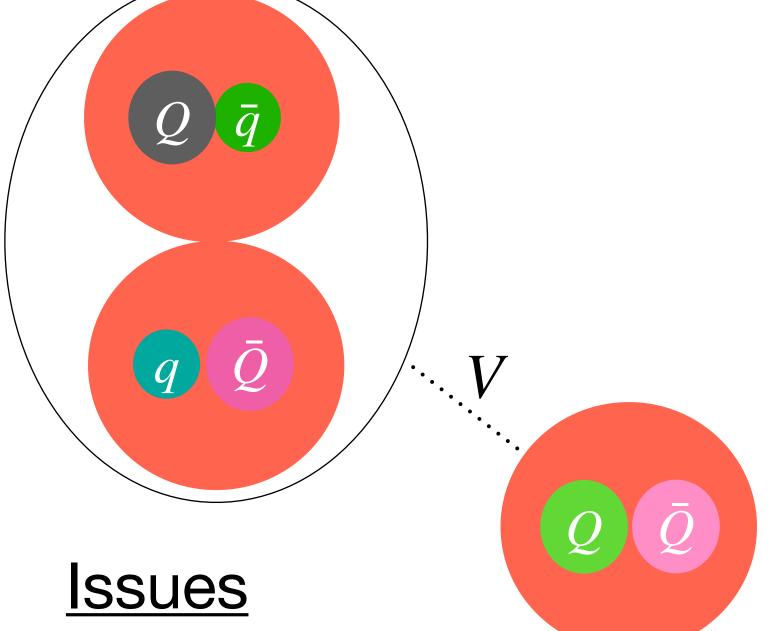
Issues

- the molecular interpretation
- Precise fine-tuning is required to explain the shallow binding energy near the threshold

Physics Reports 1019 (2023)

•The extremely narrow width and high production rates in high-energy experiments challenge

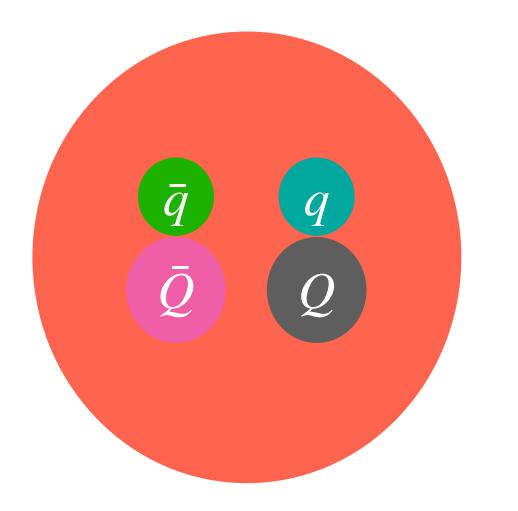
<u>Theoretical interpretations</u> Coupled-channel picture of the $c\bar{c}$ and



- Combines $c\bar{c}$ and $D^0\bar{D}^{*0}$ components, treating $\chi_{c1}(3872)$ as a dynamically mixed state
- Explains both the near-threshold behavior and isospin-violating \bullet decays as arising from the interplay between molecular and charmonium degrees of freedom
 - Provides a unified framework that includes the quarkonium core and molecular structure
- Highly dependent on model assumptions and parameter tuning to balance the contributions of molecular and quarkonium components
- •The exact mechanism of coupled-channel effects and their impact on decays remains experimentally unverified

di-meson degrees of freedom

<u>Theoretical interpretations</u> Compact tetraquark state



- $\chi_{c1}(3872)$ is viewed as a tightly bound $c\bar{c}q\bar{q}$ tetraquark with diquark-antidiquark configurations
- Explains exotic quantum numbers and stability through strong ulletcolor correlations between quarks
- High production rates in high-energy processes align well with the ulletcompact nature of tetraquarks

ssues

- Cannot easily explain the proximity of the mass to the $D^0 \overline{D}^{*0}$ threshold
- Fails to naturally account for large isospin-violating decay ratios or the dominant $D^0 ar{D}^{*0}$ \bullet decay mode

Physics Reports 1019 (2023)

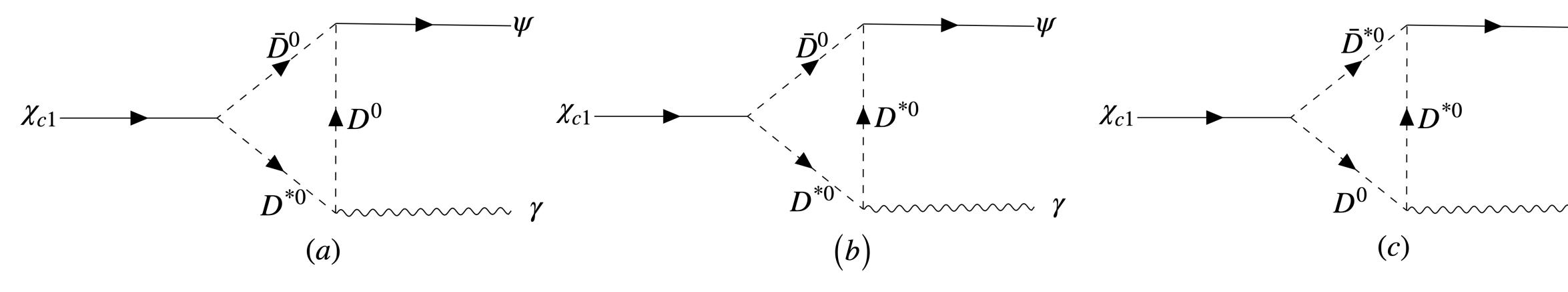
CEBAF: Continuous Electron Beam Accelerator Facility

- •Experimental programs
 - •CLAS12 experiment: $\gamma^* p$ interaction
 - •GlueX experiment: γp interaction
- A comparison of photoproduction mechanisms of the $\chi_{c1}(1P)$ and $\chi_{c1}(3872)$ may provide insights into the nature of the $\chi_{c1}(3872)$ state

JLAB-THY-23-3848

- Strong Interaction Physics at the Luminosity Frontier with 22 GeV Electrons at Jefferson Lab
 - (arXiv:2306.09360v2)

Radiative decay modes of χ_{c1} states in effective field theory method

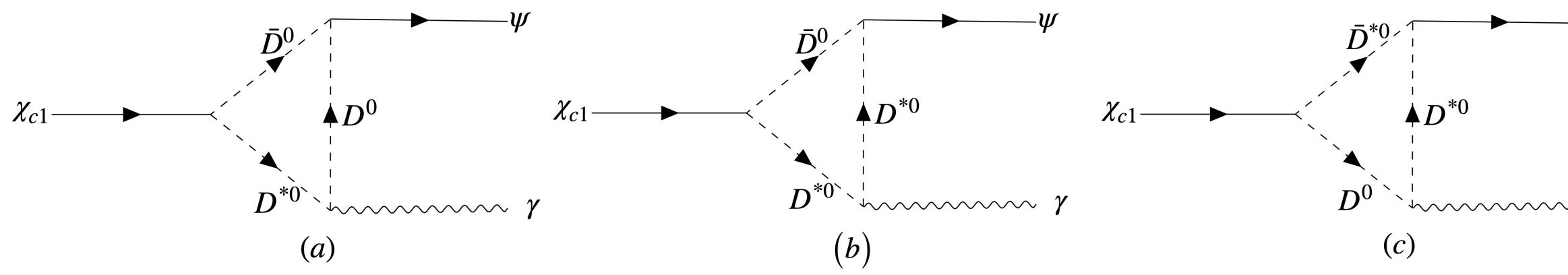


Predict the branching fractions $R_{\chi_{c1}(3872) \rightarrow J/\psi\gamma}, R_{\chi_{c1}(3872) \rightarrow \psi(2S)\gamma}$

 $F(\Lambda_i, q_i^2, m$ **Form factor:**

Fix the cutoff parameters to reproduce the observed fraction $R_{\chi_{c1}(1P) \rightarrow J/\psi\gamma}$

$$m_i) = \frac{\Lambda_i^2 - m_i^2}{\Lambda_i^2 - q_i^2}$$

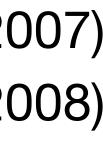


Effective Lagrangians $\mathscr{L}_{\chi DD^*} = g_{\chi} \chi^{\mu} \left(D_{\mu} D^{\dagger} - D D_{\mu}^{\dagger} \right)$ $\mathscr{L}_{\psi DD} = i g_{\psi DD} \psi_{\mu} \left(\partial^{\mu} DD^{\dagger} - D\partial^{\mu} D^{\dagger} \right)$ $\mathscr{L}_{\gamma DD^*} = \frac{e}{4} g_{\gamma DD^*} D \epsilon^{\mu\nu\alpha\beta} F_{\mu\nu} D^{\dagger}_{\alpha\beta}$ $\mathscr{L}_{\psi DD^*} = -g_{\psi DD^*} \epsilon^{\mu\nu\alpha\beta} \partial_{\mu} \psi_{\nu} \left(D \partial_{\alpha} D^{\dagger}_{\beta} + \partial_{\alpha} D_{\beta} D^{\dagger} \right)$ $\begin{aligned} \mathscr{L}_{\gamma D^* D^*} &= -ieA^{\mu} \left(D^{\nu} D^{\dagger}_{\mu\nu} - D_{\mu\nu} D^{\nu\dagger} \right) \\ \mathscr{L}_{\psi D^* D^*} &= -ig_{\psi D^* D^*} \left\{ \psi^{\mu} \left(\partial_{\mu} D^{\nu} D^{\dagger}_{\nu} - D^{\nu} \partial_{\mu} D^{\dagger}_{\nu} \right) + \psi^{\nu} D^{\mu} \partial_{\mu} D^{\dagger}_{\nu} - \psi_{\nu} \partial_{\mu} D^{\nu} D^{\mu\dagger} \right\} \end{aligned}$

Phys.Rev.D75, 114002 (2007) Phys.Rev.D77, 094013 (2008)

where
$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$$

and $D_{\mu\nu} = \partial_{\mu}D_{\nu} - \partial_{\nu}D_{\mu}$



С

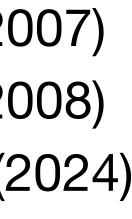
- C

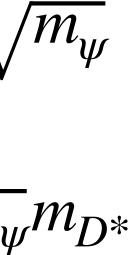
Foupling constants for
$$\chi_{c1}$$

 $g_{\chi} = \begin{cases} 21.5 \text{ GeV} \quad \text{for } \chi_{c1}(1P), \\ 23 \text{ GeV} \quad \text{for } \chi_{c1}(3872). \end{cases}$
 $g_{\chi} = 2\sqrt{m_{D^0}m_{D^{*0}}m_{\chi}}g_1(2P)$
 $g_{\chi DD} \approx g_1(1P) = \sqrt{\frac{m_{\chi_0}}{3}} \frac{1}{f_{\chi_0}}$
 $g_{\psi DD} \approx g_1(1P) \approx g_1(1P) = \sqrt{\frac{m_{\chi_0}}{3}} \frac{1}{f_{\chi_0}}$
 $g_{\psi DD} \approx g_1(1P) \approx g_1(1P) = \sqrt{\frac{m_{\chi_0}}{3}} \frac{1}{f_{\chi_0}}$
 $g_{\psi DD} \approx g_1(1P) \approx g_1(1P) = \sqrt{\frac{m_{\chi_0}}{3}} \frac{1}{f_{\chi_0}}$
 $g_{\psi DD} \approx g_1(1P) \approx g_1(1P) = \sqrt{\frac{m_{\chi_0}}{3}} \frac{1}{f_{\chi_0}}$
 $g_{\psi DD} \approx g_1(1P) \approx g_1(1P) = \sqrt{\frac{m_{\chi_0}}{3}} \frac{1}{f_{\chi_0}}$
 $g_{\psi DD} \approx g_1(1P) \approx g_1(1P) = \sqrt{\frac{m_{\chi_0}}{3}} \frac{1}{f_{\chi_0}}$
 $g_{\psi DD} \approx g_1(1P) \approx g_1(1P) = \sqrt{\frac{m_{\chi_0}}{3}} \frac{1}{f_{\chi_0}}$
 $g_{\psi DD} \approx g_1(1P) \approx g_1(1P) = \sqrt{\frac{m_{\chi_0}}{3}} \frac{1}{f_{\chi_0}}$
 $g_{\psi DD} \approx g_1(1P) \approx g_1(1P) = \sqrt{\frac{m_{\chi_0}}{3}} \frac{1}{f_{\chi_0}}$
 $g_{\psi DD} \approx g_1(1P) \approx g_1(1P) = \sqrt{\frac{m_{\chi_0}}{3}} \frac{1}{f_{\chi_0}}$
 $g_{\psi DD} \approx g_1(1P) \approx g_1(1P) = \sqrt{\frac{m_{\chi_0}}{3}} \frac{1}{f_{\chi_0}}$
 $g_{\psi DD} \approx g_1(1P) \approx g_1(1P) = \sqrt{\frac{m_{\chi_0}}{3}} \frac{1}{f_{\chi_0}}$
 $g_{\psi DD} \approx g_1(1P) \approx g_1(1P) = \sqrt{\frac{m_{\chi_0}}{3}} \frac{1}{f_{\chi_0}}$
 $g_{\psi DD} \approx g_1(1P) \approx g_1(1P) = \sqrt{\frac{m_{\chi_0}}{3}} \frac{1}{f_{\chi_0}}$
 $g_{\psi DD} \approx g_1(1P) \approx g_1(1P) = \sqrt{\frac{m_{\chi_0}}{3}} \frac{1}{f_{\chi_0}}$
 $g_{\psi DD} \approx g_1(1P) \approx g_1(1P) = \sqrt{\frac{m_{\chi_0}}{3}} \frac{1}{f_{\chi_0}}$
 $g_{\psi DD} \approx g_1(1P) \approx g_1(1P) = \sqrt{\frac{m_{\chi_0}}{3}} \frac{1}{f_{\chi_0}}$
 $g_{\psi DD} \approx g_1(1P) \approx g_1(1P) = \sqrt{\frac{m_{\chi_0}}{3}} \frac{1}{g_{\psi DD}}$
 $g_{\psi DD} \approx g_1(1P) \approx g_1(1P) \approx g_1(1P)$
 $g_{\psi DD} \approx g_1(1P) \approx g_1(1P) \approx g_1(1P) \approx g_1(1P)$
 $g_{\psi DD} \approx g_1(1P) \approx g_1(1P) \approx g_1(1P) \approx g_1(1P)$
 $g_{\psi DD} \approx g_1(1P) \approx g_1(1P) \approx g_1(1P) \approx g_1(1P)$
 $g_{\psi DD} \approx g_1(1P) \approx g_1(1P) \approx g_1(1P)$
 $g_{\psi DD} \approx g_1(1P) \approx g_1(1P) \approx g_1(1P) \approx g_1(1P)$
 $g_{\psi DD} \approx g_1(1P) \approx g_1(1P) \approx g_1(1P) \approx g_1(1P)$
 $g_{\psi DD} \approx g_1(1P) \approx g_1(1P) \approx g_1(1P) \approx g_1(1P)$
 $g_{\psi DD} \approx g_1(1P) \approx$

- С g_{i}
- 8

Phys.Rev.D75, 114002 (2007) Phys.Rev.D77, 094013 (2008) Phys.Rev.D109, 094002 (2024)





Decay width: $\Gamma = \frac{1}{32\pi^2} \frac{q}{m_v^2} \int d\Omega \left\langle \left| \mathcal{M} \right|^2 \right\rangle$

 $\left\langle \left| \mathcal{M} \right|^2 \right\rangle = \frac{1}{3} \sum_{\lambda_1, \lambda_2, \lambda_3} \left| \mathcal{M} \right|^2 \text{ and } \mathcal{M} = \mathcal{M}_a + \mathcal{M}_b + \mathcal{M}_c$ with

<u>Free parameters:</u> Λ_D, Λ_{D^*} **<u>Branching fraction:</u>** $R_i = \frac{\Gamma_i}{\Gamma}$

Results

Observed branching fraction: R_{γ}

Result: R^{\prime}

with $\Lambda_D = \Lambda_{D^*} = 2.23 \text{ GeV}$

We fix the parameters Λ_D and Λ_{D^*} to reproduce the branching fraction of $\chi_{c1}(1P)$

$$\chi_{c1}(1P) \to J/\psi\gamma = 0.343 \pm 0.013$$

$$\frac{f(t)}{\chi_{c1}(1P) \to J/\psi\gamma} = 0.357 \pm 0.017$$

Predictions for the fractions $R_{\chi_{c1}(3872)}$

Observed branching fraction:

Our predictions: R

)
$$\rightarrow J/\psi\gamma$$
, $R_{\chi_{c1}(3872)}\rightarrow\psi(2S)\gamma$

$$R_{\chi_{c1}(3872)\to J/\psi\gamma} = (7.8 \pm 2.9) \times 10^{-3}$$

$$R_{\chi_{c1}(3872)\to J/\psi\gamma}^{(t)} = (3.2 \pm 0.6) \times 10^{-1}$$
$$R_{\chi_{c1}(3872)\to\psi(2S)\gamma}^{(t)} = (3.5 \pm 0.6) \times 10^{-2}$$

Results

Comparison of the predicted fraction $R_{\chi_{c1}(3872) \rightarrow J/\psi\gamma}$

Our work:
$$(3.2 \pm 0.6) \times 10^{-1}$$

Phys.Rev.D109, 094002 (2024): 4×10^{-3} (Molecular picture)

Phys.Lett.B848, 138404 (2024): $(7.6^{+1.8}_{-2.0}) \times 10^{-1}$ ($c\bar{c}$ picture)

Eur. Phys. J. C, 75:26 (2015): $(2.0 \pm 0.4) \times 10^{-2}$ $(c\bar{c} - D\bar{D}^* \text{ mixing scheme})$

Summary

- effective field theory method
- and Λ_{D^*} are fixed to be 2.23 GeV
- be about $(3.2 \pm 0.6) \times 10^{-1}$ and $(3.5 \pm 0.6) \times 10^{-2}$, respectively
- observed fraction of the decay mode $\chi_{c1}(3872) \rightarrow J/\psi\gamma$

• We have studied the radiative decays of $\chi_{c1}(1P)$ and $\chi_{c1}(3872)$ states in

• To reproduce the observed fraction $R_{\chi_{c1}(1P) \to J/\psi\gamma}$, the cutoff parameters Λ_D

• The branching fraction $R_{\chi_{c1}(3872) \rightarrow J/\psi\gamma}$ and $R_{\chi_{c1}(3872) \rightarrow \psi(2S)\gamma}$ are predicted to

Our predicted fraction is about two orders of magnitude higher than the

Thank you