East Asian Workshop on Exotic Hadrons 2024 Nanjing, Dec 8-11, 2024

Two-pion emission decays of singly heavy baryons

Ahmad Jafar Arifi

(RIKEN Nishina Center)

Contents

- Heavy baryons
- Quark model
- Results & discussion
 - Orbital excitations
 - Radial excitations
- Summary

Contents

- Heavy baryons
- Quark model
- Results & discussion
 - Orbital excitations
 - Radial excitations
- O Summary

Contents

Our related studies

- Ponkhuha, Arifi, Samart. <u>Arxiv: 2407.10063 (PRD in press)</u>
- Arifi, Suenaga, Hosaka. <u>PRD105, 094006 (2022)</u>
- Arifi, Nagahiro, Hosaka, Tanida. <u>PRD101, 111502(R) (2020)</u>
- Arifi, Nagahiro, Hosaka, Tanida. <u>PRD101, 094023 (2020)</u>
- Arifi, Nagahiro, Hosaka. <u>PRD98, 114007 (2018)</u> \blacklozenge
- Arifi, Nagahiro, Hosaka. <u>PRD95, 114018 (2017)</u>

Past and present

- Λ_c was discovered in 1975
- In PDG, now we have
 - 34 charmed baryons
 - 28 bottom baryons
- Experiments: \blacklozenge Belle, BES, J-PARC, LHC, etc

- ◆ V. Crede & J. Yelton. <u>RPP87, 106301(2024)</u>
- ♦ H.X. Chen et al. <u>RPP86, 026201 (2023)</u>

◆ V. Crede & J. Yelton. <u>RPP87, 106301(2024)</u>

◆ H.X. Chen et al. <u>RPP86, 026201 (2023)</u>

- Production
- Mass spectrum
 - Decay pattern
 - Structure
 - Interaction
- Medium modification

◆ V. Crede & J. Yelton. <u>RPP87, 106301(2024)</u>

◆ H.X. Chen et al. <u>RPP86, 026201 (2023)</u>

- Production
- Mass spectrum
- Decay pattern
- Structure
- Interaction
- Medium modification

Internal structure

◆ V. Crede & J. Yelton. <u>RPP87, 106301(2024)</u>

◆ H.X. Chen et al. <u>RPP86, 026201 (2023)</u>

- Production
- Mass spectrum
- Decay pattern
- Structure
- Interaction
- Medium modification

Internal structure

•••

- Many missing states? \blacklozenge
- Unknown quantum number?
- Branching fractions?

◆ V. Crede & J. Yelton. <u>RPP87, 106301(2024)</u>

♦ H.X. Chen et al. <u>RPP86, 026201 (2023)</u>

- Production
- Mass spectrum
- Decay pattern
- Structure
- Interaction
- Medium modification

Internal structure

- Many missing states?
- Unknown quantum number?
- Branching fractions?
- **Opportunity**

 \blacklozenge

•••

- Narrow resonances
- Heavy-quark symmetry
- Isotope shift •
- Insight to hyperon/exotics

General feature

General feature

How to identify λ and ρ mode excitations?

General feature

How to identify λ and ρ mode excitations?

General feature

Heavy quark symmetry

Brown-muck spin *j*

$$J = s_Q + j$$

How to identify λ and ρ mode excitations?

General feature

Heavy quark symmetry

Brown-muck spin *j*

$$J = s_Q + j$$

How to identify the HQS partner?

Wave function

Orbital motion Heavy quark spin

$$B_{Q}(J^{P}) = \begin{bmatrix} [\psi_{n_{\lambda}l_{\lambda}}(\lambda)\psi_{n_{\rho}l_{\rho}}(\rho), s_{d}]^{j}, S_{Q} \end{bmatrix}^{J} \cdot \phi_{flavor} \cdot \phi_{color}$$

Light quark spin

Wave function

Orbital motion Heavy quark spin

$$B_Q(J^P) = \begin{bmatrix} [\psi_{n_\lambda l_\lambda}(\lambda)\psi_{n_\rho l_\rho}(\rho), s_d]^j, S_Q \end{bmatrix}^J \cdot \phi_{flavor} \cdot \phi_{color}$$

$$\downarrow$$
Light quark spin

Flavor WF

Wave function

Orbital motion Heavy quark spin

$$B_Q(J^P) = \begin{bmatrix} [\psi_{n_\lambda l_\lambda}(\lambda)\psi_{n_\rho l_\rho}(\rho), s_d]^j, S_Q \end{bmatrix}^J \cdot \phi_{flavor} \cdot \phi_{color}$$

$$\downarrow$$
Light quark spin

Flavor WF

Wave function

Ground states (l = 0) $\Lambda_c\left(\frac{1}{2}^+\right) = \left[\left[\psi_0(\lambda)\psi_0(\rho), s_d^0 \right]^0, S_Q \right]^{\frac{1}{2}}$ Singlet $\Sigma_{c}\left(\frac{1}{2}^{+},\frac{3}{2}^{+}\right) = \left[[\psi_{0}(\lambda)\psi_{0}(\rho), s_{d}^{1}]^{1}, S_{Q} \right]^{\frac{1}{2},\frac{3}{2}}$ **Doublet**

Orbital motion Heavy quark spin

$$B_Q(J^P) = \begin{bmatrix} [\psi_{n_\lambda l_\lambda}(\lambda)\psi_{n_\rho l_\rho}(\rho), s_d]^j, S_Q \end{bmatrix}^J \cdot \phi_{flavor} \cdot \phi_{color}$$

$$\downarrow$$
Light quark spin

Flavor WF

Wave function

Ground states (l = 0) $\Lambda_c\left(\frac{1}{2}^+\right) = \left[\left[\psi_0(\lambda)\psi_0(\rho), s_d^0 \right]^0, S_Q \right]^{\frac{1}{2}}$ Singlet $\Sigma_{c}\left(\frac{1}{2}^{+},\frac{3}{2}^{+}\right) = \left[[\psi_{0}(\lambda)\psi_{0}(\rho), s_{d}^{1}]^{1}, S_{Q} \right]^{\frac{1}{2},\frac{3}{2}}$ Doublet

Orbital excited states (l = 1)

 ρ mode

λ mode		
<i>j</i> = 1	1/2 ⁻ 3/2 ⁻	

j = 0	1/2-
<i>j</i> = 1	1/2 ⁻ 3/2 ⁻
<i>j</i> = 2	3/2 ⁻ 5/2 ⁻

Mass spectra

♦ Yoshida et al. PRD92, 114029 (2015)

NR quark model

Diagonalizing Hamiltonian with GEM 0

$$H = K + V_{\rm short} + V_{\rm conf}$$

Λ

Two-body interaction

Jacobi coordinate

✦ Yoshida et al. <u>PRD92, 114029 (2015)</u>

Mass spectra

NR quark model

Diagonalizing Hamiltonian with GEM 0

$$H = K + V_{\rm short} + V_{\rm conf}$$

Two-body interaction

Jacobi coordinate

✦ Yoshida et al. <u>PRD92, 114029 (2015)</u>

Mass spectra

- There are many unobserved states. Too wide?
- We also need to clarify their structure and quantum number.

NR quark model

Diagonalizing Hamiltonian with GEM 0

$$H = K + V_{\rm short} + V_{\rm conf}$$

Two-body interaction

Jacobi coordinate

✦ Yoshida et al. <u>PRD92, 114029 (2015)</u>

Mass spectra

- There are many unobserved states. Too wide?
- We also need to clarify their structure and quantum number.

Decay pattern

◆ Nagahiro et al. <u>PRD95, 014023 (2017)</u>

One-pion emission $B_Q \to B'_Q + \pi$

◆ Nagahiro et al. <u>PRD95, 014023 (2017)</u>

Decay pattern

One-pion emission $B_Q \to B'_Q + \pi$

♦ Nagahiro et al. <u>PRD95, 014023 (2017)</u>

Decay pattern

Chiral quark model

• HO wave function

$$V = \sum_{i < j} \frac{1}{2} k r_{ij}^2$$

- Analytic solution - Realistic WF (GEM)

Axial-vector type coupling 0

$$\mathcal{L}_{\pi q q} = \frac{g_A^q}{2f_\pi} \bar{q} \gamma^\mu \gamma_5 \vec{\tau} q \cdot \partial_\mu \vec{\pi}$$

Nonrelativistic reduction

$$\mathcal{H}_{\pi q q} \propto \left[\sigma \cdot q - \frac{\omega_{\pi}}{2m} \sigma \cdot (p_i + p_f) \right]$$

Anti-symmetric flavor $\bar{3}_F$

- ✦ LHCb. PRL 131, 171901 (2023)
- ♦ CMS. PRL 126, 252003 (2021)

Charmed baryon

$\Lambda_{c}(2595)$	$\Lambda_{c}(2625)$
$J^P = 1/2^-$	$J^P = 3/2^-$
$\Gamma = 2.6(6) \text{ MeV}$	$\Gamma < 0.97 \text{ MeV}$
$\Xi_c(2790)$	Ξ _c (2815)
$J^P = 1/2^-$	$J^{P} = 3/2^{-1}$
$\Gamma = 8.9(1.0) \text{ MeV}$	$\Gamma = 10.0(1.1) \text{ MeV}$

Anti-symmetric flavor $\bar{3}_F$

- + LHCb. PRL 131, 171901 (2023)
- ♦ CMS. PRL 126, 252003 (2021)

Charmed baryon

$\Lambda_{c}(2595)$	$\Lambda_{c}(2625)$
$J^P = 1/2^-$	$J^P = 3/2^-$
$\Gamma = 2.6(6) \text{ MeV}$	$\Gamma < 0.97 \text{ MeV}$
$\Xi_c(2790)$	Ξ _c (2815)
$J^P = 1/2^-$	$J^{P} = 3/2^{-1}$
$\Gamma = 8.9(1.0) \text{ MeV}$	$\Gamma = 10.0(1.1) \text{ MeV}$

Bottom baryon

$\Lambda_{b}(5912)$	$\Lambda_{b}(5920)$
$J^{P} = 1/2^{-1}$	$J^{P} = 3/2^{-1}$
$\Gamma < 0.25 \text{ MeV}$	$\Gamma < 0.19 \text{ MeV}$
$\Xi_b(6087)$	$\Xi_b(6100)$
$J^{P} = 1/2^{-1}$	$J^{P} = 3/2^{-1}$
$\Gamma = 2.43(51) \text{ MeV}$	$\Gamma = 0.94(30) \text{ MeV}$

Anti-symmetric flavor $\bar{3}_F$

- + LHCb. PRL 131, 171901 (2023)
- ♦ CMS. PRL 126, 252003 (2021)

Charmed baryon

$\Lambda_{c}(2595)$	$\Lambda_{c}(2625)$
$J^P = 1/2^-$	$J^P = 3/2^-$
$\Gamma = 2.6(6) \text{ MeV}$	$\Gamma < 0.97 \text{ MeV}$
Ξ _c (2790)	Ξ _c (2815)
$J^P = 1/2^-$	$J^P = 3/2^-$
$\Gamma = 8.9(1.0) \text{ MeV}$	$\Gamma = 10.0(1.1) \text{ MeV}$

- Narrow resonances
- Dominant decay: two-pion emission

Bottom baryon

$\Lambda_{b}(5912)$	$\Lambda_{b}(5920)$
$J^{P} = 1/2^{-1}$	$J^{P} = 3/2^{-1}$
$\Gamma < 0.25 \text{ MeV}$	$\Gamma < 0.19 \text{ MeV}$
$\Xi_b(6087)$	$\Xi_b(6100)$
$J^{P} = 1/2^{-1}$	$J^{P} = 3/2^{-1}$
$\Gamma = 2.43(51) \text{ MeV}$	$\Gamma = 0.94(30) \text{ MeV}$

Anti-symmetric flavor $\bar{3}_F$

- + LHCb. PRL 131, 171901 (2023)
- ♦ CMS. PRL 126, 252003 (2021)

Two-pion emission decay

Two-pion emission decay

Phase space

 Σ_b^* + Σ_b^+

 $\Xi_b^{\prime * 0}$

 $\Xi_b^{\prime 0}$

Two-pion emission decay

Phase space

Sequential decays

 $\Xi_b^{\prime * 0}$ $\Lambda_c(3/2^-) \longrightarrow \Sigma_c(3/2^+) + \pi \quad \text{(Swave)}$ $\Xi_b^{\prime 0}$ $\blacktriangleright \Lambda_c + \pi$

Decay amplitudes

Decay amplitudes

Decay amplitudes

$$\begin{split} B_{Q}^{*}(1/2^{-}) &\to B_{Q}\pi\pi\\ \mathcal{M}_{1}(\tilde{B}_{Q}) &= \frac{g_{11}^{a}g_{11}^{b}N\chi_{B_{Q}}^{\dagger}(\sigma \cdot p_{2})\chi_{B_{Q}^{*}}}{m_{\pi_{2}B_{Q}} - M_{\tilde{B}_{Q}(\frac{1}{2}^{+})} + \frac{i}{2}\Gamma_{\tilde{B}_{Q}(\frac{1}{2}^{+})}}, \quad \text{(S wave)}\\ \mathcal{M}_{2}(\tilde{B}_{Q}^{*}) &= \frac{g_{13}^{a}g_{31}^{b}N\chi_{B_{Q}}^{\dagger}(S \cdot p_{2})(S^{\dagger} \cdot p_{1})(\sigma \cdot p_{1})\chi_{B_{Q}^{*}}}{m_{\pi_{2}B_{Q}} - M_{\tilde{B}_{Q}(\frac{3}{2}^{+})} + \frac{i}{2}\Gamma_{\tilde{B}_{Q}(\frac{3}{2}^{+})}}, \quad \text{(D wave)}\\ \mathcal{M}_{3}(\tilde{B}_{Q}') &= \frac{g_{11}^{a'}g_{11}^{b'}N\chi_{B_{Q}}^{\dagger}(\sigma \cdot p_{1})\chi_{B_{Q}^{*}}}{m_{\pi_{1}B_{Q}} - M_{\tilde{B}_{Q}'(\frac{1}{2}^{+})} + \frac{i}{2}\Gamma_{\tilde{B}_{Q}'(\frac{1}{2}^{+})}}, \quad \text{(S wave)}\\ \mathcal{M}_{4}(\tilde{B}_{Q}^{*'}) &= \frac{g_{13}^{a'}g_{31}^{b'}N\chi_{B_{Q}}^{\dagger}(S \cdot p_{1})(S^{\dagger} \cdot p_{2})(\sigma \cdot p_{2})\chi_{B_{Q}^{*}}}{m_{\pi_{1}B_{Q}} - M_{\tilde{B}_{Q}'(\frac{3}{2}^{+})} + \frac{i}{2}\Gamma_{\tilde{B}_{Q}'(\frac{3}{2}^{+})}}, \quad \text{(D wave)}\\ \mathcal{M}_{5}(\operatorname{dir}) &= \frac{g_{11}^{d}N}{f_{\pi}}\chi_{B_{Q}}^{\dagger}(\sigma \cdot (p_{1} + p_{2}))\chi_{B_{Q}^{*}}. \quad \text{(P wave)} \end{split}$$

Decay amplitudes

$$\begin{split} B_{Q}^{*}(1/2^{-}) &\to B_{Q}\pi\pi\\ \mathcal{M}_{1}(\tilde{B}_{Q}) &= \frac{g_{11}^{a}g_{11}^{b}N\chi_{B_{Q}}^{\dagger}(\sigma \cdot p_{2})\chi_{B_{Q}^{*}}}{m_{\pi_{2}B_{Q}} - M_{\tilde{B}_{Q}(\frac{1}{2}^{+})} + \frac{i}{2}\Gamma_{\tilde{B}_{Q}(\frac{1}{2}^{+})}}, \quad \text{(S wave)}\\ \mathcal{M}_{2}(\tilde{B}_{Q}^{*}) &= \frac{g_{13}^{a}g_{31}^{b}N\chi_{B_{Q}}^{\dagger}(S \cdot p_{2})(S^{\dagger} \cdot p_{1})(\sigma \cdot p_{1})\chi_{B_{Q}^{*}}}{m_{\pi_{2}B_{Q}} - M_{\tilde{B}_{Q}(\frac{3}{2}^{+})} + \frac{i}{2}\Gamma_{\tilde{B}_{Q}(\frac{3}{2}^{+})}}, \quad \text{(D wave)}\\ \mathcal{M}_{3}(\tilde{B}_{Q}') &= \frac{g_{11}^{a'}g_{11}^{b'}N\chi_{B_{Q}}^{\dagger}(\sigma \cdot p_{1})\chi_{B_{Q}^{*}}}{m_{\pi_{1}B_{Q}} - M_{\tilde{B}_{Q}'(\frac{1}{2}^{+})} + \frac{i}{2}\Gamma_{\tilde{B}_{Q}'(\frac{1}{2}^{+})}}, \quad \text{(S wave)}\\ \mathcal{M}_{4}(\tilde{B}_{Q}^{*'}) &= \frac{g_{13}^{a'}g_{31}^{b'}N\chi_{B_{Q}}^{\dagger}(S \cdot p_{1})(S^{\dagger} \cdot p_{2})(\sigma \cdot p_{2})\chi_{B_{Q}^{*}}}{m_{\pi_{1}B_{Q}} - M_{\tilde{B}_{Q}'(\frac{3}{2}^{+})} + \frac{i}{2}\Gamma_{\tilde{B}_{Q}'(\frac{3}{2}^{+})}}, \quad \text{(D wave)}\\ \mathcal{M}_{5}(\operatorname{dir}) &= \frac{g_{11}^{d}N}{f_{\pi}}\chi_{B_{Q}}^{\dagger}(\sigma \cdot (p_{1} + p_{2}))\chi_{B_{Q}^{*}}. \quad \text{(P wave)} \end{split}$$

$$\begin{split} B_{Q}^{*}(3/2^{-}) &\to B_{Q}\pi\pi\\ \mathcal{M}_{1}(\tilde{B}_{Q}) &= \frac{g_{31}^{a}g_{11}^{b}N\chi_{B_{Q}}^{\dagger}(\boldsymbol{\sigma}\cdot\boldsymbol{p}_{2})(\boldsymbol{\sigma}\cdot\boldsymbol{p}_{1})(\boldsymbol{S}\cdot\boldsymbol{p}_{1})\chi_{B_{Q}^{*}}}{m_{\pi_{2}B_{Q}} - M_{\tilde{B}_{Q}(\frac{1}{2}^{+})} + \frac{i}{2}\Gamma_{\tilde{B}_{Q}(\frac{1}{2}^{+})}}, \text{ (D wath } \\ \mathcal{M}_{2}(\tilde{B}_{Q}^{*}) &= \frac{g_{33}^{a}g_{31}^{b}N\chi_{B_{Q}}^{\dagger}(\boldsymbol{S}\cdot\boldsymbol{p}_{2})\chi_{B_{Q}^{*}}}{m_{\pi_{2}B_{Q}} - M_{\tilde{B}_{Q}(\frac{3}{2}^{+})} + \frac{i}{2}\Gamma_{\tilde{B}_{Q}(\frac{3}{2}^{+})}}, \text{ (S wave)}\\ \mathcal{M}_{3}(\tilde{B}_{Q}') &= \frac{g_{31}^{a\prime}g_{11}^{b\prime}N\chi_{B_{Q}}^{\dagger}(\boldsymbol{\sigma}\cdot\boldsymbol{p}_{1})(\boldsymbol{\sigma}\cdot\boldsymbol{p}_{2})(\boldsymbol{S}\cdot\boldsymbol{p}_{2})\chi_{B_{Q}^{*}}}{m_{\pi_{1}B_{Q}} - M_{\tilde{B}_{Q}(\frac{1}{2}^{+})} + \frac{i}{2}\Gamma_{\tilde{B}_{Q}(\frac{1}{2}^{+})}}, \text{ (D wath } \\ \mathcal{M}_{4}(\tilde{B}_{Q}^{*\prime}) &= \frac{g_{33}^{a\prime}g_{31}^{b\prime}N\chi_{B_{Q}}^{\dagger}(\boldsymbol{S}\cdot\boldsymbol{p}_{1})\chi_{B_{Q}^{*}}}{m_{\pi_{1}B_{Q}} - M_{\tilde{B}_{Q}^{*\prime}(\frac{3}{2}^{+})} + \frac{i}{2}\Gamma_{\tilde{B}_{Q}^{*\prime}(\frac{3}{2}^{+})}}, \text{ (S wave)}\\ \mathcal{M}_{5}(\operatorname{dir}) &= \frac{g_{31}^{d}N}{f_{\pi}}\chi_{B_{Q}}^{\dagger}(\boldsymbol{S}\cdot(\boldsymbol{p}_{1}+\boldsymbol{p}_{2}))\chi_{B_{Q}^{*}}}, \text{ (P wave)} \end{split}$$

Coupling constants

◆ Nagahiro et al. <u>PRD95, 014023 (2017)</u>

✦ Kawakami et al. <u>PRD97, 114024 (2018)</u>

Coupling constants

Sequential process

◆ Nagahiro et al. <u>PRD95, 014023 (2017)</u>

✦ Kawakami et al. <u>PRD97, 114024 (2018)</u>

Coupling constants

Sequential process

◆ Nagahiro et al. <u>PRD95, 014023 (2017)</u>

Direct process

✦ Kawakami et al. <u>PRD97, 114024 (2018)</u>

- ✦ Belle. PRD107, 032008 (2023)
- ✦ Arifi et al. <u>PRD98, 114007 (2018)</u>
- ✦ Arifi et al. <u>PRD95, 114018 (2017)</u>

- ◆ Belle. <u>PRD107, 032008 (2023)</u>
- ✦ Arifi et al. <u>PRD98, 114007 (2018)</u>
- ✦ Arifi et al. <u>PRD95, 114018 (2017)</u>

 $1/2^{-}$

- ✦ Belle. <u>PRD107, 032008 (2023)</u>
- ✦ Arifi et al. PRD98, 114007 (2018)
- ✦ Arifi et al. <u>PRD95, 114018 (2017)</u>

$\Lambda_c(2595)$ and $\Lambda_c(2625)$

- ✦ Belle. <u>PRD107, 032008 (2023)</u>
- ✦ Arifi et al. PRD98, 114007 (2018)
- ✦ Arifi et al. <u>PRD95, 114018 (2017)</u>

$\Lambda_c(2595)$ and $\Lambda_c(2625)$

- ✦ Belle. <u>PRD107, 032008 (2023)</u>
- ✦ Arifi et al. PRD98, 114007 (2018)
- ✦ Arifi et al. <u>PRD95, 114018 (2017)</u>

$\Lambda_c(2595)$ and $\Lambda_c(2625)$

 $\star \lambda$ -mode assignment can

$\Lambda_{b}(5912)$ and $\Lambda_{b}(5920)$

$\Lambda_b(5912)$ and $\Lambda_b(5920)$

$\Lambda_{b}(5912)$ and $\Lambda_{b}(5920)$

$\Lambda_b(5912)$ and $\Lambda_b(5920)$

• Observation

- Dominated by
 - non-resonance (Tail + direct)
 - contributions.
- Decay width becomes tiny.
- + Asymmetry in $\pi\pi$ invariant mass.

Nongnaphat. <u>Arxiv: 2407.10063</u>

3/2-

Nongnaphat. <u>Arxiv: 2407.10063</u>

Nongnaphat. <u>Arxiv: 2407.10063</u>

- $m_{\Lambda_c^+\pi^+}$ further supports $J^P = 3/2^-$.
- Assymmetry due to the direct process.
- Visible when S-wave resonance is

$\Xi_c(2790)$ and $\Xi_c(2815)$

$\Xi_c(2790)$ and $\Xi_c(2815)$

Ξ_c(2790)

1/2-

$\Xi_c(2790)$ and $\Xi_c(2815)$

 $\Xi_c(2790)$

1/2-

$\Xi_c(2790)$ and $\Xi_c(2815)$

 $\Xi_c^+\pi^+\pi^0$

3/2-

+ $\Xi_c(3/2^-)$:

S-wave resonance is dominant.

• $\Xi_c(1/2^-)$:

Direct process is large, but twobody decay is cominant.

 $\Xi_c(2790)$

 $1/2^{-}$

$\Xi_{c}(2790)$ and $\Xi_{c}(2815)$

 $\Xi_c^+\pi^+\pi^0$

$\Xi_b(6087)$ and $\Xi_b(6100)$

$\Xi_b(6087)$ and $\Xi_b(6100)$

1/2-

$\Xi_b(6087)$ and $\Xi_b(6100)$

 $1/2^{-}$

$\Xi_{h}(6087)$ and $\Xi_{h}(6100)$

 $1/2^{-}$

S-wave resonance is dominant.

No visible direct process.

$\Xi_{b}(6087)$ and $\Xi_{b}(6100)$

✦ Arifi et al. <u>PRD101, 094023 (2020)</u>

$\Lambda_c(2765)^+$ or $arsigma_c(2765)^+$ $I(J^{P})$ = $?(?^{?})$

The information is still poor (1 star) (Broad resonance ~ 50 MeV)

✦ Arifi et al. <u>PRD101, 094023 (2020)</u>

$$\Lambda_c(2765)^+$$
 or $\Sigma_c(2765)$ $_{I(J^P)=?(?^?)}$

The information is still poor (1 star) (Broad resonance ~ 50 MeV)

Sequential process

✦ Arifi et al. <u>PRD101, 094023 (2020)</u>

$$\Lambda_c(2765)^+$$
 or $\Sigma_c(2765)$ $_{I(J^P)=?(?^?)}$

The information is still poor (1 star) (Broad resonance ~ 50 MeV)

Sequential process

✦ Arifi et al. <u>PRD101, 094023 (2020)</u>

Spin-parity determination

Back-up slide #2

Note: finite width effect.

Spin-parity determination

Arifi et al. <u>PRD101, 111502(R) (2020)</u> ◆ LHCb. JHEP<u>06, 136 (2020)</u>

✦ Belle. <u>PRD103, 111101 (2021)</u>

Spin-parity determination

 $\Lambda_b(6072)$

- Invariant mass distribution is consistent with $1/2^+$.
- Ratio of Σ_b and Σ_b^* peaks is crucial.
- ✦ Arifi et al. <u>PRD101, 111502(R) (2020)</u> ✦ LHCb. JHEP<u>06, 136 (2020)</u>

✦ Belle. <u>PRD103, 111101 (2021)</u>

Spin-parity determination

 $\Lambda_{b}(6072)$

- Invariant mass distribution is consistent with $1/2^+$.
- Ratio of Σ_b and Σ_b^* peaks is crucial.
- ✦ LHCb. JHEP<u>06, 136 (2020)</u>

 $\Xi_{c}(2970)$

- The angular distribution is **convex**.
- Evidence to have spin-1/2.
- Positive parity is infered from Branching ratio (R=1.67).

$\Xi_c'(1/2^+)$

✦ Arifi et al. <u>PRD106, 014009 (2022)</u>

 $Massgap(\Delta M = M_{2S} - M_{1S})$

Baryon $\Delta M \approx 500 \text{ MeV}$

✦ Arifi et al. <u>PRD106, 014009 (2022)</u>

 $Massgap(\Delta M = M_{2S} - M_{1S})$

$Massgap(\Delta M = M_{2S} - M_{1S})$

✦ Arifi et al. <u>PRD106, 014009 (2022)</u>

For NG bosons, pion & kaon, the mass gap is badly broken.

✦ Arifi et al. <u>PRD106, 014009 (2022)</u>

Summary

Summary

• Decay analysis

- Give insight to the internal structure
- Help determining their spin & parity

• Problems

- Large width & mass gap of radial excitations?
- *ρ* mode excitations? exotic states? HQS
 partner?

o Plans

 More realistic WF, relativistic quark model analysis, applications to other systems, etc.

This work is supported by:

Summary

• Decay analysis

- Give insight to the internal structure
- Help determining their spin & parity

• **Problems**

- Large width & mass gap of radial excitations?
- $\bullet \rho$ mode excitations? exotic states? HQS partner?

Plans 0

 More realistic WF, relativistic quark model analysis, applications to other systems, etc.

• Prospect

 More data from LHCb, BESIII, or Belle2, J-PARC, EIC(c), etc

This work is supported by:

• Decay analysis

- Give insight to the internal structure
- Help determining their spin & parity

Problems 0

- Large width & mass gap of radial excitations?
- $\bullet \rho$ mode excitations? exotic states? HQS partner?

Plans Ο

 More realistic WF, relativistic quark model analysis, applications to other systems, etc.

Summary

• **Prospect**

 More data from LHCb, BESIII, or Belle2, J-PARC, EIC(c), etc

Thank you for your attention!

This work is supported by:

Appendix

Radial excitations (2S states)

