Properties of X(3872) from hadronic potentials coupled to quarks

<u>Ibuki Terashima</u> (Tokyo Metropolitan University) Tetsuo Hyodo (Tokyo Metropolitan University) [I. Terashima and T. Hyodo, PhysRevC.108.035204 (2023)]

Ibuki. Terashima (Tokyo Metropolitan University) "EAWEH 2024@Nanjing, On Dec. 10st

Exotic hadron X(3872)

There is no restriction by QCD which prohibits the mixing with each d.o.f

States with same quantum numbers mix by definition

Structure of X(3872) [A. Hosaka, T. Iijima, K. Miyabayashi, Y. Sakai, and S. Yasui, PTEP 2016 (2016)]

- Mixing with quark and hadron degrees of freedom
- Not enough experimental data and lattice QCD results
 - How about a channel coupling between quark and hadron degrees of freedom like X(3872)?
 Revealing the internal structure of exotic hadrons by compositeness

Channel coupling

- ✓ Formulation according to Feshbach method [H. Feshbach, Ann. Phys. 5, 357 (1958); ibid., 19, 287 (1962)]
- Hamiltonian H with channel between quark potential V^q and
hadron V^h
 $H = \begin{pmatrix} T^q & 0 \\ 0 & T^h + \Delta \end{pmatrix} + \begin{pmatrix} V^q & V^t \\ V^t & V^h \end{pmatrix}$ T^q, T^h :Kinetic energy
 Δ :Threshold energy
 V^t :Transition potential
 - Schrödinger equation with wave functions of quark and hadron channels $|q\rangle$, $|h\rangle$

$$H\begin{pmatrix} |q\rangle\\|h\rangle \end{pmatrix} = E\begin{pmatrix} |q\rangle\\|h\rangle \end{pmatrix}$$

$$\langle \boldsymbol{r}'_{h} \mid V_{\text{eff}}^{h}(E) \mid \boldsymbol{r}_{h} \rangle = \langle \boldsymbol{r}'_{h} \mid V^{h} \mid \boldsymbol{r}_{h} \rangle + \sum_{n} \frac{\langle \boldsymbol{r}'_{h} \mid V^{t} \mid \phi_{n} \rangle \langle \phi_{n} \mid V^{t} \mid \boldsymbol{r}_{h} \rangle}{E - E_{n}}$$

> Quark channel contribution. Sum of discrete eigenstates E_n

Formulation: Compositeness

Bound state wave function is normalized as: [Kenta Miyahara and Tetsuo Hyodo.

$$1 = \int d\mathbf{r} d\mathbf{r}' \Psi_E^*(\mathbf{r}') (\delta(\mathbf{r} - \mathbf{r}') - \frac{\partial}{\partial E} V(\mathbf{r}, \mathbf{r}', E)) \Psi_E(\mathbf{r})$$
Definition of compositeness $1 = X_1 + Z_1 = X_2 + Z_2$

$$X_1 = \int d\mathbf{r} |\Psi_{E=-B}(\mathbf{r})|^2 \quad Z_1 = -\int d\mathbf{r} d\mathbf{r}' \Psi_E^*(\mathbf{r}') \frac{\partial}{\partial E} V(\mathbf{r}, \mathbf{r}', E) \Psi_E(\mathbf{r})$$

$$X_1 = [1 + \frac{g_0^2 \kappa \mu (\kappa + \mu)^3}{8\pi m^2 (g_0^2 + (E - E_0) \omega^h)^2}]^{-1} = X_2 = [1 + 2\pi \frac{g_0^2}{(B + E_0)^2} \frac{\kappa}{\mu(\mu + \kappa)}]^{-1} \qquad X_2 \text{ from L-S e.q.}$$
Scattering wave function $\psi^s \quad \psi_k^s(\mathbf{r}) = \frac{\sin[kr + \delta(k)] - \sin \delta(k)e^{-\mu r}}{kr}$
 $k \cot \delta(k) = -\frac{\mu[4\pi m \omega(E) + \mu^3]}{8\pi m \omega(E)} + \frac{1}{2\mu} \left[1 - \frac{2\mu^3}{4\pi m \omega(E)}\right] k^2 - \frac{1}{8\pi m \omega(E)} k^4$
Bound state wave function $\psi^b \quad \psi_{k=i\kappa}^b(\mathbf{r}) = \mathcal{N}_b \left(-\frac{\kappa e^{-\kappa r}}{r} + \frac{\kappa e^{-\mu r}}{r}\right)_{N_b: \text{ normalization constan}}$

Parameters

Parameters in this model

Physical observable	Typical value		
E ₀	0.0078 [GeV] ($\chi_{C1}(2P)$)		
В	4×10^{-5} [GeV]		
μ	0.14 [GeV]		
ω^h	0 [dim'less]		

$$V_{\text{eff}}^{\bar{D}^*D}(\boldsymbol{r},\boldsymbol{r'},E) = \omega(E) \frac{e^{-\boldsymbol{\mu}r}}{r} \frac{e^{-\boldsymbol{\mu}r'}}{r'}$$

Result: E₀ dependence

Ibuki. Terashima (Tokyo Metropolitan University) "EAWEH 2024@Nanjing, On Dec. 10st

Result : ω^h dependence

Ibuki. Terashima (Tokyo Metropolitan University) "EAWEH 2024@Nanjing, On Dec. 10st

local approximation of $V_{eff}^h(\boldsymbol{r}, \boldsymbol{r'}, E)$

[S.Aoki and K.Yazaki, PTEP 2022, no.3, 033B04 (2022)]

Result: Bound state wavefunctions

HAL potentials: Energy independent potential so that $\psi^{exact} \leq \psi^{HAL}$

$$1 = \int d\mathbf{r} d\mathbf{r'} \Psi_E^*(\mathbf{r'}) (\delta(\mathbf{r} - \mathbf{r'}) - \frac{\partial}{\partial E} V(\mathbf{r}, \mathbf{r'}, E)) \Psi_E(\mathbf{r}). \quad X_1 = \int d\mathbf{r} |\Psi_{E=-B}(\mathbf{r})|^2$$

Result: Compare δ^{exact} and δ^{HAL}

 $\bullet \delta^{exact}$ and δ^{HAL} are not so different especially for low energy region

Ibuki. Terashima (Tokyo Metropolitan University) "EAWEH 2024@Nanjing, On Dec. 10st

Result: Compare δ^{exact} and δ^{HAL}

 $\bullet \delta^{exact}$ and δ^{HAL} are different even for low energy region

> X = 1 for universality from small *B*, but E_0 fine-tuned to be $X \ll 1$

HAL potentials dislike of odd parameters

Summary

1

 $V_{\text{eff}}^{\bar{D}^*D}(\boldsymbol{r}, \boldsymbol{r'}, E) = \left[\omega^q(E) + \omega^h(E)\right] V(\boldsymbol{r}) V(\boldsymbol{r'})$

Compositeness X in analytical form

$$X = [1 + \frac{g_0^2 \kappa \mu (\kappa + \mu)^3}{8\pi m^2 (g_0^2 + (E - E_0)\omega^h)^2}]^{-1} = [1 + 2\pi \frac{g_0^2}{(B + E_0)^2} \frac{\kappa}{\mu (\mu + \kappa)}]^{-1}$$

Parameter dependences for compositeness

	$\delta(k)_{\mu\nu}$ vs k 1		$TTESS V.S. E_0$		
Physical observable	Correlation to compositeness	3 0			
E_0 (quark channel energy)	Positive (large)	[b5]	.6-		
$\omega^{h}_{attr.}$ (attractive hadron-ch. potential)	Positive (small)	0 X[dir	.4-		
$\omega^h_{rep.}$ (repulsive hadron-ch. potential)	Negative (small)		.00.00.1	0.2 0.3	0.4

•Compare $\delta(k)$ from the non-local exact potential and from the local HAL potential

 $\succ \delta^{HAL}$ get disclosed from δ^{HAL} in the specialized parameters Ibuki. Terashima (Tokyo Metropolitan University) "EAWEH 2024@Nanjing, On Dec. 10st