Classification of eigenstates in coupled-channel scattering amplitude with the chiral unitary method

Tokyo Metropolitan University

Presenter : Takuma Nishibuchi

T.Nisihibuchi and T.Hyodo, Phys. Rev. C **109**, no1, 015203 (2024)

- Collaborator : Tetsuo Hyodo

Recent results for E(1620) Recently new results of $\Xi(1620)$ are obtained Belle experiment of $\Xi_c \rightarrow \pi \pi \Xi$ (2019)[1] Ξ excited states are observed in $\pi^+\Xi^-$ spectrum. The mass M_R and width Γ_R of $\Xi(1620)$ $M_R = 1610.4 \pm 6.0(\text{stat.})^{+6.1}_{-4.2}(\text{syst.}) \text{ MeV}$ $\Gamma_R = 59.9 \pm 4.8(\text{stat.})^{+2.8}_{-7.1}(\text{syst.}) \text{ MeV}$

ALICE experiment(2021)[2]

The scattering length f_0 of $K^-\Lambda$ was determined

with femtoscopy in Pb-Pb collisions [1]Belle collaboration, M.Sumihama et al., Phys. Rev. Lett. **122**, 072501 (2019).

[2]S. Acharya et al. (ALICE Collaboration)Phys. Rev. C 103, 055201 (2021).

Outline

Construction of models(Model 1/Model 2)[3]

We expected Model 1 as QB and Model 2 as QV. (eigenstates with decay widths, respectively)

• The Change of $B \rightarrow V$ with decay width

Before apply to Model 1 and Model 2, we confirm the general change

Model extrapolation(Model 1/Model 2)

[3]T.Nisihibuchi and T.Hyodo, Phys. Rev. C **109**, no1, 015203 (2024) East Asian Workshop on Exotic Hadron 2024@Nanjing 10th December 2024

Formulation of the scattering model The scattering length $T_{ij}(W)$ satisfies the scattering equation.

Interaction kernel
$$V_{ij}(W)$$
:Weinberg-
 $V_{ij}(W) = -\frac{C_{ij}}{4f_i f_j} N_i N_j (2W - M_i - M_j)$
 C_{ij}

Loop function $G_i(W)$ (Removed divergence by dimensional regularization) $G_i(W) \rightarrow G_i(W, a_i)$ W:Total energy, a_i :subtraction constant

East Asian Workshop on Exotic Hadron 2024@Nanjing 10th December 2024

-Tomozawa interaction

Meson decay constant, N_i : Kinematical coefficient,

Group theoretical coefficient, M_i:Baryon Mass

Construction theoretical models Construct the models which based on Belle and ALICE respectively Model 1 Assume the pole position as $z_{ex} = [1610 - 30i]$ MeV, and construct

the model with the pole at z_{ex} .

Model 2 Reproduce the $K^-\Lambda$ scattering length of ALICE.

Contracted by adjusting $a_{\pi \Xi}$ and $a_{\bar{K}\Lambda}$.

They have poles at different position each other

There are no cusps near $\bar{K}\Sigma$

threshold

[3]T.Nisihibuchi and T.Hyodo, Phys. Rev. C **109**, no1, 015203 (2024)

Poles of $\Xi(1620)$ in theoretical models Pole position of each models as follows \mathbf{E} $\bar{K}^0 \Lambda$ **Pole of** $\Xi(1620)$ z = 1610 - 30i MeV [bbtttt] Model 1 1613.3 z = 1726 + 80i MeV [ttbttt] [bbtttt] Model 2

We summarized pole classification(QB/QV) in latter slides

East Asian Workshop on Exotic Hadron 2024@Nanjing 10th December 2024

\rightarrow We consider that Model 1 pole of $\Xi(1620)$ as QB, Model 2 pole as QV.

Eigenstates

 Riemann sheets at complex energy plane. The case of 2ch, then we have 4 Riemann sheets.

Classification of eigenstates

- Bound state $\mathbf{X} B$ Same as 1channel Virtual state scattering
- - Resonance

Quasi-Bound

QV Quasi-Virtual

Bound and Virtual with decay width

East Asian Workshop on Exotic Hadron 2024@Nanjing 10th December 2024

Riemann sheets of complex *E* plane([tt],[tb],[bt],[bb])

Pole trajectory in simplified system

In 1 channel scattering, pole trajectory on $B \rightarrow V$ is well known.

Now we introduce the decay channel to consider the pole trajectory QB \rightarrow QV.

- We consider the 2 channel system with in mind the $\Xi(1620)$ resonance
- Changing a_i is corresponding to the changing interaction.

East Asian Workshop on Exotic Hadron 2024@Nanjing 10th December 2024

When we changing the $a_{\bar{K}\Lambda}$ continuously,

pole moving on real axis

B and V get the decay width

Pole trajectory in simplified system

To introduce channel coupling, we rewrite interaction kernel V_{ii} .

• Rewrite the C_{ii} which is included of V_{ii} as shown in follows.

$$C_{ij} = \begin{pmatrix} 2 & \beta \\ \beta & 4 \end{pmatrix}$$

The strength of channel coupling is variable by adjusting β ,

(When $\beta = 0$, there are no coupling channels.)

East Asian Workshop on Exotic Hadron 2024@Nanjing 10th December 2024

Same as 1ch scattering (no coupling)

Non-zero β represents the 2 channel

scattering.

Pole trajectory in simplified system [tb] $\bar{K}\Lambda$ 8 Pole trajectories with $\beta = 0$ and $\beta = 0.5$ 6 Im W [MeV] When $\beta = 0$, trajectory is same as 1ch. -2 When $\beta = 0.8$, pole acquire imaginary part 1604 1600 1606 1608 1610 1612 1614 602 Re W [MeV] $\bar{K}\Lambda$ [bt] 2 Im W [MeV] -2 We can confirm the transition -6 from QB to QV as expected. -8 -10 1600 1602 1604 1606 1608 1610 1612 1614 Re W [MeV]

as expected.

East Asian Workshop on Exotic Hadron 2024@Nanjing 10th December 2024

10

Pole trajectory in simplified system v2 $K\Lambda$ [tb] $\pi \Xi$ Now, we consider extended pole trajectory Re E [bt] $B \rightarrow V \rightarrow R$ and the one with decay width. Over 300 MeV With K, it has too deep binding so it is difficult to see the trajectory to R Changing the mass of *K* $m_{K_l} \rightarrow 138 \text{ MeV} = m_{\pi}$ • To see pole trajectory easily, making the [tb] $K_1 \Lambda$

- But K has too deep binding,
 - $m_{\bar{K}}$ lighter (138 MeV = m_{π})
- Introduce channel coupling (adjusting β)

East Asian Workshop on Exotic Hadron 2024@Nanjing 10th December 2024

Re E [bt]

Pole trajectory can be seen easily.

Pole trajectories with $\beta = 0$, $\beta = 0.3$ and $\beta = 0.5$ in complex energy plane.

When $\beta = 0$,

trajectory is same as 1 channel scattering.

When $\beta = 0.3$ and $\beta = 0.5$

[tb]sheet : It shows the trajectory QB to QV

[bb]sheet : *R* pole exists

Pole trajectory in simplified system v2

To make easy to follow pole trajectory, we write pole trajectories with $\beta = 0$ and $\beta = 0.5$ with momentum.

Focus on $\beta = 0.5$

[tb]/[bt]sheet : It shows the trajectory QB to QV

[bb]sheet : *R* pole exists

There is no continuous between R and QV/QB.

Pole trajectory in actual models

From the previous result…

It expects Model 1 and Model 2 to be continuously connected, but how does the actual pole transition?

Model extrapolation by changing a_i

$$a_i(x) = xa_i'' + (1 - x)a_i' \qquad (0 \le x)$$

- $a'_i \cdot \cdot \cdot$ subtraction constant of Model 1
- $a''_i \cdot \cdot \cdot$ subtraction constant of Model 2

Extrapolation can be done by calculating the poles at each point and connecting them consecutively.

East Asian Workshop on Exotic Hadron 2024@Nanjing 10th December 2024

14

Pole trajectory in actual models

- Two poles that are supposed $\Xi(1620)$ are not continuously connected.
- [bbtttt] z_1 : $\Xi(1620)$ pole of Model 1
- [ttbttt] z_2 : $\Xi(1620)$ pole of Model 2
- This means that Model 1 and Model 2 poles have different physical origins.

Summary

theoretical studies have also been conducted actively.

- We construct the models based on Belle and ALICE(Model 1/Model 2)
- Confirm the pole trajectory QB \rightarrow QV in simplified system(K/π)
- We found that the QB pole on Model 1 and QV pole on Model 2 are different states.

Future work

Investigate spectrum change on the pole trajectory in simplified system.

East Asian Workshop on Exotic Hadron 2024@Nanjing 10th December 2024

In recent years, experimental data about $\Xi(1620)$ have been reported, and

Formulation of the scattering model Coupled-channel meson-baryon scattering amplitude $T_{ii}(W)$ at total energy W. Scattering equation

 $T_{ij}(W) = V_{ij}(W) + V_{ik}(W)G_k(W)T_{kj}(W)$

 $T_{ii}(W) = [[V(W)]^{-1} - G(W)]_{ii}^{-1}$

East Asian Workshop on Exotic Hadron 2024@Nanjing 10th December 2024

 $V_{ii}(W)$...Interaction kernel $G_{i}(W)$...Loop function

Meson-baryon multiple scattering

G

Formulation of the scattering model

 $V_{ii}(W)$...Interaction kernel (Weinberg-Tomozawa term) s-wave interaction satisfying chiral low energy theorem.

$$V_{ij}(W) = -\frac{C_{ij}}{4f_i f_j} N_i N_j (2W - M_i - M_j)$$

- f_i : Meson decay constant, C_{ii} : Group theoretical coefficient,
- M_i : Baryon Mass, N_i : Kinematical coefficient

 $G_i(W, a_i)$...Loop function (Divergence renormalized by dimensional regularization)

$$G_i(W) \to G_i(W, a_i)$$

W: Total energy, a_i : Subtraction constant

East Asian Workshop on Exotic Hadron 2024@Nanjing 10th December 2024

18

Formulation of *M* in 3 body decay 3 body decay($\Xi_c^+ \rightarrow \pi^+MB$)

The decay amplitude to the final meson baryon state

$$\mathcal{M}_{j} = V_{P}\left(h_{j} + \sum_{i} h_{i}G_{i}(M_{inv})T_{ij}(M_{inv})\right)$$

 V_P : the constant includes all dynamics before FSI. h_i : the weight coefficient of intermediate state, M_{inv} : Invariant Mass,

[6]K.Miyahara, T.Hyodo, M.oka, J.Nieves and E.Oset Phys.Rev.C 95 (2017) 3, 035212 East Asian Workshop on Exotic Hadron 2024@Nanjing 10th December 2024

- T_{ij} : Meson baryon scattering amplitude, G_i : Meson baryon loop function

East Asian Workshop on Exotic Hadron 2024@Nanjing 10th December 2024

 $M_{\Xi_c^+}$: mass of Ξ_c^+ , m_{π^+} : mass of π^+

 p_{π^+} : three-momentum of the π^+ which emitted in weak decay $(\Xi_c^+ \text{ rest flame})$

 \tilde{p}_i : three-momentum of meson baryon emitted in weak decay (*MB* rest flame)

Back up New studies for Ξ excited states

LHCb Collaboration(2021)[6]

- $\Xi^{-}(1690)$ and $\Xi^{-}(1820)$ are observed in $\Xi_{h}^{-} \rightarrow J/\psi \Lambda K^{-}$ decay.
- Mass M_R and width Γ_R of $\Xi^-(1690)$ are reported as follows.

$$M_R = 1692.0 \pm 1.3(\text{stat.})^{+1.2}_{-0.4}(\text{syst.})$$
 Me

$$\Gamma_R = 25.9 \pm 9.5 (\text{stat.})^{+14.0}_{-13.5} (\text{syst.}) \text{ MeV}$$

New theoretical analysis of $\Xi(1620)$ and $\Xi(1690)$ (2023)[7] The study based on chiral unitary approach which is added the Born and NLO terms.

 $\Xi(1620)$ $M_R = 1599.95$ MeV, $\Gamma_R = 158.88$ MeV. $H_R = 1608.51$ MeV, $\Gamma_R = 170.00$ MeV. $\Xi(1690)$ $M_R = 1683.04$ MeV, $\Gamma_R = 11.51$ MeV. $M_R = 1686.17$ MeV, $\Gamma_R = 29.72$ MeV. [6]R. Aaij, et al., Sci. Bull. 66 (2021) 1278–1287. [7]Feijoo, A. and Valcarce, V. and Magas, V. K., arXiv:2303.01323 [hep-ph]. East Asian Workshop on Exotic Hadron 2024@Nanjing 10th December 2024

Back up Definition of scattering length

• In this study, we define the scattering length f_0 as follows. (It is the value of scattering amplitude at threshold energy.)

• But in general, scattering length a_0 is defined as follow. (It is reverse sign of f_0 .)

$$f(k) = \frac{1}{-\frac{1}{a_0} + \frac{r_0}{2}k^2 + \dots - ik}$$

East Asian Workshop on Exotic Hadron 2024@Nanjing 10th December 2024

 r_0 : effective range

Back up The roles of subtraction constants

- By changing subtraction constants, the effects from outside of model space can be absorbed. Effects from

Effects from other channels ($\Xi_{\mu\kappa\sigma}^*, \bar{K}^*$) [8] T.Hyodo, D.Jido and A.Hosaka Phys. Rev. C 78.02

East Asian Workshop on Exotic Hadron 2024@Nar

$$\Lambda, \overline{K}^*\Sigma, \pi \overline{K}\Lambda, \cdots$$
).
25203 (2008)
njing 10th December 2024

Back up Detail of loop function

Loop function $G_i(W)$

$$G_i(W) = i \int \frac{d^4q}{(2\pi)^4} \frac{1}{q^2 - m_i^2 + i0^+} \frac{(P-q)^2}{(P-q)^2}$$

Loop function $G_i(W, a_i)$ (Removed divergence by dimensional regularization) $G_i(W, a_i) = \frac{1}{16\pi^2} \left| a_i(\mu_{reg}) + \ln\frac{mM}{\mu_{reg}^2} + \frac{M^2 - m^2}{2W^2} \ln\frac{M^2}{m^2} + \frac{\lambda^{1/2}}{2W^2} \left\{ \ln(W^2 - m^2 + M^2 + \lambda^{1/2}) \right\} \right|$

$$\lambda^{1/2} = \sqrt{W^4 + m_k^4 + M_k^4 - 2W^2 m_k^2 - 2m_k^2 M_k^2 - 2M_k^2 W^2}$$

East Asian Workshop on Exotic Hadron 2024@Nanjing 10th December 2024

$$\frac{1}{(q)^2 - M_i^2 + i0^+}$$

 $+\ln(W^{2} + m^{2} - M^{2} + \lambda^{1/2}) - \ln(-W^{2} + m^{2} - M^{2} + \lambda^{1/2}) - \ln(-W^{2} - m^{2} + M^{2} + \lambda^{1/2}) \Big\}$

Back up Lednický and Lyuboshitz model

described analytically with the Lednický and Lyuboshitz model.

$$f^{s}(k^{*}) = \left(\frac{1}{f_{0}^{s}} + \frac{1}{2}d_{0}^{s}k^{*2} - ik^{*}\right)^{-1} \qquad \begin{array}{l} f_{0}^{s}(k) : \text{ complex s-wave} \\ \text{ scattering length} \\ d_{0}^{s} : \text{ Effective range} \end{array}$$

$$C(k^{*})_{\text{Lednick}\acute{y}} = 1 + \sum_{S} \rho_{S} \left[\frac{1}{2} \left|\frac{f^{s}(k^{*})}{R_{\text{inv}}}\right|^{2} \left(1 - \frac{d_{0}^{s}}{2\sqrt{\pi}R_{\text{inv}}}\right) + \frac{2\text{Re } f^{s}(k^{*})}{\sqrt{\pi}R_{\text{inv}}}F_{1}(2k^{*}R_{\text{inv}}) + \frac{\text{Im } f^{s}(k^{*})}{R_{\text{inv}}}F_{2}(2k^{*}R_{\text{inv}})\right]$$

East Asian Workshop on Exotic Hadron 2024@Nanjing 10th December 2024

When Coulomb interaction is not at work, the correlation function can be

 F_1, F_2 : Analytic functions

 $\rho_{\rm S}$:Weight factor

(the normalized emission probability for a state of total spin S)

$$\rho_S = \frac{(2S+1)}{[(2j_1+1)(2j_2+1)]}$$

