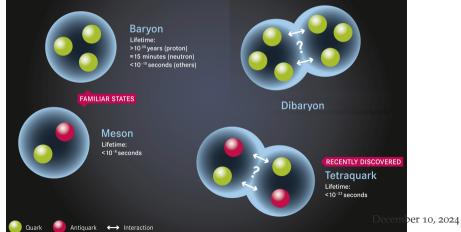
Exotic Hadrons wth Two Strange Quarks *H***-Dibaryon (***uuddss***) and** $\phi\phi(s\overline{s}s\overline{s})$

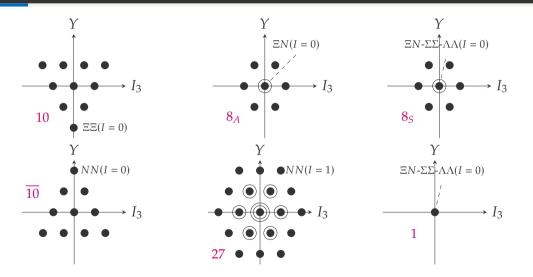
Jung Keun Ahn (Korea University)



H-DIBARYON

Toward Drip Line of Multiquark States

The observation of many multiquark candidates (XYZ, P_c) poses a question on the \bigcirc dripline of further multiquark states: hexaquark state.



Slide 2

KOREA UNIVERSITY

Dibaryon Multiplets in SU(3)_{*f*}

December 10, 2024 Slide 3

QCD Color Magnetic Interaction

Effective Hamiltonian

 The QCD color magnetic interaction can be summarized by an effective Hamiltonian acting on the quarks' spin and color indices;

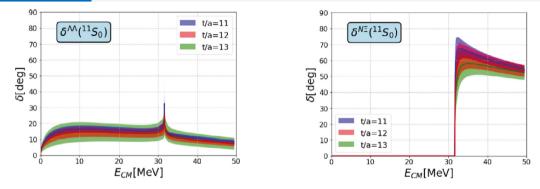
$$\mathcal{H}_{\mathrm{eff}} \propto -\sum_{i \neq j} \vec{\lambda}_i \cdot \vec{\lambda}_j \vec{\sigma}_i \cdot \vec{\sigma}_j$$

 \bigcirc For *N* quarks,

$$\mathcal{H}_{\rm eff} \propto -\sum_{i\neq j}^N \{\vec{\lambda}\vec{\sigma}\}_i \cdot \{\vec{\lambda}\vec{\sigma}\}_j = 8N - \frac{1}{2}C_6^N + \frac{4}{3}S_N(S_N+1).$$

○ For 6 quarks, the color-spin interaction energies are

$$\langle \mathcal{H}_{\text{eff}} \rangle_1 = -24, \quad \langle \mathcal{H}_{\text{eff}} \rangle_8 = -28/3, \quad \langle \mathcal{H}_{\text{eff}} \rangle_{\overline{10}} = +8/3, \quad \langle \mathcal{H}_{\text{eff}} \rangle_{27} = +3,$$


December 10, 2024 Slide 4

The History of H-Dibaryon Searches

- 1977 Deeply-bound di-hyperon predicted by R. Jaffe
- 1980-2000 No evidence for the deeply-bound *H* from KEK, BNL, and CERN
 - experimental efforts by more than 80 MeV
 - **2001** Mass constraint from observation of ${}^{6}_{\Lambda\Lambda}$ He (E373)
- 1998,2007 Enhanced ΛΛ production near threshold was reported from
 E224 and E522 at KEK-PS
 - **2011** LQCD calculations predict the H-dibaryon near $m_{\Lambda\Lambda}$
- 2013-2015 No evidence for $H \to \Lambda p \pi^-$ and $H \to \Lambda \Lambda$ in high-energy
 - e^+e^- , pp and AA experiments
 - 2021 LQCD calculations point to the mass of the H-dibaryon
 - very close to ΞN threshold ($m_{\pi} \approx 146$ MeV)
 - 2021 J-PARC E42 has successfully completed with HypTPC.
 - 2024 We are nearing the final stage of data analysis.

Recent Lattice QCD Calculation Results

○ LQCD calculation result predicts a sharp resonance just above $N\Xi$ threshold with I = 0 ¹S₀ phase shifts at $m_{\pi} \approx 146$ MeV. ^{*a*}

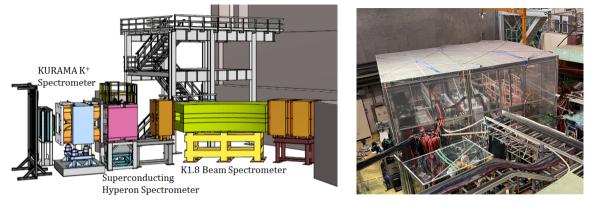
 \bigcirc $\Lambda\Lambda$ correlations in HI collisions indicate a possible virtual state near $N\Xi$ threshold. b

⁹ J. Haidenbauer, NPA 981, 1 (2019)

^{*a*}K. Sasaki for the HAL Collab., NPA 998 (2020) 121737.

H-Dibaryon Search at J-PARC : E42

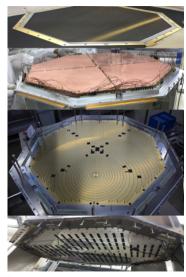
The existence of the H-dibaryon still awaits definitive experimental confirmation or exclusion.


- \bigcirc Weakly-bound : $H \rightarrow \Lambda p \pi^-$
- Virtual state : $\Lambda\Lambda$ or Ξ^-p threshold effect
- \bigcirc Resonance : Breit-Wigner peak in $\Lambda\Lambda$ and Ξ^-p masses

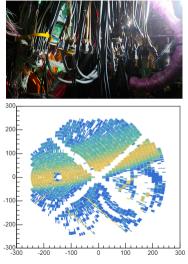
J-PARC-E42 experiment

- 1. in $\Lambda p\pi^-$, $\Lambda\Lambda$ and Ξ^-p channels
- **2**. by tagging the S = -2 system production
- 3. via (K^-, K^+) reactions at 1.8 GeV/*c* with a diamond target
- 4. with Hyperon Spectrometer : 1 MeV $\Lambda\Lambda$ mass resolution

E42 Detector for the *H*-Dibaryon Search

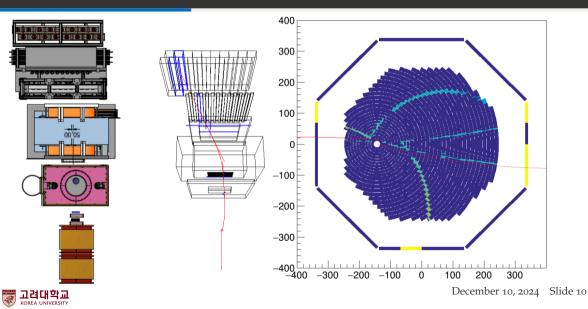


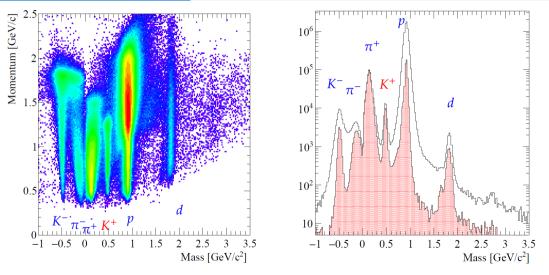
(K⁻, K⁺) reaction events are tagged by the K1.8 beam and the KURAMA spectrometers.
 Decays of the S = −2 system are reconstructed using the Superconducting Hyperon Spectrometer.



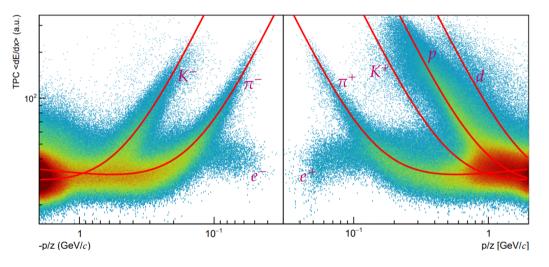
December 10, 2024 Slide 8

Hyperon Time Projection Chamber (HypTPC)



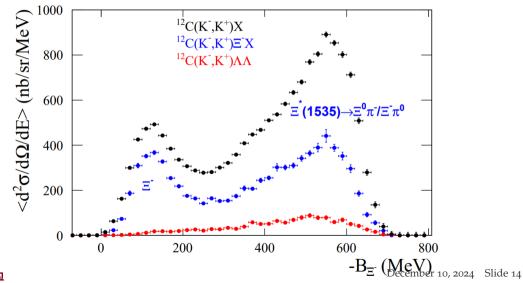

December 10, 2024 Slide 9

$^{12}\mathbf{C}(K^{-},K^{+})$ Reaction Event

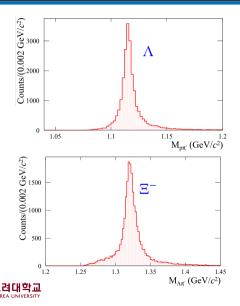

Scattered Particles at Forward Angles

December 10, 2024 Slide 11

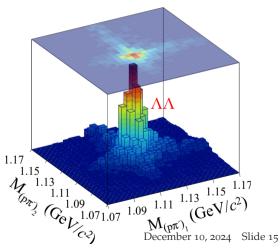
Particle Identification with HypTPC

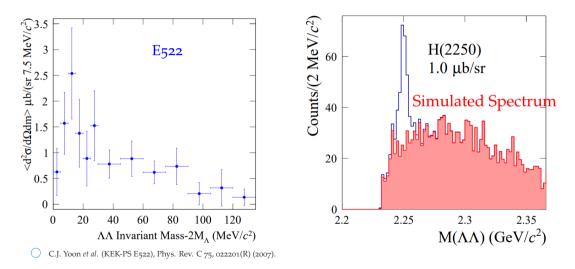


Elementary processes in (K^-, K^+) reactions


December 10, 2024 Slide 13

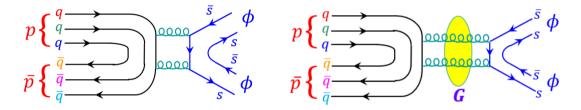
Binding Energy Spectrum for ${}^{12}C(K^-, K^+)(\Xi^-+{}^{11}B)$




H-Dibaryon Search Experiment (J-PARC E42)

 We are nearing the final step in opening the box.

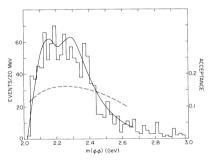
H-Dibaryon Search Experiment (J-PARC E42)



$\overline{p}p \to \phi\phi$

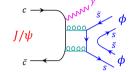
$\overline{p}p \rightarrow \phi \phi$ Reaction

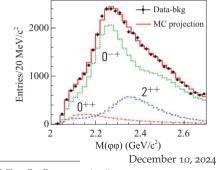
○ The reaction $\overline{p}p \rightarrow \phi\phi$ may proceed via two gluon emission from $\overline{q}q$ annihilation.



○ All three valence quarks in *p* annihilate with the corresponding three antiquarks in \overline{p} to produce a purely gluonic state from which $\phi\phi$ is formed. This should be OZI-suppressed without an intermediate resonant gluonic state (glueball).

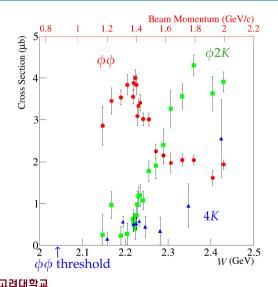
 $\pi^- p \rightarrow \phi \phi n \text{ and } J/\psi \rightarrow \gamma \phi \phi$

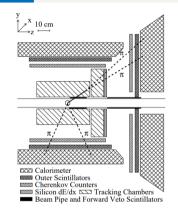

○ Based on 1203 events of the reaction $\pi^- p \rightarrow \phi \phi n$ at 22 GeV/*c*, a BNL experiment reported an observation of two 2⁺⁺ mesons at 2160 and 2320 MeV. ^{*a*}



^aA. Etkin *et al.*, Phys. Rev. Lett. 49, 1620 (1982).

• BESIII reported an observation of $f_0(2100)$, $f_2(2010)$, $f_2(2300)$ and $f_2(2340)$.




Slide 19

^{*a*}BESIII, Phys. Rev D 93, 112011 (2016).

 $\overline{p}p \rightarrow \phi \phi$ (JETSET)

KOREA UNIVERSITY

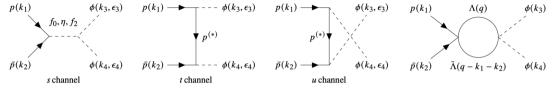
○ JETSET observed unexpectedly large magnitude for $\overline{p}p \rightarrow \phi\phi$ cross section ^{*a*}.

^{*a*} JETSET, Il Nouvo Cimento 107, 2329 (1994); JETSET, Phys. Rev. D 57, 5370 (1998). December 10, 2024 Slide 20

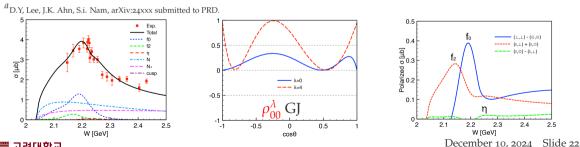
Reaction Mechanisms for $\overline{p}p \rightarrow \phi \phi$

- A substantial OZI rule violation could be the signal of interesting new physics.
 - 1. Production of glueballs
 - 2. Coupling to four quark states involving \overline{ss} such as $\phi(2170)/X(2239)^a$.
 - 3. Non-strange quark component of the ϕ meson, due to the actual mixing of the vector meson singlet and octet:^{*b*}

$$\sigma(\overline{p}p \to \phi\phi) = \tan^4 \delta \cdot \sigma(\overline{p}p \to \omega\omega) \approx 10 \text{ nb},$$

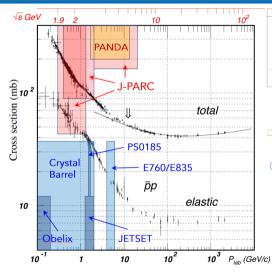

- 4. The presence of substantial \overline{ss} content in $\overline{p}p$ wave functions,
- 5. Instanton induced interactions between quarks
- 6. Hadron production and its rescattering in which each individual transition is OZI-allowed,
- 7. Baryon exchange in *t* and *u* channel diagrams.

 $^{^{}b}$ The angle $\delta(=\Theta_{i}-\Theta)$ denotes the difference between the ideal mixing angle $\Theta_{i} = 35.3^{\circ}$ (sin $\Theta_{i} = 1/\sqrt{3}$) and the mixing angle Θ between (ϕ , ω) mesons and the SU(3) states (ω_{0}, ω_{8}).

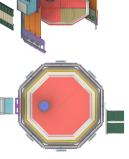


^{*a*}H.-W. Ke and X.-Q. Li, Phys. Rev. D 99, 036014 (2019); Q.-F. Lü et al., Chinese Phys. C 44, 024101 (2020).

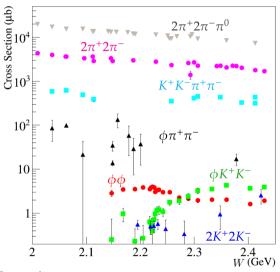
$\overline{p}p \rightarrow \phi \phi$ Reaction



• A new theoretical calculation shows that spin observables (spin-density matrix elements, spin correlation between two ϕ mesons) may pin down the individual process contributions. ^{*a*}



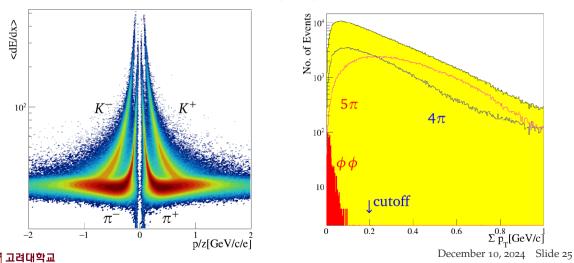
Antiproton Beam Facilites and Experiments


P Beam Traject

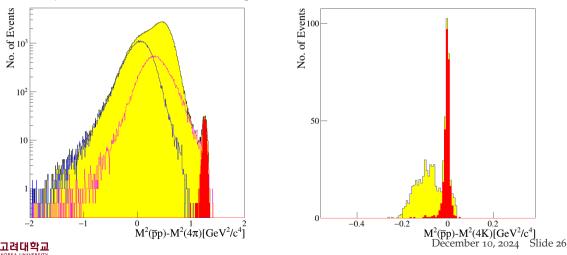
The J-PARC K1.8BR beamline delivered $2 \times 10^5 \overline{p}$ per spill during the 5.2 s duration (40 kHz) in the 50 kW operation and can provide 64 kHz at 80 kW.

Background $\overline{p}p \rightarrow 4$ -prong Reactions

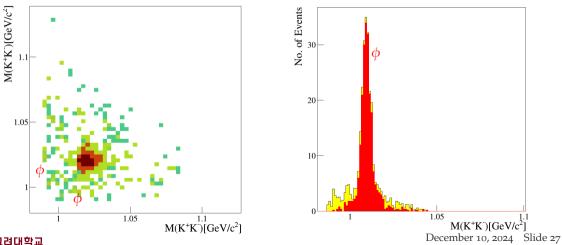
$\overline{p}p$ Reactions	$p_{\rm thre}^{\rm lab}$ (GeV/c)
$2\pi^+2\pi^-\pi^0$	0
$2\pi^+2\pi^-$	0
$K^+K^-\pi^+\pi^-$	0
$\phi\pi^+\pi^-$	0
$2K^{+}2K^{-}$	0.662
$\phi K^+ K^-$	0.767
$\phi\phi$	0.866
$\overline{p}p\pi^{+}\pi^{-}$	1.219
$\overline{p}p\phi$	3.403


 Multipion production processes dominate pp reactions with four charged-particle emission. ^a

^{*a*}V. Flaminio, W.G. Moorhead, D.R.O. Morrison, N. Riviore, CERN-HERA 84-01, 17, April 1984. December 10, 2024


Particle ID and Momentum Balance Constraints

 \odot The 5 π events are then further rejected by requiring transverse momentum balance.


Event Selection with Energy Balance Contraints

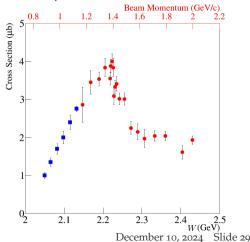
• Energy balance constraints in the center-of-mass energy $(\Delta m^2 = (p_{\overline{p}} + p_p)^2 - (\sum_{i=1}^4 p_i)^2 = 0$, where p_i denotes a four-momentum of particle *i*) between the initial and final states.

Reconstructed $\phi\phi$ **Events**

○ From two K^+ and two K^- tracks, the correct pair of two oppositely charged kaons is chosen by selecting the pair with a mass closer to M_{ϕ} . from M_{ϕ} .

- $\odot\,$ For the 80 kW MR operation the trigger rate is 0.046 Hz.
- Background processes $(2\pi^+2\pi^-, 2\pi^+2\pi^-\pi^0)$ are largely suppressed by imposing kinematic constraints and ensuring excellent π/K separation of the HypTPC.
- Reconstruction efficiency for the $\phi \phi$ events ($\varepsilon_{\text{recon}} = 0.6$).
- Assuming the accelerator operates constantly 90% of the time ($\varepsilon_{acc} = 0.9$), the number of $\phi \phi$ events ($\sigma = 3 \mu b$) collected in a day is

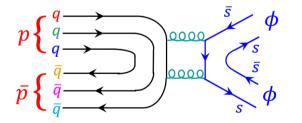
 $\overline{N_{2\phi}} = 0.046/s \cdot \varepsilon_{acc} \cdot \varepsilon_{recon} \cdot Br(\phi \rightarrow K^+ K^-)^2 \cdot 8.64 \times 10^4 \text{ s/d}$ $\approx 5.2 \times 10^2/d$



Beam Time Request (J-PARC P104)

 \bigcirc We are requesting 6.5 days of beam time. Three days will be dedicated to the high-statistics data collection at 1.15 GeV/*c* to measure spin observables.

The $\phi\phi$ Collaboration


- Korea University
 (J.K. Ahn / spokesperson)
- RCNP/OU, RARIS/Tohoku, RIKEN, GWU, CERN
- KEK, Tohoku, ASRC/JAEA, KNU
- O PKNU, Inha, Soongsil, Giessen

Double ϕ **Production in** $\overline{p}p$ **Reactions near Threshold**

- The proposed experiment is meant as a feasibility study and independent confirmation of the enhancement of the production cross section near the threshold.
- Detailed studies of the production mechanism are the perspective for future work, both in theory and experiment.

