East Asian Workshop on Exotic Hadrons 2024

Study of 1^{-+} light, Charmonium-like and Fully-charm Tetraquark Spectroscopy

Zheng Zhao

Suranaree University of Technology, Nakhon Ratchasima, Thailand

Working with: Kai Xu, Attaphon Kaewsnod, Thanat Sangkhakrit, Ayut Limphirat, and Yupeng Yan

10th Dec 2024

Hilton Nanjing Niushoushan, Nanjing, China

Outline

1 Introduction

2 Construction of tetraquark wave functions

③ Theoretical model establishment

(4) Mass spectrum

(5) Summary

• 3 states observed in experiments with the exotic quantum number $I^G J^{PC} = 1^{-1^{-+}}$,

(1) $\pi(1400)$ (PLB 205 (1988) 397)

(2) $\pi(1600)$ (PRL 81 (1998) 5760-5763),

③ π(2015) (PLB 595 (2004) 109-117)

candidates of hybrid mesons (Rept.Prog.Phys. 86 (2023) 2, 026201)

• $\eta_1(1855)$ observed by BESIII with the exotic quantum number $I^G J^{PC} = 0^{+1^{-+}}$ in $\eta \eta'$ decay process (PRL129 (19) (2022) 192002, PRD 106 (7) (2022) 072012)

• candidate of hybrid mesons (Rept.Prog.Phys. 86 (2023) 2, 026201)

	Introduction	Wave functions	Model	Mass spectrum	Summary
UNIVERSITY OF TECHNOL					

- Tetraquark are states of two quarks and two antiquarks. (eg. qcq̄c̄, qqq̄q̄, ccc̄c̄)
- The construction of tetraquark wave function is guided by:
- The tetraquark wave function should be a color singlet. (for $qc\bar{q}\bar{c}$, $qq\bar{q}\bar{q}$, $cc\bar{c}\bar{c}$)
- The tetraquark wave function should be antisymmetric under any permutation between identical quarks. (for $qq\bar{q}\bar{q}$, $cc\bar{c}\bar{c}$)
- It demands that the color part of tetraquark wave function must be [222] singlet.

 $\psi^{c}_{[222]} =$

$$\underbrace{box}{lintroduction} \quad Wave functions \quad Model \quad Mass spectrum \quad Summary$$

$$= \text{ The total wave function for } qq \text{ or } cc \text{ can be represented as}$$

$$= \psi_{total} = \psi_{spatial} \psi_{spin} \psi_{flavor} \psi_{color} \quad (7)$$

$$= \text{ The total wave function should be antisymmetric for } qq \text{ or } cc \text{ cluster.}$$

$$= \text{ Listed in tables below are all the possible configurations of spatial-spin-flavor part of the } qq \text{ and } cc \text{ cluster.}$$

$$= \psi_{121}^{c}(qq) = \Box \implies \psi_{121}^{c}\psi_{121}^{ag} \psi_{121}^{eg} \psi$$

Sammanee UNIVERSITY OF	Introduction	Wave functions	Model	Mass spectrum	Summary	
S	pin wave functio	1			\overline{q}_3	
• F	For $qcar{q}ar{c}$ and $qqar{q}ar{q}$,	the possible sp	oin comb	inations are:	<i>q</i> ₁ <i>c</i> ₂	
	$\left[\psi_{[s=1]}^{q_1q_2}\otimes\right]$	$\psi \psi [s=1]^{\bar{q}_3 \bar{q}_4}_{[s=1]}]_{s=0,1,2}, \psi$	$q_{1q_{2}}^{q_{1}q_{2}} \bigotimes \psi$	$\varphi_{[s=0]}^{\bar{q}_3\bar{q}_4}$, and $\psi_{[s=0]}^{q_1q_2}$	$\otimes \psi_{[s=0]}^{\bar{q}_3\bar{q}_4}$	(9)
• F	or $cc\bar{c}\bar{c}$, the possi	ble spin combin	ation of	$\operatorname{color}\left(6\otimes\overline{6}\right)_{c}\operatorname{color}\left(6\otimes\overline{6}\right)_{c}$	onfiguration is	
		Ψ	$\mathcal{V}^{cc}_{[s=0]} \otimes \mathcal{V}$	$\mathcal{V}_{[s=0]}^{\overline{c}\overline{c}}$		(10)
• F	or <i>ccc̄c̄</i> , the possi	ble spin combin	ations o	f color $(\overline{3} \otimes 3)_c$	configuration i	S:
		[¥	$\mathcal{V}_{[s=1]}^{cc} \otimes \mathcal{V}_{s}$	$\psi^{\bar{c}\bar{c}}_{[s=1]}]_{S=0,1,2}$		(11)

Spatial wave function

- We construct the complete bases by using the harmonic oscillator wave function.
- The total spatial wave function of tetraquark, coupling among the x_1 , x_2 and x_3 harmonic oscillator wave functions, may take the general form,

$$\psi_{NL} = \sum_{\{n_i, l_i\}} A(n_1, n_2, n_3, l_1, l_2, l_3) \times \psi_{n_1 l_1}(x_1) \otimes \psi_{n_2 l_2}(x_2) \otimes \psi_{n_3 l_3}(x_3)$$
(16)

• For example, the complete bases of the P-wave tetraquark are listed as follows:

ψ_{11}	$\Psi_{01}(x_1)\Psi_{00}(x_2)\Psi_{00}(x_3)$	$\Psi_{00}(x_1)\Psi_{01}(x_2)\Psi_{00}(x_3)$	$\Psi_{00}(x_1)\Psi_{00}(x_2)\Psi_{01}(x_3)$
	$\Psi_{11}(x_1)\Psi_{00}(x_2)\Psi_{00}(x_3)$	$\Psi_{10}(x_1)\Psi_{01}(x_2)\Psi_{00}(x_3)$	$\Psi_{10}(x_1)\Psi_{00}(x_2)\Psi_{01}(x_3)$
ψ_{31}	$\Psi_{01}(x_1)\Psi_{10}(x_2)\Psi_{00}(x_3)$	$\Psi_{00}(x_1)\Psi_{11}(x_2)\Psi_{00}(x_3)$	$\Psi_{00}(x_1)\Psi_{10}(x_2)\Psi_{01}(x_3)$
	$\Psi_{01}(x_1)\Psi_{00}(x_2)\Psi_{10}(x_3)$	$\Psi_{00}(x_1)\Psi_{01}(x_2)\Psi_{10}(x_3)$	$\Psi_{00}(x_1)\Psi_{00}(x_2)\Psi_{11}(x_3)$

The non-relativistic Hamiltonian we study multiquark system reads:

$$H = \sum_{k=1}^{N} \left(\frac{1}{2} M_k^{ave} + \frac{p_k^2}{2m_k} \right) + \sum_{i < j}^{N} \left(-\frac{3}{16} \lambda_i^c \cdot \lambda_j^c \right) \left(V(r_{ij}) + H_{SS} + H_{LS} \right)$$
(17)

Here M_k^{ave} denotes the spin-averaged mass as $\frac{1}{4}M_{PS} + \frac{3}{4}M_V$, m_k are the constituent quark masses, and λ_i^c

is the color operator in SU(3)

The Cornell potential and the spin dependent interaction:

$$V(r_{ij}) = A_{ij}r_{ij} - \frac{B_{ij}}{r_{ij}}$$
(18)

where A_{ij} is string tension coefficient, and B_{ij} is Coulomb coefficient.

$$H_{SS} = \frac{1}{6m_i m_j} \Delta V_V(r) \overrightarrow{\sigma}_i \cdot \overrightarrow{\sigma}_j = \frac{2B_{ij} e^{-\sigma_{ij}^2 r_{ij}^2} \sigma_{ij}^3}{3m_i m_j \sqrt{\pi}} \overrightarrow{\sigma}_i \cdot \overrightarrow{\sigma}_j$$
(19)

where m_i and m_j are the constituent quark masses of ith and 4th quark. $\vec{\sigma}_i$ is the spin operator in SU(2), and σ_{ij} is hyperfine interaction coefficient.

Introduction Wave functions Model Mass spectrum Summary

$$H_{LS} = \left(\frac{1}{m_t^2} + \frac{1}{m_t^2} + \frac{4}{m_t m_j}\right) - \frac{B_{ij}\sigma_{ij}}{2\sqrt{\pi}} \frac{e^{-a_j \cdot z_{ij}^2}}{r_{ij}^2} \vec{L}_{ij} \cdot (\vec{s}_i + \vec{s}_j) + \left(\frac{1}{m_t^2} + \frac{1}{m_t^2} + \frac{4}{m_t m_j}\right) - \frac{B_{ij}}{4} \frac{Erf[\sigma_{ij}r_{ij}]}{r_{ij}^3} \vec{L}_{ij} \cdot (\vec{s}_i + \vec{s}_j) + \frac{A_{ij}}{2} \left(\frac{1}{r_{ij}} \frac{\vec{L}_{ij} \cdot \vec{s}_i}{m_t^2} + \frac{1}{r_{ij}} \frac{\vec{L}_{ij} \cdot \vec{s}_j}{m_t^2}\right)$$
(20)
where the relative orbital operator \vec{L}_{ij} is defined as $\vec{L}_{ij} = \vec{r}_{ij} \times \vec{p}_{ij} = \vec{r}_{ij} \times \frac{m_t \vec{p}_i - m_t \vec{p}_j}{m_t + m_j}$. \vec{s}_i is the spin operator.
• 3 coefficients are proposed to be mass-dependent:
 $A_{ij} = a + bm_{ij}$ $B_{ij} = B_0 \sqrt{\frac{1}{m_{ij}}}$ $\sigma_{ij} = \sigma_0 m_{ij}$, (21)
where m_{ij} is the reduced mass of ith and jth quarks, $m_{ij} = 2\frac{m_t m_j}{m_t + m_j}$. a, b, B_0 , and σ_0 are constants.
• 3 coupling constants and 4 quark masses are imported (PRD 103, 116027), and σ_0 is fixed:
 $a = 67413(\text{MeV}^2)$ $b = 35(\text{MeV})$ $B_0 = 31.7(\text{MeV}^{1/2})$ $\sigma_0 = 0.85$
 $m_u = m_d = 420\text{MeV}$ $m_s = 550\text{MeV}$ $m_c = 1270\text{MeV}$ $m_b = 4180\text{MeV}$

Introduction Wave functions Model Mass spectrum Summary

$$H_{LS} = \left(\frac{1}{m_i^2} + \frac{1}{m_j^2} + \frac{4}{m_i m_j}\right) \frac{-B_{ij}\sigma_{ij}}{2\sqrt{\pi}} \frac{e^{-\sigma_{ij}^2 r_{ij}^2}}{r_{ij}^2} \vec{L}_{ij} \cdot (\vec{s}_i + \vec{s}_j) + \left(\frac{1}{m_i^2} + \frac{1}{m_j^2} + \frac{4}{m_i m_j}\right) \frac{-B_{ij}}{4} \frac{Erf[\sigma_{ij}r_{ij}]}{r_{ij}^3} \vec{L}_{ij} \cdot (\vec{s}_i + \vec{s}_j)$$

$$+ \frac{-A_{ij}}{2} \left(\frac{1}{r_{ij}} \frac{\vec{L}_{ij} \cdot \vec{s}_i}{m_i^2} + \frac{1}{r_{ij}} \frac{\vec{L}_{ij} \cdot \vec{s}_j}{m_j^2}\right)$$
(20)
where the relative orbital operator \vec{L}_{ij} is defined as $\vec{L}_{ij} = \vec{r}_{ij} \times \vec{p}_{ij} = \vec{r}_{ij} \times \frac{m_i \vec{p}_i - m_j \vec{p}_j}{m_i + m_j}$. \vec{s}_i is the spin operator.
• 3 coefficients are proposed to be mass-dependent:
 $A_{ij} = a + bm_{ij}$ $B_{ij} = B_0 \sqrt{\frac{1}{m_{ij}}}$ $\sigma_{ij} = \sigma_0 n_{ij}$, (21)
where m_i is the reduced mass of ith and ith quarks $m_i = 2 \frac{m_i m_j}{m_i}$ a, b, B_0 and σ_0 are constants.

where m_{ij} is the reduced mass of ith and jth quarks, $m_{ij} = 2 \frac{1}{m_i + m_j}$. *a*, *b*, B_0 , and σ_0 are constants.

• 3 coupling constants and 4 quark masses are imported (PRD 103, 116027), and σ_0 is fixed:

$$a = 67413 (MeV^2)$$
 $b = 35 (MeV)$ $B_0 = 31.7 (MeV^{1/2})$ $\sigma_0 = 0.85$
 $m_u = m_d = 420 MeV$ $m_s = 550 MeV$ $m_c = 1270 MeV$ $m_b = 4180 MeV$ (22)

	/m
SURA	
191	E UNIVERSITY OF TECHNA

Meson states applied to fit the model parameters.

	0-+							1	1		
S-wave (MeV)	n=0	(1S)	n=1	(2S)	n=	0 (1S)		n=1 (2S)		n=2 (3S)	
	Ours	PDG	Ours	PDG	Ours	PDG	Ours	PDG	Ours	PDG	
bĪ	9383	9399	10019	9999	9468	9460	10055	10023	-		
СĒ	2927	2984	3601	3638	3097	3097	3658	3686	4030	4040	
$B_{s}(s\bar{b})$	5349	5367	_	_	5422	5415	-	_	-	<u> </u>	
$B(u\bar{b})$	5276	5279		_	5341	5325	-	_	-	<u> </u>	
$D_s(c\bar{s})$	1953	1968	-	-	2125	2112	2707	2708	-	-	
$D(c\bar{u})$	1870	1865	2578	2549	2030	2007	2626	2627	-	_	
SS	_	_	-	_	1034	1020	1632	1680	-	<u> </u>	
$q\bar{q}$	-	-	-	_	782	770	1401	1450	-		
		1-	+-		()++		1++		2++	
P-Wave (MeV)		n=	0 (1P)		n=	0 (1P)		n=0 (1P)		n=0 (1P)	
	Οι	ırs	PE	DG	Ours	PDG	Ours	PDG	Ours	PDG	
СĒ	35	18	35	25	3446	3415	3493	3510	3556	3556	
$D(c\bar{u})$	24	65	24	20	2404	2343	2451	2412	2517	2460	
$q\bar{q}$	11	98	h1(1170)	/b1(1235)	1137	1200-1500	1200	a1(1260)/f1(1285)	1294	f2(1270)/a2(1320)	

Tetraquark Parity (PRC 75, 045206)

- The total angular momentum $|L S| \le J \le |L + S|$
- The parity for tetraquark $P = (-1)^L$
- The C-parity for tetraquark $C = (-1)^{L+S}$
- L is the total orbital angular momentum S is the total spin angular momentum

Summary

REAL PROPERTY OF FORMED	Introdu	iction	Wave functions	Model	Mass spe	ectrum	Summary	
1-+	Light Tet	raqu	ark States					
L –	$S \mid \leq J \leq$	L +	$S , P = (-1)^{l}$	$C_{-}, C = (-$	$(1)^{L+S}$ (PRO	<u>C 75, 045</u> 2	<u>206)</u>	
		J	L	S	P	С	J^{PC}	
		1	1	1		+	1-+	
	1-+		E1		E	2		E3
$ \psi_{e}^{\prime}\rangle$	$\sum_{\delta \in \bar{\delta}} \psi^{S=1}_{(1 \otimes 1)} \rangle$		1976		20	29		2187
$ \psi_{e}^{a}$	$\zeta_{\otimes \bar{6}} \psi^{S=1}_{(1\otimes 0)} \rangle$		2059		2113		225	
$ \psi_{z}^{0}\rangle$	$S_{\otimes 3} \psi^{S=1}_{(1\otimes 0)} \rangle$		2122		2187			2224
$ \psi $	$S_{\otimes 3} \psi^{S=1}_{(1\otimes 1)} \rangle$		2159		22	19		2221

1⁻⁺ Charmoniumlike Tetraquark States

- Eigenstates for S=1 are linear combinations of $\psi_{\bar{3}\otimes3}^c \psi_{(1\otimes0)}^{S=1}$, $\psi_{\bar{3}\otimes3}^c \psi_{(1\otimes1)}^{S=1}$, $\psi_{6\otimes\bar{6}}^c \psi_{(1\otimes0)}^{S=1}$, and $\psi_{6\otimes\bar{6}}^c \psi_{(1\otimes1)}^{S=1}$.
- Mixed state $|\psi_{\bar{3}\otimes3}^c\psi_{(1\otimes0)}^{S=1},\psi_{\bar{3}\otimes3}^c\psi_{(1\otimes1)}^{S=1},\psi_{6\otimes\bar{6}}^c\psi_{(1\otimes0)}^{S=1},\psi_{6\otimes\bar{6}}^c\psi_{(1\otimes1)}^{S=1}\rangle$

1-+	E1	E2	E3	E4	E5	E6

		i		i i		i		1		100	
Mass	4301	1	4329	1	4366	1	4387	1	4391	1	4432
		I		1		I		1			
		1		1		1		1		1	

1⁻⁺ Fully-Charm Tetraquark states

1-+	E1	E2	E3
$ \psi^{c}_{\bar{3}\otimes3}\psi^{S=1}_{(1\otimes1)}\rangle$	6762	6814	6828

• The lowest 1^{-+} light tetraquark state is around 2 GeV, which is significantly far from the observed $\pi_1(1400)$, $\pi_1(1600)$ and $\eta_1(1855)$ state.

- The observed state $\pi_1(2015)$ is situated within the lowest 1^{-+} light tetraquark range. More experimental data and theoretical studies are essential for making unambiguous assignments.
- The lowest 1^{-+} charmoniumlike tetraquark state is around 4.3 GeV, might be observed in $\pi \chi_{c1}$, $\eta \chi_{c1}$, and γh_c decay processes.
- The lowest 1^{-+} fully-charm tetraquark state is around 6.8 GeV, might be observed in $J/\psi h_c$ decay process.

Thank you.

	Introduction	Wave functions	Model	Mass spectrum	Results	Summary
603						

 For the charmoniumlike tetraquark, the hyperfine interaction H_{hyp} in Hamiltonian may mix up different color-spin configurations due to the cross terms,

$$A_{SS} = \frac{2B_{ij}e^{-\sigma_{ij}^2 r_{ij}^2}\sigma_{ij}^3}{3m_i m_j \sqrt{\pi}} \overrightarrow{\sigma}_i \cdot \overrightarrow{\sigma}_j$$

Eigenstates for S=1 are linear combinations of $\psi_{\bar{3}\otimes3}^c \psi_{(1\otimes0)}^{S=1}$, $\psi_{\bar{3}\otimes3}^c \psi_{(1\otimes1)}^{S=1}$, $\psi_{6\otimes\bar{6}}^c \psi_{(1\otimes0)}^{S=1}$, and $\psi_{6\otimes\bar{6}}^c \psi_{(1\otimes1)}^{S=1}$.

 $\overline{ec{\lambda}_iec{\lambda}_jec{\sigma}_iec{\sigma}_j}$ $|\psi^c_{ar{3}\otimes 3}\psi^{S=1}_{(1\otimes 0)}
angle$ $\frac{|\psi_{\bar{3}\otimes3}^{c}\psi_{(1\otimes1)}^{S=1}\rangle}{\left(0,-\frac{4\sqrt{2}}{3},-\frac{4\sqrt{2}}{3},\frac{4\sqrt{2}}{3},\frac{4\sqrt{2}}{3},0\right)}$ $|\psi^c_{6\otimesar{6}}\psi^{S=1}_{(1\otimes 0)}
angle$ $|\psi^c_{6\otimes \bar{6}}\psi^{S=1}_{(1\otimes 1)}\rangle$ $|\psi_{\bar{3}\otimes3}^{c}\psi_{(1\otimes0)}^{S=1}
angle - \left(-\frac{8}{3}, 0, 0, 0, 0, 8\right)$ (0, 0, 0, 0, 0, 0)(0, -4, 4, -4, 4, 0) $|\psi^{c}_{\bar{3}\otimes3}\psi^{S=1}_{(1\otimes1)}\rangle \ \left(0,-\tfrac{4\sqrt{2}}{3},-\tfrac{4\sqrt{2}}{3},\tfrac{4\sqrt{2}}{3},\tfrac{4\sqrt{2}}{3},0\right)$ $\left(-\frac{8}{3},\frac{4}{3},\frac{4}{3},\frac{4}{3},\frac{4}{3},-\frac{8}{3}\right)$ (0,-4,4,-4,4,0) $(0, 2\sqrt{2}, -2\sqrt{2}, -2\sqrt{2}, 2\sqrt{2}, 0)$ $\left(0, -\frac{10\sqrt{2}}{3}, -\frac{10\sqrt{2}}{3}, \frac{10\sqrt{2}}{3}, \frac{10\sqrt{2}}{3}, 0\right)$ (0, 0, 0, 0, 0, 0) (0, -4, 4, -4, 4, 0) $\left(-\frac{4}{3}, 0, 0, 0, 0, -4\right)$ $|\psi^c_{6\otimesar{6}}\psi^{S=1}_{(1\otimes 0)}
angle$ $(0, -4, 4, -4, 4, 0) \qquad (0, 2\sqrt{2}, -2\sqrt{2}, -2\sqrt{2}, 2\sqrt{2}, 0) \ \left(0, -\frac{10\sqrt{2}}{3}, -\frac{10\sqrt{2}}{3}, \frac{10\sqrt{2}}{3}, \frac{10\sqrt{2}}{3}, 0\right)$ $|\psi^c_{6\otimes ar 6}\psi^{S=1}_{(1\otimes 1)}
angle$ $\left(\frac{4}{3}, \frac{10}{3}, \frac{10}{3}, \frac{10}{3}, \frac{10}{3}, \frac{10}{3}, \frac{4}{3}\right)$

