Searching for six quark states in lattice QCD

Liuming Liu Insitute of Modern Physics, CAS

Yi-Qi Geng, Peng Sun, Jia-Jun Wu, Hanyang Xing

East Asian Workshop on Exotic Hadrons Dec. 8-12, 2024, Nanjing

- ♦ The only known stable dibaryon Deuteron. • Lattice calculation is difficult due to poor signal. Are there any other dibaryons ?

- ✦ H-dibaryon was predicted long time ago. (Jaffe 1977)
 - Has not been observed in experiments.
 - Lattice QCD calculations give different results.
 - How would the interaction between ΛΛ depend on quark mass? — $\Lambda_c \Lambda_c$.

 Spectroscopy and scattering on lattice Lattice setup Preliminary results • *np* scattering • $\Lambda\Lambda - N\Xi$ scattering

• $\Lambda_c \Lambda_c$ scattering

Lüscher's finite volume method:

Scattering on lattice

M. Lüscher, Nucl. Phys. B354, 531(1991)

Resonances/bound states are formally defined as poles in scattering amplitudes.

Scattering on lattice

- Finite volume spectrum: construct the matrix of correlation function:
 - $C_{ij} = \langle 0 | \mathcal{O}_i \mathcal{O}_j^{\dagger} | 0$
- Eigenvalues: $\lambda_n(t) \sim e^{-E_n t} (1 + e^{-\Delta E t})$
- Computational technique: distillation quark smearing.

 \bullet build large basis of operators { $\mathcal{O}_1, \mathcal{O}_2, \cdots$ } with desired quantum numbers,

$$0 > = \sum_{n} Z_i^n Z_j^{n*} e^{-E_n t}$$

♦ Solve the generalized eigenvalue problem(GEVP): $C_{ii}v_i^n(t) = \lambda_n(t)C_{ii}^0v_i^n(t)$

• Optimal linear combinations of the operators to overlap on the n'th state: $\Omega_n = \sum v_i^n \mathcal{O}_i$

• Improve precision • Disconneted diagrams • Efficient for large numbers of ops

• 2+1 flavor Wilson-clover configurations generated by CLQCD.

Z.-C.Hu el al., (CLQCD), Phys. Rev. D109(2024)5,054507

Lattice QCD configurations

Lattice spacing	Volume($L^3 \times T$)	M_{π} (MeV)	$M_{\pi}L$	# of confs
~0.105fm	$24^3 \times 72$	290	3.7	1000
	$32^3 \times 64$	290	4.9	1000
	$48^3 \times 96$	290	7.4	280

Interpolating operators for proton and neutron: $p_{\alpha} = u_{\alpha} [u^{T}(C\gamma_{5})d] \qquad n_{\alpha} = d_{\alpha} [u^{T}(C\gamma_{5})d]$ Deuteron operators $(I(J^P) = 0(1^+))$: $\mathcal{O}_{D}(t) = C(\alpha, \beta, \mathbf{p}_{1}, \mathbf{p}_{2}) \frac{1}{\sqrt{2}} [(p_{\alpha}(\mathbf{p}_{1})n_{\beta}(\mathbf{p}_{2}) - n_{\alpha}(\mathbf{p}_{1})p_{\beta}(\mathbf{p}_{2})], \mathbf{p}_{1} + \mathbf{p}_{2} = \mathbf{0}_{\texttt{H}^{1,15}}$

The coefficients $C(\alpha, \beta, \mathbf{p}_1, \mathbf{p}_2)$ make the operators transform in the T_1^+ irrep of the cubic group and mainly overlaps with **S-wave**.

Deuteron: pn scattering

L/a

Scattering amplitude:

Fit1: using three data points below the threshold, ERE up to k^2 Fit2: using five data points, ERE up to k^4

Deuteron: pn scattering

	Fit 1	Fit
$1/a_0$ (<i>fm</i> ⁻¹)	-0.2(1)	-0.05
r_0 (<i>fm</i>)	0.45(17)	1.67
C (fm)		0.75
χ^2/dof	0.70	0.
Binding Energy (MeV)	2.4(1.9)	1.33

Ensembles used in this work

Lattice spacing	Volume($L^3 \times T$)	M_{π} (MeV)	$M_{\pi}L$	# of confs
~0.105fm	$24^3 \times 72$	290	3.7	1000
	$32^3 \times 64$	290	4.9	1000
	$32^3 \times 64$	230	3.9	450
	$48^3 \times 96$	230	5.9	260
~0.077fm	$32^3 \times 96$	300	3.7	780
	$48^3 \times 96$	300	5.6	360
	$48^3 \times 96$	210	4.0	220
~0.052fm	$48^3 \times 144$	320	4.0	430

- We are intrested in the $I(J^P) = O(0^+)$ $\Lambda\Lambda$ scattering
- coupled channels: $\Lambda\Lambda$, $N\Xi$, $\Sigma\Sigma$
- energy range below $\Sigma\Sigma$ threshold, and consider only $\Lambda\Lambda$ and $N\Xi$.

 $\mathcal{O}^{\mathbf{P}}(\Lambda\Lambda) = \Lambda(\mathbf{p}_1)\Lambda(\mathbf{p}_2)$

$$\mathcal{O}^{\mathbf{P}}(N\Xi) = p(\mathbf{p_1})\Xi^{-}(\mathbf{p_2}) - n(\mathbf{p_1})\Xi^{0}(\mathbf{p_2})$$

 $\mathbf{P} = \mathbf{p}_1 + \mathbf{p}_2, \quad \mathbf{P} = (0,0,0), (0,0,1)$

The energy levels obtained from GEVP using both $\Lambda\Lambda$ and $N\Xi$ operators are almost the same as using them separately.

• To avoid the complexity of three coupled channels, we will keep the

 $a \approx 0.077$ fm, $m_{\pi} \approx 303$ MeV

ΛΛ finite volume spectrum

 $a \approx 0.077$ fm, $m_{\pi} \approx 303$ MeV

2620 --- $\Sigma\Sigma$ (0,0,0) \mathbf{I} $\Lambda\Lambda$ channel 2600 2580 2560 E(MeV) 5240 2520 2500 2480 2460 2.2 2.4 2.6 2.8 2.2 2.4 L (fm) L (fm)

 $a \approx 0.077 \text{ fm}, m_{\pi} \approx 207 \text{ MeV}$

• Except for a = 0.105 fm, $m_{\pi} = 292$ MeV, the interacting enengies are all very close to the noninteracting energies.

 $a \approx 0.052 \text{ fm}, m_{\pi} \approx 317 \text{ MeV}$

NE finite volume spectrum

--- *t*-channel cut (0,0,0)(0,0,1)2480 $\Sigma\Sigma$ _ ΞN channel Ŧ 2460 2440 (MeV) 5450 5400 Ī 2380 2360 2340 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 L (fm) L (fm) $a \approx 0.077 \text{ fm}, m_{\pi} \approx 207 \text{ MeV}$ --- *t*-channel cut 2360 (0,0,0)(0,0,1) $---\sum$ Ŧ ΞN channel 2340 2320 Ŧ E(MeV) E(MeV) 2260 · 2240 -2220 ______ -----2200 · 3.2 3.4 3.6 3.8 4.0 4.2 3.2 3.4 3.6 4.0 4.2 3.8 L (fm) L (fm)

 $a \approx 0.077$ fm, $m_{\pi} \approx 303$ MeV

NE scattering amplitude

- The scattering amplitude is paramerized by effective range expansion: $pcot\delta(p) = \frac{1}{a_0} + \frac{1}{2}r_0p^2$
- At a = 0.105 fm, $m_{\pi} = 292$ MeV, there is a bound state pole, when the lattice spacing becomes smaller and pion mass gets closer to the physical value, the pole becomes a virtual state pole.
- The effects of the left-hand cut has not been considered.

Lattice spacing	Volume($L^3 \times T$)	M_{π} (MeV)	$M_{\pi}L$	# of confs
~0.077fm	$32^3 \times 96$	300	3.7	780
	$48^3 \times 96$	300	5.6	360

• S-wave $\Lambda_c \Lambda_c$ scattering, coupled channels: $N \Xi_{cc}, \Sigma_c \Sigma_c$

Interpolating operators $(I(J^P) = 0(0^+))$: $\mathcal{O}(\Lambda_c \Lambda_c) = \Lambda_c(\mathbf{p}) \Lambda_c(-\mathbf{p}), |\mathbf{p}|^2 = 0,1$ $\mathcal{O}(N\Xi_{cc}) = N(\mathbf{p})\Xi_{cc}(-\mathbf{p}), |\mathbf{p}|^2 = 0,1$

• The energy levels of $\Lambda_c \Lambda_c$ are not affected by including the $N\Xi_{cc}$ operators.

$\Lambda_{c}\Lambda_{c}$ scattering

Interpolating operators $(I(J^P) = 0(0^+)):$ $\mathcal{O}(\Lambda_c \Lambda_c) = \Lambda_c(\mathbf{p}) \Lambda_c(-\mathbf{p}), |\mathbf{p}|^2 = 0, 1, 2, 3$ $\mathcal{O}(\Sigma_c \Sigma_c) = \Sigma_c(\mathbf{p})\Sigma_c(-\mathbf{p}), |\mathbf{p}|^2 = 0$

• The $\Sigma_c \Sigma_c$ threshold is much higher than $\Lambda_c \Lambda_c$, the energy levels well below the $\Sigma_c \Sigma_c$ threshold is not affected by $\Sigma_c \Sigma_c$.

$\Lambda_{c}\Lambda_{c}$ scattering

-
$$\Sigma_c \Sigma_c$$
 coupling

$\Lambda_c \Lambda_c$ scattering

$a_0 = -0.225(33)$ fm $r_0 = 0.02(10) \text{ fm}$

state was found in the S-wave *np* scattering. NE channel, bound/virtual state pole is found. • Repulsive interaction in the $\Lambda_c \Lambda_c$ scattering.

Couple channel effects need to be considered in the scattering analysis. The influnce of left-hand cut is ignored in the preliminaly results, need to be include in future works.

- Very weak interaction in the ΛΛ channel. Atractive interaction in the

