Exclusive J/ψ photoproduction on nucleon and nuclei

Sang-Ho Kim (金相鎬)

Soongsil University, Seoul, Republic of Korea
Origin of Matter and Evolution of Galaxies (OMEG) Institute

In collaboration with T.-S.H.Lee (ANL)

East Asian Workshop on Exotic Hadrons 2024 08 - 12 December, 2024, Nanjing, China

Contents

1.
$$\gamma p \rightarrow \varphi p$$
, $\gamma^4 He \rightarrow \varphi^4 He$

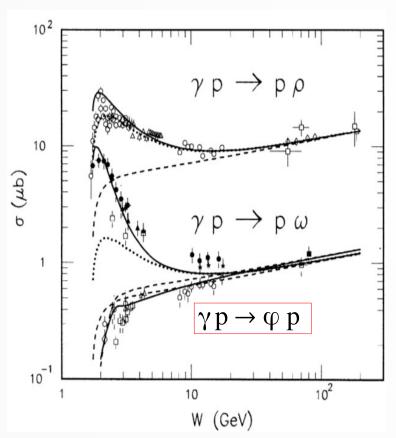
2.
$$\gamma p \to J/\psi p$$
, $\gamma A \to J/\psi A (A = d, {}^{4}He, {}^{16}O, {}^{40}Ca)$

- ☐ Introduction
- ☐ Formalism
- □ Results
- ☐ Summary & Future work

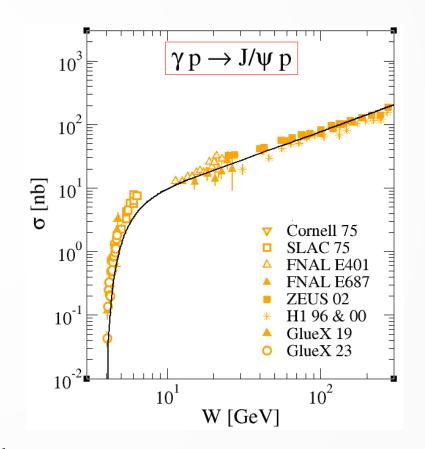
Contents based on

a [S.H.Kim, T.-S.H.Lee, S.i.Nam, Y.Oh, PRC.104.045202 (2021)] b [S.H.Kim, T.-S.H.Lee, R.B.Wiringa, arXiv:2411.12187 (2024)]

- □ Photoproduction of light vector mesons offers an ideal opportunity for studying gluonic interactions at high energies.
- □ Pomeron exchange is responsible for describing slow rising total cross section.
- □ The production mechanism at low energies should be investigated with the recent experimental data.

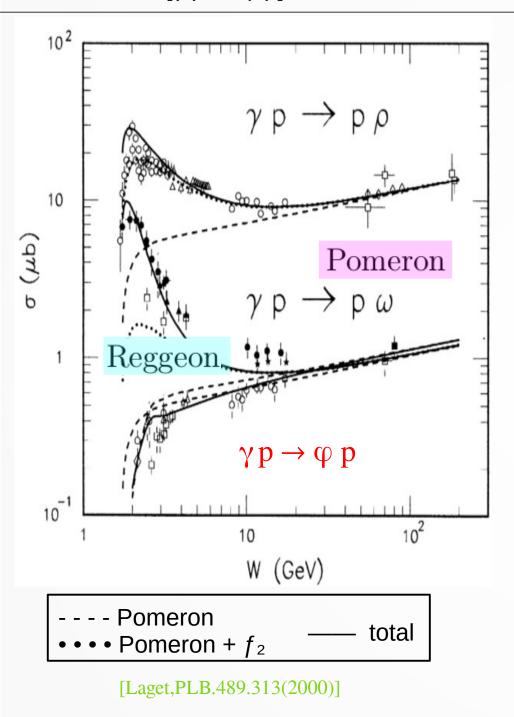


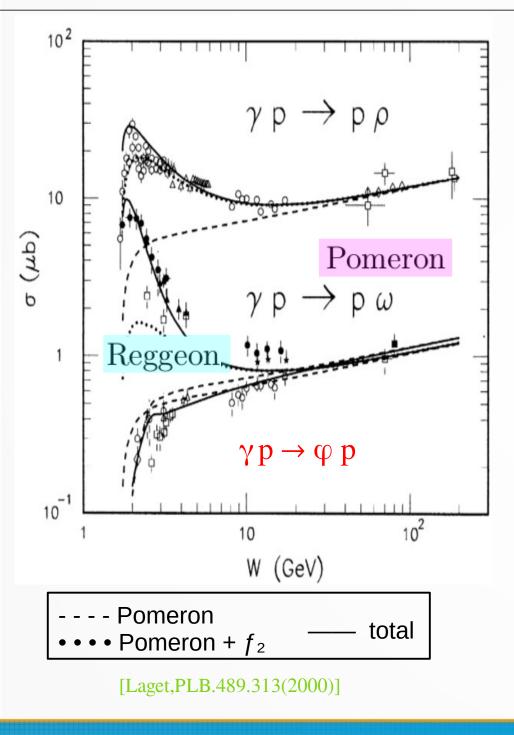
low [Dey, CLAS, PRC.89. 055208 (2014) energy: Seraydaryan, CLAS, PRC.89.055206 (2014) data Mizutani, LEPS, PRC.96.062201 (2017)]



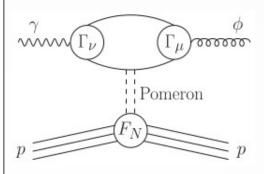
low [Pentchev, GlueX, PRL.123.072001 (2019) energy: Duran, JLab, Nature.615.813 (2023) data Pentchev, GlueX, PRC.108.025201 (2023)]

1. $\gamma p \rightarrow \varphi p$, $\gamma^4 He \rightarrow \varphi^4 He$





- \Box We focus on $\gamma p \rightarrow \varphi p$.
- ☐ high energy

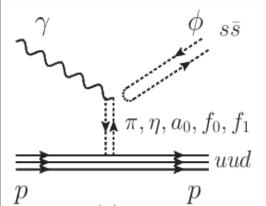


- $\square \sigma \left[\gamma p \to \varphi p \right] \approx \sigma \left[\gamma p \to \omega p \right]$
- ☐ Fn: isoscalar EM form factor of the nucleon

$$F_N(t) = \frac{4M_N^2 - a_N^2 t}{(4M_N^2 - t)(1 - t/t_0)^2}$$

$$\Box$$
 P(t) = 1.08 + 0.25t

☐ low energy



 $\Box \sigma[\gamma p \to \varphi p] << \sigma[\gamma p \to (\rho, \omega)p]$ due to the OZI rule

- ☐ high energy:
- The two-gluon exchange is simplified by the Donnachie-Landshoff (DL) model which suggests that the Pomeron couples to the nucleon like a C = +1 isoscalar photon and its coupling is described in terms of $F_N(t)$.

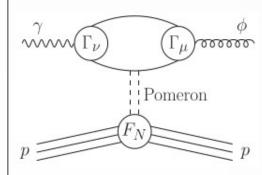
[Pomeron Physics and QCD (Cambridge University, 2002)]

□ low energy:

We need to clarify the reaction mechanism.

[Exp: Dey, CLAS, PRC.89. 055208 (2014) Seraydaryan, CLAS, PRC.89.055206 (2014) Mizutani, LEPS, PRC.96.062201 (2017)]

- \Box We focus on $\gamma p \rightarrow \varphi p$.
- ☐ high energy

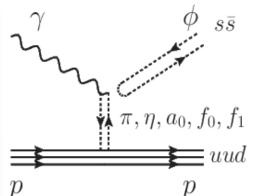


- $\Box \sigma \left[\gamma p \to \phi p \right] \approx \sigma \left[\gamma p \to \omega p \right]$
- ☐ Fn: isoscalar EM form factor of the nucleon

$$F_N(t) = \frac{4M_N^2 - a_N^2 t}{(4M_N^2 - t)(1 - t/t_0)^2}$$

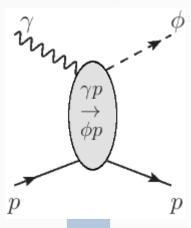
 \Box P(t) = 1.08 + 0.25t

☐ low energy



 $\Box \sigma[\gamma p \to \varphi p] << \sigma[\gamma p \to (\rho, \omega)p]$ due to the OZI rule

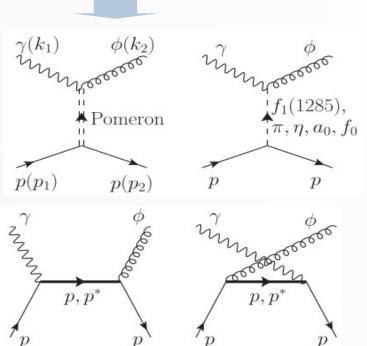
□ Scattering amplitude: $T_{\phi N, \gamma N}(E) = [B_{\phi N, \gamma N}]$



 $H = H_0 + B_{\phi N, \gamma N} + \Gamma_{N^*, \gamma N} + \Gamma_{N^*, \phi N}$ $+ \sum_{(v_{MB, \phi N} + \text{H.c.})} (v_{MB, \phi N} + \text{H.c.})$

 $MB=K\Lambda, K\Sigma, \pi N, \rho N$

□ We employ a dynamical approach based on a Hamiltonian.

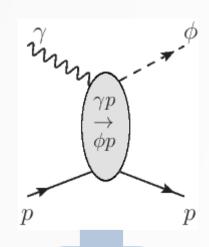


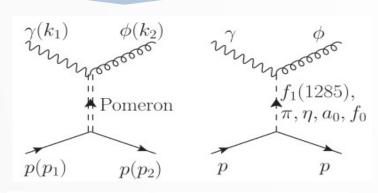
□ Ward-Takahashi identity

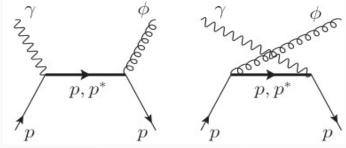
$$\mathcal{M}(k) = \epsilon_{\mu}(k)\mathcal{M}^{\mu}(k)$$

if we replace ϵ_{μ} with k_{μ} : $k_{\mu}\mathcal{M}^{\mu}(k) = 0$

 \square Scattering amplitude: $T_{\phi N, \gamma N}(E) = [B_{\phi N, \gamma N}]$







☐ Effective Lagrangians

□ EM vertex

$$\mathcal{L}_{\gamma\phi f_1} = g_{\gamma\phi f_1} \epsilon^{\mu\nu\alpha\beta} \partial_{\mu} A_{\nu} \partial^{\lambda} \partial_{\lambda} \phi_{\alpha} f_{1\beta}$$

$$\mathcal{L}_{\gamma \Phi \phi} = \frac{e g_{\gamma \Phi \phi}}{M_{\phi}} \epsilon^{\mu \nu \alpha \beta} \partial_{\mu} A_{\nu} \partial_{\alpha} \phi_{\beta} \Phi$$

$$\mathcal{L}_{\gamma S \phi} = \frac{e g_{\gamma S \phi}}{M_{\phi}} F^{\mu \nu} \phi_{\mu \nu} S$$

□ strong vertex

$$\mathcal{L}_{f_1NN} = -g_{f_1NN}\bar{N} \bigg[\gamma_{\mu} - i \frac{\kappa_{f_1NN}}{2M_N} \gamma_{\nu} \gamma_{\mu} \partial^{\nu} \bigg] f_1^{\mu} \gamma_5 N$$

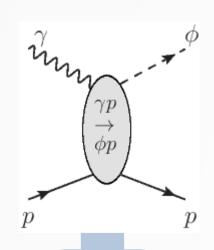
$$\mathcal{L}_{\Phi NN} = -ig_{\Phi NN}\bar{N}\Phi\gamma_5N$$

$$\mathcal{L}_{SNN} = - g_{SNN} \bar{N} SN$$

$$\left[\mathcal{L}_{\gamma NN} = -e\bar{N} \left[\gamma_{\mu} - \frac{\kappa_{N}}{2M_{N}} \sigma_{\mu\nu} \partial^{\nu} \right] N A^{\mu} \right]$$

$$\mathcal{L}_{\phi NN} = -g_{\phi NN} \bar{N} \left[\gamma_{\mu} - \frac{\kappa_{\phi NN}}{2M_{N}} \sigma_{\mu\nu} \partial^{\nu} \right] N \phi^{\mu}$$

□ Scattering amplitude: $T_{\phi N,\gamma N}(E) = [B_{\phi N,\gamma N}]$



$$\mathcal{M} = \varepsilon_{\nu}^{*} \bar{u}_{N'} \mathcal{M}^{\mu\nu} u_{N} \epsilon_{\mu}$$

$$\mathcal{M}_{f_{1}}^{\mu\nu} = i \frac{M_{\phi}^{2} g_{\gamma f_{1} \phi} g_{f_{1} NN}}{t - M_{f_{1}}^{2}} \epsilon^{\mu\nu\alpha\beta} \left[-g_{\alpha\lambda} + \frac{q_{t\alpha} q_{t\lambda}}{M_{f_{1}}^{2}} \right]$$

$$\times \left[\gamma^{\lambda} + \frac{\kappa_{f_{1} NN}}{2M_{N}} \gamma^{\sigma} \gamma^{\lambda} q_{t\sigma} \right] \gamma_{5} k_{1\beta},$$

$$\mathcal{M}_{\Phi}^{\mu\nu} = i \frac{e}{M_{\phi}} \frac{g_{\gamma \Phi \phi} g_{\Phi NN}}{t - M_{\Phi}^{2}} \epsilon^{\mu\nu\alpha\beta} k_{1\alpha} k_{2\beta} \gamma_{5},$$

$$\mathcal{M}_{S}^{\mu\nu} = \frac{e}{M_{\phi}} \frac{2g_{\gamma S \phi} g_{SNN}}{t - M_{S}^{2} + i \Gamma_{S} M_{S}} \left(k_{1} k_{2} g^{\mu\nu} - k_{1}^{\mu} k_{2}^{\nu} \right),$$

$$\times \left(\gamma^{\mu} + i\frac{\kappa_{N}}{2M_{N}}\sigma^{\mu\beta}k_{1\beta}\right),$$

$$\mathcal{M}_{\phi \, \text{rad}, u}^{\mu\nu} = \frac{eg_{\phi NN}}{u - M_{N}^{2}} \left(\gamma^{\mu} + i\frac{\kappa_{N}}{2M_{N}}\sigma^{\mu\alpha}k_{1\alpha}\right) (\phi_{u} + M_{N})$$

$$\times \left(\gamma^{\nu} - i\frac{\kappa_{\phi NN}}{2M_{N}}\sigma^{\nu\beta}k_{2\beta}\right),$$

$$\mathcal{L}_{\gamma NN} = -e\bar{N} \left[\gamma_{\mu} - \frac{\kappa_{N}}{2M_{N}}\sigma_{\mu\nu}\partial^{\nu}\right] NA^{\mu}$$

$$\mathcal{L}_{\phi NN} = -g_{\phi NN}\bar{N} \left[\gamma_{\mu} - \frac{\kappa_{\phi NN}}{2M_{N}}\sigma_{\mu\nu}\partial^{\nu}\right] NA^{\mu}$$

 $\mathcal{M}_{\phi \, \mathrm{rad}, s}^{\mu \nu} = \frac{e g_{\phi NN}}{s - M_{s}^{2}} \left(\gamma^{\nu} - i \frac{\kappa_{\phi NN}}{2 M_{N}} \sigma^{\nu \alpha} k_{2\alpha} \right) (\phi_{s} + M_{N})$

☐ Effective Lagrangians

□ EM vertex $\mathcal{L}_{\gamma\phi f_1} = g_{\gamma\phi f_1} \epsilon^{\mu\nu\alpha\beta} \partial_{\mu} A_{\nu} \partial^{\lambda} \partial_{\lambda} \phi_{\alpha} f_{1\beta}$

$$\mathcal{L}_{\gamma\Phi\phi} = \frac{eg_{\gamma\Phi\phi}}{M_{\phi}} \epsilon^{\mu\nu\alpha\beta} \partial_{\mu} A_{\nu} \partial_{\alpha} \phi_{\beta} \Phi$$

$$\mathcal{L}_{\gamma S\phi} = \frac{eg_{\gamma S\phi}}{M_{\phi}} F^{\mu\nu} \phi_{\mu\nu} S$$

□ strong vertex

$$\mathcal{L}_{f_1NN} = -g_{f_1NN}\bar{N} \left[\gamma_{\mu} - i \frac{\kappa_{f_1NN}}{2M_N} \gamma_{\nu} \gamma_{\mu} \partial^{\nu} \right] f_1^{\mu} \gamma_5 N$$

$$\mathcal{L}_{\Phi NN} = -ig_{\Phi NN}\bar{N}\Phi\gamma_5 N$$

$$\mathcal{L}_{SNN} = -g_{SNN}\bar{N}SN$$

$$\mathcal{L}_{\gamma NN} = -e\bar{N} \left[\gamma_{\mu} - \frac{\kappa_{N}}{2M_{N}} \sigma_{\mu\nu} \partial^{\nu} \right] N A^{\mu}$$

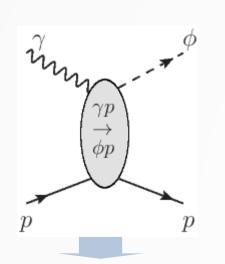
$$\mathcal{L}_{\phi NN} = -g_{\phi NN} \bar{N} \left[\gamma_{\mu} - \frac{\kappa_{\phi NN}}{2M_{N}} \sigma_{\mu\nu} \partial^{\nu} \right] N \phi^{\mu}$$

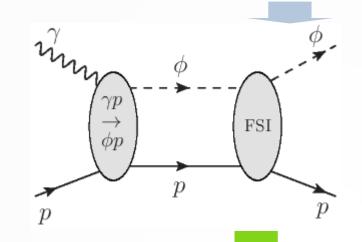
2. Formalism [$y p \rightarrow \phi p$]

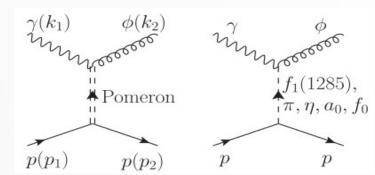
Sangho Kim (SSU)

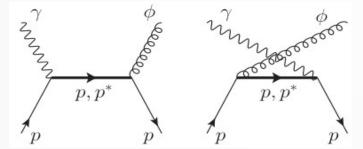
final state interaction (FSI)

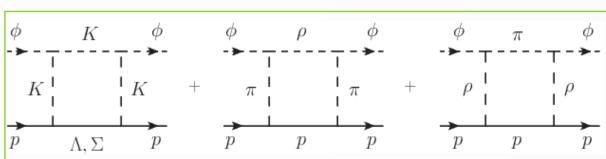
□ Scattering amplitude: $T_{\phi N,\gamma N}(E) = [B_{\phi N,\gamma N} + T_{\phi N,\gamma N}^{FSI}(E)]$











\Box decay mode of φ -meson

Γ_1	K^+K^-	$(49.2 \pm 0.5)\%$
Γ_2	K_L^0 K_S^0	$(34.0 \pm 0.4)\%$
Γ_3	$ ho\pi+\pi^+\pi^-\pi^0$	$(15.24\pm0.33)\%$
Γ_4	$ ho\pi$	
Γ_5	$\pi^+\pi^-\pi^0$	
Γ_6	$\eta\gamma$	$(1.303 \pm 0.025)\%$
Γ_7	$\pi^0\gamma$	$(1.32\pm0.06)\times10^{-3}$
Γ_8	$\ell^+\ell^-$	
Γ_9	e^+e^-	$(2.974 \pm 0.034) imes 10^{-4}$
Γ_{10}	$\mu^+\mu^-$	$(2.86\pm0.19)\times10^{-4}$
Γ_{11}	$\eta e^+ e^-$	$(1.08\pm0.04)\times10^{-4}$
Γ_{12}	$\pi^+\pi^-$	$(7.3 \pm 1.3) imes 10^{-5}$
Γ_{13}	$\omega\pi^0$	$(4.7 \pm 0.5) \times 10^{-5}$
Γ_{14}	$\omega\gamma$	< 5%
Γ_{15}	ργ	$<1.2 imes10^{-5}$

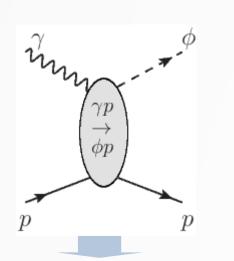
2. Formalism [$\gamma p \rightarrow \phi p$]

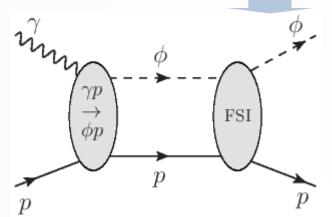
Sangho Kim (SSU)

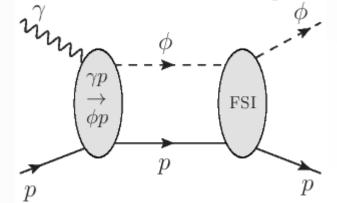
final state interaction (FSI)

☐ Scattering amplitude: $T_{\phi N,\gamma N}(E) = [B_{\phi N,\gamma N} + T_{\phi N,\gamma N}^{FSI}(E)]$

+







Γ_1	K^+K^-	$(49.2 \pm 0.5)\%$
Γ_2	K_L^0 K_S^0	$(34.0 \pm 0.4)\%$
Γ_3	$ ho\pi + \pi^+\pi^-\pi^0$	$(15.24 \pm 0.33)\%$

$$\rho\pi + \pi^+\pi^-\pi^0 \ (15.24 \pm 0.33)\%$$

 $\rho\pi$

$$egin{array}{cccc} \Gamma_5 & \pi^+\pi^-\pi^0 \ \Gamma_6 & \eta\gamma & (1.303\pm0.025)\% \end{array}$$

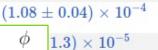
$$\Gamma_7 \qquad \pi^0 \gamma \qquad \qquad (1.32 \pm 0.06) imes 10^{-3}$$

$$\Gamma_8$$
 $\ell^+\ell^-$

$$\Gamma_9 \hspace{1.5cm} e^+ \, e^- \hspace{1.5cm} (2.974 \pm 0.034) imes 10^{-4}$$

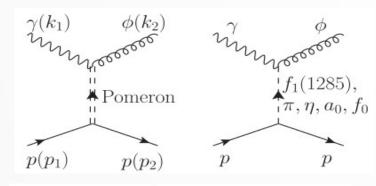
$$\Gamma_{10}$$
 $\mu^+\mu^ (2.86\pm0.19)\times10^{-4}$

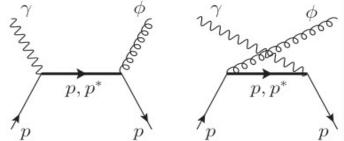
$$\Gamma_{11} \qquad \eta e^+ e^- \qquad (1.08 \pm 0)$$

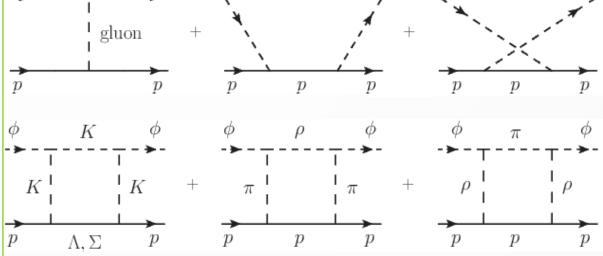


$$0.5) imes 10^{-5}$$

$$\times 10^{-5}$$



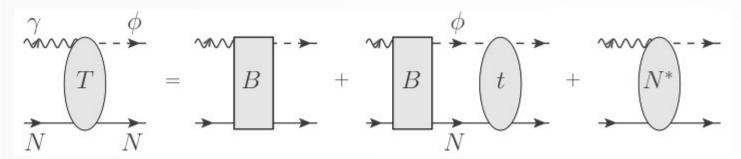




2. Formalism [$\gamma p \rightarrow \phi p$]

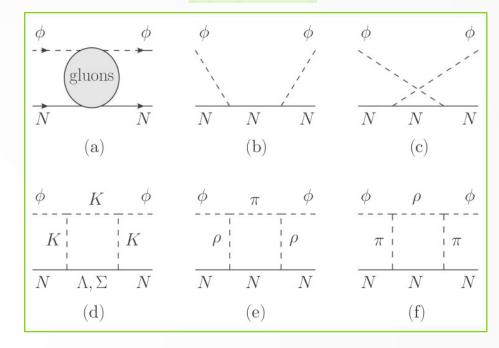
Sangho Kim (SSU)

final state interaction (FSI)



$$T_{\phi N,\gamma N}(E) = B_{\phi N,\gamma N} + T_{\phi N,\gamma N}^{\text{FSI}}(E) + T_{\phi N,\gamma N}^{N^*}(E)$$

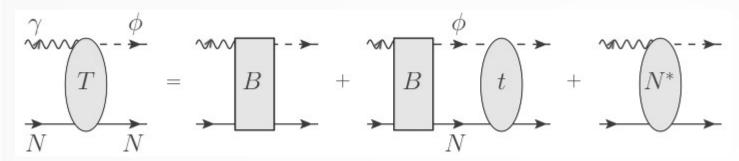
$t_{\phi N,\phi N}(E)$



2. Formalism [y p \rightarrow ϕ p]

Sangho Kim (SSU)

final state interaction (FSI)

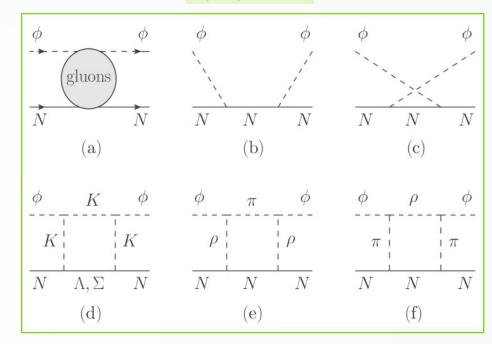


$$T_{\phi N,\gamma N}(E) = B_{\phi N,\gamma N} + T_{\phi N,\gamma N}^{\text{FSI}}(E) + T_{\phi N,\gamma N}^{N^*}(E)$$
$$t_{\phi N,\phi N}(E)G_{\phi N}(E)B_{\phi N,\gamma N}$$

$$G_{MB}(E) = \frac{|MB\rangle \langle MB|}{E - H_0 + i\epsilon}$$
: meson-baryon propagator

$$t_{\phi N,\phi N}(E) = V_{\phi N,\phi N}(E) + V_{\phi N,\phi N}G_{\phi N}(E)t_{\phi N,\phi N}(E)$$

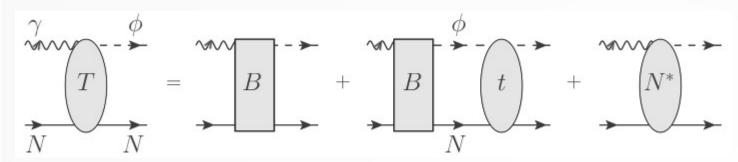
$t_{\phi N,\phi N}(E)$



2. Formalism [$\gamma p \rightarrow \phi p$]

Sangho Kim (SSU)

final state interaction (FSI)

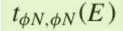


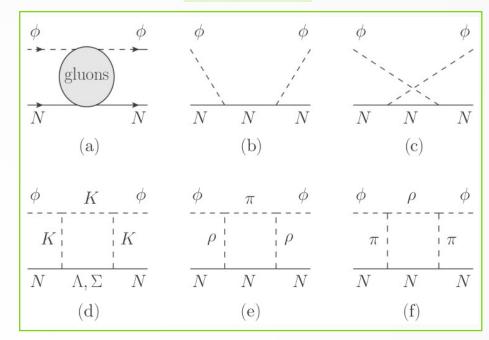
$$T_{\phi N,\gamma N}(E) = B_{\phi N,\gamma N} + T_{\phi N,\gamma N}^{\text{FSI}}(E) + T_{\phi N,\gamma N}^{N^*}(E)$$
$$t_{\phi N,\phi N}(E)G_{\phi N}(E)B_{\phi N,\gamma N}$$

$$G_{MB}(E) = \frac{|MB\rangle \langle MB|}{E - H_0 + i\epsilon}$$
: meson-baryon propagator

$$t_{\phi N,\phi N}(E) = V_{\phi N,\phi N}(E) + V_{\phi N,\phi N}G_{\phi N}(E)t_{\phi N,\phi N}(E)$$

$$v_{\phi N,\phi N}^{\text{Gluon}} + v_{\phi N,\phi N}^{\text{Direct}} + \sum_{MB} v_{\phi N,MB} G_{MB}(E) v_{MB,\phi N}$$
(a) (b,c) (d,e,f) MB = (KA, K\S, \pi N, \rho N)



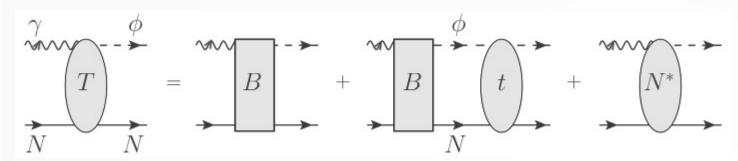


☐ To leading order, we obtain these FSI diagrams.

2. Formalism [$\gamma p \rightarrow \phi p$]

Sangho Kim (SSU)

final state interaction (FSI)



$$T_{\phi N,\gamma N}(E) = B_{\phi N,\gamma N} + T_{\phi N,\gamma N}^{\text{FSI}}(E) + T_{\phi N,\gamma N}^{N^*}(E)$$

$$t_{\phi N,\phi N}(E)G_{\phi N}(E)B_{\phi N,\gamma N}$$

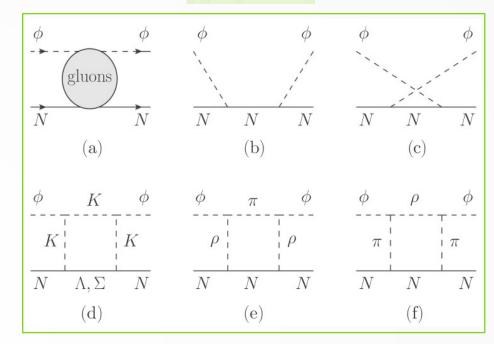
$$G_{MB}(E) = \frac{|MB\rangle \langle MB|}{E - H_0 + i\epsilon}$$
: meson-baryon propagator

$$t_{\phi N,\phi N}(E) = V_{\phi N,\phi N}(E) + V_{\phi N,\phi N}G_{\phi N}(E)t_{\phi N,\phi N}(E)$$

$$v_{\phi N,\phi N}^{\rm Gluon} + v_{\phi N,\phi N}^{\rm Direct} + \sum_{\mathit{MB}} v_{\phi N,\mathit{MB}} G_{\mathit{MB}}(E) v_{\mathit{MB},\phi N}$$

(a)
$$(b,c)$$
 (d,e,f) $MB = (K\Lambda, K\Sigma, \pi N, \rho N)$

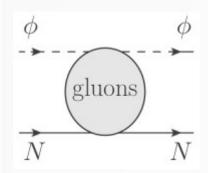
$t_{\phi N,\phi N}(E)$



$$\frac{1}{E - H_0 + i\epsilon} = P \frac{1}{E - H_0} - i\pi \delta(E - H_0)$$

□ We consider both parts numerically.

final state interaction (FSI)

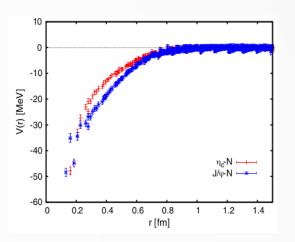


□ The J/ψ-N potential from the LQCD data ~ Yukawa form (v_0 = 0.1, α = 0.3 GeV)

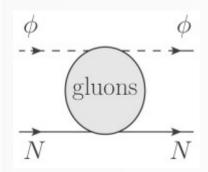
[Kawanai, Sasaki, PRD.82.091501(R) (2010)]

$$\mathcal{V}_{\text{gluon}} = -v_0 \frac{e^{-\alpha r}}{r}$$

 \Box which is assumed in our work, φ-N potential The best fit was obtained by ($v_0 = 0.2$, $\alpha = 0.5$ GeV).



final state interaction (FSI)

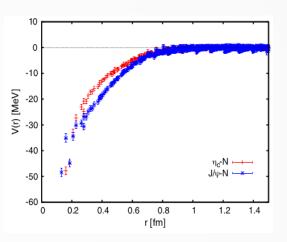


□ The J/ψ-N potential from the LQCD data ~ Yukawa form (v_0 = 0.1, α = 0.3 GeV)

[Kawanai, Sasaki, PRD.82.091501(R) (2010)]

$$\mathcal{V}_{\text{gluon}} = -v_0 \frac{e^{-\alpha r}}{r}$$

 \Box which is assumed in our work, φ-N potential The best fit was obtained by ($\upsilon_0 = 0.2$, $\alpha = 0.5$ GeV).



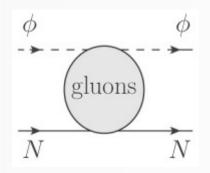
☐ The potential is obtained by taking the nonrelativistic limit of the scalar-meson exchange amplitude calculated from the Lagrangian:

$$\mathscr{L}_{\sigma} = V_0(\bar{\psi}_N \psi_N \Phi_{\sigma} + \phi^{\mu} \phi_{\mu} \Phi_{\sigma})$$

 Φ_{σ} is a scalar field with mass α ($V_0 = -8v_0\pi M_{\phi}$).

$$\square \quad \mathcal{V}_{\text{gluon}}(k\lambda_{\phi}, pm_s; k'\lambda'_{\phi}, p'm'_s) = \frac{V_0}{(p-p')^2 - \alpha^2} \left[\bar{u}_N(p, m_s) u_N(p', m'_s) \right] \left[\epsilon_{\mu}^*(k, \lambda_{\phi}) \epsilon^{\mu}(k', \lambda'_{\phi}) \right]$$

final state interaction (FSI)

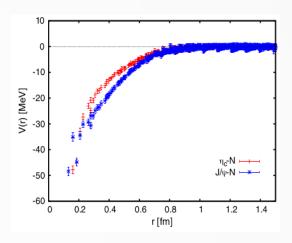


□ The J/ψ-N potential from the LQCD data ~ Yukawa form (v_0 = 0.1, α = 0.3 GeV)

[Kawanai, Sasaki, PRD.82.091501(R) (2010)]

$$\mathcal{V}_{\text{gluon}} = -v_0 \frac{e^{-\alpha r}}{r}$$

 \Box which is assumed in our work, φ-N potential The best fit was obtained by ($\upsilon_0 = 0.2$, $\alpha = 0.5$ GeV).



 \square The ϕ -N potential from the LQCD [Lyu, PRD.106.074507 (2022)]

Attractive $N-\phi$ Interaction and Two-Pion Tail from Lattice QCD near Physical Point

Yan Lyu, 1, 2, Takumi Doi, 2, Tatsuo Hatsuda, 2, Yoichi Ikeda, 3, Yoichi I

- The simple fitting functions such as "the Yukawa form" and "the van der Waals form ~ $1/r^k$ with k=6(7)" cannot reproduce the lattice data.
- > We need to update our results based on the LQCD data.

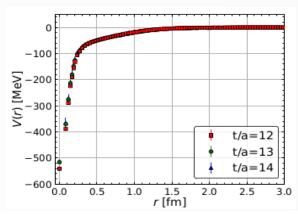
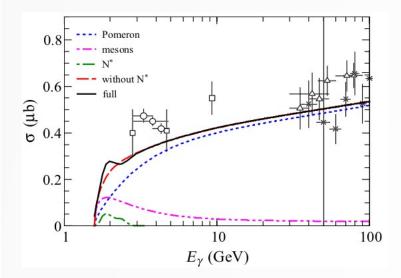
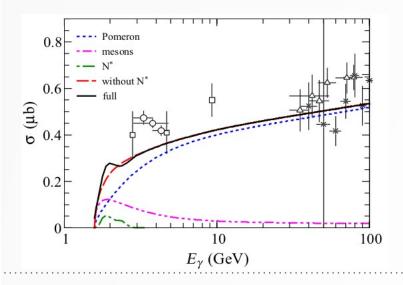


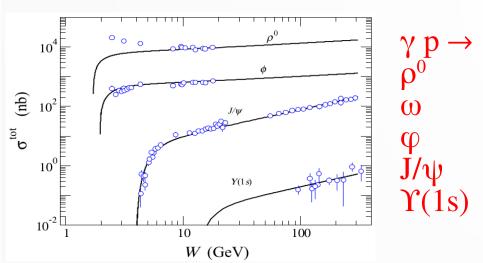
FIG. 1. (Color online). The N- ϕ potential V(r) in the $^4S_{3/2}$ channel as a function of separation r at Euclidean time t/a = 12 (red squares), 13 (green circles) and 14 (blue triangles).



total cross section $[\gamma p \rightarrow \varphi p]$

total cross section $[\gamma p \rightarrow \varphi p]$

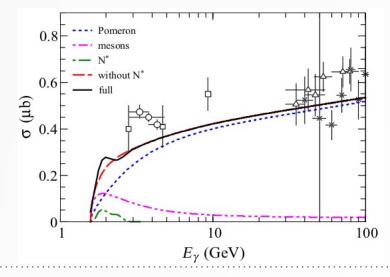


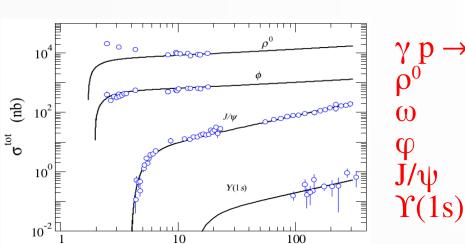


□ Our Pomeron model describes the high energy regions quite well.

total cross section $[\gamma p \rightarrow \phi p]$

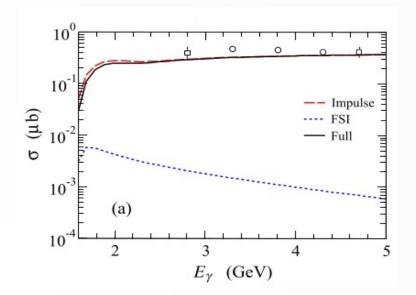
with FSI

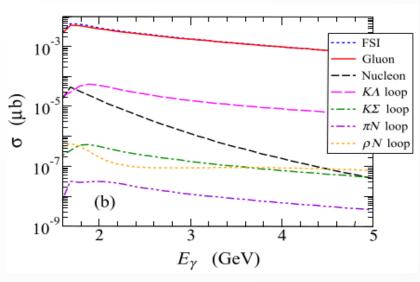




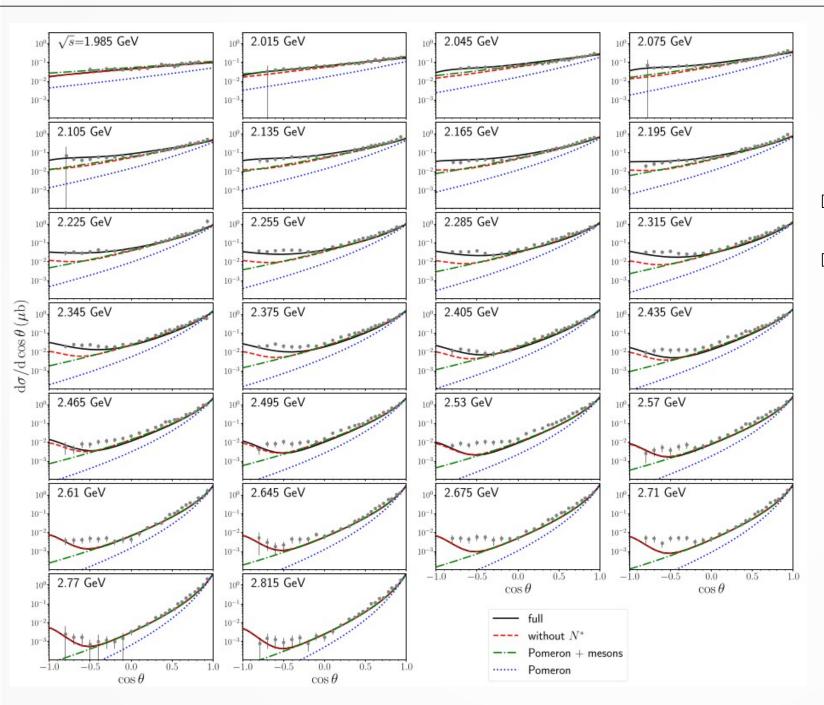
☐ Our Pomeron model describes the high energy regions quite well.

W (GeV)





☐ The contributions of the FSI terms are almost very small.

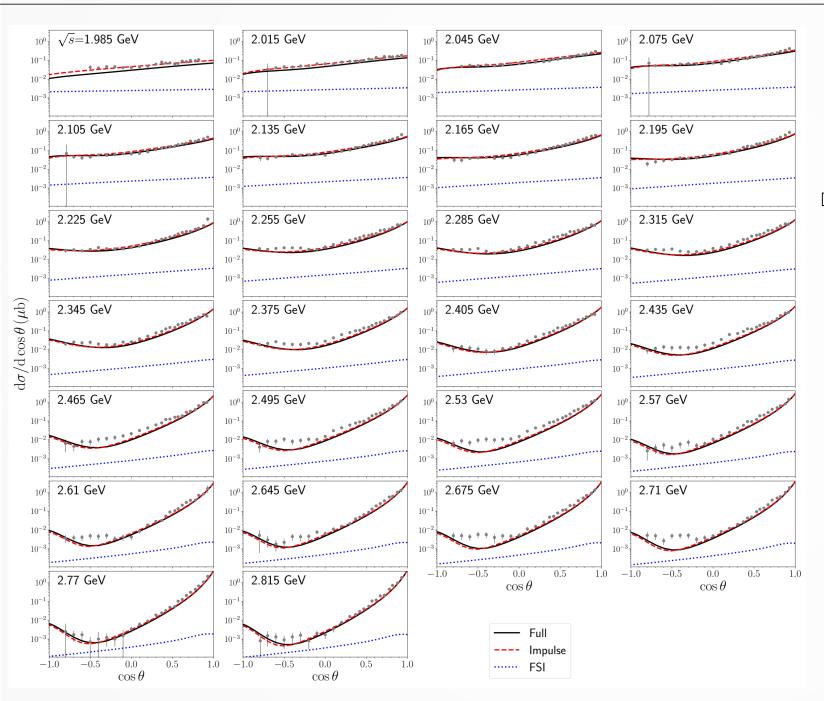


differential cross sections $[\gamma p \rightarrow \varphi p]$

Born term

- ☐ Forward: Pomeron exchange
- □ Backward: mesons, nucleon, N* exchanges

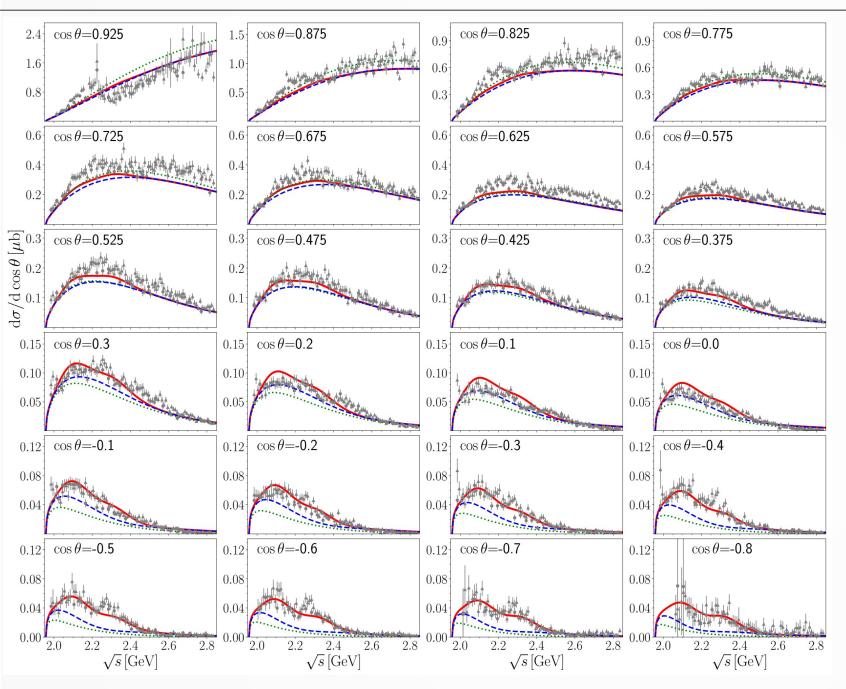
play crucial roles.



differential cross sections $[\gamma p \rightarrow \varphi p]$

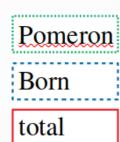
with FSI

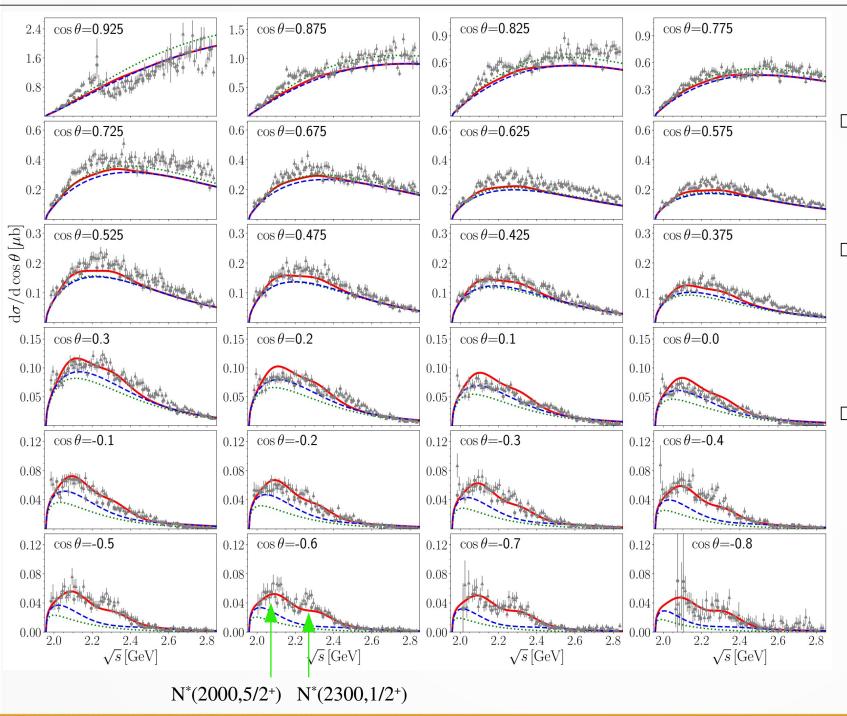
☐ The contributions of the FSI terms are very small.



differential cross sections $[\gamma p \rightarrow \varphi p]$

Born term

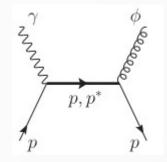




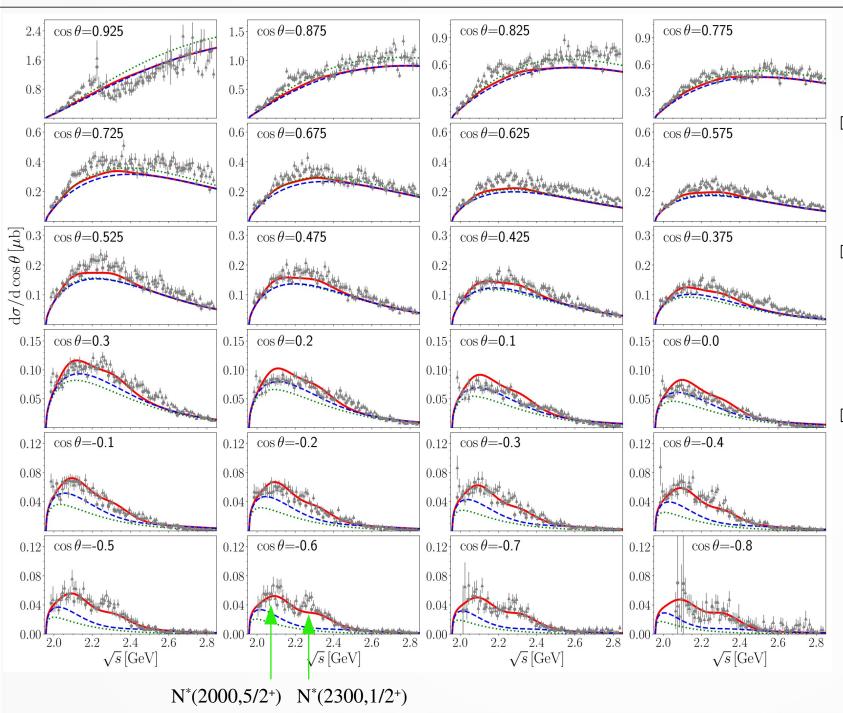
differential cross sections $[\gamma p \rightarrow \varphi p]$

- □ The strong peak at $\sqrt{s} \approx 2.2$ GeV persists only in $\cos\theta = 0.925$ & vanishes around $\cos\theta = 0.8$.
- □ The backward peaks at $\sqrt{s} \approx 2.1 \& 2.3$ GeV are due to two N*'s although the magnitudes are far more suppressed.
- □ None of the N* \rightarrow φN decay is observed firmly experimentally.

Pomeron
Born
total

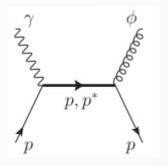


[Exp: Dey (CLAS), PRC.89. 055208 (2014)]



differential cross sections $[\gamma p \rightarrow \varphi p]$

- □ The strong peak at $\sqrt{s} \simeq 2.2$ GeV persists only in $\cos\theta = 0.925$ & vanishes around $\cos\theta = 0.8$.
- □ The backward peaks at $\sqrt{s} \simeq 2.1 \& 2.3$ GeV are due to two N*'s although the magnitudes are far more suppressed.
- □ None of the N* \rightarrow φN decay is observed firmly experimentally.

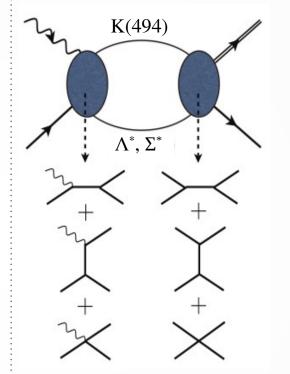


Pentaquark P_s[uudss̄] can be studied in this region.

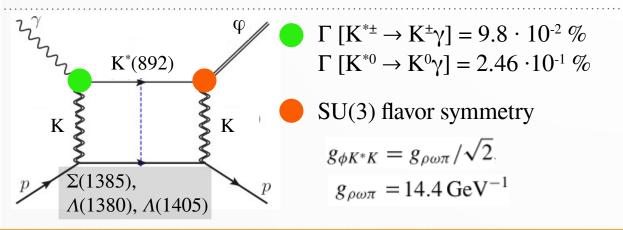
Rescattering diagram

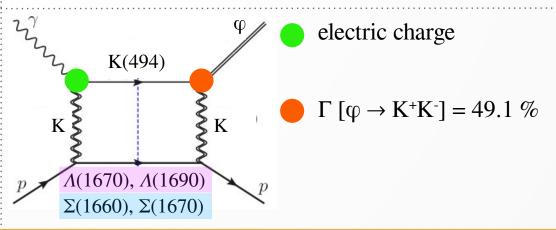
 $[\gamma p \rightarrow \varphi p]$

 \Box It satisfies the gauge invariance by itself.



□ To satisfy
the gauge invariance,
we should include
the t-, s-channels, and
contact terms
simultaneously.





- ☐ We employ a distorted-wave impulse approximation.
- □ Including the FSI term, we can write DCS for spin J=0 nuclei:

$$\frac{d\sigma}{d\Omega_{\text{Lab}}} = \frac{(2\pi)^4 |\mathbf{k}|^2 E_V(\mathbf{k}) E_A(\mathbf{q} - \mathbf{k})}{|E_A(\mathbf{q} - \mathbf{k})|\mathbf{k}| + E_V(\mathbf{k}) (|\mathbf{k}| - |\mathbf{q}| \cos \theta_{\text{Lab}})|} |AF_T(t) \overline{t}(\mathbf{k}, \mathbf{q})| + T^{\text{FSI}}(\mathbf{k}, \mathbf{q}, E)|^2$$

$$\gamma^4 \text{He} \rightarrow \varphi^4 \text{He} \qquad \qquad \gamma p \rightarrow \varphi p$$

$$F_c(q^2) = F_N(q^2)F_T(q^2 = t)$$

$$T(E) = T^{\text{IMP}}(E) + T^{\text{FSI}}(E)$$

$$T^{\text{IMP}} = \sum_{i=1}^{N} \left[B_{\phi N_i, \gamma N_i} + T^{N^*}_{\phi N_i, \gamma N_i} \right]$$

- ☐ We employ a distorted-wave impulse approximation.
- Including the ESI term, we can write DCS for onin I=0 pueloi: Fc (FN): nuclear (nucleon
- □ Including the FSI term, we can write DCS for spin J=0 nuclei:

$$\frac{d\sigma}{d\Omega_{\text{Lab}}} = \frac{(2\pi)^4 |\mathbf{k}|^2 E_V(\mathbf{k}) E_A(\mathbf{q} - \mathbf{k})}{|E_A(\mathbf{q} - \mathbf{k})|\mathbf{k}| + E_V(\mathbf{k}) (|\mathbf{k}| - |\mathbf{q}| \cos \theta_{\text{Lab}})|} |AF_T(t) \overline{t}(\mathbf{k}, \mathbf{q})| + T^{\text{FSI}}(\mathbf{k}, \mathbf{q}, E)|^2$$

$$\gamma^4 \text{He} \rightarrow \phi^4 \text{He} \qquad \gamma p \rightarrow \phi p$$

$$F_c(q^2) = F_N(q^2)F_T(q^2 = t)$$

$$T(E) = T^{\text{IMP}}(E) + T^{\text{FSI}}(E)$$

$$T^{\text{IMP}} = \sum_{i=1,A} \left[B_{\phi N_i, \gamma N_i} + T^{N^*}_{\phi N_i, \gamma N_i} \right]$$

$$T^{FSI}(\mathbf{k}, \mathbf{q}, E) = \int d\mathbf{k}' T_{\phi A, \phi A}(\mathbf{k}, \mathbf{k}', E) \frac{AF(t') \bar{t}(\mathbf{k}', \mathbf{q})}{E - E_V(\mathbf{k}') - E_A(\mathbf{q} - \mathbf{k}') + i\epsilon}$$

$$T^{\text{FSI}}(E) = T_{\phi A, \phi A}(E) \frac{1}{E - H_0} T^{\text{IMP}}$$

- \Box T^{IMP}: the term that ϕ meson is produced from a single nucleon in the nucleus
- \Box T^{FSI}: the effect due to the scattering of the outgoing φ with the recoiled nucleus
- □ We solve the Lippmann-Schwinger equation:

$$\boxed{T_{\phi A, \phi A}(\kappa, \kappa', E) = U_{\phi A, \phi A}(\kappa, \kappa', E) + \int d\kappa'' U_{\phi A, \phi A}(\kappa, \kappa'', E) \frac{1}{E - E_V(\kappa'') - E_A(\kappa'') + i\epsilon}} \boxed{T_{\phi A, \phi A}(\kappa'', \kappa', E)} \quad \text{(in c.m.)}$$

 \square Within multiple-scattering theory, φA potential is expressed in terms of φN scattering amplitude:

$$U_{\phi A,\phi A}(E) = \sum_{i=1,A} t_{\phi N_i,\phi N_i}(\omega)$$

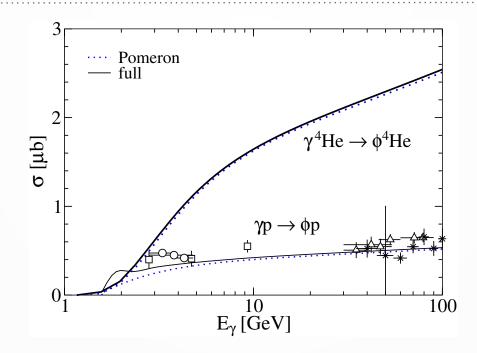
- ☐ We employ a distorted-wave impulse approximation.
- □ Including the FSI term, we can write DCS for spin J=0 nuclei:

$$\frac{d\sigma}{d\Omega_{\text{Lab}}} = \frac{(2\pi)^4 |\mathbf{k}|^2 E_V(\mathbf{k}) E_A(\mathbf{q} - \mathbf{k})}{|E_A(\mathbf{q} - \mathbf{k})| |E_A(\mathbf{q} - \mathbf{k})| |$$

$$F_c(q^2) = F_N(q^2)F_T(q^2 = t)$$

$$T(E) = T^{\text{IMP}}(E) + T^{\text{FSI}}(E)$$

$$T^{\text{IMP}} = \sum_{i=1,A} \left[B_{\phi N_i, \gamma N_i} + T_{\phi N_i, \gamma N_i}^{N^*} \right]$$



 \Box The total cross section for φ^4 He production is about 4 times larger than φN production.

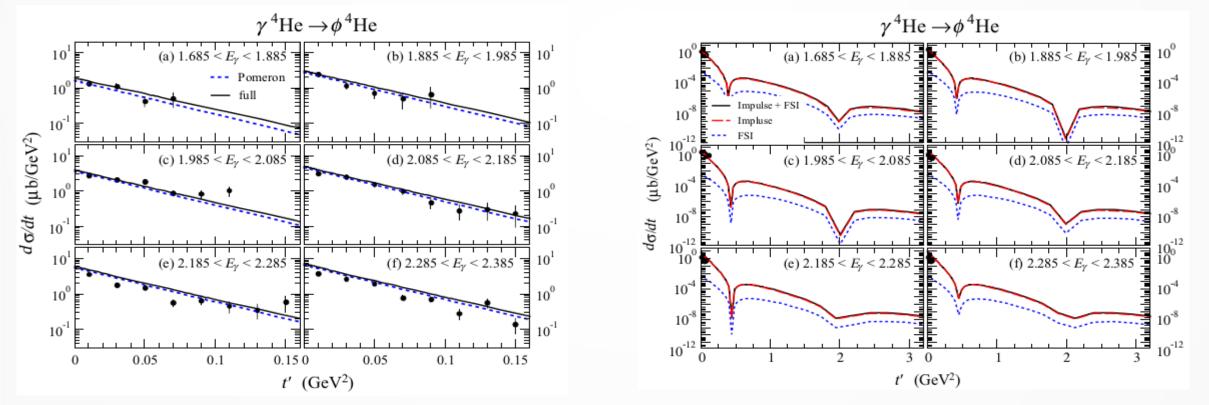
- ☐ We employ a distorted-wave impulse approximation.
- □ Including the FSI term, we can write DCS for spin J=0 nuclei:

$$\frac{d\sigma}{d\Omega_{\text{Lab}}} = \frac{(2\pi)^4 |\mathbf{k}|^2 E_V(\mathbf{k}) E_A(\mathbf{q} - \mathbf{k})}{|E_A(\mathbf{q} - \mathbf{k})| |E_A(\mathbf{q} - \mathbf{k})| |$$

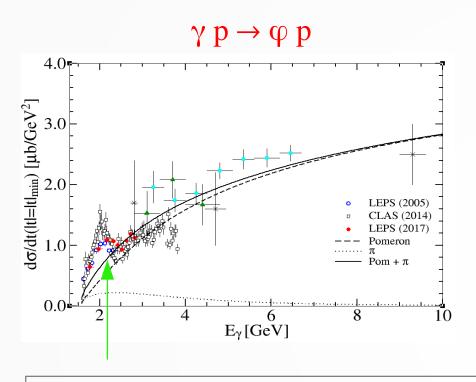
$$F_c(q^2) = F_N(q^2)F_T(q^2 = t)$$

$$T(E) = T^{\text{IMP}}(E) + T^{\text{FSI}}(E)$$

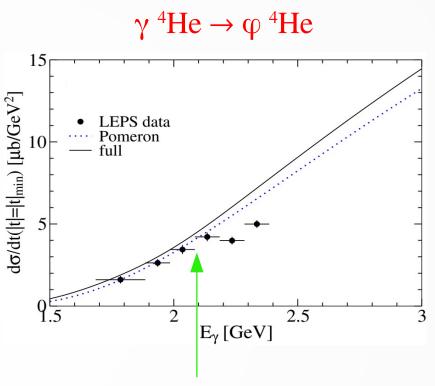
$$T^{\text{IMP}} = \sum_{i=1}^{N} \left[B_{\phi N_i, \gamma N_i} + T^{N^*}_{\phi N_i, \gamma N_i} \right]$$



 \Box The FSI contributions are relatively suppressed by factors of $10^1 - 10^3$.



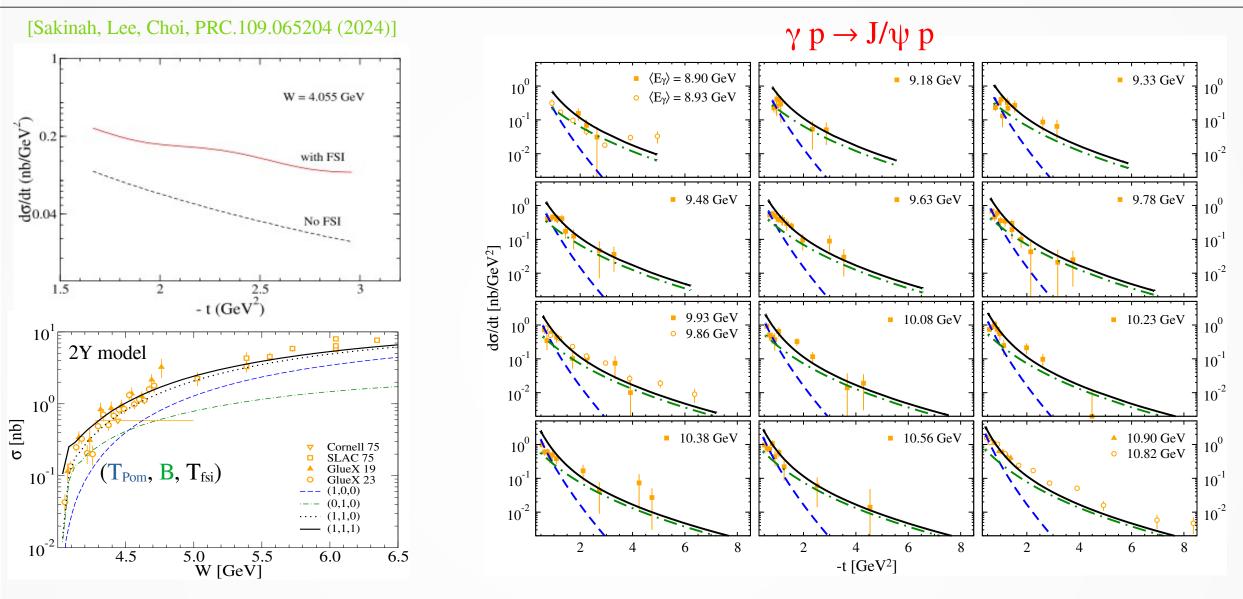
- ▶ is not due to the N* contribution.
- may arise from another mechanism.



[Exp: Hiraiwa (LEPS), PRC.035208.5 (2017)]

☐ The peak position is similar to each other. Any relation between them?

2. $\gamma p \rightarrow J/\psi p$, $\gamma A \rightarrow J/\psi A$ $\gamma d \rightarrow J/\psi d$



- □ DL Pomeron exchange alone is not sufficient for describing the diff. cross section data.
- \Box A dynamical model based on c-N potential v_{cN} and the $\phi_{J/\psi}$ generated from CQM, B model, the diff. cross section data could be well reproduced at low energies.

Theoretical Framework

 \square Scattering amplitude: $T_{VA,\gamma A}(E) = T_{VA,\gamma A}^{\text{IMP}}(E) + T_{VA,\gamma A}^{\text{FSI}}(E)$

$$\langle \mathbf{k} m_{V}, \Phi_{\mathbf{P}', M'_{d}}^{J_{d}} | T_{Vd, \gamma d}^{\mathrm{IMP}}(E) | \mathbf{q} \lambda, \Phi_{\mathbf{P}, M_{d}}^{J_{d}} \rangle$$

$$= \sum_{i=1}^{2} \langle \Phi_{\mathbf{P}', M'_{d}}^{J_{d}} | \langle \mathbf{k} m_{V} | t_{VN, \gamma N}(i) | \mathbf{q} \lambda \rangle | \Phi_{\mathbf{P}, M_{d}}^{J_{d}} \rangle$$

$$= \sum_{m_{s_1}, m_{s_2}, m_{s'_1}, m_{s'_2}} A_d \int d\mathbf{p} \, \phi_{M'_d}^{J_d*}(\mathbf{p}', m_{s'_1} m_{s'_2})$$

$$\times \Gamma(\mathbf{P}' \mathbf{p}', \mathbf{p}'_1 \mathbf{p}'_2) \phi_{M_d}^{J_d}(\mathbf{p}, m_{s_1} m_{s_2})$$

$$\times \langle \mathbf{k} m_V, \mathbf{p}'_1 m_{s'_1} | t_{VN, \gamma N}(\omega) | \mathbf{q} \lambda, \mathbf{p} m_{s_1} \rangle,$$

Fixed scatter approximation (FSA) Let initial momentum $\mathbf{p} = 0$

$$\sim A_d \langle \mathbf{k} m_V, \mathbf{t} \bar{m}_{s_1'} | \bar{t}_{VN,\gamma N}(\omega_0) | \mathbf{q} \lambda, \mathbf{0} \bar{m}_{s_1} \rangle \times F_{M_d',M_d}(t)$$

□ Deuteron form factor

$$F_{M'_d,M_d}(t) = \sum_{m_{s_1},m_{s_2},m_{s'_1},m_{s'_2}} \times \int d\mathbf{p} \,\phi_{M'_d}^{J_d*}(\mathbf{p} + \frac{\mathbf{t}}{2}, m_{s'_1}m_{s'_2}) \,\phi_{M_d}^{J_d}(\mathbf{p}, m_{s_1}m_{s_2})$$

☐ Deuteron wave function

$$\Phi_{\mathbf{P},M_d}^{J_d}(\mathbf{p}_1 m_{s_1}, \mathbf{p}_2 m_{s_2})$$

$$= \delta(\mathbf{P} - \mathbf{p}_1 - \mathbf{p}_2)\Gamma(\mathbf{P}\mathbf{p}, \mathbf{p}_1 \mathbf{p}_2)\phi_{M_d}^{J_d}(\mathbf{p}, m_{s_1} m_{s_2})$$

relativistic effect of d

$$\phi_{M_d}^{J_d}(\mathbf{p}, m_{s_1} m_{s_2}) = \sum_{L, M_L, M_S} \langle J_d M_d | LS M_L M_S \rangle$$
$$\times \langle S M_S | \frac{1}{2} \frac{1}{2} m_{s_1} m_{s_2} \rangle Y_{LM_L}(\hat{p}) R_L(|\mathbf{p}|),$$

 $\Box J_d = 1, S = 1, L = (0, 2)$

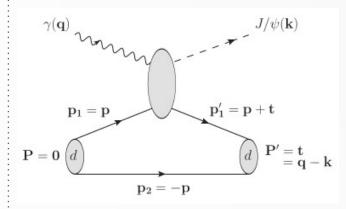
 \Box By choosing **t** in the z-direction

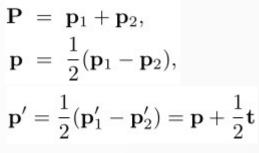
$$F_{0,0}(t) = \sqrt{4\pi} [F_0(t) - \sqrt{2}F_2(t)],$$

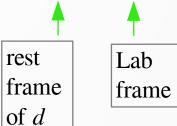
$$F_{1,1}(t) = F_{-1,-1}(t) = \sqrt{4\pi} [F_0(t) + \frac{1}{\sqrt{2}}F_2(t)],$$

$$F_{M'_d,M_d}(t) = 0 \text{ if } M'_d \neq M_d,$$

 $\gamma d \rightarrow J/\psi d$







Numerical Results

□ Deuteron form factor

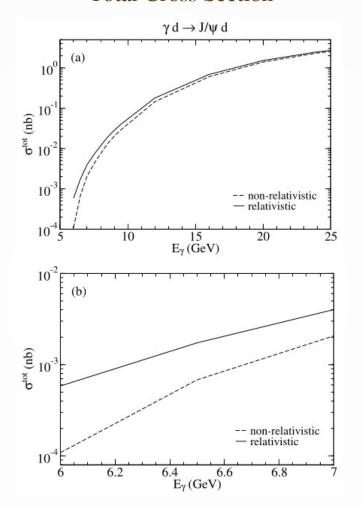
$$F_{0,0}(t) = \sqrt{4\pi} [F_0(t) - \sqrt{2}F_2(t)],$$

$$F_{1,1}(t) = F_{-1,-1}(t) = \sqrt{4\pi} [F_0(t) + \frac{1}{\sqrt{2}}F_2(t)],$$

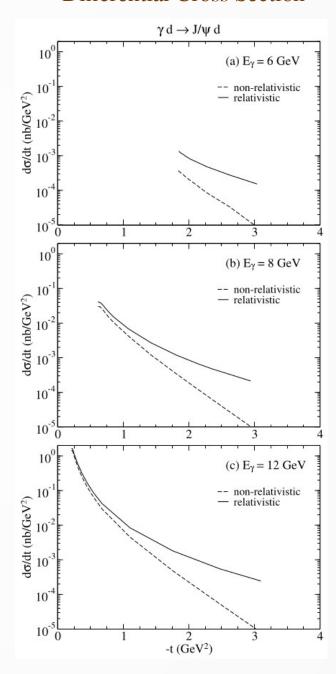
$$F_{M'_d,M_d}(t) = 0 \text{ if } M'_d \neq M_d,$$



Total Cross Section



Differential Cross Section



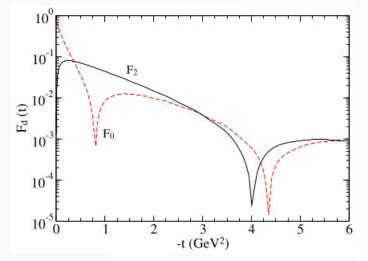
Numerical Results

□ Deuteron form factor

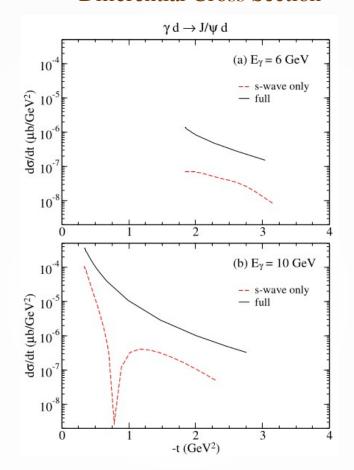
$$F_{0,0}(t) = \sqrt{4\pi} [F_0(t) - \sqrt{2}F_2(t)],$$

$$F_{1,1}(t) = F_{-1,-1}(t) = \sqrt{4\pi} [F_0(t) + \frac{1}{\sqrt{2}}F_2(t)],$$

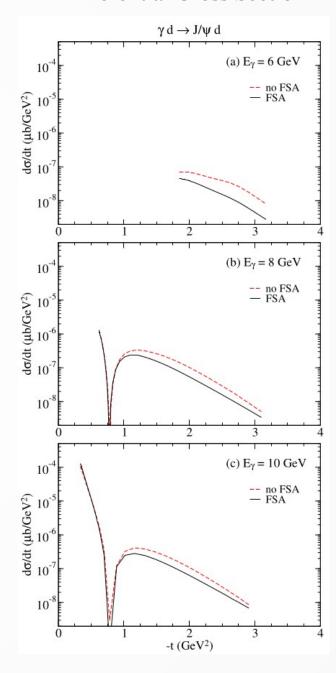
$$F_{M'_d,M_d}(t) = 0 \text{ if } M'_d \neq M_d,$$



Differential Cross Section



Differential Cross Section



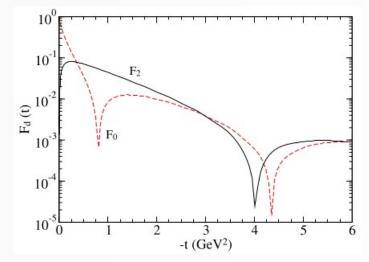
Numerical Results

□ Deuteron form factor

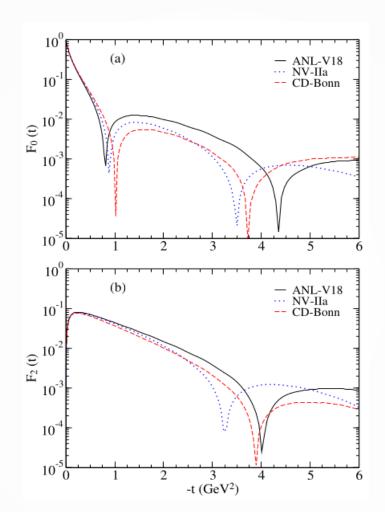
$$F_{0,0}(t) = \sqrt{4\pi} [F_0(t) - \sqrt{2}F_2(t)],$$

$$F_{1,1}(t) = F_{-1,-1}(t) = \sqrt{4\pi} [F_0(t) + \frac{1}{\sqrt{2}}F_2(t)],$$

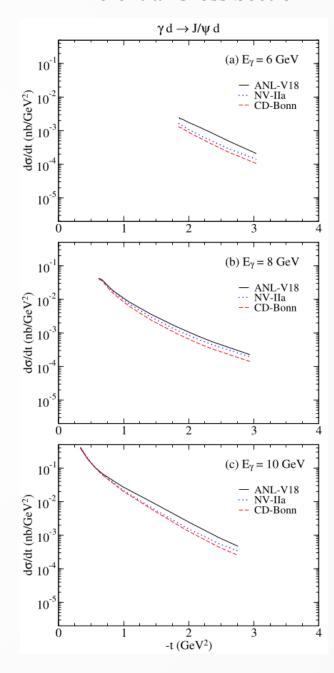
$$F_{M'_d,M_d}(t) = 0 \text{ if } M'_d \neq M_d,$$



□ Deuteron form factor



Differential Cross Section



1. Dynamical Model [$\gamma A \rightarrow J/\psi A$]

Sangho Kim (SSU)

☐ We employ a distorted-wave impulse approximation.

 $F_c(q^2) = F_N(q^2)F_T(q^2 = t)$

□ Including the FSI term, we can write DCS for spin J=0 nuclei:

Fc (FN): nuclear (nucleon) charge FF

$$\frac{d\sigma}{d\Omega_{\text{Lab}}} = \frac{(2\pi)^4 |\mathbf{k}|^2 E_V(\mathbf{k}) E_A(\mathbf{q} - \mathbf{k})}{|E_A(\mathbf{q} - \mathbf{k})|\mathbf{k}| + E_V(\mathbf{k}) (|\mathbf{k}| - |\mathbf{q}| \cos \theta_{\text{Lab}})|} |AF_T(t) \overline{t}(\mathbf{k}, \mathbf{q})| + |T^{\text{FSI}}(\mathbf{k}, \mathbf{q}, E)|^2$$

$$\gamma A \to J/\psi A \qquad \qquad \gamma p \to J/\psi p$$

$$T(E) = T^{\text{IMP}}(E) + T^{\text{FSI}}(E)$$

$$T^{\text{IMP}} = \sum_{i=1,A} \left[B_{\phi N_i, \gamma N_i} + T^{N^*}_{\phi N_i, \gamma N_i} \right]$$

$$T^{FSI}(\mathbf{k}, \mathbf{q}, E) = \int d\mathbf{k}' T_{\phi A, \phi A}(\mathbf{k}, \mathbf{k}', E) \frac{AF(t') \bar{t}(\mathbf{k}', \mathbf{q})}{E - E_V(\mathbf{k}') - E_A(\mathbf{q} - \mathbf{k}') + i\epsilon}$$

$$T^{\text{FSI}}(E) = T_{\phi A, \phi A}(E) \frac{1}{E - H_0} T^{\text{IMP}}$$

- \Box T^{IMP}: the term that ϕ meson is produced from a single nucleon in the nucleus
- \Box T^{FSI}: the effect due to the scattering of the outgoing J/ ψ with the recoiled nucleus
- □ We solve the Lippmann-Schwinger equation:

$$\boxed{T_{\phi A, \phi A}(\kappa, \kappa', E)} = U_{\phi A, \phi A}(\kappa, \kappa', E) + \int d\kappa'' U_{\phi A, \phi A}(\kappa, \kappa'', E) \frac{1}{E - E_V(\kappa'') - E_A(\kappa'') + i\epsilon} \boxed{T_{\phi A, \phi A}(\kappa'', \kappa', E)} \text{ (in c.m.)}$$

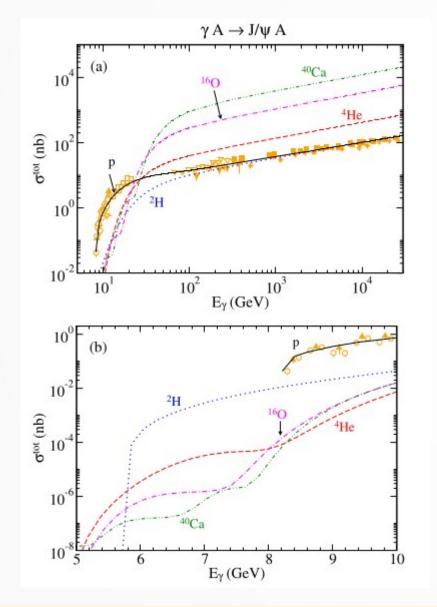
 \Box Within multiple-scattering theory, J/ ψ A potential is expressed in terms of J/ ψ N scattering amplitude:

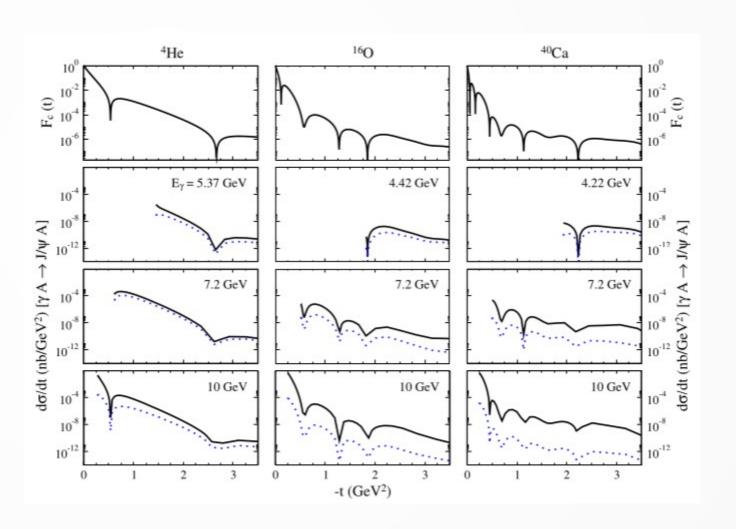
$$U_{\phi A,\phi A}(E) = \sum_{i=1,A} t_{\phi N_i,\phi N_i}(\omega)$$

☐ We employ a distorted-wave impulse approximation.

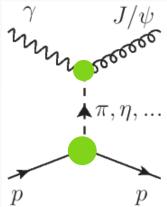
 $\gamma A \rightarrow J/\psi A$

□ Including the FSI term, we can write DCS for spin J=0 nuclei:





[S.H.Kim, in progress]



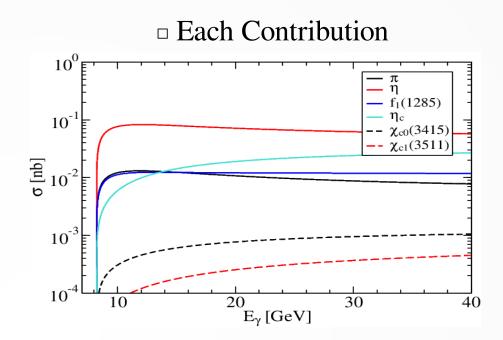
light mesons

1/4	γ J/ψ	
π, η, \dots	$\chi_{c0}, \chi_{c1}, \dots$	
p	p p	
ght mesons	cc mesons	

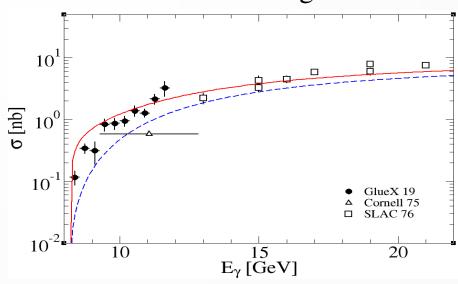
Mesons	Mass (J^P)
π	134 (0-)
η	$548 (0^{-})$
η'	$958~(0^-)$
f_1	$1285 (1^+)$
$\eta_c(1S)$	$2984~(0^{-})$

Mesons	Mass (J^P)
$\chi_{c0}(1P)$	$3415 (0^+)$
$\chi_{c1}(1P)$	$3511 (1^+)$
$\eta_c(2S)$	$3638 (0^{-})$
$\chi_{c1}(3872)$	$3872 (1^+)$

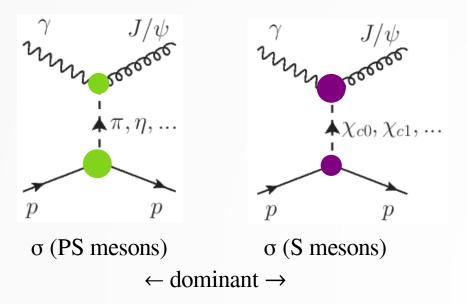
 $\Box \sigma \text{ (PS mesons)} > \sigma \text{ (S mesons)}$ [by one ~ two orders of magnitudes]



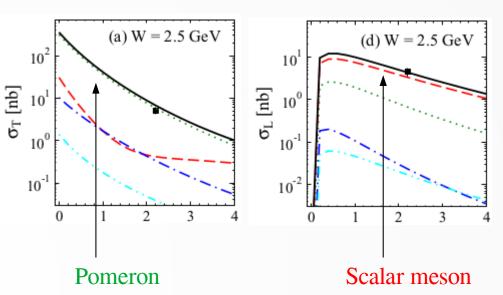
□ Total cross section with light mesons included



[S.H.Kim, in progress]



$\gamma^* p \rightarrow \phi p$ [S.H.Kim, PRC.101.065201 (2020)]

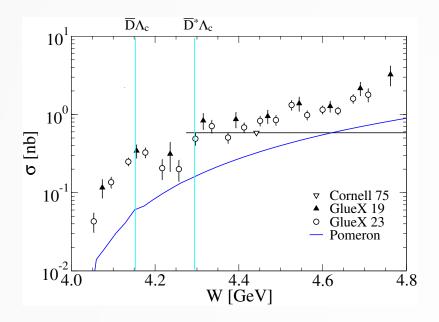


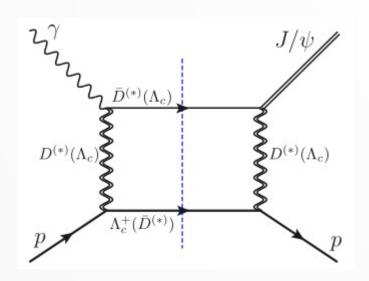
- □ The dominant mechanism can be verified by the future EIC and JLab data for the spin polarization observables, e.g., beam asymmetry.
- □ In vector-meson (φ) electroproduction, $\gamma^* p \rightarrow \varphi p$, we know that S-meson plays an important role at low W and low Q² for σ_L .

$$\frac{d\sigma}{d\Phi} = \frac{1}{2\pi} \left(\sigma + \varepsilon \sigma_{\rm TT} \cos 2\Phi + \sqrt{2\varepsilon (1+\varepsilon)} \sigma_{\rm LT} \cos \Phi \right) \cdot \sigma = \sigma_{\rm T} + \varepsilon \sigma_{\rm L}$$

□ The role of $\chi_{c0}(3415,0^+)$ can be found from the future EIC and JLab data for $\gamma^* p \to J/\psi p$ reaction at low W and low Q^{2} .

 \Box Two pronounced cusp structures are located at the $\overline{\mathbb{D}}_c$ and $\overline{\mathbb{D}}_c^*$ thresholds.





$$\mathcal{L}_{\Lambda_{c}DN} = -g_{D^{*}N\Lambda_{c}}\bar{\Lambda}_{c}\gamma_{\mu}ND^{*\mu} - ig_{DN\Lambda_{c}}\bar{\Lambda}_{c}\gamma_{5}ND$$

$$-g_{D^{*}N\Lambda_{c}}\bar{N}\gamma_{\mu}\Lambda_{c}D^{*\mu\dagger} - ig_{DN\Lambda_{c}}\bar{N}\gamma_{5}\Lambda_{c}D^{\dagger},$$

$$\mathcal{L}_{\psi} = -g_{\psi DD^{*}}\psi_{\mu}\epsilon_{\mu\nu\alpha\beta}\left(\partial_{\nu}D_{\alpha}^{*}\partial_{\beta}D^{\dagger} - \partial_{\nu}D\partial_{\beta}D_{\alpha}^{*\dagger}\right),$$

$$+ig_{\psi D^{*}D^{*}}\psi^{\mu}\left(D^{*\nu}\partial_{\nu}D_{\mu}^{*\dagger} - \partial_{\nu}D_{\mu}^{*}D^{*\nu\dagger}\right),$$

$$-D^{*\nu}\stackrel{\leftrightarrow}{\partial}_{\mu}D_{\nu}^{*\dagger}\right) - ig_{\psi DD}D^{\dagger}\stackrel{\leftrightarrow}{\partial}_{\mu}D\psi^{\mu}$$

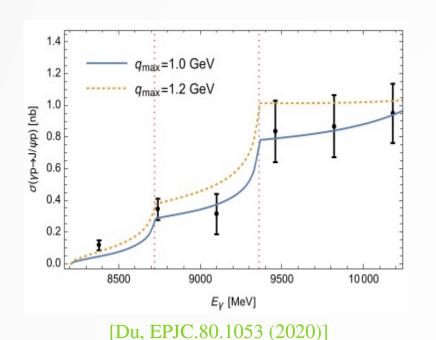
$$+g_{\psi\Lambda_{c}\Lambda_{c}}\bar{\Lambda}_{c}\gamma_{\mu}\psi^{\mu}\Lambda_{c},$$

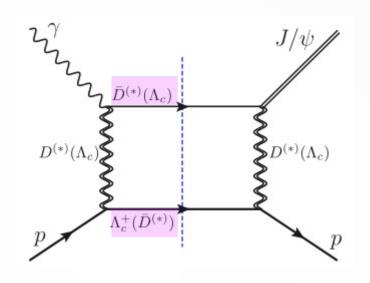
$$\mathcal{L}_{\gamma} = -g_{\gamma DD^{*}}F_{\mu\nu}\epsilon^{\mu\nu\alpha\beta}\left(D_{\alpha}^{*}\stackrel{\leftrightarrow}{\partial}_{\beta}D^{\dagger} - D\stackrel{\leftrightarrow}{\partial}_{\beta}D_{\alpha}^{*\dagger}\right)$$

$$-ig_{\gamma D^{*}D^{*}}F^{\mu\nu}D_{\mu}^{*\dagger}D_{\nu}^{*} - e\bar{\Lambda}_{c}\gamma_{\mu}A^{\mu}\Lambda,$$

Coupling	$g_{\gamma DD^*}$	$g_{\gamma D^*D^*}$	g_{DNA_c}	$g_{D^*N\Lambda_c}$	$g_{\psi \Lambda_c \Lambda_c}$	$g_{\psi DD}$
Value	$0.134~{ m GeV^{-1}}$	0.641	-4.3	-13.2	-1.4	7.44
Source	Experimental data [46]		SU(4) [47,48]			VMD [47,48]

□ The presence of such cusps can be a clear indication of the importance of the charm loops.





□ We calculate

 $\overline{D}_{c}: 3 \text{ terms}$

 \overline{D}^*_c : 5 terms

□ We are trying to calculate this region by using the 3-dimensional reduction of the integral equation for both principal and singular parts.

$$T_{MB}(p,p') = \sum_{i} \int \frac{d^{3}\mathbf{q}}{(2\pi)^{3}} \frac{m_{B_{i}}}{E_{B_{i}}} T_{\gamma p \to M_{i}B_{i}}(p,q) \frac{1}{s - (E_{M_{i}} + E_{B_{i}})^{2} + i\epsilon} T_{M_{i}B_{i} \to J/\psi p}(q,p')$$

$$= -i \sum_{i} \frac{q_{\text{c.m.}}}{16\pi^{2}} \frac{m_{B_{i}}}{\sqrt{s}} \int d\Omega \left[T_{\gamma p \to M_{i}B_{i}}(p,q) T_{M_{i}B_{i} \to J/\psi p}(q,p') \right] + \mathcal{P}$$

 \diamondsuit For $\gamma p \rightarrow \varphi p$,

we studied relative contributions between the Pomeson and various meson exchanges.

> The light-meson $(\pi, \eta, a_0, f_0,...)$ contribution is crucial to describe the data at low energies.

The final ϕN interactions are described by the gluon-exchange, direct ϕN couplings, and the box diagrams arising from the couplings with πN , ρN , $K\Lambda$, and $K\Sigma$ channels. > suppressed by $10^2 - 10^3$.

- \diamondsuit For γ ⁴He $\rightarrow \varphi$ ⁴He,
 - a distorted-wave impulse approximation is employed within the multiple scattering formulation.
 - > The FSI effects are suppressed compared to the Born term by $10^1 10^3$.

- \Diamond For γ p \rightarrow ϕ p,
 - we studied relative contributions between the Pomeson and various meson exchanges.
 - > The light-meson $(\pi, \eta, a_0, f_0,...)$ contribution is crucial to describe the data at low energies.

The final ϕN interactions are described by the gluon-exchange, direct ϕN couplings, and the box diagrams arising from the couplings with πN , ρN , $K\Lambda$, and $K\Sigma$ channels. > suppressed by $10^2 - 10^3$.

- \diamondsuit For γ ⁴He $\rightarrow \varphi$ ⁴He,
 - a distorted-wave impulse approximation is employed within the multiple scattering formulation.
 - > The FSI effects are suppressed compared to the Born term by $10^1 10^3$.
- ♦ We investigated $\gamma A \rightarrow J/\psi A$ (A = d, ⁴He, ¹⁶O, ⁴⁰Ca) reaction.
 - > The FSI effects are sizable near the threshold.
- \diamondsuit We introduced two models for $\gamma A \to J/\psi A$: meson-exchange model, rescattering-diagram model
- \diamondsuit For φ p and J/ψ p photoproduction, the meson-baryon loops seem to be the dominant.
- \diamondsuit The pentaquark (P_s , P_c) can be studied in the *s* channel diagram.

- \Diamond For γ p \rightarrow ϕ p,
 - we studied relative contributions between the Pomeson and various meson exchanges.
 - > The light-meson $(\pi, \eta, a_0, f_0,...)$ contribution is crucial to describe the data at low energies.

The final ϕN interactions are described by the gluon-exchange, direct ϕN couplings, and the box diagrams arising from the couplings with πN , ρN , $K\Lambda$, and $K\Sigma$ channels. > suppressed by $10^2 - 10^3$.

- \diamondsuit For γ ⁴He $\rightarrow \varphi$ ⁴He,
 - a distorted-wave impulse approximation is employed within the multiple scattering formulation.
 - > The FSI effects are suppressed compared to the Born term by $10^1 10^3$.
- ♦ We investigated $\gamma A \rightarrow J/\psi A$ (A = d, ⁴He, ¹⁶O, ⁴⁰Ca) reaction.
 - > The FSI effects are sizable near the threshold.
- \diamondsuit We introduced two models for $\gamma A \to J/\psi A$: meson-exchange model, rescattering-diagram model
- \diamondsuit For φ p and J/ψ p photoproduction, the meson-baryon loops seem to be the dominant.
- \diamondsuit The pentaquark (P_s , P_c) can be studied in the *s* channel diagram.

Thank you very much for your attention