

# Production of $\Lambda_c$ states and $(\bar{D}N)$ states at EicC and EIC

Kai-Sa Qiao(乔铠萨)

Based on Kai-Sa Qiao, Bing-Song Zou, arXiv:2412.03216

**Institute of Theoretical Physics, Chinese Academy of Sciences** 

2024.12.9 @Nanjing

# Content

- Background
  - $\Lambda_c$  Photo- and Electro-production in experiment
  - Brief introduction of EicC and EIC
  - Spin-parity assignment of  $\Lambda_c(2940)$
- The equivalent photon approximation
- Photoproduction  $\Lambda_c, \Lambda_c(2595), \Lambda_c(2940), (\bar{D}N)$ 
  - Coupling constants
    - ${}^{3}P_{0}$  model
    - Hadronic molecule
- Results
  - Photoproduction
  - Electroproduction at EicC and EIC
- Summary



# Background



#### $\Lambda_c$ Photo- and Electro-production in experiment

| Production | Time | Experiment       | Particle                              |  |
|------------|------|------------------|---------------------------------------|--|
|            | 1987 | NA1 at CERN      | $9 \Lambda_c$                         |  |
| Photo      | 1990 | NA14/2 at CERN   | $29{\pm}8~\Lambda_c(\bar{\Lambda}_c)$ |  |
| 1 11000-   | 1993 | E687 at Fermilab | 1340 $\Lambda_c$                      |  |
|            | 1994 | E687 at Fermilab | $39.7 \pm 8.7 \ \Lambda_c(2625)$      |  |
| Flectro    | 2005 | ZEUS at HERA     | $1440\pm220 \Lambda_c$                |  |
| 1/160010-  | 2013 | ZEUS at HERA     | 7682 $\pm$ 964 $\Lambda_c$            |  |

#### **EicC and EIC**

- Estimate the yields of hadronic molecule candidates at EicC and EIC.
- Estimate the yields of candidates using both the hadronic molecule model and the quark model to determine whether it helps distinguish the particle structures.



#### **Background** spin-parity assignment of $\Lambda_c(2940)$



- Observed in the  $D^0p$  invariant mass distribution by the BaBar Collaboration (2007).
- spin-parity assignment is quite diverse
  - $1^{\pm} 3^{\pm} 5^{\pm} 7^{+}$
  - $\bullet \ \overline{2} \ , \overline{2} \ , \overline{2} \ , \overline{2} \ , \overline{2}$

Details see: H.-X. Chen et al., Rep. Prog. Phys. 80, 076201 (2017)

- The closest states in quark model
  - $\Lambda_c(\frac{1}{2}, 2P), \Lambda_c(\frac{3}{2}, 2P)$

40 MeV and 60 MeV higher than  $\Lambda_c(2940)$ 

- Hadronic molecule
  - 1/2<sup>-</sup>
     X.-G. He *et al.*, Eur. Phys. J. C **51**, 883 (2007).
  - 1/2<sup>+</sup>
    - Y. Dong et al., Phys. Rev. D 81, 014006 (2010).
  - $\Lambda_c(2910): 1/2^-, \Lambda_c(2940): 3/2^-$ Z.-L. Yue, Q.-Y. Guo, and D.-Y. Chen, (2024).
  - Λ<sub>c</sub>(2940): 1/2<sup>-</sup>,3/2<sup>-</sup>
     B. Wang, L. Meng, and S.-L. Zhu, Phys. Rev. D 101, 094035 4

(2020).

Regge trajectories





#### The equivalent photon approximation

#### Weizsäcker-Williams' method



 Ultra-relativistic electroproduction can be calculated using the Weizsäcker-Williams' method

• 
$$d\sigma_{ep} = \sigma_{\gamma}(\omega) dn(\omega, q^2)$$

• The equivalent photon number or spectrum, dn, is defined by the  $e \to e' \gamma^*$  vertex. In numerous cases that  $\omega \gtrsim \Lambda_{\gamma}$ :

$$dn(\omega, q^2) = \frac{\alpha}{\pi} \frac{d\omega}{\omega} \frac{d(-q^2)}{|q^2|} \left[1 - \frac{\omega}{E} + \frac{\omega^2}{2E^2} - (1 - \frac{\omega}{E}) |\frac{q_{min}^2}{q^2}|\right]$$

• After integrate  $q^2$ :  $q^2_{min} \leqslant -q^2 \leqslant q^2_{max}$ 

$$d\sigma = \sigma_{\gamma}(\omega)dn(\omega)$$
$$dn(\omega) = \int_{q_{min}^2}^{q_{max}^2} dn(\omega, q^2) = N(\omega)\omega d\omega$$

$$N(\omega) = \frac{\alpha}{\pi} \left[ \left(1 - \frac{\omega}{E} + \frac{\omega^2}{2E^2}\right) \ln \frac{\Lambda_{\gamma}^2 E(E - \omega)}{m_e^2 \omega^2} - \left(1 - \frac{\omega}{E}\right) \right]$$

V. M. Budnev et al., Physics Reports 15, 181 (1975).

Y. Jia et al., Phys. Rev. D **108**, 016015 (2023).

# $\Lambda_c$ states photoproduction

 $\Lambda_c, \Lambda_c(2595), \Lambda_c(2940)$ 

 Consider the dominant contribution channel: *t*-channel.



Quantum number:

$$\Lambda_{c} : 1/2^{+} \\ \Lambda_{c}(2595) : (\frac{1}{2}^{-}, 1P) \\ \Lambda_{c}(2940) \text{ molecule: } \frac{1}{2}^{-}; \text{ quark model: } (\frac{1}{2}^{-}, 2P) \\ \frac{1}{2}^{-}; \text{ quark model: } (\frac{1}{2}^{-}; 2P) \\ \frac{1}{2}^{-}; \frac{1}{2}^{-$$



# Effective Lagrangians: $\begin{aligned} \mathcal{L}_{ND\Lambda_{c}(1/2^{+})} &= ig_{ND\Lambda_{c}}\bar{\Lambda}_{c}\gamma_{5}ND + H.c., \\ \mathcal{L}_{ND^{*}\Lambda_{c}(1/2^{+})} &= g_{ND^{*}\Lambda_{c}}\bar{\Lambda}_{c}\gamma_{\mu}ND^{*\mu} + H.c., \\ \mathcal{L}_{ND\Lambda_{c}^{*}(1/2^{-})} &= g_{ND\Lambda_{c}^{*}}^{1/2^{-}}i\bar{\Lambda}_{c}^{*}ND + H.c., \\ \mathcal{L}_{ND^{*}\Lambda_{c}^{*}(1/2^{-})} &= g_{ND^{*}\Lambda_{c}^{*}}^{1/2^{-}}\bar{\Lambda}_{c}^{*}\gamma_{5}\gamma_{\mu}ND^{*\mu} + H.c., \\ \mathcal{L}_{\gamma NN} &= -e\bar{N}(Q_{N}A + \frac{\kappa_{N}}{4m_{N}}\sigma^{\mu\nu}F_{\mu\nu})N, \\ \mathcal{L}_{\gamma DD} &= ieA_{\mu}(D^{+}\partial^{\mu}D^{-} - \partial^{\mu}D^{+}D^{-}), \\ \mathcal{L}_{\gamma DD^{*}} &= g_{\gamma DD^{*}}\epsilon_{\mu\nu\alpha\beta}(\partial^{\mu}A^{\nu})(\partial^{\alpha}D^{*\beta})D + H.c., \end{aligned}$

#### Form factor

$$f_2(q^2) = (\frac{\Lambda_2^2 - m_{ex}^2}{\Lambda_2^2 - q^2})^2$$

# **Coupling constants**

 $p_{\rho} = \frac{1}{\sqrt{2}}(p_1 - p_2)$ 

 $p_{\lambda} = \frac{1}{\sqrt{6}}(p_1 + p_2 - 2p_3)$ 

## $^{3}P_{0}$ model

- Spatial wave function
  - Excitation mode:



- Simple harmonic oscillator(SHO) wave function:
  - $\Psi_{nlm_l}(\boldsymbol{p}) = (-1)^n (-i)^l R^{l+\frac{3}{2}} \sqrt{\frac{2n!}{\Gamma(n+l+\frac{3}{2})}} \exp(-\frac{R^2 \boldsymbol{p}^2}{2}) \times L_n^{l+1/2} (R^2 \boldsymbol{p}^2) |\boldsymbol{p}|^l Y_{lm_l}(\Omega_p),$
  - $R = 2.5 \text{ GeV}^{-1}$  for light mesons,  $R = 1.67 \text{ GeV}^{-1}$  for D meson,  $R = 1.94 \text{ GeV}^{-1}$  for  $D^*$  meson

. 
$$\alpha_{\rho}=0.4,\,\alpha_{\lambda}=(\frac{3m_{Q}}{2m_{q}+m_{Q}})^{1/4}\alpha_{\rho}$$
 for Baryon

Q.-F. Lü *et al.*, Eur. Phys. J. C **78**, 599 (2018).

Q

FIG. 3: The Vertex  $A \rightarrow B + C$  in the  ${}^{3}P_{0}$  model

 $\begin{array}{c|c}
\rho \mod \\
q & q \\
\lambda \mod \\
\end{array}$ 





# **Coupling constants** ${}^{3}P_{0}$ model



Transition operator

$$T = -3\gamma \sum_{m} \langle 1 \ m; 1 \ -m | 0 \ 0 \rangle \int d^{3}\mathbf{k}_{4} \ d^{3}\mathbf{k}_{5} \delta^{3}(\mathbf{k}_{4} + \mathbf{k}_{5})$$
$$\times \mathcal{Y}_{1}^{m} \left(\frac{\mathbf{k}_{4} - \mathbf{k}_{5}}{2}\right) \chi_{1,-m}^{45} \ \varphi_{0}^{45} \ \omega_{0}^{45} \ b_{4i}^{\dagger}(\mathbf{k}_{4}) \ d_{5j}^{\dagger}(\mathbf{k}_{5}) \ (1)$$

- $\gamma = 9.83$  derived from fitting the  $\Sigma_c(2520)^{++} \rightarrow \Lambda_c + \pi^+$  process.
- Effective coupling constant

$$\Gamma = \pi^2 \frac{P}{M_A^2} \frac{S}{(2J_A + 1)} \sum_{M_{J_A}, M_{J_B}, M_{J_C}} |M^{M_{J_A}M_{J_B}M_{J_C}}|^2.$$

$$g_{ABC} = \sqrt{\frac{\sum_{spins} |\mathcal{M}_{^{3}P_{0}}(m_{A}^{2}, m_{B}^{2}, 0)|^{2}}{\sum_{spins} |\mathcal{M}_{\mathcal{L}}'(m_{A}^{2}, m_{B}^{2}, 0)|^{2}}} (2\pi)^{3}}$$

- Independent after summing over the spin index.
- $(2\pi)^3$  stems from the normalization difference.

Q.-F. Lü and X.-H. Zhong, Phys. Rev. D **101**, 014017 (2020).

- Results
- $g_{\Lambda_c^{(*)}D^*p}$

• 
$$\Lambda_c(\frac{1}{2}^+, 1s)$$
, 2286.46 : 4.27

• 
$$\Lambda_{c1}(\frac{1}{2}, 1p), \quad 2592.25: \quad 1.21$$

• 
$$\Lambda_{c1}(\frac{1}{2}, 2p)$$
, 2939.6 : 0.76

## **Coupling constants** Hadronic molecule

- Mass operators and vertex form factors
  - $Z = 1 \Sigma'(m^2) = 0$
  - $\gamma_5 \Gamma^{\mu}(q^2) = \gamma_5 [F_1(q^2)\gamma^{\mu} + F_2(q^2)p^{\mu} + F_3(q^2)p^{'\mu}]$
- Form factor in molecule vertex

• 
$$\mathcal{L}_{\Lambda_c^*}(x) = g_{\Lambda_c^*} \bar{\Lambda}_c^*(x) \gamma_5 \gamma_\mu \int d^4 y \Phi(y^2) N(x + w_{D^*N}y) \\ \times D^{*\mu}(x - w_{ND^*}y) + H.c.$$
$$\Phi(y^2) = \int \frac{d^4p}{(2\pi)^4} e^{-ipy} \widetilde{\Phi}(-p^2)$$

$$\tilde{\varPhi}(p_E^2) \doteq \exp(-p_E^2/\Lambda^2)$$







### **Coupling constants** Hadronic molecule





FIG. 7: The coupling constants  $g_{\Lambda_c D^* N}^{1/2}$  and  $g_{\Lambda_c D^* N}^{3/2}$  depending on the model parameter  $\Lambda_M$  in scenario B.

Z.-L. Yue, Q.-Y. Guo, and D.-Y. Chen, (2024).

•  $(\bar{D}N), 1/2^{-}$ 



The cutoff is set to be  $\Lambda = 1$  GeV.

 $g_{(\bar{D}N)}^{I=0} = 1.68$  $g_{(\bar{D}N)}^{I=1} = 2.62$ 

#### **Coupling constants** Hadronic molecule $(\bar{D}N) - \bar{D}^*N$ vertex



#### Configuration

$$|(\bar{D}N), I = 0\rangle = \frac{1}{\sqrt{2}}(|D^-p\rangle - |\bar{D}^0n\rangle)$$
  
 $|(\bar{D}N), I = 1, I_3 = 0\rangle = \frac{1}{\sqrt{2}}(|D^-p\rangle + |\bar{D}^0n\rangle)$ 

$$\mathcal{L}_{B'BV} = \bar{B'}_1 (g_{B'BV} \gamma_5 \gamma_\mu + \frac{f_{B'BV}}{m_1 - m_2} \gamma_5 \sigma^{\mu\nu} \partial_\nu) V_\mu B_2 + H.c.$$

| ŪΝ           | B.E. (MeV) | Mixing ratio (%)          |      |  |
|--------------|------------|---------------------------|------|--|
| $0(1/2^{-})$ | 1.38       | $\bar{D}N(^{2}S_{1/2})$   | 96.1 |  |
|              |            | $\bar{D}^*N({}^2S_{1/2})$ | 1.94 |  |
|              |            | $\bar{D}^*N({}^4D_{1/2})$ | 1.93 |  |
| $1(1/2^{-})$ | 5.99       | $\bar{D}N(^{2}S_{1/2})$   | 88.9 |  |
|              |            | $ar{D}^*N({}^2S_{1/2})$   | 10.9 |  |
|              |            | $ar{D}^*N({}^4D_{1/2})$   | 0.11 |  |
|              |            |                           |      |  |

Y. Yamaguchi, S. Yasui, and A. Hosaka, Phys. Rev. D **106**, 094001 (2022).

#### Result

TABLE III: Coupling constants in  $(\bar{D}N) - \bar{D}^*N$  vertex. The cutoff is set to  $\Lambda = 1$  GeV and  $\Lambda_1 = 1$  GeV.

| States                      | I=0  | I=1   |  |
|-----------------------------|------|-------|--|
| $g_{(\bar{D}N)-\bar{D}^*N}$ | 0.40 | -0.21 |  |
| $f_{(\bar{D}N)-\bar{D}^*N}$ | 0.45 | -0.24 |  |



• Form factor on exchanged particle

$$f_1(q^2) = \frac{\Lambda_1^4}{\Lambda_1^4 + (q^2 - m_{ex}^2)^2}$$

### **Results - photoproduction**

- $\Lambda_c$ ,  $\Lambda_c(2595)$ ,  $\Lambda_c(2940)$
- Empirically  $\Lambda_2$  should be larger than  $m_{ex}$  by  $0.4 \sim 1.0~{\rm GeV}$
- The impact of the cutoff parameter
  - more than one order of magnitude from 2.4 GeV to 3.0 GeV
  - The ratio remains nearly unchanged in this range.



FIG. 5: Cross sections of  $\Lambda_c$  and  $\Lambda_c(2940)$  for differen FIG. 6: Ratios of various channels to  $\Lambda_c$  for different cutoff parameters  $\Lambda_2$ . <sub>12</sub> cutoffs with w = 10 GeV.



 $f_2(q^2) = \left(\frac{\Lambda_2^2 - m_{ex}^2}{\Lambda_2^2 - q^2}\right)^2$ 

#### **Results - photoproduction**





FIG. 7: Photoproduction cross sections of  $\Lambda_c$ ,  $\Lambda_c(2595)$ , and  $\Lambda_c(2940)$  in the  ${}^{3}P_0$  model and the hadronic molecule model within the *t*-channel of the process  $\gamma p \to \bar{D}^0 \Lambda_c^{(*)}$ . The cutoff is set to  $\Lambda_2 = 2.5$  GeV.

- *t*-channel  $D^*$  exchange of the process  $\gamma p \rightarrow \bar{D}^0 \Lambda_c^{(*)}$
- $\Lambda_2 = 2.5 \text{ GeV}$
- The hadronic molecule model shows an enhancing effect on  $\Lambda_c(2940)$ 
  - Remain within the same magnitude range as the quark model predictions.
  - Judging the particle structure based on yields may not be feasible.



# Results

#### $(\bar{D}N)$ states - photoproduction

• Mass

| $\bar{D}N$                                  | B.E. (MeV)   | Mixing ratio (%)                         |                                     |  |
|---------------------------------------------|--------------|------------------------------------------|-------------------------------------|--|
| $\overline{0(1/2^{-})}$                     | 1.38         | $\bar{D}N(^{2}S_{1/2})$                  | 96.1                                |  |
|                                             |              | $\bar{D}^*N({}^2S_{1/2})$                | 1.94                                |  |
|                                             |              | $\bar{D}^*N({}^4D_{1/2})$                | 1.93                                |  |
| $1(1/2^{-})$                                | 5.99         | $\bar{D}N(^{2}S_{1/2})$                  | 88.9                                |  |
|                                             |              | $\bar{D}^*N(^2S_{1/2})$                  | 10.9                                |  |
|                                             |              | $\bar{D}^*N({}^4D_{1/2})$                | 0.11                                |  |
| $m^{I=0}_{(\bar{D}N)} = 2804.8 \text{ MeV}$ |              | Y. Yamaguchi, S. Y<br>Hosaka, Phys. Rev. | Yasui, and A<br>D <b>106</b> . 0940 |  |
| $m^{I=1}_{(\bar{D}N)} = 2800.2 \text{MeV}$  |              | (2022).                                  |                                     |  |
| • noorly                                    | ono ordor of | magnitudo lowor                          | than tha                            |  |

- nearly one order of magnitude lower than the yields of the  $\Lambda_c(2940)$  states
  - the disparity between the coupling constants  $g_{\gamma D^0 D^{*0}}$  and  $g_{\gamma D^+ D^{*+}}$
  - the difference in the dominant contribution channels



FIG. 8: Cross sections of  $\gamma + p \rightarrow (\bar{D}N)_I + D^+$  for the  $\bar{D}N$  molecules with isospin I = 0 and I = 1.

# Results



#### **Electroproduction at EicC and EIC**

| Facility | Center-of-Mass $Energy(GeV)$ | $\rm Luminosity(cm^{-2} \cdot s^{-1})$ | Integrated Luminosity( $fb^{-1}$ ) |
|----------|------------------------------|----------------------------------------|------------------------------------|
| EicC     | 15-20                        | $2 \times 10^{33}$                     | 50                                 |
| EIC      | 20-140                       | $10^{33-34}$                           | 10-100                             |

TABLE I: Energy, luminosity, and integrated luminosity for EicC and EIC. Integrated luminosity for EicC corresponds to operating time accounting for 80% of the entire year. Integrated luminosity for EIC corresponds to 30 weeks of operations.

#### • $\Lambda_c$ states

#### • $(\bar{D}N)$ states

TABLE II: Estimated yields for the states  $\Lambda_c$ ,  $\Lambda_c(2595)$ , TABLE IV: Estimated yields for the state  $(\bar{D}N)$  in and  $\Lambda_c(2940)$  at EicC and EIC. different isospin configurations at EicC and EIC.

| State                             | EicC                         | EIC                          | State        | Isospin          | EicC                         | EIC                          |
|-----------------------------------|------------------------------|------------------------------|--------------|------------------|------------------------------|------------------------------|
| $\Lambda_c$                       | $(6.3 \sim 9.3) \times 10^7$ | $(1.9 \sim 8.0) \times 10^8$ | $(\bar{D}N)$ | I = 0            | $(7.5 \sim 9.8) \times 10^4$ | $(2.0 \sim 5.3) \times 10^5$ |
| $\Lambda_c(2595)$                 | $(4.3 \sim 6.6) \times 10^6$ | $(1.3 \sim 6.1) \times 10^7$ | (DIV)        | $I = 1, I_3 = 0$ | $(1.3 \sim 1.6) \times 10^5$ | $(3.2\sim 6.0)\times 10^5$   |
| $\Lambda_c(2940)$ -molecule       | $(3.3 \sim 5.2) \times 10^6$ | $(1.1 \sim 5.3) \times 10^7$ |              |                  |                              |                              |
| $\Lambda_{c}(2940)$ - $^{3}P_{0}$ | $(1.4 \sim 2.2) \times 10^6$ | $(4.5 \sim 2.3) \times 10^7$ |              |                  |                              |                              |

- The yields difference for  $(\bar{D}N)$  between EicC and EIC is not significant, while  $\Lambda_c$  states show a difference of an order of magnitude

# Summary



- Investigate the  $\Lambda_c$  states, including  $\Lambda_c$ ,  $\Lambda_c(2595)$ ,  $\Lambda_c(2940)$ , and  $(\overline{D}N)$  states, in both **photoproduction** and **electroproduction** processes
- The  $\Lambda_c(2940)$  is studied in both the **hadronic molecule** model, assigned  $J^P = \frac{1}{2}^-$ , and the **quark model**( ${}^{3}P_0$ ) as the  $\Lambda_c(\frac{1}{2}^-, 2P)$ state
  - The hadronic molecule model and the  ${}^{3}P_{0}$  model predict production yields of the same order of magnitude.
    - Distinguishing the structure of  $\Lambda_c(2940)$  based on yields may not be feasible.
  - The yields of  $\Lambda_c$  excited states are estimated to reach  $10^6$  to  $10^7$  at EicC and EIC.
- The yields of the  $(\bar{D}N)$  molecules are approximately one order of magnitude lower than that of  $\Lambda_c(2940)$ 
  - Yields reach  $10^5$  at EicC and EIC.

Thank you!