Hadronic molecules near thresholds: T_{cc} and its partners

Yasuhiro Yamaguchi,

Department of Physics, Nagoya University, Japan

T. Asanuma, Y.Y, M. Harada, Phys. Rev. D 110, 074030 (2024)
 M. Sakai, Y.Y, Phys. Rev. D 109, 054016 (2024)

East Asian Workshop on Exotic Hadrons 2024 8-11 December 2024, Nanjing, China

Outline

1. Introduction

Exotic hadrons, T_{cc} tetraquark

- **2.** T_{cc} as a DD^* molecule, and T_{bb}
- 3. $\bar{D}^{(*)} \Xi^{(*)}_{cc}$ molecule as a superflavor partner of T_{cc}

4. Summary

Y. Yamaguchi (Nagoya Univ)

Hadron structure: Constituent quark model

- Hadron = Quark composite system
- Ordinary Hadrons: Baryon (qqq) and Meson $(q\bar{q})$

Hadron structure: Constituent quark model

- Hadron = Quark composite system
- Ordinary Hadrons: Baryon (qqq) and Meson $(q\bar{q})$

Exotic Hadrons ($\neq qqq$, $q\bar{q}$): Multiquark? Multihadron?

Observations of exotic hadrons containing $c\bar{c}$

N. Brambilla, et al. Eur. Phys. J.C 71 (2011)1534, S. Godfrey and N. Isgur, PRD32 (1985)189

Y. Yamaguchi (Nagoya Univ)

Observations of exotic hadrons containing $c\bar{c}$

e.g. $c\bar{c}$ mesons (Charmonium) sector and Unexpected X, Y, Z Mass (GeV/c^2) Y(4664)Y(4630) $Z(4430)^+$ one-q exchange 4.5 $\psi(4415)$ X(4350)(4360)4260 X(4160 b(4160` 4.0 - Y(4008) $\chi_{(3872)} \stackrel{\chi_{c2}(2P)}{=}$ Confinement $Z_{a}(390$ b(3770) $\eta_c(2S)$ $\chi_{c1}(1P) \chi_{c2}(1P) h_c(1P)$ 3.5 $\chi_{c0}(1P$ $V(r) = -\frac{\alpha_s}{r} + cr$ $J/\psi(1S)$ $\eta_c(1S)$ 3.01+- T^{PC} ??? 0^{-+} 1-- 0^{++} 1++ 2++

N. Brambilla, et al. Eur. Phys. J.C 71(2011)1534, S. Godfrey and N. Isgur, PRD32(1985)189

Many Exotics $\neq c\bar{c}$ have been observed in the Experiments (BaBar, Belle, BESIII, LHCb,...) since the discovery of X(3872) in 2003!

Y. Yamaguchi (Nagoya Univ)

Recent reports of exotic hadrons

- ▶ **2019:** *P_c*(4312), *P_c*(4440), *P_c*(4457) LHCb, PRL**122**(2019)222001
- 2020: X(6900), X_{0,1}(2900)
 LHCb, Science Bulletin 65 (2020) 1983, PRL125, 242001 (2020), PRD102, 112003 (2020)
- 2021: Z_{cs}, P_{cs} BESIII PRL126, 102001 (2021), LHCb Sci.Bull.66(2021)1278
- **2022:** P_c(4337), T⁺_{cc}, P_{cs}(4338), T_{cs}(2900) LHCb, PRL128(2022)062001, Nature Phys. 18 (2022) 751-754, Nature Commun. 13 (2022) 3351
- ▶ **2023:** $T^{\theta}_{\psi s1}(4000)^0$, **2024:** $h_c(4300)$ LHCb, arXiv:2301.04899[hep-ex], LHCb arXiv:2406.03156
 - New exotic hadrons have been reported Every Year, especially at Large Hadron Collider (LHC)
 - One of the important topics in the hadron spectroscopy!

Y. Yamaguchi (Nagoya Univ)

Recent reports of exotic hadrons

- **2019:** P_c(4312), P_c(4440), P_c(4457) LHCb, PRL122(2019)222001
- 2020: X(6900), X_{0,1}(2900)
 LHCb, Science Bulletin 65 (2020) 1983, PRL125, 242001 (2020), PRD102, 112003 (2020)
- 2021: Z_{cs}, P_{cs} BESIII PRL126, 102001 (2021), LHCb Sci.Bull.66(2021)1278
- 2022: P_c(4337), T⁺_{cc}, P_{cs}(4338), T_{cs}(2900)
 LHCb, PRL128(2022)062001, Nature Phys. 18 (2022) 751-754, Nature Commun. 13 (2022) 3351
- ▶ **2023:** $T^{\theta}_{\psi s1}(4000)^0$, **2024:** $h_c(4300)$ LHCb, arXiv:2301.04899[hep-ex], LHCb arXiv:2406.03156
 - New exotic hadrons have been reported Every Year, especially at Large Hadron Collider (LHC)
 - One of the important topics in the hadron spectroscopy!

Y. Yamaguchi (Nagoya Univ)

Candidates of Exotic structures?

Candidates of Exotic structures?

- Exotics as Hadronic molecule \Rightarrow Hadron (quasi) bound state
- \rightarrow expected near the thresholds

► Exotics as Hadronic molecule ⇒ Hadron (quasi) bound state
 → expected near the thresholds

 $\begin{array}{c} \hline c \\ q \\ \hline d \\ \hline c \\ \hline c \\ \hline c \\ \hline \end{array} \begin{array}{c} \bar D^{(*)} \\ \hline c \\ \hline c \\ \hline \end{array} \begin{array}{c} \bar D^{(*)} \\ \hline c \\ \hline \end{array} \begin{array}{c} \bar D^{(*)} \\ \hline c \\ \hline \end{array} \begin{array}{c} \bar D^{(*)} \\ \hline c \\ \hline \end{array} \begin{array}{c} \bar D^{(*)} \\ \hline c \\ \hline \end{array} \begin{array}{c} \bar D^{(*)} \\ \hline c \\ \hline \end{array} \begin{array}{c} \bar D^{(*)} \\ \hline c \\ \hline \end{array} \begin{array}{c} \bar D^{(*)} \\ \hline c \\ \hline \end{array} \begin{array}{c} \bar D^{(*)} \\ \hline c \\ \hline \end{array} \begin{array}{c} \bar D^{(*)} \\ \hline c \\ \hline \end{array} \begin{array}{c} \bar D^{(*)} \\ \hline c \\ \hline \end{array} \begin{array}{c} \bar D^{(*)} \\ \hline c \\ \hline \end{array} \begin{array}{c} \bar D^{(*)} \\ \hline c \\ \hline \end{array} \begin{array}{c} \bar D^{(*)} \\ \hline c \\ \hline \end{array} \begin{array}{c} \bar D^{(*)} \\ \hline \end{array} \end{array}$

Analogous to Deuteron

- $\blacktriangleright\,$ Exotics as Hadronic molecule $\Rightarrow\,$ Hadron (quasi) bound state
- → expected near the thresholds

- \blacktriangleright Exotics as Hadronic molecule \Rightarrow Hadron (quasi) bound state
- → expected near the thresholds

- Exotic hadrons near thresholds
 - ▶ $D\bar{D}^*$: X(3872), Z_c(3900),..., DD^* : T_{cc}
 - ► $B\bar{B}^*$: Z_b , Z_b'

 $\blacktriangleright \ \bar{D}^{(*)}\Sigma_c^{(*)}: \ P_c \ \text{F. K. Guo, et. al., Rev.Mod.Phys.} \textbf{90} (2018) 015004, \text{Y. Y., et. al., J.Phys.G} \textbf{47} (2020) 053001, \dots$

Y. Yamaguchi (Nagoya Univ)

- \blacktriangleright Exotics as Hadronic molecule \Rightarrow Hadron (quasi) bound state
- → expected near the thresholds

- Exotic hadrons near thresholds
 - ▶ $D\bar{D}^*$: X(3872), Z_c(3900),..., DD^{*}: T_{cc}
 - ► $B\bar{B}^*$: Z_b , Z_b'
 - $\blacktriangleright \ \bar{D}^{(*)}\Sigma_c^{(*)}: \ P_c \ \text{F. K. Guo, et. al., Rev.Mod.Phys.} \textbf{90} (2018) 015004, \text{Y. Y., et. al., J.Phys.G} \textbf{47} (2020) 053001, \dots$

Q. What is an interaction binding the constituent hadrons?

Y. Yamaguchi (Nagoya Univ)

Hadron interactions

ProblemHadron interactions are NOT established yet...
due to the lack of the hadron-scattering data
(↔ Lattice QCD, Femtoscopy, etc near future!)

How can we describe hadron interactions?

Hadron interactions

Problem) Hadron interactions are **NOT** established yet... due to the lack of the hadron-scattering data

(\leftrightarrow Lattice QCD, Femtoscopy, etc near future!)

How can we describe hadron interactions?

Long-range int. One pion exchange potential

- Long-range int. known in the nuclear force !
- Chiral and Heavy quark spin symmetries

OPEP

Hadron interactions

ProblemHadron interactions are NOT established yet...due to the lack of the hadron-scattering data(↔ Lattice QCD, Femtoscopy, etc near future!)

How can we describe hadron interactions?

Long-range int. One pion exchange potential

- Long-range int. known in the nuclear force !
- Chiral and Heavy quark spin symmetries

Short-range int. Many models

- ρ, ω, σ meson exchanges (analogy to Nuclear force)
- Quark exchanges, Mixing of Compact state, etc.

Doubly charmed tetraquark T_{cc}

LHCb, Nature Phys. 18 (2022) 751-754, Nature Commun. 13 (2022) 3351

Y. Yamaguchi (Nagoya Univ)

Doubly charmed tetraquark T_{cc} in LHCb (2022)

• $T^+_{cc}(cc\bar{u}\bar{d})$ has been reported in LHCb!

LHCb, Nature Phys. 18 (2022) 751-754, Nature Commun. 13 (2022) 3351

- The Breit–Wigner parameterization $\Delta M_{BW}=-273\pm 61\pm 5^{+11}_{-14}~{\rm keV}$ $\Gamma_{BW}=410\pm 165\pm 43^{+18}_{-38}~{\rm keV}$
- Model analysis, $T_{cc} \sim DD^*$ $\Delta M_{pole} = -360 \pm 40^{+4}_{-0}$ keV $\Gamma_{pole} = 48 \pm 2^{+0}_{-14}$

Found just below the DD* threshold
 The quantum number: J^P = 1⁺, and I = 0 is favored.
 Y. Yamaguchi (Nagoya Univ)

What is the structure of T_{cc} ?

See review Hua-Xing Chen, et. al., Rep. Prog. Phys. 86 (2023) 026201 References related to T_{cc}

• Compact tetraquark $(cc\bar{q}\bar{q})$?

J. L. Ballot *et. al.*, PLB123(1983)449, S. Zouzou, *et. al.*, ZPC30(1986)457,
 S.H.Lee, S.Yasui, EPJC64(2009)283, Q. Meng, *et. al.*, PLB824(2022)136800,
 ...

Hadronic molecule (DD*)

A.V.Manohar, M.B.Wise, NPB**399**(1993)17,
S.Ohkoda, *et. al.*, PRD**86**(2012)034019,
J.-B Cheng, *et. al.*, PRD**106**(2022)016012

Lattice QCD

Y.Ikeda, et. al., [HALQCD], PLB**729**(2014)85,
S.Aoki, T.Aoki, PoS(LATTICE2022)049,
M. Padmanath and S. Prelovsek, PRL**129**(2022)032002,
Y. Lvu. et al., arXiv:2302.04505. ...

Y. Yamaguchi (Nagoya Univ)

What is the structure of T_{cc} ?

See review Hua-Xing Chen, et. al., Rep. Prog. Phys. 86 (2023) 026201 References related to $\,T_{cc}\,$

• Compact tetraquark $(cc\bar{q}\bar{q})$?

J. L. Ballot et. al., PLB123(1983)449, S. Zouzou, et. al., ZPC30(1986)457,
 S.H.Lee, S.Yasui, EPJC64(2009)283, Q. Meng, et. al., PLB824(2022)136800,

See also Talks of M. Tanaka (10 Dec), M. Harada (11 Dec)

► Hadronic molecule (*DD*^{*})

A.V.Manohar, M.B.Wise, NPB**399**(1993)17, S.Ohkoda, *et. al.*, PRD**86**(2012)034019, J.-B Cheng, *et. al.*, PRD**106**(2022)016012

Lattice QCD

. . .

Y.Ikeda, et. al., [HALQCD], PLB**729**(2014)85, S.Aoki, T.Aoki, PoS(LATTICE2022)049, M. Padmanath and S. Prelovsek, PRL**129**(2022)032002,

Y. Lyu, et al., arXiv:2302.04505, ...

Y. Yamaguchi (Nagoya Univ)

 T_{cc} as ccqq or DD* which is a "deuteron" in the charm sector! (Deuson N. A. Tornqvist, Z. Phys. C61, 525 (1994))

Providing fundamental interactions such as DD^* , qq

 T_{cc} as ccqq or DD* which is a "deuteron" in the charm sector! (Deuson N. A. Tornqvist, Z. Phys. C61, 525 (1994))

Providing fundamental interactions such as DD^* , qq

 $\blacktriangleright \ SU(3)_f \text{ symmetry } u, d \to s$

 \Rightarrow $T_{ccs}(\bar{c}\bar{c}sq)$, $\bar{c}\bar{c}ss$ Providing interactions with Strangeness

 T_{cc} as ccqq or DD* which is a "deuteron" in the charm sector! (Deuson N. A. Tornqvist, Z. Phys. C61, 525 (1994))

Providing fundamental interactions such as DD^* , qq

▶ $SU(3)_f$ symmetry $u, d \rightarrow s$

 \Rightarrow $T_{ccs}(\bar{c}\bar{c}sq)$, $\bar{c}\bar{c}ss$ Providing interactions with Strangeness

• Heavy Quark Flavor Symmetry: c
ightarrow b and in the heavy quark limit

 $\Rightarrow T_{bb}(\overline{bb}qq)$, Heavy quark spin multiplet structure

 T_{cc} as ccqq or DD* which is a "deuteron" in the charm sector! (Deuson N. A. Tornqvist, Z. Phys. C61, 525 (1994))

Providing fundamental interactions such as DD^* , qq

▶ $SU(3)_f$ symmetry $u, d \rightarrow s$

 \Rightarrow $T_{ccs}(\bar{c}\bar{c}sq)$, $\bar{c}\bar{c}ss$ Providing interactions with Strangeness

- Heavy Quark Flavor Symmetry: $c \rightarrow b$ and in the heavy quark limit $\Rightarrow T_{bb}(\bar{b}\bar{b}qq)$, Heavy quark spin multiplet structure
- Superflavor Symmetry: $\bar{c} \rightarrow cc$

 $\Rightarrow \bar{D}\Xi_{cc}(cc\bar{c}qq), \ \Xi_{cc}\Xi_{cc}(ccccqq)$

 T_{cc} as ccqq or DD* which is a "deuteron" in the charm sector! (Deuson N. A. Tornqvist, Z. Phys. C61, 525 (1994))

Providing fundamental interactions such as DD^* , qq

▶ $SU(3)_f$ symmetry $u, d \rightarrow s$

 \Rightarrow $T_{ccs}(\bar{c}\bar{c}sq)$, $\bar{c}\bar{c}ss$ Providing interactions with Strangeness

- Heavy Quark Flavor Symmetry: $c \rightarrow b$ and in the heavy quark limit $\Rightarrow T_{bb}(\bar{b}\bar{b}qq)$, Heavy quark spin multiplet structure
- Superflavor Symmetry: $\bar{c} \rightarrow cc$ $\Rightarrow \bar{D}\Xi_{cc}(cc\bar{c}qq), \Xi_{cc}\Xi_{cc}(ccccqq)$

• Charge conjugation: $D \rightarrow \bar{D}$

Hidden-charm exotics $XYZ(c\bar{c}q\bar{q})$ as $D\bar{D}$

Y. Yamaguchi (Nagoya Univ)

 T_{cc} as ccqq or DD* which is a "deuteron" in the charm sector! (Deuson N. A. Tornqvist, Z. Phys. C61, 525 (1994))

Providing fundamental interactions such as DD^* , qq

▶ $SU(3)_f$ symmetry $u, d \rightarrow s$

 $\Rightarrow T_{ccs}(\bar{c}\bar{c}sq), \ \bar{c}\bar{c}ss \quad \text{Providing interactions with Strangeness}$ M. Tanaka, Y.Y, M. Harada, PRD 110, 016024 (2024) (T_{ccs} spectrum)

• Heavy Quark Flavor Symmetry: $c \rightarrow b$ and in the heavy quark limit

 $\Rightarrow T_{bb}(\bar{b}\bar{b}qq)$, Heavy quark spin multiplet structure T. Asanuma, Y.Y. M. Harada, PRD 110, 074030 (2024) M. Sakai, Y.Y. PRD 109, 054016 (2024)

Superflavor Symmetry: $\overline{c} \rightarrow cc$

 $\Rightarrow \bar{D}\Xi_{cc}(cc\bar{c}qq), \ \Xi_{cc}\Xi_{cc}(ccccqq)$

T. Asanuma, Y.Y, M. Harada, PRD 110, 074030 (2024)

• Charge conjugation: $D o ar{D}$

Hidden-charm exotics $XYZ(c\bar{c}q\bar{q})$ as $D\bar{D}$

Y. Yamaguchi (Nagoya Univ)

T_{cc} analysis in this study

T. Asanuma, Y.Y, M. Harada, Phys. Rev. D 110, 074030 (2024) M. Sakai, Y.Y, Phys. Rev. D 109, 054016 (2024)

- Studing T_{cc} as the DD^* molecule
- ► Heavy quark spin symmetry induces the $D D^*$ mixing $\rightarrow DD^* - D^*D^*$ coupled channel analysis
- Interactions: The meson exchange potentials, $\pi, \rho, \omega, \sigma$

Y. Yamaguchi (Nagoya Univ)

Heavy Quark Spin Symmetry and Mass degeneracy

Heavy Quark Spin Symmetry (HQS) N.Isgur, M.B.Wise, PLB232(1989)113

- Suppression of Spin-spin force in $m_Q \rightarrow \infty$.
 - \Rightarrow Mass degeneracy of hadrons with the different J
- > e.g. $Q\overline{q}$ meson

Mass degeneracy of heavy hadrons

 $\blacktriangleright \Delta m$ decreases when the quark mass increases.

Mass degeneracy of heavy hadrons

 Δm decreases when the quark mass increases.

⇒ Degeneracy of Heavy hadrons!

(Heavy Quark Spin Symmetry) $\Rightarrow D - D^*$ mixing is induced!

Y. Yamaguchi (Nagoya Univ)

14 / 26

One pion exchange potential

- ▶ $D D^*$ mixing (channel couplings) enhances the one meson exchange interaction
 - \rightarrow In particular, $DD\pi$ is forbidden, while $DD^*\pi$ is allowed.

 \blacktriangleright Form factor with Cutoff Λ

$$F(\vec{q}^{\,2}) = \frac{\Lambda^2 - m_\pi^2}{\Lambda^2 + \vec{q}^{\,2}}$$

Y. Yamaguchi (Nagoya Univ)

Coupling constants of the meson exchange potential

		$D^{(*)}$ $D^{(*)}$					
$\mathcal{L}_{\boldsymbol{\pi} D^{(*)} D^{(*)}} \mathcal{D}^{(*)} \mathcal{D}^{(*)} \mathcal{D}^{(*)} \mathcal{L}_{\boldsymbol{\pi} D^{(*)} D^{(*)}}$							
		/					
		$D^{(*)}$	$D^{(*)}$				
π	g_{π}	0.59	$D^* \to D\pi$ [1]				
ρ, ω	β	0.9	Lattice [2]				
	λ	$0.56~{\rm GeV^{-1}}$	B decay [3]				
σ	g_{σ}	3.4	$g_{\sigma NN}/3~[4]$				
Cutoff	Λ		Fix to reproduce $B_{T_{cc}}$				

R. Casalbuoni, et. al., Phys. Rept. 281 (1997), 145-238, [2] Ming-Zhu Liu et. al., Phys. Rev. D 99, 094018(2019)
 C. Isola et. al., Phys. Rev. D 68, 114001 (2003), [4] R. Chen et. al., Phys. Rev. D 96 116012(2017)

Y. Yamaguchi (Nagoya Univ)

- Channel couplings: $DD^*({}^3S_1, {}^3D_1), D^*D^*({}^3S_1, {}^3D_1)$
- Solving Schrödinger equations by using the Gaussian expansion method E. Hiyama, Y. Kino and M. Kamimura, Prog. Part. Nucl. Phys. 51 (2003), 223-307
- Interactions: $\pi
 ho \omega \sigma$ exchange potentials

• Cutoff Λ is determined to reproduce the T_{cc} binding energy

- Cutoff Λ is determined to reproduce the T_{cc} binding energy
- Only π exchange \rightarrow **No bound state**

- Cutoff Λ is determined to reproduce the T_{cc} binding energy
- Only π exchange \rightarrow **No bound state**
- $\pi
 ho\omega\sigma$ exchanges ightarrow We find $\Lambda=1182$ MeV (Bound)

- ► The OPEP attraction is not enough to generate a bound state ⇒ The short-range interaction is also important.
- ▶ *DD*^{*}(*S*) is dominant. Loosely bound state.
- Y. Yamaguchi (Nagoya Univ)

- Cutoff Λ is determined to reproduce the T_{cc} binding energy
- Only π exchange \rightarrow **No bound state**
- $\pi
 ho\omega\sigma$ exchanges ightarrow We find $\Lambda=1182$ MeV (Bound)

- ► The OPEP attraction is not enough to generate a bound state ⇒ The short-range interaction is also important.
- $DD^*(S)$ is dominant. Loosely bound state.
- Y. Yamaguchi (Nagoya Univ)

- Cutoff Λ is determined to reproduce the T_{cc} binding energy
- Only π exchange \rightarrow **No bound state**
- $\pi
 ho\omega\sigma$ exchanges ightarrow We find $\Lambda=1182$ MeV (Bound)

- ► The OPEP attraction is not enough to generate a bound state ⇒ The short-range interaction is also important.
- $DD^*(S)$ is dominant. Loosely bound state.

Y. Yamaguchi (Nagoya Univ)

		$\langle \mathbf{V} \rangle$		[MeV]				
DD*(³ S ₁)	-4	-0.81	-0.5	-0.44	0.5			
DD*(³ D ₁)	-0.81	0.018	-0.11	0.015	1.0 1.5			
D*D*(³ S ₁)	-0.5	-0.11	-0.15	-0.071	2.0 2.5			
D*D*(³ D ₁)	-0.44	0.015	-0.071	0.002	3.0 3.5			
$DD^{*}({}^{3}S_{1})$ $DD^{*}({}^{3}D_{1})$ $D^{*}D^{*}({}^{3}S_{1})^{*}D^{*}D^{*}({}^{3}D_{1})$								

Strong attraction from the σ exchange in the DD*(³S₁) diagonal component

Attraction of the off-diagonal components from $\pi +
ho$

Y. Yamaguchi (Nagoya Univ)

- Strong attraction from the σ exchange in the DD*(³S₁) diagonal component
- Attraction of the off-diagonal components from $\pi + \rho$

Y. Yamaguchi (Nagoya Univ)

- Strong attraction from the σ exchange in the DD*(³S₁) diagonal component
- Attraction of the off-diagonal components from $\pi + \rho$
- ▶ In $\langle H \rangle$, the positive diagonal components \Rightarrow Importance of the off-diagonal components

```
Y. Yamaguchi (Nagoya Univ)
```

From T_{cc} to other exotic states

> T_{cc} can be understood by the hadronic molecular picture

- Then, symmetries predict its partner states
 - Heavy quark flavor symmetry $c \rightarrow b$: T_{bb} as BB^*
 - \Rightarrow Large mass of $B (\sim 5280 \text{ MeV} > D(1870))$ suppresses a kinetic energy
 - $\rightarrow {\sf Likely} \ {\sf bound}$
 - Superflavor symmetry $c \rightarrow \overline{c}\overline{c}$: $\overline{D}\Xi_{cc}$ pentaquark $(cc\overline{c}qq)$
 - \Rightarrow multicharm states

Y. Yamaguchi (Nagoya Univ)

From $D^{(*)}D^{(*)}$ to $B^{(*)}B^{(*)}$ (T_{bb})

- > The bottom counterpart of T_{cc} which has not been reported so far
- Employing the same parameters used in T_{cc}

From $D^{(*)}D^{(*)}$ to $B^{(*)}B^{(*)}$ (T_{bb})

- ▶ The bottom counterpart of *T_{cc}* which has not been reported so far
- Employing the same parameters used in T_{cc}
- T_{bb} bound state is predicted

BB^{*}(S) is dominant. B^{*}B^{*}(S) is also important, while the ratio is small in T_{cc} (≤ 1%)

$$\Rightarrow \Delta m_B = m_{B^*} - m_B < \Delta m_D = m_{D^*} - m_D$$
Thus, $BB^* - B^*B^*$ mixing is enhanced
Y. Yamaguchi (Nagoya Univ) Exotic Hadrons 2024 (9 Dec)

From $D^{(*)}D^{(*)}$ to $B^{(*)}B^{(*)}$ (T_{bb})

- ▶ The bottom counterpart of *T_{cc}* which has not been reported so far
- Employing the same parameters used in T_{cc}
- T_{bb} bound state is predicted

BB^{*}(S) is dominant. B^{*}B^{*}(S) is also important, while the ratio is small in T_{cc} (≤ 1%)

$$\Rightarrow \Delta m_B = m_{B^*} - m_B < \Delta m_D = m_{D^*} - m_D$$
Thus, $BB^* - B^*B^*$ mixing is enhanced
Y. Yamaguchi (Nagoya Univ) Exotic Hadrons 2024 (9 Dec)

From $D^{(*)}D^{(*)}$ to $\bar{D}^{(*)}\Xi^{(*)}_{cc}$

- ► $\overline{D} \leftrightarrow \Xi_{cc}$ by the superflavor symmetry (known as the heavy quark-antidiquark symmetry (HADS)) H. Georgi and M. B. Wise, PLB243(1990)279, M.J.Savage, M.B.Wise PLB248(1990)177
- ▶ \overline{Q} in $(\overline{Q}q)$ and QQ in (QQq) have the same color representation $\overline{\mathbf{3}}_{c}$

Heavy-light meson

Double heavy baryon

From $D^{(*)}D^{(*)}$ to $\bar{D}^{(*)}\Xi^{(*)}_{cc}$

- ▶ $\overline{D} \leftrightarrow \Xi_{cc}$ by the superflavor symmetry (known as the heavy quark-antidiquark symmetry (HADS)) H. Georgi and M. B. Wise, PLB243(1990)279, M.J.Savage, M.B.Wise PLB248(1990)177
- \bar{Q} in $(\bar{Q}q)$ and QQ in (QQq) have the same color representation $\bar{\mathbf{3}}_{c}$

Heavy-light meson

Double heavy baryon

The interactions can be described by the common coupling constant

Coupled Channels of the $\bar{D}\Xi_{cc}$ molecule

Heavy quark spin symmetry induces the channel couplings

For
$$J^P = 1/2^-$$

 $\bar{D}\Xi_{cc}(^2S), \ \bar{D}\Xi^*_{cc}(^4D),$
 $\bar{D}^*\Xi_{cc}(^2S, ^4D), \ \bar{D}^*\Xi^*_{cc}(^2S, ^4D, ^6D)$

Y. Yamaguchi (Nagoya Univ)

• Employing the same parameters used in T_{cc}

- Employing the same parameters used in T_{cc}
- We obtain the $\overline{D}\Xi_{cc}$ bound state for $I(J^P) = 0(1/2^-)$!

- Employing the same parameters used in T_{cc}
- We obtain the $\overline{D}\Xi_{cc}$ bound state for $I(J^P) = 0(1/2^-)$!

• Dominant component: $\bar{D}\Xi_{cc}(^{2}S) \sim 98.3$ %

Y. Yamaguchi (Nagoya Univ)

- Employing the same parameters used in T_{cc}
- We obtain the $\overline{D}\Xi_{cc}$ bound state for $I(J^P) = 0(1/2^-)$!

► Dominant component: $\overline{D}\Xi_{cc}(^2S) \sim 98.3 \%$ ► Second "dominant": $\overline{D}^*\Xi_{cc}^*(^6D) \sim 1 \% \leftrightarrow M_{\overline{D}^*\Xi_{cc}^*} - M_{\overline{D}\Xi_{cc}} = 247 \text{ MeV}$ Y. Yamaguchi (Nagoya Univ) Exotic Hadrons 2024 (9 Dec) 24 / 26 Energy expectation values of $\bar{D}^{(*)} \Xi_{cc}^{(*)}$ for $I(J^P) = 0(1/2^-)$

Energy expectation values of $\bar{D}^{(*)} \Xi^{(*)}_{cc}$ for $I(J^P) = 0(1/2^-)$

- Strong attraction from the σ exchange in the $\overline{D}\Xi_{cc}(^2S)$ diagonal component
- Attraction in the D̄Ξ_{cc}(²S) − D̄*Ξ^{*}_{cc}(⁶D), produced by the OPEP tensor force
- Y. Yamaguchi (Nagoya Univ)

Summary

> Doubly charmed tertaquark T_{cc} has attracted a lot of interest.

• T_{cc} as a $D^{(*)}D^{(*)}$ molecule with the one boson exchange potentials

▶ Importance of the σ exchange and the tensor force of the π exchange → Important role of the $DD^* - D^*D^*$ mixing

T_{bb} bound state as a bottom counterpart is also obtained.

- $\bar{D}^{(*)} \Xi_{cc}^{(*)}$ as a superflavor partner
 - Obtaining the bound state for J^P = 1/2⁻
 - ► Importance of the D̄*Ξ^{*}_{cc} channel

Ref. T. Asanuma, Y.Y, M. Harada, Phys. Rev. D 110, 074030 (2024),

M. Sakai, Y.Y, Phys. Rev. D 109, 054016 (2024)

Y. Yamaguchi (Nagoya Univ)