

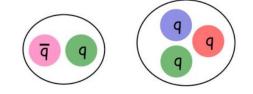
Glueballs in QCD sum rules

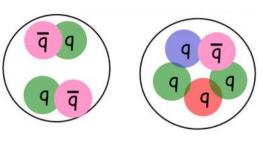
Wei Chen

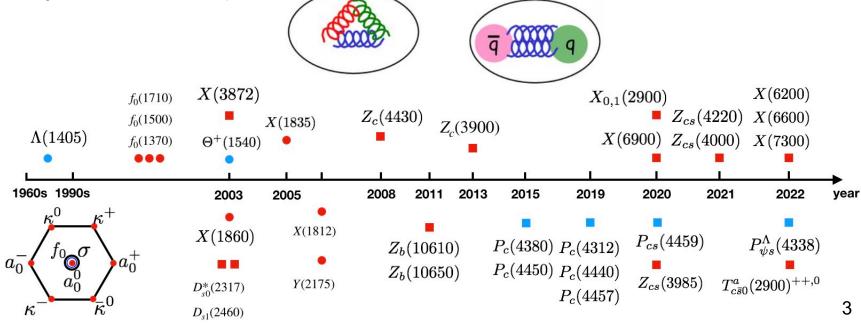
Sun Yat-Sen University

Based on: PRD103 (2021) L091503; PRD104(2021) 094050; RPP86(2023) 026201

Collaborators: Hua-Xing Chen, Yan-Rui Liu, Xiang Liu, Shi-Lin Zhu

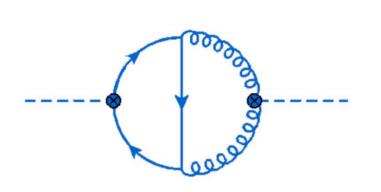

East Asian Workshop on Exotic Hadrons 2024 2024.12.8-12 SEU • Nanjing

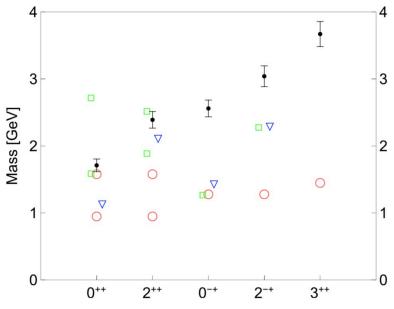

Outline


- Research progresses on glueballs
- > Two-gluon glueballs
- > Three-gluon glueballs
- > Summary

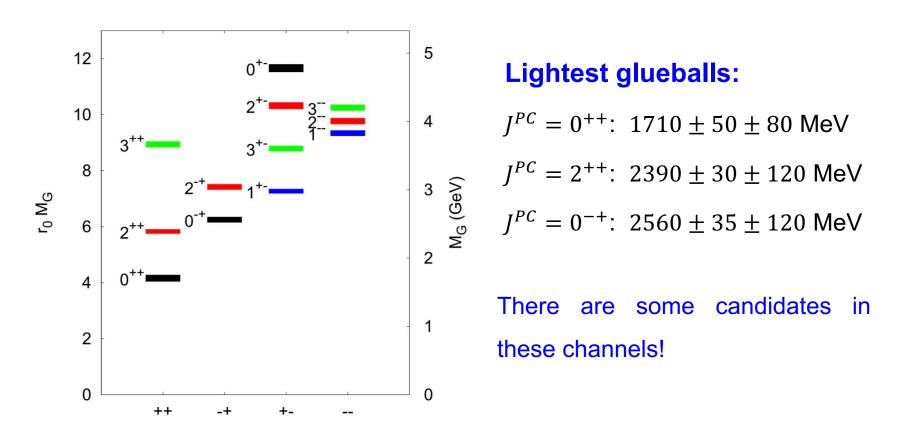
Quark model and Exotic hadrons

- ightharpoonup Quark Model: $q\bar{q}$ mesons and qqq baryons
- Exotic Hadrons: hadrons beyond QM, such as multiquarks, hybrids, glueballs...
- Hybrids and Glueballs: very distinctive predictions of QCD!

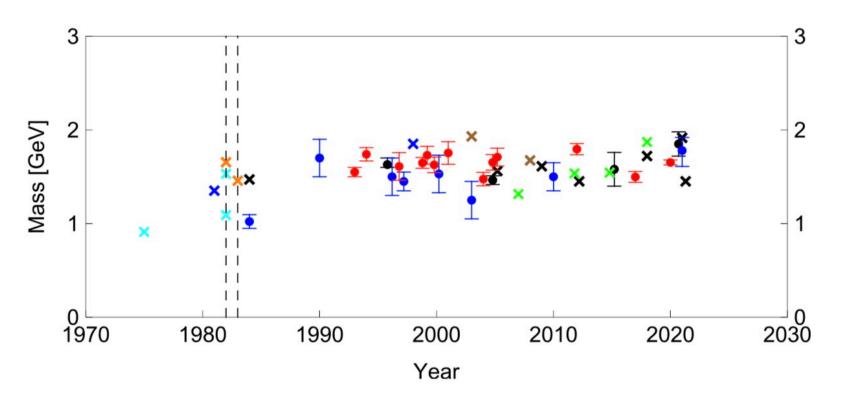




Glueballs: colorless bound states of gluons as gluons have a self-coupling


- Mixing with normal $q\bar{q}$ states, it is hard to isolate the pure glueballs experimentally.
- ➤ No universal definition of constituent gluon: massless or massive?

Plenty of theoretical studies in the past half century based on various methods.


Mass spectrum of glueballs in LQCD

Y. Chen et. al., PRD73(2006)014516

Scalar glueball:

H.X.Chen et. al., RPP86(2023) 026201

Average mass predictions:

$$M_{|gg;0^{++}
angle}pprox 1650~{
m MeV}$$

Candidates: scalar light mesons

$$M_{|gg;0^{++}\rangle} \approx 1650 \text{ MeV}$$

Name	$f_0(500)$	$f_0(1370)$	$f_0(1710)$	$f_0(2020)$	$f_0(2200)$
M (MeV) Γ (MeV)	410 ± 20 $400 \rightarrow 550$ 480 ± 30 $400 \rightarrow 700$	1370 ± 40 $1200 \rightarrow 1500$ 390 ± 40 $100 \rightarrow 500$	1700 ± 18 1704 ± 12 255 ± 25 123 ± 18	1925 ± 25 1992 ± 16 320 ± 35 442 ± 60	2200 ± 25 2187 ± 14 150 ± 30 ~ 200
Name	$f_0(980)$	$f_0(1500)$	$f_0(1770)$	$f_0(2100)$	$f_0(2330)$
M (MeV) Γ (MeV)	1014 ± 8 990 ± 20 71 ± 10 $10 \rightarrow 100$	1483 ± 15 1506 ± 6 116 ± 12 112 ± 9	1765 ± 15 180 ± 20	2075 ± 20 2086^{+20}_{-24} 260 ± 25 284^{+60}_{-32}	2340 ± 20 ~ 2330 165 ± 25 250 ± 20

Production rates in the gluon-rich J/ψ radiative decay processes:

$$\mathcal{B}(J/\psi \to \gamma f_0(1500)) \sim 0.29 \times 10^{-3},$$

 $\mathcal{B}(J/\psi \to \gamma f_0(1710)) \sim 2.2 \times 10^{-3},$

BESIII: Natl. Sci. Rev. 8 (2021) nwab198

$$\mathcal{B}(J/\psi \to \gamma | gg; 0^{++}\rangle) = (3.8 \pm 0.9) \times 10^{-3}$$
. PRL110(2010)021601

Mixing scheme:

PLB826(2022)36906

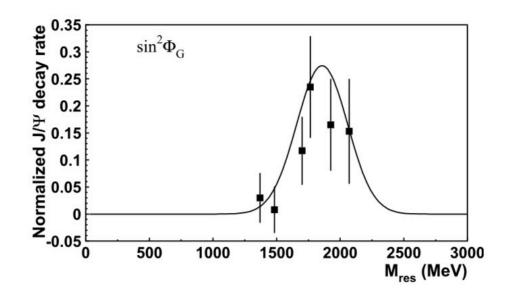
$$\mathcal{M} = \begin{pmatrix} M_{gg} & f & \sqrt{2}f \\ f & M_{s\bar{s}} & 0 \\ \sqrt{2}f & 0 & M_{n\bar{n}} \end{pmatrix} H' = (|n\bar{n}\rangle\cos\varphi' - |s\bar{s}\rangle\sin\varphi')\cos\phi^H + |gg\rangle\sin\phi^H,$$

$$L' = (|n\bar{n}\rangle\sin\varphi' + |s\bar{s}\rangle\cos\varphi')\cos\phi^L + |gg\rangle\sin\phi^L,$$

$$|n\bar{n}\rangle = \frac{|u\bar{u} + d\bar{d}\rangle}{\sqrt{2}}, \qquad f = \langle s\bar{s}|V|gg\rangle = \langle n\bar{n}|V|gg\rangle/\sqrt{2}$$

$$H' = (|n\bar{n}\rangle\cos\varphi' - |s\bar{s}\rangle\sin\varphi')\cos\phi^H + |gg\rangle\sin\phi^H,$$

$$L' = (|n\bar{n}\rangle\sin\varphi' + |s\bar{s}\rangle\cos\varphi')\cos\phi^L + |gg\rangle\sin\phi^L,$$


$$|n\bar{n}\rangle = \frac{|u\bar{u} + d\bar{d}\rangle}{\sqrt{2}},$$

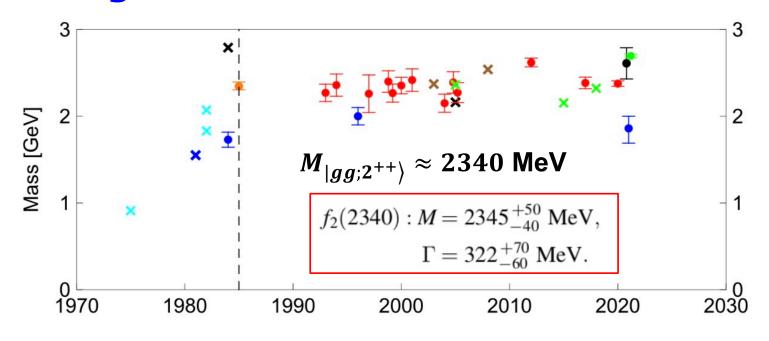
$$f = \langle s\bar{s}|V|gg\rangle = \langle n\bar{n}|V|gg\rangle/\sqrt{2}$$

$$f_0(1370)$$
 $f_0(1500)$ $f_0(1710)$ $f_0(1770)$ $f_0(2020)$ $f_0(2100)$ $(5 \pm 4)\%$ $< 5\%$ $(12 \pm 6)\%$ $(25 \pm 10)\%$ $(16 \pm 9)\%$ $(17 \pm 8)\%$.

$$f_0(1710)$$
 $f_0(112 \pm 6)\%$ $(25 \pm 6)\%$

$$f_0(2020)$$
 $f_0(2100)$ $(16 \pm 9)\%$ $(17 \pm 8)\%$

Fractional glueball contents:


$$(78 \pm 18)\%$$

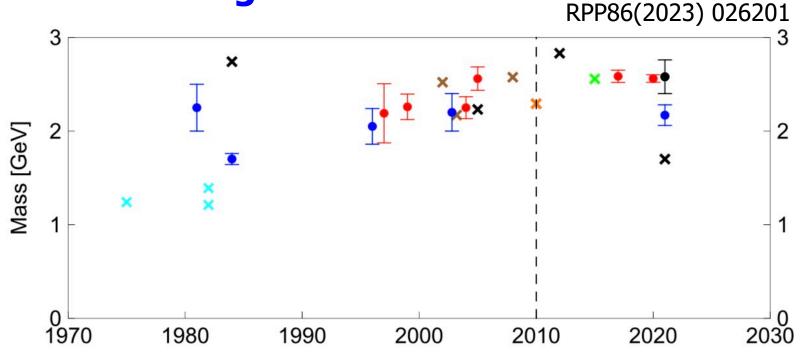
 $M \approx 1865 \text{ MeV}$

 $\Gamma \approx 370 \text{ MeV}$

Tensor glueball:

H.X.Chen et. al., RPP86(2023) 026201

$$\mathcal{B}(J/\psi \to \gamma f_2(2340) \to \gamma K \bar{K}) = (5.54^{+0.34}_{-0.40}{}^{+3.82}_{-1.49}) \times 10^{-5},$$

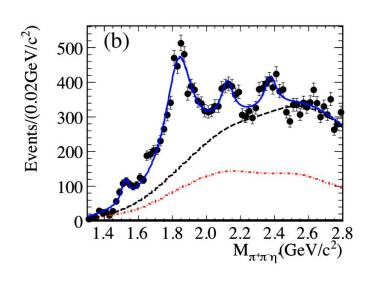

$$\mathcal{B}(J/\psi \to \gamma f_2(2340) \to \gamma \eta \eta) = (5.60^{+0.62}_{-0.65}{}^{+2.37}_{-2.07}) \times 10^{-5},$$

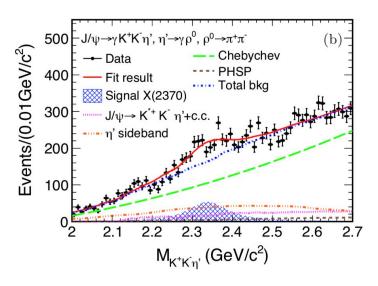
$$\mathcal{B}(J/\psi \to \gamma f_2(2340) \to \gamma \phi \phi) = (1.91 \pm 0.14^{+0.72}_{-0.73}) \times 10^{-5},$$

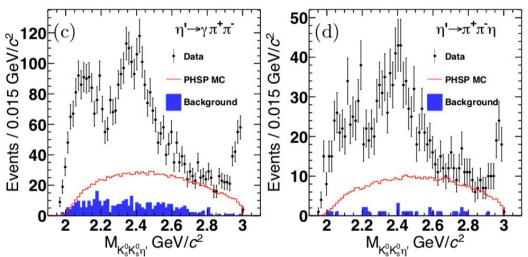
BESIII's measurements

$$\mathcal{B}(J/\psi \to \gamma | gg; 2^{++}\rangle) = (1.1 \pm 0.2 \pm 0.1) \times 10^{-2}$$

Pseudoscalar glueball:


Average mass predictions:


$$M_{|gg;0^{-+}
angle}pprox 2360~ ext{MeV}$$


Pseudoscalar candidate X(2370): BESIII

PRL106(2011)072002: $J/\psi \to \gamma \pi \pi \eta'$

EPJC80(2020)746: $J/\psi \rightarrow \gamma KK\eta'$

PRL132(2024)181901:

$$J/\psi \rightarrow \gamma K_S K_S \eta'$$

$$M = 2395 \pm 11^{+26}_{-94} MeV$$

$$\Gamma = 188^{+18+124}_{-17-33} MeV$$

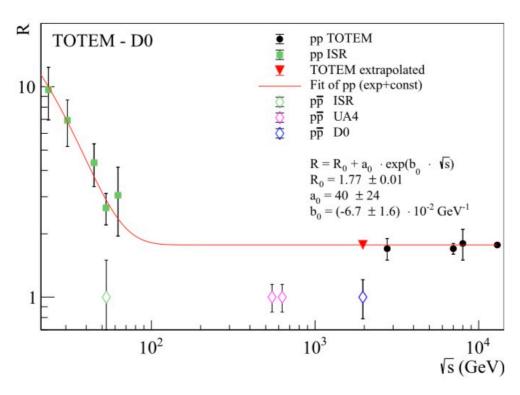
$$J^{PC} = \mathbf{0}^{-+}$$

Production rates in the radiative J/ψ decays:

$$\mathcal{B}(J/\psi \to \gamma X(2370) \to \gamma K^+ K^- \eta')$$

$$= (1.79 \pm 0.23 \pm 0.65) \times 10^{-5}, \qquad \text{EPJC80}(2020)746; \\ \text{PRD93}(2016)112011$$
 $\mathcal{B}(J/\psi \to \gamma X(2370) \to \gamma K_S^0 K_S^0 \eta')$

$$= (1.18 \pm 0.32 \pm 0.39) \times 10^{-5}.$$
 $\mathcal{B}(J/\psi \to \gamma X(2500) \to \gamma \phi \phi) = (1.7 \pm 0.2^{+0.2}_{-0.8}) \times 10^{-5}.$


Close to the LQCD prediction of the pseudoscalar glueball

$$\mathcal{B}(J/\psi \to \gamma | gg; 0^{-+}\rangle) = (2.31 \pm 0.80) \times 10^{-4}.$$

PRD9100(2019)054511

Evidence for a t-channel exchanged odderon

PRL127(2021)062003

The discrepancy suggests the existence of a t-channel exchanged odderon with C=-. If exist, it should be a three-gluon glueball!

QCD sum rule calculations of glueballs

The relativistic two-gluon and three-gluon operators:

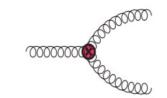
All spin-1 two- and three-gluon operators with C=+ vanish!

Three-gluon operators:

C=-

$$\begin{split} \xi_1^{\alpha\beta} &= d^{abc}g_s^3G_a^{\mu\nu}G_{b,\mu\nu}G_c^{\alpha\beta}, \\ \tilde{\xi}_1^{\alpha\beta} &= d^{abc}g_s^3G_a^{\mu\nu}G_{b,\mu\nu}\tilde{G}_c^{\alpha\beta}, \\ \tilde{\xi}_1^{\alpha\beta} &= d^{abc}g_s^3G_a^{\mu\nu}G_{b,\mu\nu}\tilde{G}_c^{\alpha\beta}, \\ \xi_2^{\alpha_1\alpha_2,\beta_1\beta_2} &= d^{abc}\mathcal{S}[g_s^3\tilde{G}_a^{\alpha_1\beta_1}G_b^{\alpha_2\mu}\tilde{G}_{c,\mu}^{\beta_2} - \{\alpha_2 \leftrightarrow \beta_2\}], \\ \tilde{\xi}_2^{\alpha_1\alpha_2,\beta_1\beta_2} &= d^{abc}\mathcal{S}[g_s^3G_a^{\alpha_1\beta_1}\tilde{G}_b^{\alpha_2\mu}G_{c,\mu}^{\beta_2} - \{\alpha_2 \leftrightarrow \beta_2\}], \\ \tilde{\xi}_3^{\dots} &= d^{abc}\mathcal{S}[g_s^3G_a^{\alpha_1\beta_1}G_b^{\alpha_2\beta_2}G_c^{\alpha_3\beta_3}], \\ \tilde{\xi}_3^{\dots} &= d^{abc}\mathcal{S}[g_s^3\tilde{G}_a^{\alpha_1\beta_1}\tilde{G}_b^{\alpha_2\beta_2}\tilde{G}_c^{\alpha_3\beta_3}], \end{split}$$

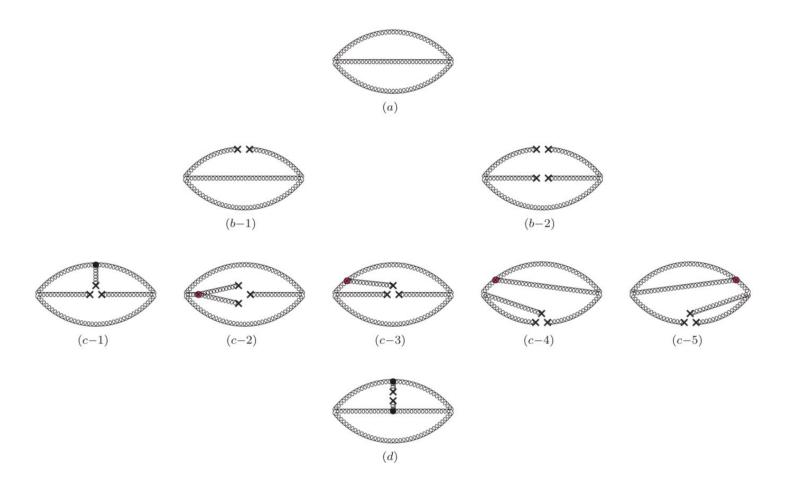
PRD103 (2021) L091503; PRD104(2021) 094050


Glueball sum rules:

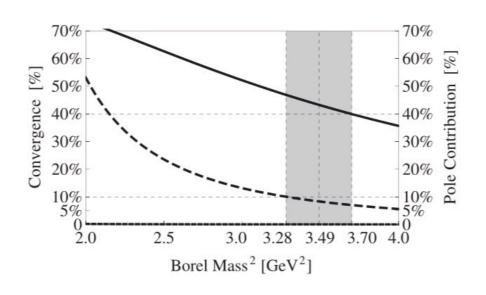
Two-point correlation function:

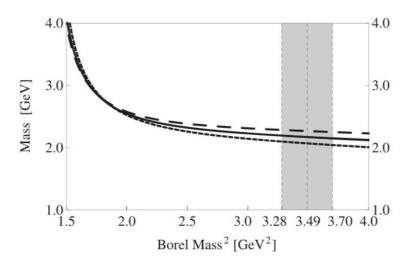
$$\Pi^{\alpha\beta,\alpha'\beta'}(q^2) \equiv i \int d^4x e^{iqx} \langle 0|\mathbf{T}[J_1^{\alpha\beta}(x)J_1^{\alpha'\beta'\dagger}(0)]|0\rangle$$
$$= (g^{\alpha\alpha'}g^{\beta\beta'} - g^{\alpha\beta'}g^{\beta\alpha'})\Pi(q^2),$$

Gluon field strength tensor


$$G^{a}_{\mu\nu} = \partial_{\mu}A^{a}_{\nu} - \partial_{\nu}A^{a}_{\mu} + g_{s}f^{abc}A_{b,\mu}A_{c,\nu},$$

Full gluon field propagator in the fixed point gauge

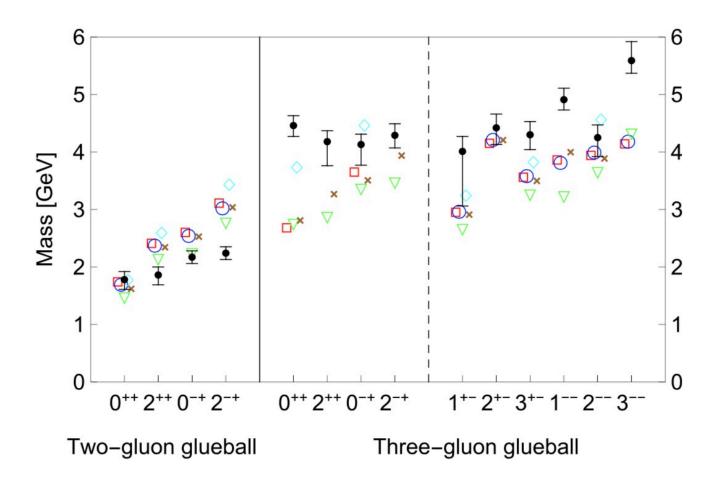

$$\langle 0|\mathbf{T}[A^{a}_{\mu}(x)A^{b}_{\nu}(y)]|0\rangle = \frac{\delta^{ab}g_{\mu\nu}}{4\pi^{2}(x-y)^{2}} + \frac{g_{s}\ln(-(x-y)^{2})}{8\pi^{2}}f^{abc}G_{c,\mu\nu} - \frac{g_{s}g_{\mu\nu}x^{\alpha}y^{\beta}}{8\pi^{2}}f^{abc}G_{c,\alpha\beta}(0).$$


OPEs are calculated up to d=8 condensates

Pseudoscalar glueball

PRD104(2021) 094050

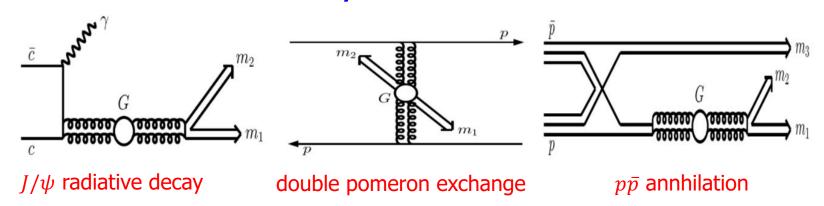
Mass prediction:

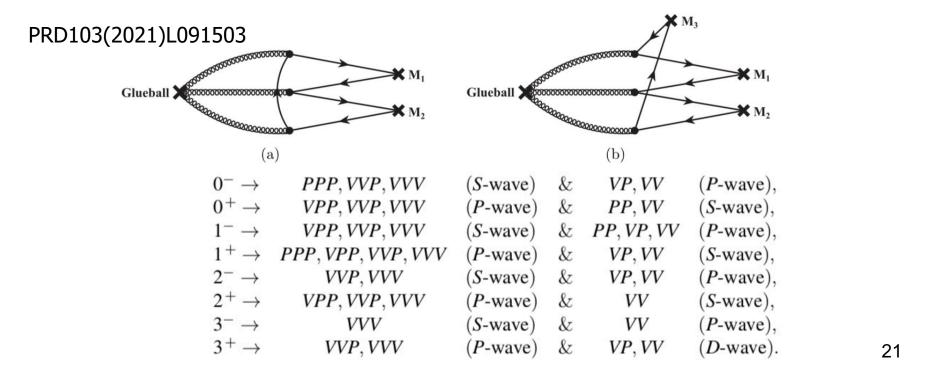

$$M_{|GG;0^{-+}\rangle} = 2.17 \pm 0.11 \text{ GeV}.$$

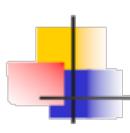
Glueball mass spectrum

Glueball			Working Regions			
	Current	s_0^{\min} [GeV ²]	s_0 [GeV ²]	M_B^2 [GeV ²]	Pole [%]	Mass [GeV]
$ GG;0^{++}\rangle$	J_0	7.8	9.0 ± 1.0	3.70-4.19	40–48	$1.78^{+0.14}_{-0.17}$
$ GG;2^{++}\rangle$	$J_2^{lpha_1lpha_2,eta_1eta_2}$	8.5	10.0 ± 1.0	3.99-4.60	40-50	$1.86^{+0.14}_{-0.17}$
$ \mathrm{GG};0^{-+}\rangle$	$ ilde{J}_0$	8.2	9.0 ± 1.0	3.28-3.70	40-47	$2.17^{+0.11}_{-0.11}$
$\left GG;2^{-+}\right\rangle$	$ ilde{J}_2^{lpha_1lpha_2,eta_1eta_2}$	8.1	10.0 ± 1.0	3.27-4.20	40-55	$2.24^{+0.11}_{-0.11}$
$ { m GGG};0^{++} angle$	η_0	31.6	33.0 ± 3.0	7.25-7.61	40-44	$4.46^{+0.17}_{-0.19}$
$ GGG;2^{++}\rangle$	$\eta_2^{lpha_1lpha_2,eta_1eta_2}$	16.0	35.0 ± 3.0	4.77-9.04	40-90	$4.18^{+0.19}_{-0.42}$
$ { m GGG};0^{-+} angle$	$ ilde{\eta}_0$	17.0	33.0 ± 3.0	4.48-8.13	40-88	$4.13^{+0.18}_{-0.36}$
$ \text{GGG};2^{-+}\rangle$	$ ilde{\eta}_2^{lpha_1lpha_2,eta_1eta_2}$	33.1	35.0 ± 3.0	8.10-8.53	40-44	$4.29^{+0.20}_{-0.22}$
$ GGG;1^{+-}\rangle$	$\xi_1^{\alpha\beta}$	9.0	34.0 ± 4.0	3.16-9.09	40-99	$4.01^{+0.26}_{-0.95}$
$ GGG;2^{+-}\rangle$	$\xi_2^{\alpha_1\alpha_2,\beta_1\beta_2}$	32.7	35.0 ± 4.0	7.53-8.09	40-46	$4.42^{+0.24}_{-0.29}$
$ GGG;3^{+-}\rangle$	$\xi_3^{\alpha_1\alpha_2\alpha_3,\beta_1\beta_2\beta_3}$	30.2	33.0 ± 4.0	7.69-8.40	40-47	$4.30^{+0.23}_{-0.26}$
$ GGG;1^{}\rangle$	$\tilde{\xi}_{1}^{\alpha\beta}$	31.2	34.0 ± 4.0	5.81-6.77	40-51	$4.91^{+0.20}_{-0.18}$
GGG; 2 ⟩	$\tilde{\xi}_{2}^{\alpha_{1}\alpha_{2},\beta_{1}\beta_{2}}$	19.7	36.0 ± 4.0	5.80-9.47	40-81	$4.25^{+0.22}_{-0.33}$
GGG;3	ξ_3^2 ξ_3^2 ξ_3^2 ξ_3^2 ξ_3^2 ξ_3^2 ξ_3^2	35.8	38.0 ± 4.0	6.15-7.22	40–49	$5.59^{+0.33}_{-0.22}$

PRD103 (2021) L091503; PRD104(2021) 094050


Comparing to LQCD's results




RPP86(2023) 026201

Productions and decays

Phys. Rept., 454:1-202, 2007

Summary

- ➤ The existence of glueball is one of the most distinctive prediction of QCD, and essential to the confirmation of the theory!
- ➤ We systematically calculated the mass spectra of the twogluon and three-gluon glueballs.
- ➤ The ground state of spin-1 glueballs with C=+ do not exist in the relativistic framework.
- Some gluon-rich processes are expected to detect glueballs.

Thank you