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1. Introduction

Compact extra dimensions:

o Kaluza-Klein theory [kaluza, 1921; Kiein, 1926]

@ String theory [veneziano, 1968]

o Large extra diemnsions [arkani-Hamed, Dimopoulos, and Dvali, 1998]
@ Warp extra dimension [randall and Sundrum, 1999]
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1. Introduction

Infinite extra dimensions (1):

Domain Wa" (DW) Scenario [Akama, Rubakov, Shaposhnikov, 1983]

ds® = Nuw dxtdx” + dy?
Our 4D world is a DW embedded in 5D flat space-time.
It is generated by a scalar field:

L= —%(8(?)2 —a(¢? —v?)?,  é(y) = wtanh(ky)
@ Fermions can be localized on the DW by
neWV
o Newtonian potential cannot be recovered

U(r) 2
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1. Introduction

Infinite extra dimensions (2):
Thin brane scenario

[Randall and Sundrum (RS), 1999]
‘ ds? = e~ 2klyl Nuw dxFdx” + dy? ‘

@ Our 4D world is a brane embedded in a 5D space-time.

@ Newtonian potential can be recovered on brane:
U(r) = Gy (1+ s
e The energy density: p(y) x od(y)

Warp factor e?? Energy density p

y | y
[&: Thin brane
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1. Introduction

Infinite extra dimensions (3):

Thick brane scenario (Domain Wall)

ds? = e2A0) ., (x) dx"dx” + dy?
o Infinite but warped extra dimension.
@ The brane is generated by a scalar field, e.g.

L= R~ 3(00) ~ V(6), 0ly) = votanh(ky)

o The graviton zero mode is localized on the brane.
Newtonian potential can be recovered.

Warp factor e?? Energy density p
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1. Introduction

KK modes of thick brane with volcano-like potential
@ The zero mode is localized on the brane.

Massive KK modes cannot be localized on the brane.

Some KK modes could be quasi-localized on the brane
(resonances).

The thick brane is a dissipative system for massive KK
modes, which means that the brane may possess
quasinormal modes.

volcano-like potential U
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2. Resonant KK modes on thick brane

The braneworld model
@ The action of a thick brane model:

5= [ vz (53R~ 38" omeone—V(2)) . ()

@ The five-dimensional metric
ds® = ezA(y)anx“dx” + dy?. (2)

@ The dynamical field equations

34" — _— /2’ (3)
6A% = %¢’2 -V, (4)
(;5” +4A/¢, — 87\/ (5)

d¢
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2. Resonant KK modes on thick brane

One solution is given by
Aly) = In [tanh (k(y + b)) — tanh (k(y — b))] (6)
é(y) = —i/3sech(kb) [cosh(zkb)F(/ky; tanh?(kb) + 1)
—2sinh2(kb)TI (sech®(kb); iky; tanh?(kb) + 1)],
(7)

_3
4

V(6(y)) = 342 [ — 4(tanh(k(y — b)) + tanh(k(b + y)))?

+sech?(k(y — b)) + sech?(k(b + y))] (8)

o 3\ 47
-10 \
-12 >

(a) The warp factor (b) The scalar field  (c) The scalar potential

10k
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2. Resonant KK modes on thick brane

Based on this braneworld background, we consider a free
massless test scalar field and study its evolution.
o With dz = e "dy, the metric (2) becomes

ds? = e2A(2) (muwdxtdx” + dz°) . (9)
o The field equation (0(®)y) = 0:
(02 + 3(9,A)0; + 19,0, ] ¥ = 0. (10)
@ Then, we introduce the following decomposition
P(xM) = 634G (¢, 2) =(x). (11)
o Substituting Eq. (11) into Eq. (10) yields
920 + 020 — U(2)® — 2°® =0, (12)

where the effective potential U(z ) is
U(z) = 782A + = (a A)2. (13)
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2. Resonant KK modes on thick brane

e The function ®(t,z) can be further decomposed into
oscillating modes as ®(t,z) = e“*u(z), which yields

—0%u(z) + U(2)u(z) = m*u(z2), (14)

where m = Vw? — a2 is the mass of the KK mode u(z).

e Solving Eq. (14) we could get a series of resonant
modes, which can be treated as the initial data of the
scalar field.

e The evolution is dominated by Eq. (12):

—020 + 020 — U(2)d — 2°d = 0. (12)
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2. Resonant KK modes on thick brane

o The effective potential in the coordinate y:
UIk?

--- b=5
2t

— b=15
1.

Il

30 20 7T o\ 20 30"
S
Py

o The resonant modes can be studied by the relative
probability method [vxL et al, PRD 80 (2009) 065019]:

L —

J2, lu(z)[Pdz
P(m?) = 2 . 15
T e "
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2. Resonant KK modes on thick brane

@ The wave functions can be even or odd since the
potential is symmetric.

e Boundary conditions for Eq. (14):

Ueven(o) =1, 8zueven(o):O; (16)
Uodd(O) = 0, azuodd(o) =1. (17)

e Then we can get the relative probability P(m?) of scalar
KK modes.
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2. Resonant KK modes on thick brane
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(a) The effective potential (b) Pwithb=kb=5
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(c) kb =10 (d) kb=15
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2. Resonant KK modes on thick brane

o Treating the scalar resonances as the initial data, we can
evolve the scalar field under the evolution equation (12):

—02¢ + 920 — U(2)d — a°d = 0. (12)
@ We impose the maximally dissipative boundary condition:
On® = 0;9, (18)

n is the outward unit normal vector to the boundary.

e Equation (12) is solved numerically.
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2. Resonant KK modes on thick brane

e To display the evolution of the scalar field, we define the

energy |[v. Pavlidou et al, PRD 62 (2000) 084020].

e [ (o (a0 J0.a0) ) a0

o The energy decay can be fitted as an exponential
function:

E(t) = Eo exp(—si), (20)

s is the fitting parameter, t = kt.
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2. Resonant KK modes on thick brane

0
10 \ ™. ol
101 . — el
o \\\\\
[ ..
Y103 .
1073 )
0 103 2x103 3x103
t
(a) E(t) with kb=5
10K
'-L? 1
g 1071
w i --- ol —el
it e 02 - e2
i \\ — 03 e3
10-2H
0 10* 3x10% 5x10%
T

E(t) with kb =15

ol — el
02 -~ e2
. — o3
\
.
0 10* 2x10* 3x10*
t

(b) E(t) with kb =10

8x10*

o
WS 4x104

104

o

(d) £/2 ~ kb

18/42



2. Resonant KK modes on thick brane

In addition, we analyze the numerical evolution by extracting
a time series for the resonance amplitude at a fixed point
Zext- We set kb = 15.

0.6
0.3
0
-0.3
-0.6

D51(t, Zext)

1.5x10*  3x10*  4.5x10*

t

first odd resonance at kzq, = 3.

5x103 10%
t

first even resonance at kze = 3.
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2. Resonant KK modes on thick brane

kb me s ti/2 (if k =107 %eV)
6 0.3177 1.4624x1073 3.0714x 10 Mseconds
8 0.1736 3.6373x10°7 1.2349x 10 Pseconds
10 0.1088 1.2867x10~* 3.4908 x 10~ Wseconds
12 0.0744 5.6502x10~° 7.9494x 10~ Vseconds
14 0.0540 2.8609%x10~° 1.5700x 10~ °seconds
16 0.0410 1.6000x10~° 2.8072x 10 ’seconds
18 0.0322 9.6335%x10°° 4.6625x 10 °seconds

F<: The first resonant mass spectrum m?, fitting parameter s, and
half-life t; /» for different values of the parameter kb.

The lifetime of the first resonance increases with the brane
width.
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2. Resonant KK modes on thick brane

@ We also consider the evolution of the non-resonances.
The energy and amplitude of non-resonances decay very
fast at early stage, but later they decay like those of

resonances.
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2. Resonant KK modes on thick brane

@ To have a better understanding of the above results,
we calculate the discrete Fourier transform in time of
the scalar field
FIO(0)](F) := |AY _ &(tp, z7)exp(—2rifty)], (21)
P
t, are the discrete time values.
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(a) non-resonance with m*> = 0.36 (b) first resonance with m* = 0.047
for kb =15 for kb =15
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2. Resonant KK modes on thick brane

@ The results show that, non-resonances can evolve into
combinations of resonances.

@ From this point of view, resonances seem to play a
similar role in the braneworld as the quasinormal modes
in black holes physics.
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2. Resonant KK modes on thick brane

Summary 1:

o We investigated the evolution of a free massless scalar
field in a thick brane model.

@ The resonances decay very slowly compared to the
non-resonances and can exist on the brane for a very
long time.

@ Such resonances might be a candidate for dark matter.

@ Nonresonances can evolve into combinations of
resonances. This arouses our interest in quasinormal
modes in thick brane models.
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3. Quasinormal modes on thick brane

e In 2005, Seahra studied the scattering of KK gravitons
in the Randall-Sundrum-Il model and found that the
brane possesses a series of discrete quasinormal modes
(QNMS) [s:s. seahra, PRD 72 (2005) 066002].

incident
V() pulse

@ As a smooth extension of the Randall-Sundrum-11
model, a thick brane should also have QNMs.
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3. Quasinormal modes on thick brane

The braneworld model
@ The action and the metric:

s = /d"’x\/ ( R— EgM’Vc‘?Mso@Nso— V(90)>,
ds? = Al )nm,dx“dx +dy2.

o To investigate the QNMs of a thick brane, we consider
the following thick brane solution !

A(y) = —bln(cosh(ky)),
¢(y) = V6barctan (tanh <k2y)> ,

V(p) = 3[:;(2 (1 —4b — (1 + 4b) cos (\/i@)) .

10. DeWolfe, D. Z. Freedman, S. S. Gubser, and A. Karch, Phys. Rev. D
62, 046008 (2000).
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3. Quasinormal modes on thick brane

@ Next, we consider the linear transverse-traceless tensor
perturbation of the metric:

2A(y)
EMN = ¢ (TIW + h’w) 0 ) (22)
0 1
Ouht =0 =nt"h,,. (23)
o The linear equation of the tensor fluctuation is

(e240@hy, + H, +4A'H,, ) =0, (24)

where 0*) = 775“58&85.
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3. Quasinormal modes on thick brane

o Introducing dz = e "dy and decomposing h,, as
h., =e 2A(Z)¢(t,z) —iajx! eW, €., = constant,  (25)
we obtain the wave equation for ®(t, z)
—020 + 920 — Ud — 2°d = 0. (26)

o Further decomposing ®(t,z) = e “t¢(z), we have

[—02 + U] ¢(2) = m*¢(z), U= 702A + = (a A2, (27)

where m? = w? — a°.
o The effective pOtentia| U(Z) iS given by [O. DeWolfe, D.Z. Freedman,
S.S. Gubser, and A. Karch, PRD 62 (2000) 046008]
3K (5K222 — 2)
U(z) = PCREIVR (28)
4(k?z2 +1)

29/42



3. Quasinormal modes of thick brane

50 5 5 10 15KZ
(a) Effective potential (b) Zero mode
@ The boundary conditions for the QNMs are
et’mz 7 5 oo,
I (29)
e , Z— —00Q.
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3. Quasinormal modes of thick brane

30t
g25*
E§ 20
€ 15}
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5,
ok T " It
-1.0 -0.5 0.0 0.5 1.0
Re(mik)
n Asymptotic iteration method WKB method
Re(m/k) Im(m/k) Re(m/k) Im(m/k)
1 0.997018 -0.526366 1.04357 -0.459859
2 0.582855 -1.85056 0.536087 -1.71224
3 0.377996 -3.55174 0.279715 -3.70181
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3. Quasinormal modes of thick brane

e Numeric evolution of an initial wave packet (Gauss
pulse) at a fixed location.

Ulk

incident pluse
) N e
p 2

v4
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-1.0 »
-1.5 -2
(a) (b) kzext:3
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3. Quasinormal modes of thick brane

e To investigate the character of the odd QNMs, we give
an odd initial wave packet.

e We choose a/k =0 and a/k =1 to show the effect of
the parameter a.

| D(t, Zex)|

0.100]
0.010]
0.001
107
1079
1079
1077

10 20 30 40 50

(2) kzex =3

kt

[#]: The case of a/k = 0. w/k =1.01079 — 0.501256.
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3. Quasinormal modes of thick brane

| @(t,zex)|

0.100]

10 20 30 40 50 kt

(a) kZext =3

[#]: The case of a/k = 0.

e For a/k =0, there are two stages:

e (1) The exponentially decay stage. The frequency and
damping time of these oscillations in this stage depend
only on the characteristic structure of the thick brane.

@ (2) The power-law damping stage. This situation is
similar to the case of a massless field around a
Schwarzschild black hole.
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3. Quasinormal modes of thick brane

| P(t,Zext)|
0.100
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20 40 60 80 100120140 kt

(a) kzext =3

[#]: The case of a/k = 1.

e For a/k = 1, the quasinormal ringing governs the decay
of the perturbation all the time.

@ This is similar to the case of a massive field around a
Schwarzschild black hole.

35/42



3. Quasinormal modes of thick brane

Summary 2:

@ Normal and quasinormal modes in a thick brane model.

o A normal mode (the zero mode).
o A series of discrete quasinormal modes.

o This provides a new way to investigate gravitational
perturbations in thick brane models.
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4. Relation between resonances and quasinormal

modes

Alz) = —% In (k*z° + 1). (30)

Relation between resonances and quasinormal modes:
o The oscillations of the resonances are equal to the real
part of the quasinormal modes.
@ While the decay rates of the resonances are equal to the
imaginary part of the quasinormal modes.

—-Ilm(m/k)

»  QNMs
#t Resonances

0.01
0.001
0.0001

5 6 7 8% T 5 6 7 8

(a) Re(mi/k) ~a (b) —Im(mi/k) ~«

»  QNMs
#  Resonances
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4. Relation between resonances and quasinormal

modes

@ The half-life time of the first quasinormal mode.

ti/> (if k =10 %eV)
1.5588x 10~ seconds
1.9237x 10~ Pseconds
8.5406x 10~ Pseconds
8.8909% 10~ Hseconds
1.3724x 10 %seconds
2.6010x 10®seconds
8.6655x 10~ "seconds

[y
OOOO\lChU'I-PQ

@ For the Randall-Sundrum-Il brane, the half-life time of
the first quasinormal mode is about 10~ '*seconds with
k =10"2eV.
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o KK modes of a thick brane

o A normal bound mode (the zero mode)
o Resonant KK modes (resonances)
o Nonresonant KK modes (non-resonances)
o Quasinormal modes (QNMs)
@ Resonances <+ non-resonances

e Resonances decay slowly compared to non-resonances
o Nonresonances can evolve into combinations of
resonances

@ Resonances < QNMs
o Oscillation of resonances Decay rate of resonances

Real part of QNMs Imaginary part of QNMs

@ These modes reflect structure of extra dimensions.

Thank you!
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