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1. Introduction

Compact extra dimensions:

Kaluza-Klein theory [Kaluza, 1921; Klein, 1926]

String theory [Veneziano, 1968]

Large extra diemnsions [Arkani-Hamed, Dimopoulos, and Dvali, 1998]

Warp extra dimension [Randall and Sundrum, 1999]
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1. Introduction

Infinite extra dimensions (1):

Domain wall (DW) scenario [Akama, Rubakov, Shaposhnikov, 1983]

ds2 = ηµνdx
µdxν + dy2

Our 4D world is a DW embedded in 5D flat space-time.

It is generated by a scalar field:

L = −1

2
(∂ϕ)2 − a(ϕ2 − v2)2, ϕ(y) = v0 tanh(ky)

Fermions can be localized on the DW by

ηϕΨ̄Ψ

Newtonian potential cannot be recovered

U(r) ∝ 1

r2
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1. Introduction

Infinite extra dimensions (2):

Thin brane scenario

[Randall and Sundrum (RS), 1999]

ds2 = e−2k|y | ηµν dxµdxν + dy2

Our 4D world is a brane embedded in a 5D space-time.

Newtonian potential can be recovered on brane:

U(r) = GN
m1m2

r

(
1 + 1

k2r2

)
The energy density: ρ(y) ∝ σδ(y)

y

Warp factor ã2 A

y

Energy density Ρ

图: Thin brane
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1. Introduction

Infinite extra dimensions (3):

Thick brane scenario (Domain Wall)

ds2 = e2A(y) ηµν(x) dx
µdxν + dy2

Infinite but warped extra dimension.

The brane is generated by a scalar field, e.g.

L = R − 1

2
(∂ϕ)2 − V (ϕ), ϕ(y) = v0 tanh(ky)

The graviton zero mode is localized on the brane.
Newtonian potential can be recovered.

y

Warp factor ã2 A

y

Energy density Ρ
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1. Introduction

KK modes of thick brane with volcano-like potential

The zero mode is localized on the brane.

Massive KK modes cannot be localized on the brane.

Some KK modes could be quasi-localized on the brane
(resonances).

The thick brane is a dissipative system for massive KK
modes, which means that the brane may possess
quasinormal modes.

y

volcano-like potential U
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2. Resonant KK modes on thick brane

The braneworld model
The action of a thick brane model:

S =

∫
d5x

√
−g

(
1

2κ25
R − 1

2
gMN∂Mφ∂Nφ− V (φ)

)
. (1)

The five-dimensional metric

ds2 = e2A(y)ηµνdx
µdxν + dy2. (2)

The dynamical field equations

3A′′ = −ϕ′2, (3)

6A′2 =
1

2
ϕ′2 − V , (4)

ϕ′′ + 4A′ϕ′ =
∂V

∂ϕ
. (5)
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2. Resonant KK modes on thick brane

One solution is given by

A(y) = ln
[
tanh

(
k(y + b)

)
− tanh

(
k(y − b)

)]
. (6)

ϕ(y) = −i
√
3sech(kb)

[
cosh(2kb)F

(
iky ; tanh2(kb) + 1

)
−2 sinh2(kb)Π

(
sech2(kb); iky ; tanh2(kb) + 1

)]
,

(7)

V (ϕ(y)) =
3

4
k2
[
− 4
(
tanh(k(y − b)) + tanh(k(b + y))

)2
+sech2(k(y − b)) + sech2(k(b + y))

]
. (8)

b=1
b=2
b=4
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(c) The scalar potential
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2. Resonant KK modes on thick brane

Based on this braneworld background, we consider a free
massless test scalar field and study its evolution.

With dz = e−Ady , the metric (2) becomes

ds2 = e2A(z)
(
ηµνdx

µdxν + dz2
)
. (9)

The field equation □(5)ψ = 0:[
∂2z + 3(∂zA)∂z + ηµν∂µ∂ν

]
ψ = 0. (10)

Then, we introduce the following decomposition

ψ(xM) = e−
3
2
A(z) Φ(t, z) Ξ(x i ). (11)

Substituting Eq. (11) into Eq. (10) yields

−∂2tΦ+ ∂2zΦ− U(z)Φ− a2Φ = 0, (12)

where the effective potential U(z) is

U(z) =
3

2
∂2zA+

9

4
(∂zA)

2. (13)
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2. Resonant KK modes on thick brane

The function Φ(t, z) can be further decomposed into
oscillating modes as Φ(t, z) = e iωtu(z), which yields

−∂2zu(z) + U(z)u(z) = m2u(z), (14)

where m =
√
ω2 − a2 is the mass of the KK mode u(z).

Solving Eq. (14) we could get a series of resonant
modes, which can be treated as the initial data of the
scalar field.

The evolution is dominated by Eq. (12):

−∂2tΦ+ ∂2zΦ− U(z)Φ− a2Φ = 0. (12)
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2. Resonant KK modes on thick brane

The effective potential in the coordinate y :

b=5

b=10

b=15

-30 -20 -10 10 20 30
ky

-1

1

2

U/k2

The resonant modes can be studied by the relative
probability method [YXL et al, PRD 80 (2009) 065019]:

P(m2) =

∫ zb
−zb

|u(z)|2dz∫ 10zb
−10zb

|u(z)|2dz
. (15)
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2. Resonant KK modes on thick brane

The wave functions can be even or odd since the
potential is symmetric.

Boundary conditions for Eq. (14):

ueven(0) = 1, ∂zueven(0) = 0; (16)

uodd(0) = 0, ∂zuodd(0) = 1. (17)

Then we can get the relative probability P(m2) of scalar
KK modes.
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2. Resonant KK modes on thick brane
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2. Resonant KK modes on thick brane

Treating the scalar resonances as the initial data, we can
evolve the scalar field under the evolution equation (12):

−∂2tΦ+ ∂2zΦ− U(z)Φ− a2Φ = 0. (12)

We impose the maximally dissipative boundary condition:

∂nΦ = ∂tΦ, (18)

n is the outward unit normal vector to the boundary.

Equation (12) is solved numerically.
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2. Resonant KK modes on thick brane

To display the evolution of the scalar field, we define the
energy [V. Pavlidou et al, PRD 62 (2000) 084020].

E (t) =

∫ 10zb

−10zb

1

2

(
(∂tΦ)

2 +

(
∂zΦ− 3

2
∂zAΦ

)2
)
dz , (19)

The energy decay can be fitted as an exponential
function:

E (t) = E0 exp(−st̄), (20)

s is the fitting parameter, t̄ = kt.
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2. Resonant KK modes on thick brane
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2. Resonant KK modes on thick brane

In addition, we analyze the numerical evolution by extracting
a time series for the resonance amplitude at a fixed point
zext. We set kb = 15.
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2. Resonant KK modes on thick brane

kb m̄2
1 s t1/2 ( if k = 10−2eV)

6 0.3177 1.4624×10−3 3.0714×10−11seconds

8 0.1736 3.6373×10−4 1.2349×10−10seconds

10 0.1088 1.2867×10−4 3.4908×10−10seconds

12 0.0744 5.6502×10−5 7.9494×10−10seconds

14 0.0540 2.8609×10−5 1.5700×10−9seconds

16 0.0410 1.6000×10−5 2.8072×10−9seconds

18 0.0322 9.6335×10−6 4.6625×10−9seconds

表: The first resonant mass spectrum m̄2
1, fitting parameter s, and

half-life t1/2 for different values of the parameter kb.

The lifetime of the first resonance increases with the brane
width.
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2. Resonant KK modes on thick brane

We also consider the evolution of the non-resonances.
The energy and amplitude of non-resonances decay very
fast at early stage, but later they decay like those of
resonances.
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2. Resonant KK modes on thick brane

To have a better understanding of the above results,
we calculate the discrete Fourier transform in time of
the scalar field

F [Φ(t)](f ) := |A
∑
p

Φ(tp, zj)exp(−2πiftp)|, (21)

tp are the discrete time values.

0 0.4 0.8 1.2

0.001

0.01

0.1

1

2π f

F
[Φ

(t
)]

(a) non-resonance with m2 = 0.36
for kb = 15
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(b) first resonance with m2 = 0.047
for kb = 15
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2. Resonant KK modes on thick brane

The results show that, non-resonances can evolve into
combinations of resonances.

From this point of view, resonances seem to play a
similar role in the braneworld as the quasinormal modes
in black holes physics.
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2. Resonant KK modes on thick brane

Summary 1:

We investigated the evolution of a free massless scalar
field in a thick brane model.

The resonances decay very slowly compared to the
non-resonances and can exist on the brane for a very
long time.

Such resonances might be a candidate for dark matter.

Nonresonances can evolve into combinations of
resonances. This arouses our interest in quasinormal
modes in thick brane models.
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3. Quasinormal modes on thick brane

In 2005, Seahra studied the scattering of KK gravitons
in the Randall-Sundrum-II model and found that the
brane possesses a series of discrete quasinormal modes
(QNMs) [S.S. Seahra, PRD 72 (2005) 066002].

As a smooth extension of the Randall-Sundrum-II
model, a thick brane should also have QNMs.
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3. Quasinormal modes on thick brane

The braneworld model
The action and the metric:

S =

∫
d5x

√
−g

(
1

2κ25
R − 1

2
gMN∂Mφ∂Nφ− V (φ)

)
,

ds2 = e2A(y)ηµνdx
µdxν + dy2.

To investigate the QNMs of a thick brane, we consider
the following thick brane solution 1

A(y) = −b ln (cosh(ky)) ,

φ(y) =
√
6b arctan

(
tanh

(
ky

2

))
,

V (φ) =
3bk2

8

(
1− 4b − (1 + 4b) cos

(√
8

3b
φ

))
.

1O. DeWolfe, D. Z. Freedman, S. S. Gubser, and A. Karch, Phys. Rev. D
62, 046008 (2000).
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3. Quasinormal modes on thick brane

Next, we consider the linear transverse-traceless tensor
perturbation of the metric:

gMN =

(
e2A(y)(ηµν + hµν) 0

0 1

)
, (22)

∂µh
µν = 0 = ηµνhµν . (23)

The linear equation of the tensor fluctuation is(
e−2A□(4)hµν + h′′µν + 4A′h′µν

)
= 0, (24)

where □(4) = ηαβ∂α∂β.
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3. Quasinormal modes on thick brane

Introducing dz = e−Ady and decomposing hµν as

hµν = e−
3
2
A(z)Φ(t, z)e−iajx

j
ϵµν , ϵµν = constant, (25)

we obtain the wave equation for Φ(t, z)

−∂2tΦ+ ∂2zΦ− UΦ− a2Φ = 0. (26)

Further decomposing Φ(t, z) = e−iωtϕ(z), we have[
−∂2z + U

]
ϕ(z) = m2ϕ(z), U =

3

2
∂2zA+

9

4
(∂zA)

2, (27)

where m2 = ω2 − a2.

The effective potential U(z) is given by [O. DeWolfe, D.Z. Freedman,

S.S. Gubser, and A. Karch, PRD 62 (2000) 046008]

U(z) =
3k2

(
5k2z2 − 2

)
4 (k2z2 + 1)2

, (28)
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3. Quasinormal modes of thick brane
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The boundary conditions for the QNMs are

ϕ(z) ∝

{
e+imz , z → ∞,

e−imz , z → −∞.
(29)
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3. Quasinormal modes of thick brane

-1.0 -0.5 0.0 0.5 1.0

0
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35

Re(m/k)

-
Im

(m
/k
)

n Asymptotic iteration method WKB method

Re(m/k) Im(m/k) Re(m/k) Im(m/k)
1 0.997018 -0.526366 1.04357 -0.459859
2 0.582855 -1.85056 0.536087 -1.71224
3 0.377996 -3.55174 0.279715 -3.70181
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3. Quasinormal modes of thick brane

Numeric evolution of an initial wave packet (Gauss
pulse) at a fixed location.

incident pluse
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(b) kzext = 3
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3. Quasinormal modes of thick brane

To investigate the character of the odd QNMs, we give
an odd initial wave packet.

We choose a/k = 0 and a/k = 1 to show the effect of
the parameter a.
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kt
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(a) kzext = 3

图: The case of a/k = 0. ω/k = 1.01079− 0.501256i .
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3. Quasinormal modes of thick brane
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图: The case of a/k = 0.

For a/k = 0, there are two stages:

(1) The exponentially decay stage. The frequency and
damping time of these oscillations in this stage depend
only on the characteristic structure of the thick brane.

(2) The power-law damping stage. This situation is
similar to the case of a massless field around a
Schwarzschild black hole.
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3. Quasinormal modes of thick brane
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图: The case of a/k = 1.

For a/k = 1, the quasinormal ringing governs the decay
of the perturbation all the time.

This is similar to the case of a massive field around a
Schwarzschild black hole.
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3. Quasinormal modes of thick brane

Summary 2:

Normal and quasinormal modes in a thick brane model.
A normal mode (the zero mode).
A series of discrete quasinormal modes.

This provides a new way to investigate gravitational
perturbations in thick brane models.
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4. Relation between resonances and quasinormal
modes

A(z) = −α
2
ln
(
k2z2 + 1

)
. (30)

Relation between resonances and quasinormal modes:

The oscillations of the resonances are equal to the real
part of the quasinormal modes.
While the decay rates of the resonances are equal to the
imaginary part of the quasinormal modes.

#

#

#

#

#

*

*

*

*

*

# Resonances

* QNMs

5 6 7 8
α

3.0

3.5

4.0

4.5

Re(m1/k)

(a) Re(m1/k) ∼ α

#
#

#

#

#

*
*

*

*

*

# Resonances
* QNMs

5 6 7 8
α

0.01

0.001

0.0001

-Im(m1/k)

(b) −Im(m1/k) ∼ α
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4. Relation between resonances and quasinormal
modes

The half-life time of the first quasinormal mode.

α t1/2 ( if k = 10−2eV)

4 1.5588×10−12seconds

5 1.9237×10−12seconds

6 8.5406×10−12seconds

7 8.8909×10−11seconds

8 1.3724×10−9seconds

9 2.6010×10−8seconds

10 8.6655×10−7seconds

For the Randall-Sundrum-II brane, the half-life time of
the first quasinormal mode is about 10−14seconds with
k = 10−2eV.
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5. Summary

KK modes of a thick brane
A normal bound mode (the zero mode)
Resonant KK modes (resonances)
Nonresonant KK modes (non-resonances)
Quasinormal modes (QNMs)

Resonances ↔ non-resonances
Resonances decay slowly compared to non-resonances
Nonresonances can evolve into combinations of
resonances

Resonances ↔ QNMs
Oscillation of resonances Decay rate of resonances

↕ ↕
Real part of QNMs Imaginary part of QNMs

These modes reflect structure of extra dimensions.

Thank you!
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