Massive modes on brane

Yu-Xiao Liu (刘玉孝)

Lanzhou University

Based on: [PRD 109 (2024) 024017]; [EPJC 83 (2023) 84]; [PRD 106 (2022) 044038]; [PRD 80 (2009) 065019]

The Third International workshop on Axion Physics and Experiments (Axion 2024) July 23, 2024

- 1. Introduction
- 2. Resonant KK modes on thick brane
- 3. Quasinormal modes on thick brane
- 4. Relation between them
- 5. Summary

Compact extra dimensions:

- Kaluza-Klein theory [Kaluza, 1921; Klein, 1926]
- String theory [Veneziano, 1968]
- Large extra diemnsions [Arkani-Hamed, Dimopoulos, and Dvali, 1998]
- Warp extra dimension [Randall and Sundrum, 1999]

Infinite extra dimensions (1):

Domain wall (DW) scenario [Akama, Rubakov, Shaposhnikov, 1983]

$$ds^2 = \eta_{\mu
u} dx^\mu dx^
u + dy^2$$

- Our 4D world is a DW embedded in 5D flat space-time.
- It is generated by a scalar field:

$$\mathcal{L}=-rac{1}{2}(\partial\phi)^2-a(\phi^2-v^2)^2, \hspace{0.5cm} \phi(y)=v_0 anh(ky)$$

• Fermions can be localized on the DW by

 $\eta \phi \bar{\Psi} \Psi$

Newtonian potential cannot be recovered

$$U(r)\propto rac{1}{r^2}$$

4 / 42

<ロ> <同> < 回> < 回> < 回> < 回> < 回</p>

Infinite extra dimensions (2): Thin brane scenario

[Randall and Sundrum (RS), 1999]

$$ds^2 = e^{-2k|y|} \eta_{\mu
u} dx^\mu dx^
u + dy^2$$

• Our 4D world is a brane embedded in a 5D space-time.

• Newtonian potential can be recovered on brane:

$$U(r) = G_N \frac{m_1 m_2}{r} \left(1 + \frac{1}{k^2 r^2} \right)$$

• The energy density: $\rho(y) \propto \sigma \delta(y)$

イロト イボト イヨト イヨト 二日

Infinite extra dimensions (3):

Thick brane scenario (Domain Wall)

$$ds^2 = e^{2A(y)} \eta_{\mu\nu}(x) dx^{\mu} dx^{\nu} + dy^2$$

- Infinite but warped extra dimension.
- The brane is generated by a scalar field, e.g.

$$\mathcal{L} = R - rac{1}{2} (\partial \phi)^2 - V(\phi), \ \phi(y) = v_0 \tanh(ky)$$

• The graviton zero mode is localized on the brane. Newtonian potential can be recovered.

KK modes of thick brane with volcano-like potential

- The zero mode is localized on the brane.
- Massive KK modes cannot be localized on the brane.
- Some KK modes could be quasi-localized on the brane (resonances).
- The thick brane is a dissipative system for massive KK modes, which means that the brane may possess quasinormal modes.

- I. Introduction
- 2. Resonant KK modes on thick brane
- 3. Quasinormal modes on thick brane
- 4. Relation between them
- 5. Summary

The braneworld model

• The action of a thick brane model:

$$S = \int d^5 x \sqrt{-g} \left(\frac{1}{2\kappa_5^2} R - \frac{1}{2} g^{MN} \partial_M \varphi \partial_N \varphi - V(\varphi) \right).$$
(1)

• The five-dimensional metric

$$ds^{2} = e^{2A(y)} \eta_{\mu\nu} dx^{\mu} dx^{\nu} + dy^{2}.$$
 (2)

• The dynamical field equations

$$3A'' = -\phi'^2,$$
 (3)

$$6A^{\prime 2} = \frac{1}{2}\phi^{\prime 2} - V, \qquad (4)$$

$$\phi'' + 4A'\phi' = \frac{\partial V}{\partial \phi}.$$
 (5)

・ロト < 回 ト < 三 ト < 三 ト < 三 ト う Q @
9/42
</p>

One solution is given by

$$A(y) = \ln \left[\tanh \left(k(y+b) \right) - \tanh \left(k(y-b) \right) \right].$$
(6)

$$\phi(y) = -i\sqrt{3}\operatorname{sech}(kb) \left[\cosh(2kb) F(iky; \tanh^2(kb) + 1) \right]$$
(7)

$$V(\phi(y)) = \frac{3}{4}k^{2} \Big[-4\big(\tanh(k(y-b)) + \tanh(k(b+y))\big)^{2} \\ +\operatorname{sech}^{2}(k(y-b)) + \operatorname{sech}^{2}(k(b+y)) \Big].$$
(8)

Based on this braneworld background, we consider a free massless test scalar field and study its evolution.

• With $dz = e^{-A}dy$, the metric (2) becomes

$$ds^{2} = e^{2A(z)} \left(\eta_{\mu\nu} dx^{\mu} dx^{\nu} + dz^{2} \right).$$
 (9)

• The field equation $\Box^{(5)}\psi = 0$:

$$\left[\partial_z^2 + 3(\partial_z A)\partial_z + \eta^{\mu\nu}\partial_\mu\partial_\nu\right]\psi = 0.$$
 (10)

Then, we introduce the following decomposition

$$\psi(x^{M}) = e^{-\frac{3}{2}A(z)} \Phi(t, z) \Xi(x^{i}).$$
(11)

• Substituting Eq. (11) into Eq. (10) yields

$$-\partial_t^2 \Phi + \partial_z^2 \Phi - U(z)\Phi - a^2 \Phi = 0, \qquad (12)$$

where the effective potential U(z) is

$$U(z) = \frac{3}{2}\partial_z^2 A + \frac{9}{4}(\partial_z A)^2.$$
 (13)

11 / 42

• The function $\Phi(t, z)$ can be further decomposed into oscillating modes as $\Phi(t, z) = e^{i\omega t} u(z)$, which yields

$$-\partial_z^2 u(z) + U(z)u(z) = m^2 u(z), \qquad (14)$$

where $m = \sqrt{\omega^2 - a^2}$ is the mass of the KK mode u(z).

- Solving Eq. (14) we could get a series of resonant modes, which can be treated as the initial data of the scalar field.
- The evolution is dominated by Eq. (12):

$$-\partial_t^2 \Phi + \partial_z^2 \Phi - U(z)\Phi - a^2 \Phi = 0.$$
 (12)

• The effective potential in the coordinate *y*:

• The resonant modes can be studied by the relative probability method [YXL et al, PRD 80 (2009) 065019]:

$$P(m^{2}) = \frac{\int_{-z_{b}}^{z_{b}} |u(z)|^{2} dz}{\int_{-10z_{b}}^{10z_{b}} |u(z)|^{2} dz}.$$
(15)

(ロ) (同) (目) (目) 三日

13/42

- The wave functions can be even or odd since the potential is symmetric.
- Boundary conditions for Eq. (14):

$$u_{\text{even}}(0) = 1, \quad \partial_z u_{\text{even}}(0) = 0;$$
 (16)

$$u_{\rm odd}(0) = 0, \quad \partial_z u_{\rm odd}(0) = 1.$$
 (17)

• Then we can get the relative probability $P(m^2)$ of scalar KK modes.

<ロト < 回ト < 巨ト < 巨ト < 巨ト 三 の Q () 15 / 42 • Treating the scalar resonances as the initial data, we can evolve the scalar field under the evolution equation (12):

 $-\partial_t^2 \Phi + \partial_z^2 \Phi - U(z)\Phi - a^2 \Phi = 0.$ (12)

• We impose the maximally dissipative boundary condition:

$$\partial_n \Phi = \partial_t \Phi, \tag{18}$$

n is the outward unit normal vector to the boundary.

• Equation (12) is solved numerically.

• To display the evolution of the scalar field, we define the energy [V. Pavlidou et al, PRD 62 (2000) 084020].

$$E(t) = \int_{-10z_b}^{10z_b} \frac{1}{2} \left((\partial_t \Phi)^2 + \left(\partial_z \Phi - \frac{3}{2} \partial_z A \Phi \right)^2 \right) dz, \quad (19)$$

 The energy decay can be fitted as an exponential function:

$$E(t) = E_0 \exp(-s\bar{t}), \qquad (20)$$

s is the fitting parameter, $\bar{t} = kt$.

<ロト < 回 ト < 三 ト < 三 ト < 三 ト ミ の < () 17 / 42

18 / 42

In addition, we analyze the numerical evolution by extracting a time series for the resonance amplitude at a fixed point z_{ext} . We set kb = 15.

first odd resonance at $kz_{ext} = 3$.

first even resonance at $kz_{ext} = 3$.

3

イロト 不得 とうほう 不良 とう

kb	\bar{m}_1^2	5	$t_{1/2}$ (if $k = 10^{-2} \text{eV}$)
6	0.3177	1.4624×10^{-3}	3.0714×10^{-11} seconds
8	0.1736	3.6373×10^{-4}	$1.2349 imes 10^{-10}$ seconds
10	0.1088	1.2867×10^{-4}	3.4908×10^{-10} seconds
12	0.0744	5.6502×10^{-5}	7.9494×10^{-10} seconds
14	0.0540	2.8609×10^{-5}	$1.5700 imes 10^{-9}$ seconds
16	0.0410	1.6000×10^{-5}	2.8072×10^{-9} seconds
18	0.0322	9.6335×10^{-6}	4.6625×10^{-9} seconds

表: The first resonant mass spectrum \bar{m}_1^2 , fitting parameter *s*, and half-life $t_{1/2}$ for different values of the parameter *kb*.

The lifetime of the first resonance increases with the brane width.

 We also consider the evolution of the non-resonances. The energy and amplitude of non-resonances decay very fast at early stage, but later they decay like those of resonances.

<ロト < 回 ト < 巨 ト < 巨 ト < 巨 ト 三 の Q () 21/42

• To have a better understanding of the above results, we calculate the discrete Fourier transform in time of the scalar field

$$F[\Phi(t)](f) := |A\sum_{p} \Phi(t_{p}, z_{j}) \exp(-2\pi i f t_{p})|, \qquad (21)$$

 t_p are the discrete time values.

- The results show that, non-resonances can evolve into combinations of resonances.
- From this point of view, resonances seem to play a similar role in the braneworld as the quasinormal modes in black holes physics.

Summary 1:

- We investigated the evolution of a free massless scalar field in a thick brane model.
- The resonances decay very slowly compared to the non-resonances and can exist on the brane for a very long time.
- Such resonances might be a candidate for dark matter.
- Nonresonances can evolve into combinations of resonances. This arouses our interest in quasinormal modes in thick brane models.

- I. Introduction
- 2. Resonant KK modes on thick brane
- 3. Quasinormal modes on thick brane
- 4. Relation between them
- 5. Summary

 In 2005, Seahra studied the scattering of KK gravitons in the Randall-Sundrum-II model and found that the brane possesses a series of discrete quasinormal modes (QNMs) [S.S. Seahra, PRD 72 (2005) 066002].

 As a smooth extension of the Randall-Sundrum-II model, a thick brane should also have QNMs.

The braneworld model

• The action and the metric:

$$\begin{split} S &= \int d^5 x \sqrt{-g} \left(\frac{1}{2\kappa_5^2} R - \frac{1}{2} g^{MN} \partial_M \varphi \partial_N \varphi - V(\varphi) \right), \\ ds^2 &= e^{2A(y)} \eta_{\mu\nu} dx^{\mu} dx^{\nu} + dy^2. \end{split}$$

• To investigate the QNMs of a thick brane, we consider the following thick brane solution ¹

$$\begin{aligned} A(y) &= -b \ln \left(\cosh(ky) \right), \\ \varphi(y) &= \sqrt{6b} \arctan \left(\tanh \left(\frac{ky}{2} \right) \right), \\ V(\varphi) &= \frac{3bk^2}{8} \left(1 - 4b - (1 + 4b) \cos \left(\sqrt{\frac{8}{3b}} \varphi \right) \right). \end{aligned}$$

¹O. DeWolfe, D. Z. Freedman, S. S. Gubser, and A. Karch, Phys. Rev. D 62, 046008 (2000).

• Next, we consider the linear transverse-traceless tensor perturbation of the metric:

$$g_{MN} = \begin{pmatrix} e^{2A(y)}(\eta_{\mu\nu} + h_{\mu\nu}) & 0\\ 0 & 1 \end{pmatrix}, \quad (22)$$
$$\partial_{\mu}h^{\mu\nu} = 0 = \eta^{\mu\nu}h_{\mu\nu}. \quad (23)$$

• The linear equation of the tensor fluctuation is

$$\left(e^{-2A}\Box^{(4)}h_{\mu\nu} + h_{\mu\nu}'' + 4A'h_{\mu\nu}'\right) = 0, \qquad (24)$$

(ロ) (四) (三) (三) (三) (0)(0)

28 / 42

where $\Box^{(4)} = \eta^{\alpha\beta} \partial_{\alpha} \partial_{\beta}$.

• Introducing $dz = e^{-A}dy$ and decomposing $h_{\mu\nu}$ as

 $h_{\mu\nu} = e^{-\frac{3}{2}A(z)}\Phi(t,z)e^{-ia_jx^j}\epsilon_{\mu\nu}, \quad \epsilon_{\mu\nu} = \text{constant},$ (25)

we obtain the wave equation for $\Phi(t, z)$

$$-\partial_t^2 \Phi + \partial_z^2 \Phi - U \Phi - a^2 \Phi = 0.$$
 (26)

• Further decomposing $\Phi(t,z)=e^{-i\omega t}\phi(z)$, we have

$$\left[-\partial_{z}^{2}+U\right]\phi(z) = m^{2}\phi(z), \quad U = \frac{3}{2}\partial_{z}^{2}A + \frac{9}{4}(\partial_{z}A)^{2}, \quad (27)$$

where $m^2 = \omega^2 - a^2$.

• The effective potential U(z) is given by [O. DeWolfe, D.Z. Freedman,

S.S. Gubser, and A. Karch, PRD 62 (2000) 046008]

$$U(z) = \frac{3k^2 (5k^2 z^2 - 2)}{4 (k^2 z^2 + 1)^2}, \qquad (28)$$

29 / 42

• The boundary conditions for the QNMs are

$$\phi(z) \propto \begin{cases} e^{+imz}, & z \to \infty, \\ e^{-imz}, & z \to -\infty. \end{cases}$$
(29)

n	Asymptotic iteration method	WKB method
	$\operatorname{Re}(m/k) \operatorname{Im}(m/k)$	$\operatorname{Re}(m/k) \operatorname{Im}(m/k)$
1	0.997018 -0.526366	1.04357 -0.459859
2	0.582855 -1.85056	0.536087 -1.71224
3	0.377996 -3.55174	0.279715 -3.70181

・ロ・・母・・ヨ・・ヨー めんぐ

 Numeric evolution of an initial wave packet (Gauss pulse) at a fixed location.

- To investigate the character of the odd QNMs, we give an odd initial wave packet.
- We choose a/k = 0 and a/k = 1 to show the effect of the parameter *a*.

S: The case of a/k = 0. $\omega/k = 1.01079 - 0.501256i$.

S: The case of a/k = 0.

- For a/k = 0, there are two stages:
- (1) The exponentially decay stage. The frequency and damping time of these oscillations in this stage depend only on the characteristic structure of the thick brane.
- (2) The power-law damping stage. This situation is similar to the case of a massless field around a Schwarzschild black hole.

S: The case of a/k = 1.

- For a/k = 1, the quasinormal ringing governs the decay of the perturbation all the time.
- This is similar to the case of a massive field around a Schwarzschild black hole.

Summary 2:

- Normal and quasinormal modes in a thick brane model.
 - A normal mode (the zero mode).
 - A series of discrete quasinormal modes.
- This provides a new way to investigate gravitational perturbations in thick brane models.

- I. Introduction
- 2. Resonant KK modes on thick brane
- 3. Quasinormal modes on thick brane
- 4. Relation between them
- 5. Summary

4. Relation between resonances and quasinormal modes

$$A(z) = -\frac{\alpha}{2} \ln \left(k^2 z^2 + 1 \right).$$
 (30)

Relation between resonances and quasinormal modes:

- The oscillations of the resonances are equal to the real part of the quasinormal modes.
- While the decay rates of the resonances are equal to the imaginary part of the quasinormal modes.

4. Relation between resonances and quasinormal modes

• The half-life time of the first quasinormal mode.

α	$t_{1/2}$ (if $k = 10^{-2}$ eV)
4	$1.5588 imes 10^{-12}$ seconds
5	1.9237×10^{-12} seconds
6	8.5406×10^{-12} seconds
7	8.8909×10 ⁻¹¹ seconds
8	1.3724×10^{-9} seconds
9	$2.6010 imes 10^{-8}$ seconds
10	8.6655×10^{-7} seconds

• For the Randall-Sundrum-II brane, the half-life time of the first quasinormal mode is about 10^{-14} seconds with $k = 10^{-2}$ eV.

- I. Introduction
- 2. Resonant KK modes on thick brane
- 3. Quasinormal modes on thick brane
- 4. Relation between them
- 5. Summary

5. Summary

- KK modes of a thick brane
 - A normal bound mode (the zero mode)
 - Resonant KK modes (resonances)
 - Nonresonant KK modes (non-resonances)
 - Quasinormal modes (QNMs)
- Resonances ↔ non-resonances
 - Resonances decay slowly compared to non-resonances
 - Nonresonances can evolve into combinations of resonances
- Resonances QNMs
 - Oscillation of resonances
 Characteristic products
 Decay rate of resonances
 Characteristic products
 Characteristic products
- These modes reflect structure of extra dimensions.

Thank you!

イロト 不良 とうほう 不良 とうほう