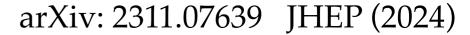
Gauged Global Strings

Wei Xue

Axion 2024



with Xuce Niu and Fengwei Yang

Outline

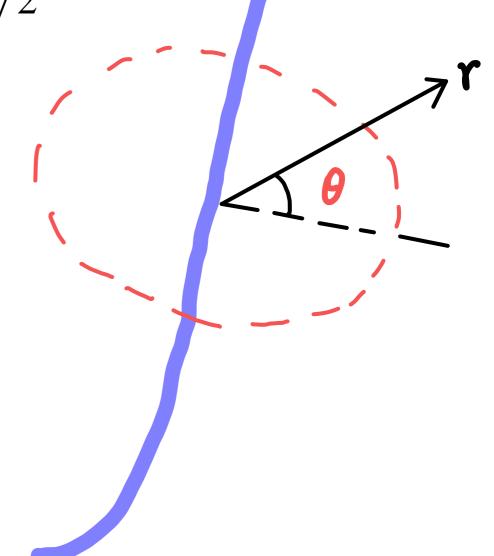
- Introduction global strings and gauge strings
- Gauge $U(1)_Z \times \text{global } U(1)_{PQ}$ and string solutions
- Cosmological implication
 - 1) rich string structure/dynamics
 - 2) opening up QCD axion window
 - 3) gauge string radiating axions?
- Conclusion

• global U(1) symmetry breaking
$$\langle \Phi \rangle = \frac{1}{\sqrt{2}} f_a$$

global U(1) symmetry breaking $\langle \Phi \rangle = \frac{1}{\sqrt{2}} f_a$

global string solution

$$\Phi(r,\theta) = \frac{1}{\sqrt{2}} f_a e^{i\theta}, \quad r \to \infty$$



global U(1) symmetry breaking $\langle \Phi \rangle = \frac{1}{\sqrt{2}} f_a$

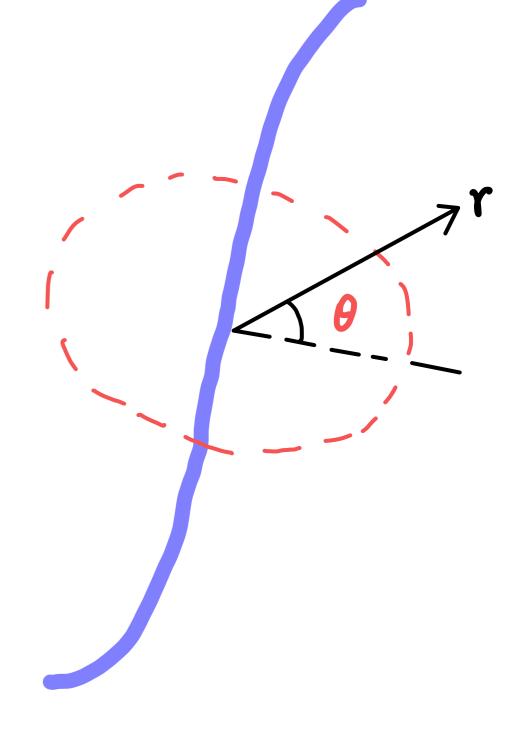
global string solution

$$\Phi(r,\theta) = \frac{1}{\sqrt{2}} f_a e^{i\theta}, \quad r \to \infty$$

tension

gradient term
$$\mu \simeq 2\pi \int_{m^{-1}}^{L} \mathrm{d}r \frac{1}{r} |\partial_{\theta} \Phi(r,\theta)|^2 = \pi f_a^2 \ln(mL)$$

Gauge strings

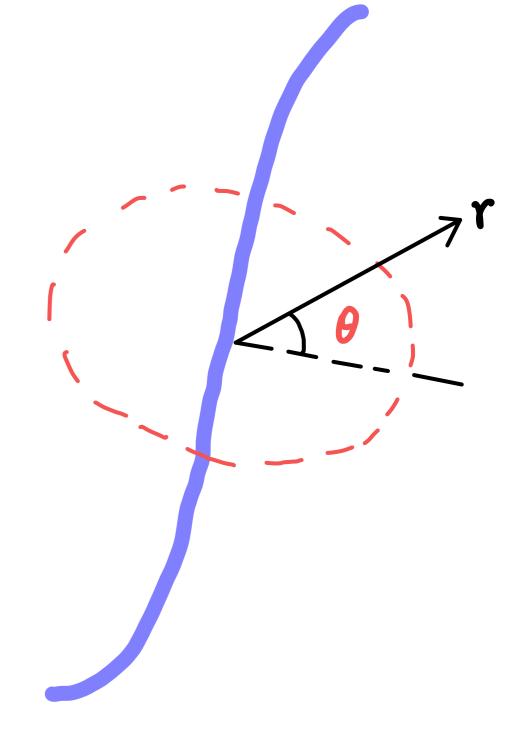


Gauge strings

• gauge string solution

$$\Phi(r,\theta) = \frac{1}{\sqrt{2}} f_a e^{i\theta}$$

$$Z_{\mu} = \frac{1}{e} \partial_{\mu} \theta \qquad r \to \infty$$

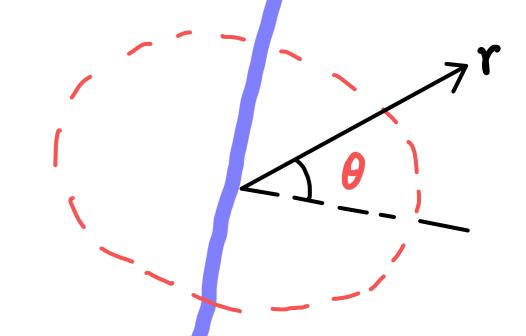


Gauge strings

gauge string solution

$$\Phi(r,\theta) = \frac{1}{\sqrt{2}} f_a e^{i\theta}$$

$$Z_{\mu} = \frac{1}{e} \partial_{\mu} \theta \qquad r \to \infty$$

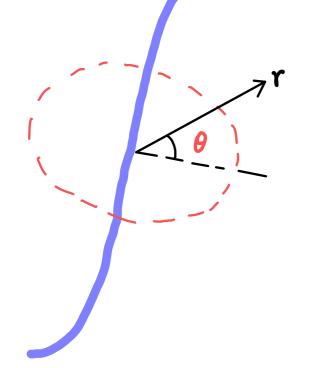


tension

gradient term
$$\mu \simeq 2\pi \int_{m^{-1}}^{L} \mathrm{d}r \left| \left(\frac{1}{r} \partial_{\theta} - ieZ_{\mu} \right) \Phi(r, \theta) \right|^2 = 0$$
 core $\mu \simeq \mathcal{O}(1)\pi f_a^2$

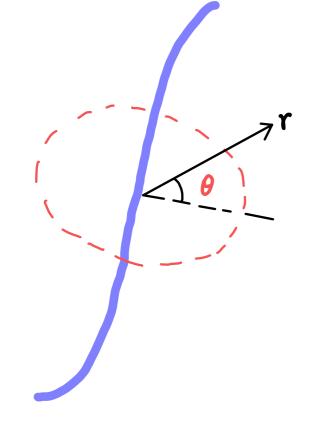
Motivation of cosmic strings

Motivation of cosmic strings

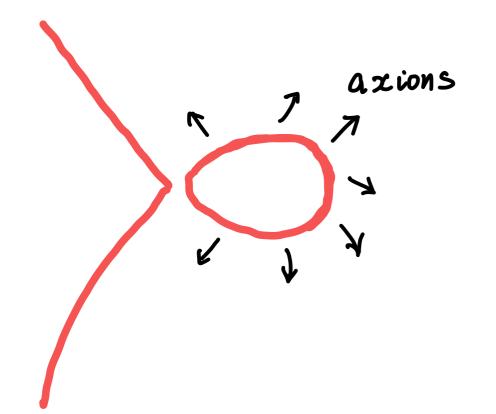


 theoretically interesting classical field solutions

Motivation of cosmic strings



 theoretically interesting classical field solutions



 phenomenological rich cosmology (Kibble mechanism) axion dark matter abundance new observables (CMB, ...)

$$U(1)_Z \times U(1)_{PQ}$$

$U(1)_Z \times U(1)_{PQ}$

• Lagrangian

$$\mathcal{L} = -\frac{1}{4} Z_{\mu\nu} Z^{\mu\nu} + D_{\mu} \Phi_{1}^{\dagger} D^{\mu} \Phi_{1} - \frac{\lambda_{1}}{4} \left(|\Phi_{1}|^{2} - \frac{v_{1}^{2}}{2} \right)^{2} + D_{\mu} \Phi_{2}^{\dagger} D^{\mu} \Phi_{2} - \frac{\lambda_{2}}{4} \left(|\Phi_{2}|^{2} - \frac{v_{2}^{2}}{2} \right)^{2}$$

$$D_{\mu} = \partial_{\mu} - ieZ_{\mu}$$
assume that $v_{1} > v_{2}$

$U(1)_Z \times U(1)_{PQ}$

Lagrangian

$$\mathcal{L} = -\frac{1}{4} Z_{\mu\nu} Z^{\mu\nu} + D_{\mu} \Phi_{1}^{\dagger} D^{\mu} \Phi_{1} - \frac{\lambda_{1}}{4} \left(|\Phi_{1}|^{2} - \frac{v_{1}^{2}}{2} \right)^{2} + D_{\mu} \Phi_{2}^{\dagger} D^{\mu} \Phi_{2} - \frac{\lambda_{2}}{4} \left(|\Phi_{2}|^{2} - \frac{v_{2}^{2}}{2} \right)^{2}$$

$$D_{\mu} = \partial_{\mu} - ieZ_{\mu}$$
assume that $v_{1} > v_{2}$

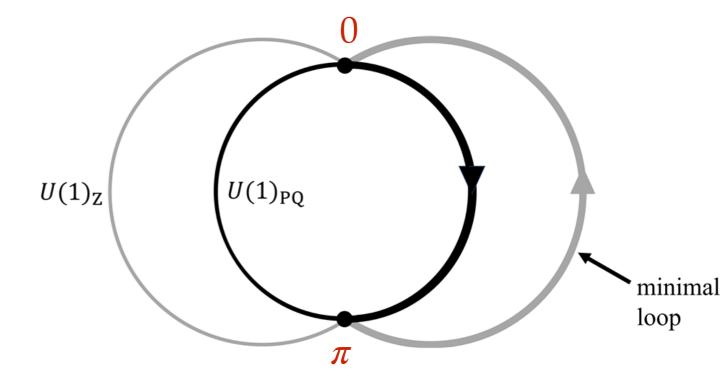
$$\Phi_1 \to \Phi_1 e^{i\alpha_z + i\alpha_{PQ}}$$

$$\Phi_2 \to \Phi_2 e^{i\alpha_z - i\alpha_{PQ}}$$

$$U(1)_Z \qquad 1 \qquad 1$$

$$U(1)_{PQ} \qquad 1 \qquad -1$$

• cross section of vacuum manifold



cross section of vacuum manifold

$$\alpha_{\rm z} = \pi$$

$$\Phi_1 \to \Phi_1 e^{i\pi}, \Phi_2 \to \Phi_2 e^{i\pi} = \Phi_2 e^{-i\pi}$$

$$U(1)_{\rm z}$$

$$U(1)_{\rm pq}$$

$$\min_{\rm loop}$$

cross section of vacuum manifold

$$\begin{array}{l} \alpha_{\rm z} = \pi \\ \Phi_1 \rightarrow \Phi_1 e^{i\pi}, \Phi_2 \rightarrow \Phi_2 e^{i\pi} = \Phi_2 e^{-i\pi} \\ \sim \alpha_{\rm PQ} = \pi \\ \Phi_1 \rightarrow \Phi_1 e^{i\pi}, \Phi_2 \rightarrow \Phi_2 e^{-i\pi} \end{array}$$

cross section of vacuum manifold

$$\begin{split} &\alpha_{\rm Z} = \pi \\ &\Phi_1 \to \Phi_1 e^{i\pi}, \Phi_2 \to \Phi_2 e^{i\pi} = \Phi_2 e^{-i\pi} \\ &\sim \alpha_{\rm PQ} = \pi \\ &\Phi_1 \to \Phi_1 e^{i\pi}, \Phi_2 \to \Phi_2 e^{-i\pi} \end{split}$$

• axion direction is orthogonal to the longitudinal mode of Z^{μ}

$$a(x) = v_a \alpha_{PQ}, \quad v_a = \frac{2v_1 v_2}{\sqrt{v_1^2 + v_2^2}} \sim 2v_2$$

• KSVZ-like model introduce Q_L and Q_R with color charge and $\mathrm{U}(1)_{\mathrm{PQ}}$ charge

$$\mathcal{L} = -\frac{y}{\Lambda} \left(\Phi_1 \Phi_2^* \bar{Q}_L Q_R + h.c. \right)$$

• KSVZ-like model introduce Q_L and Q_R with color charge and $\mathrm{U}(1)_{\mathrm{PO}}$ charge

$$\mathcal{L} = -\frac{y}{\Lambda} \left(\Phi_1 \Phi_2^* \bar{Q}_L Q_R + h.c. \right)$$

• KSVZ-like model introduce Q_L and Q_R with color charge and $\mathrm{U}(1)_{\mathrm{PQ}}$ charge

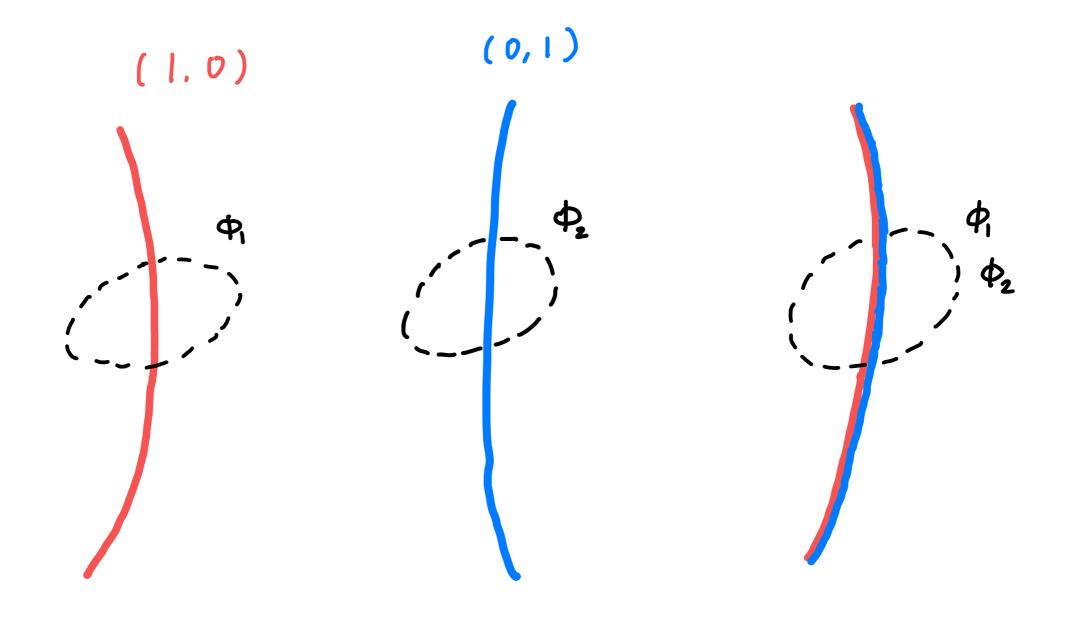
$$\mathcal{L} = -\frac{y}{\Lambda} \left(\Phi_1 \Phi_2^* \bar{Q}_L Q_R + h.c. \right)$$

Barr and Seckel's model

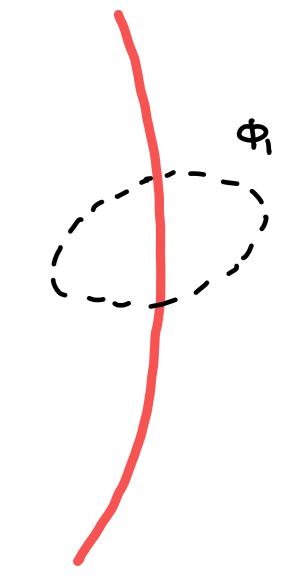
$$Q_{1L} Q_{1R} Q_{2L} Q_{2R}$$
 color, $U(1)_Z$ and $U(1)_{PQ}$ charges

$$\mathcal{L} = \Phi_1 \bar{Q}_{1L} Q_{1R} + \Phi_2 \bar{Q}_{2L} Q_{2R} + h \cdot c .$$

String Solutions



• (1,0) string
$$\Phi_1 = \frac{1}{\sqrt{2}} v_1 e^{i\theta}, \quad \Phi_2 = \frac{1}{\sqrt{2}} v_2, \quad \mathbf{Z}_{\mu} = c \,\partial_{\mu} \theta, \quad r \to \infty$$



• (1,0) string
$$\Phi_{1} = \frac{1}{\sqrt{2}} v_{1} e^{i\theta}, \quad \Phi_{2} = \frac{1}{\sqrt{2}} v_{2}, \quad Z_{\mu} = c \partial_{\mu} \theta, \quad r \to \infty$$

gradient energy

$$\mu_{k,(1,0)} = \int_0^{2\pi} d\theta \int_{\delta}^L dr \, r \left(\left| \left(\frac{1}{r} \partial_{\theta} - ieZ_{\theta} \right) \Phi_1 \right|^2 + \left| \left(-ieZ_{\theta} \right) \Phi_2 \right|^2 \right)$$

$$= \pi \ln(\frac{L}{\delta}) \left[v_1^2 (1 - ec)^2 + v_2^2 (ec)^2 \right]$$

• (1,0) string
$$\Phi_{1} = \frac{1}{\sqrt{2}} v_{1} e^{i\theta}, \quad \Phi_{2} = \frac{1}{\sqrt{2}} v_{2}, \quad Z_{\mu} = c \partial_{\mu} \theta, \quad r \to \infty$$

gradient energy

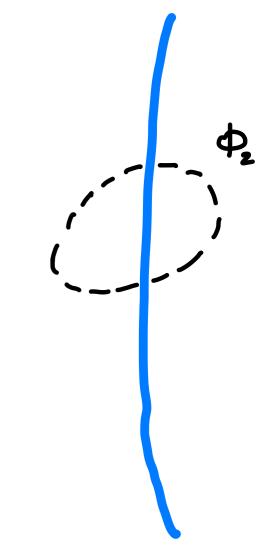
$$\mu_{k,(1,0)} = \int_0^{2\pi} d\theta \int_{\delta}^L dr \, r \left(\left| \left(\frac{1}{r} \partial_{\theta} - ieZ_{\theta} \right) \Phi_1 \right|^2 + \left| \left(-ieZ_{\theta} \right) \Phi_2 \right|^2 \right)$$

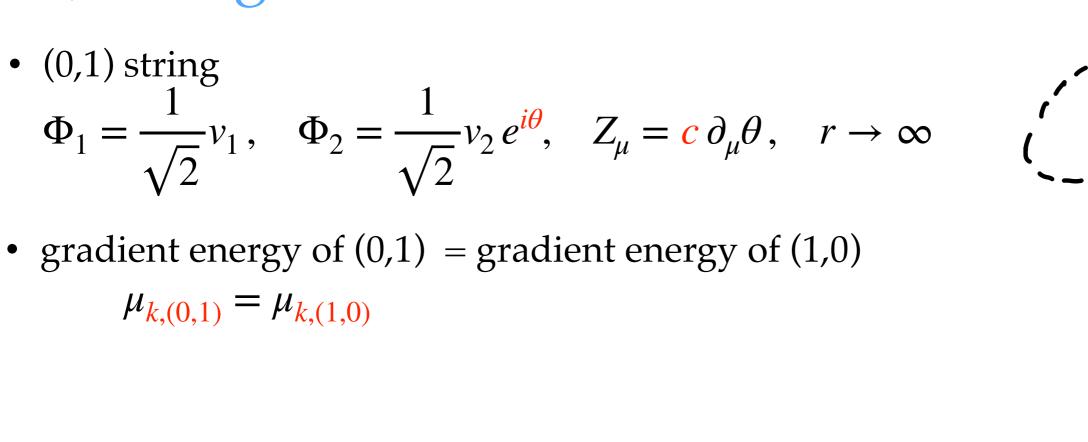
$$= \pi \ln(\frac{L}{\delta}) \left[v_1^2 (1 - ec)^2 + v_2^2 (ec)^2 \right]$$

outside core (minimize it by varying c)

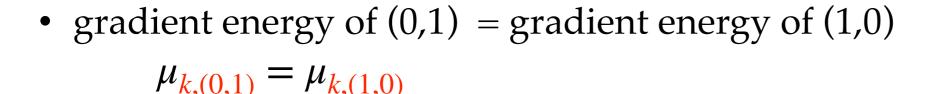
$$\mu_{k,(1,0)} = \pi \frac{v_1^2 v_2^2}{v_1^2 + v_2^2} \ln(\frac{L}{\delta}) = \pi f_a^2 \ln(\frac{L}{\delta})$$

• (0,1) string
$$\Phi_1 = \frac{1}{\sqrt{2}} v_1, \quad \Phi_2 = \frac{1}{\sqrt{2}} v_2 e^{i\theta}, \quad Z_{\mu} = c \, \partial_{\mu} \theta, \quad r \to \infty$$





$$\Phi_1 = \frac{1}{\sqrt{2}} v_1, \quad \Phi_2 = \frac{1}{\sqrt{2}} v_2 e^{i\theta}, \quad Z_\mu = \frac{c}{\partial_\mu} \theta, \quad r \to \infty$$

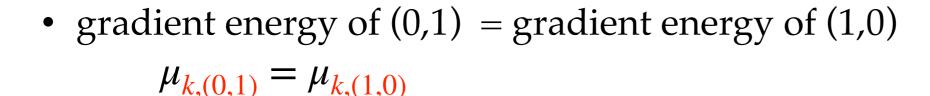


• outside core region

(1,0) string is equivalent to (0,-1) string through a gauge transformation

$$\left(\Phi_{1} = \frac{1}{\sqrt{2}}v_{1}e^{i\theta}, \Phi_{2} = \frac{1}{\sqrt{2}}v_{2}\right) \xrightarrow{\alpha_{Z} \to \alpha_{Z} - \theta} \left(\Phi_{1} = \frac{1}{\sqrt{2}}v_{1}, \Phi_{2} = \frac{1}{\sqrt{2}}v_{2}e^{-i\theta}\right)$$

• (0,1) string
$$\Phi_1 = \frac{1}{\sqrt{2}} v_1, \quad \Phi_2 = \frac{1}{\sqrt{2}} v_2 e^{i\theta}, \quad Z_{\mu} = c \, \partial_{\mu} \theta, \quad r \to \infty$$



outside core region

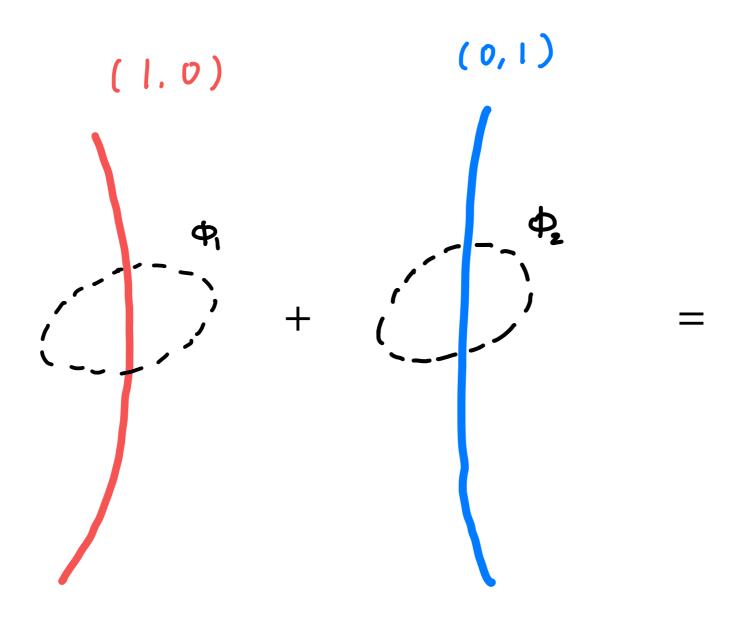
(1,0) string is equivalent to (0,-1) string through a gauge transformation

$$\left(\Phi_{1} = \frac{1}{\sqrt{2}}v_{1}e^{i\theta}, \Phi_{2} = \frac{1}{\sqrt{2}}v_{2}\right) \xrightarrow{\alpha_{Z} \to \alpha_{Z} - \theta} \left(\Phi_{1} = \frac{1}{\sqrt{2}}v_{1}, \Phi_{2} = \frac{1}{\sqrt{2}}v_{2}e^{-i\theta}\right)$$

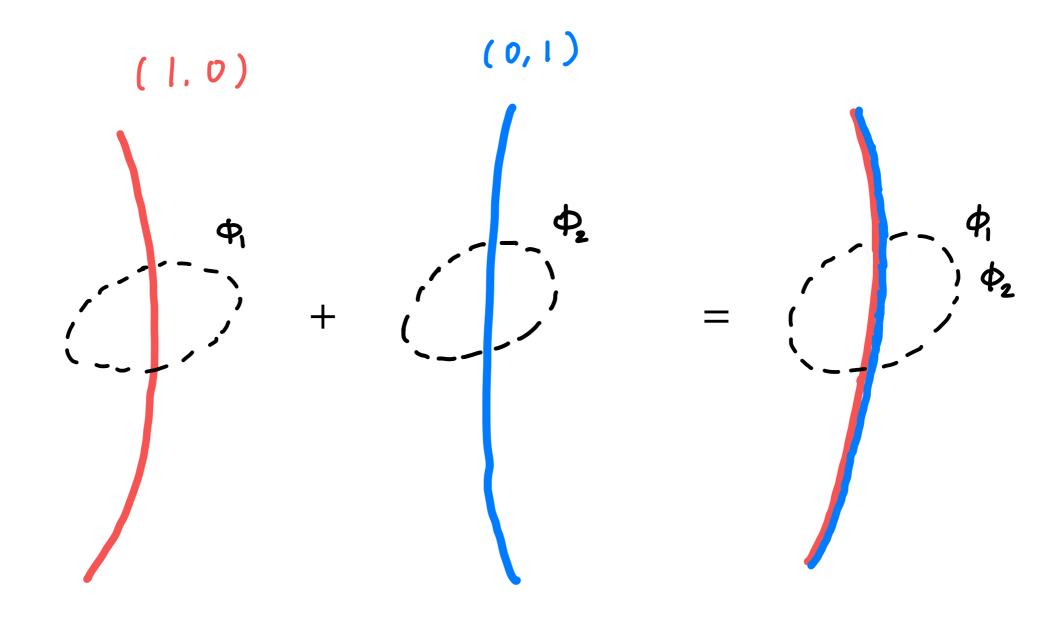
outside core region

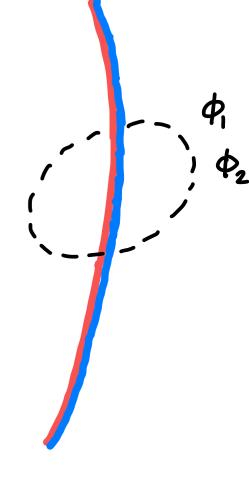
(1,0) can be viewed as an anti-string of (0,1)

$$(1,0) + (0,1) \rightarrow ?$$



$$(1,0) + (0,1) \rightarrow ?$$





(1,1) strings

• gradient energy of (1,1) string

$$\Phi_1 = \frac{1}{\sqrt{2}} v_1 e^{i\theta}, \quad \Phi_2 = \frac{1}{\sqrt{2}} v_2 e^{i\theta}, \quad Z_{\mu} = c \partial_{\mu} \theta, \quad r \to \infty$$

$$\mu_{k,(1,1)} = \int_0^{2\pi} d\theta \int_{\delta}^L dr \, r \left(\left| \left(\frac{1}{r} \partial_{\theta} - ieZ_{\theta} \right) \Phi_1 \right|^2 + \left| \left(\frac{1}{r} \partial_{\theta} - ieZ_{\theta} \right) \Phi_2 \right|^2 \right)$$

(1,1) strings

• gradient energy of (1,1) string

$$\Phi_1 = \frac{1}{\sqrt{2}} v_1 e^{i\theta}, \quad \Phi_2 = \frac{1}{\sqrt{2}} v_2 e^{i\theta}, \quad \mathbf{Z}_{\mu} = c \,\partial_{\mu}\theta, \quad r \to \infty$$

$$\mu_{k,(1,1)} = \int_0^{2\pi} d\theta \int_{\delta}^L dr \, r \left(\left| \left(\frac{1}{r} \partial_{\theta} - ieZ_{\theta} \right) \Phi_1 \right|^2 + \left| \left(\frac{1}{r} \partial_{\theta} - ieZ_{\theta} \right) \Phi_2 \right|^2 \right)$$

• the profile of Z_{θ} can simultaneously cancel the gradient energy of Φ_1 and Φ_2

$$\mu_{k,(1,1)} = 0$$

(1,1) strings

• gradient energy of (1,1) string

$$\Phi_1 = \frac{1}{\sqrt{2}} v_1 e^{i\theta}, \quad \Phi_2 = \frac{1}{\sqrt{2}} v_2 e^{i\theta}, \quad \mathbf{Z}_{\mu} = c \,\partial_{\mu}\theta, \quad r \to \infty$$

$$\mu_{k,(1,1)} = \int_0^{2\pi} d\theta \int_{\delta}^L dr \, r \left(\left| \left(\frac{1}{r} \partial_{\theta} - ieZ_{\theta} \right) \Phi_1 \right|^2 + \left| \left(\frac{1}{r} \partial_{\theta} - ieZ_{\theta} \right) \Phi_2 \right|^2 \right)$$

• the profile of Z_{θ} can simultaneously cancel the gradient energy of Φ_1 and Φ_2

$$\mu_{k,(1,1)} = 0$$

• (1,1) gauge string

(1,0) and (0,1) global strings

• magnetic self-energy, scalar potential energy, and gradient energy

- magnetic self-energy, scalar potential energy, and gradient energy
- (1,0) string $\mu_{(1,0)} \simeq \pi v_1^2 + \pi v_1^2 \ln\left(\frac{m_1}{m_Z}\right) + \pi v_2^2 \ln\left(\frac{m_Z L}{2}\right)$ (0,1) string $\mu_{(0,1)} \simeq \frac{\pi}{2} v_2^2 + \pi v_2^2 \ln\left(\frac{m_2}{m_Z}\right) + \pi v_2^2 \ln\left(\frac{m_Z L}{2}\right)$ (1,1) string $\mu_{(1,1)} = \pi v_1^2 + \pi v_1^2 \ln\left(\frac{m_1}{m_Z}\right) + 0$

- magnetic self-energy, scalar potential energy, and gradient energy
- (1,0) string $\mu_{(1,0)} \simeq \pi v_1^2 + \pi v_1^2 \ln\left(\frac{m_1}{m_Z}\right) + \pi v_2^2 \ln\left(\frac{m_Z L}{2}\right)$ (0,1) string $\mu_{(0,1)} \simeq \frac{\pi}{2} v_2^2 + \pi v_2^2 \ln\left(\frac{m_2}{m_Z}\right) + \pi v_2^2 \ln\left(\frac{m_Z L}{2}\right)$ (1,1) string $\mu_{(1,1)} = \pi v_1^2 + \pi v_1^2 \ln\left(\frac{m_1}{m_Z}\right) + 0$
- heavy core of (1,0) string $\mu_{(1,0)} > \mu_{(0,1)}$

- magnetic self-energy, scalar potential energy, and gradient energy
- (1,0) string

$$\mu_{(1,0)} \simeq \frac{\pi v_1^2 + \pi v_1^2 \ln\left(\frac{m_1}{m_Z}\right) + \pi v_2^2 \ln\left(\frac{m_Z L}{2}\right)$$

(0,1) string

$$\mu_{(0,1)} \simeq \frac{\pi}{2} v_2^2 + \pi v_2^2 \ln \left(\frac{m_2}{m_Z}\right) + \pi v_2^2 \ln \left(\frac{m_Z L}{2}\right)$$

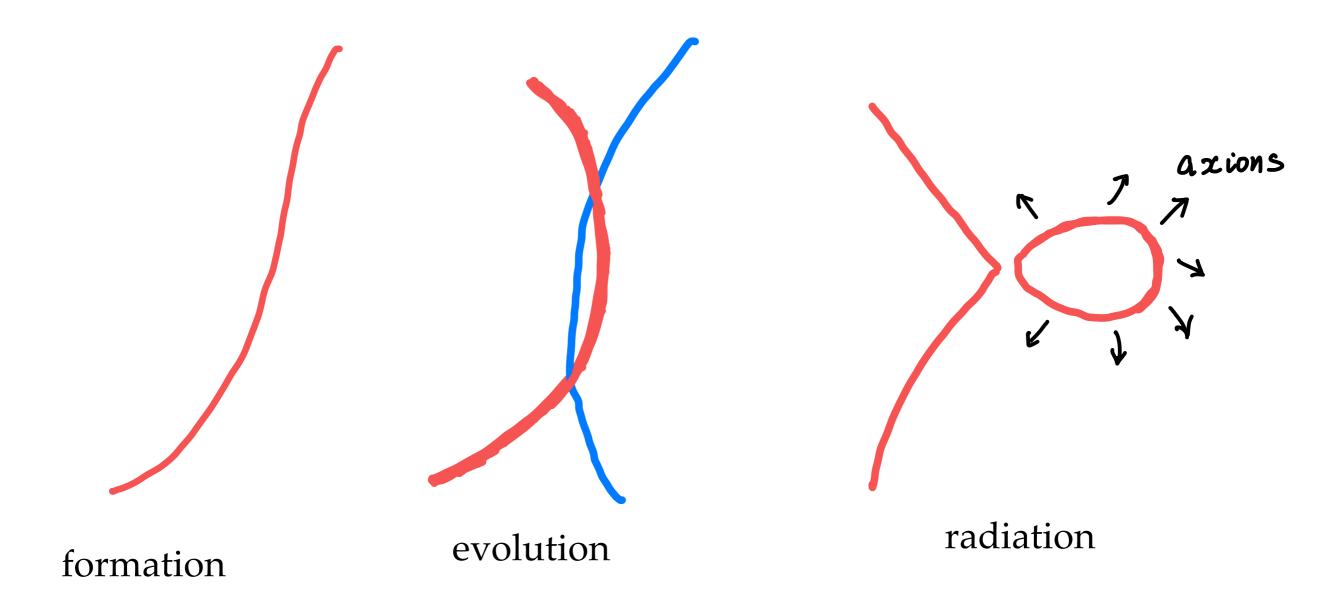
(1,1) string

$$\mu_{(1,1)} = \pi v_1^2 + \pi v_1^2 \ln\left(\frac{m_1}{m_Z}\right) + 0$$

- heavy core of (1,0) string $\mu_{(1,0)} > \mu_{(0,1)}$
- binding energy of (1,1) string

$$\mu_{(1,0)} + \mu_{(0,1)} - \mu_{(1,1)} = \pi v_2^2 \left[2 \ln \left(\frac{m_Z L}{2} \right) - 1 \right]$$

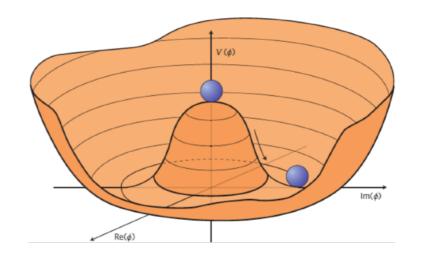
Cosmological Implication



• consider $v_1 \gg v_2$

first phase transition

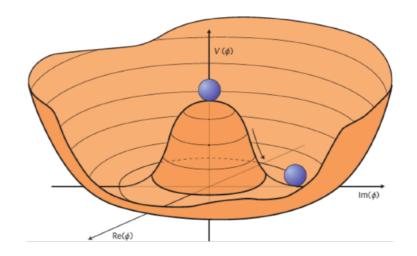
$$\langle \Phi_1(x) \rangle = \frac{v_1}{\sqrt{2}}$$
 and $\langle \Phi_2(x) \rangle = 0$



• consider $v_1 \gg v_2$

first phase transition

$$\langle \Phi_1(x) \rangle = \frac{v_1}{\sqrt{2}}$$
 and $\langle \Phi_2(x) \rangle = 0$

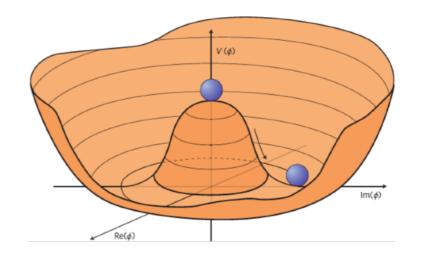


• string formation, the correlation length $\sim 1/v_1$

• consider $v_1 \gg v_2$

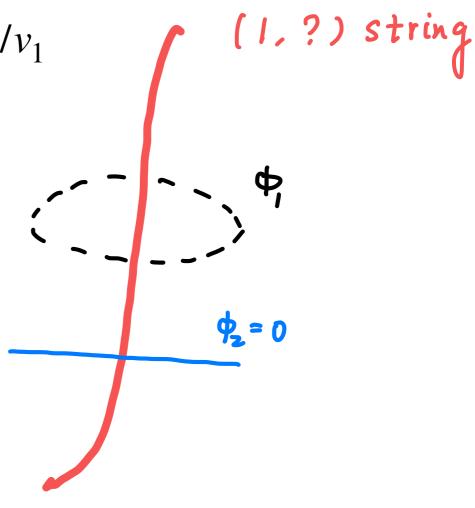
first phase transition

$$\langle \Phi_1(x) \rangle = \frac{v_1}{\sqrt{2}}$$
 and $\langle \Phi_2(x) \rangle = 0$



• string formation, the correlation length $\sim 1/v_1$

U(1) gauge strings form
 (1, n) string



second phase transition

$$\langle \Phi_1(x) \rangle = \frac{v_1}{\sqrt{2}}$$
 and $\langle \Phi_2(x) \rangle = \frac{v_2}{\sqrt{2}}$

second phase transition

$$\langle \Phi_1(x) \rangle = \frac{v_1}{\sqrt{2}} \text{ and } \langle \Phi_2(x) \rangle = \frac{v_2}{\sqrt{2}}$$

• string formation, the correlation length $\sim 1/v_2$

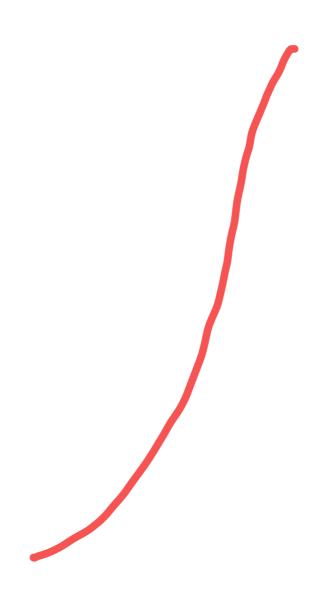
second phase transition

$$\langle \Phi_1(x) \rangle = \frac{v_1}{\sqrt{2}} \text{ and } \langle \Phi_2(x) \rangle = \frac{v_2}{\sqrt{2}}$$

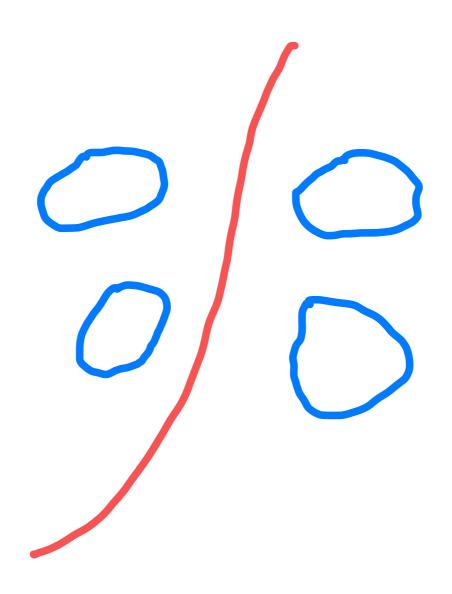
- string formation, the correlation length $\sim 1/v_2$
 - (0,1) strings form via Kibble mechanism

• $(1, \mathbf{n})$ string \rightarrow ?

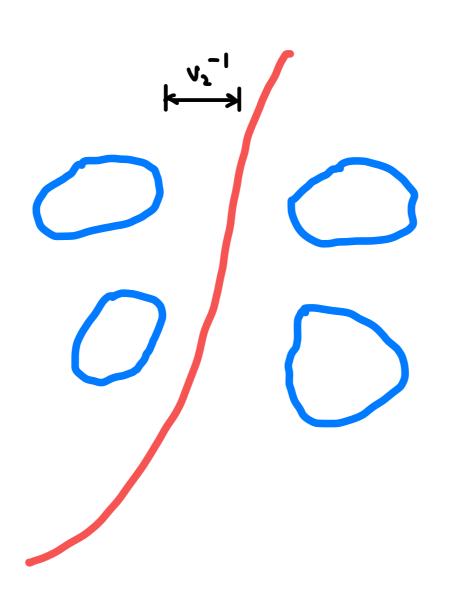
• $(1, \mathbf{n})$ string \rightarrow ?



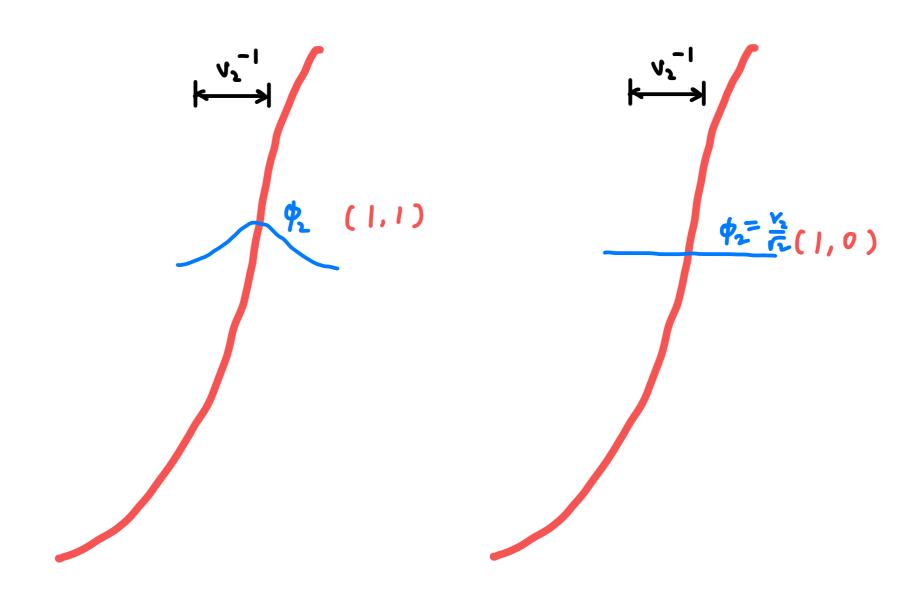
• (1, n) string \rightarrow ?



• $(1, \mathbf{n})$ string \rightarrow ?



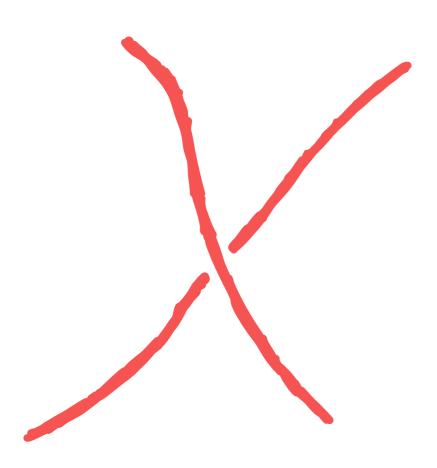
• (1, n) string \rightarrow ?



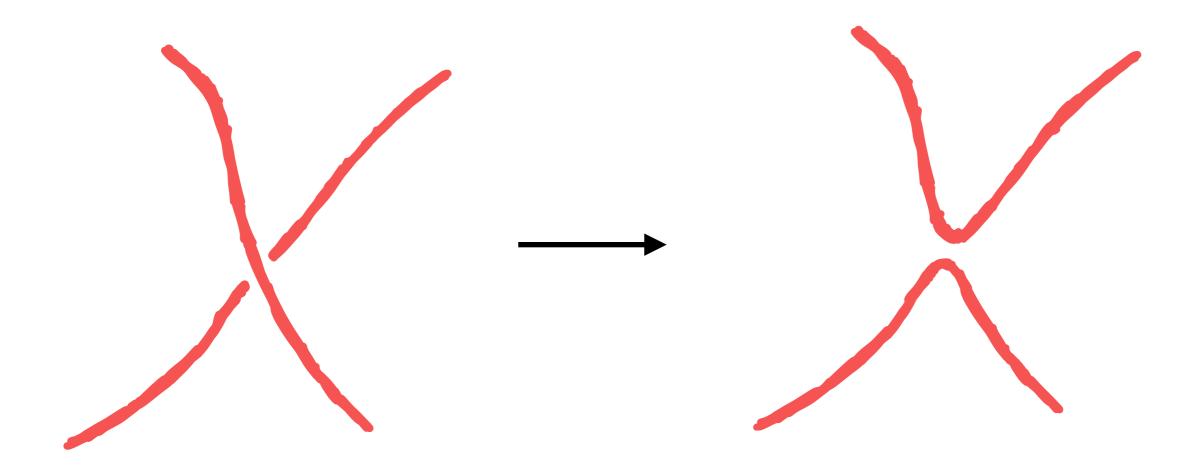
• (1, n) string $\rightarrow (1,0)$ string to minimize the energy 九 (1,1) 中二元(1,0)

• (1,0) string encounters (1,0) string

• (1,0) string encounters (1,0) string

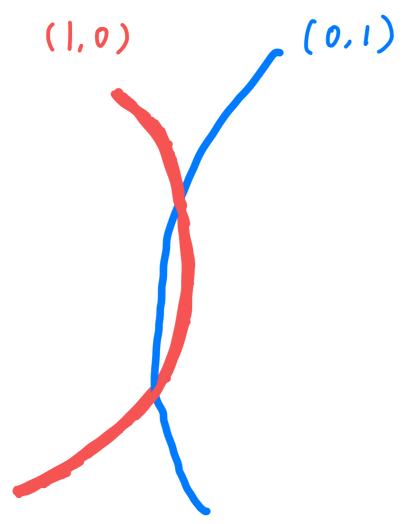


• (1,0) string encounters (1,0) string

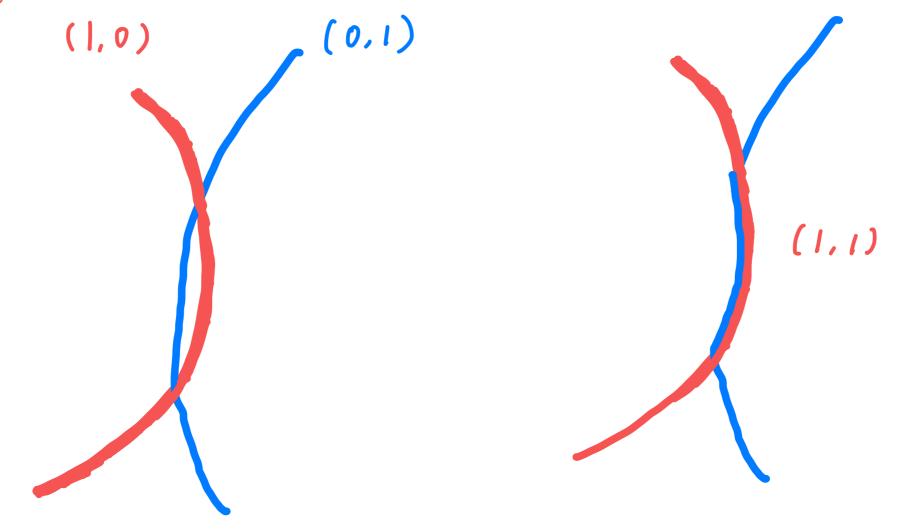


• (1,0) string encounters (0,1) string → (1,1) bound state Y-junctions

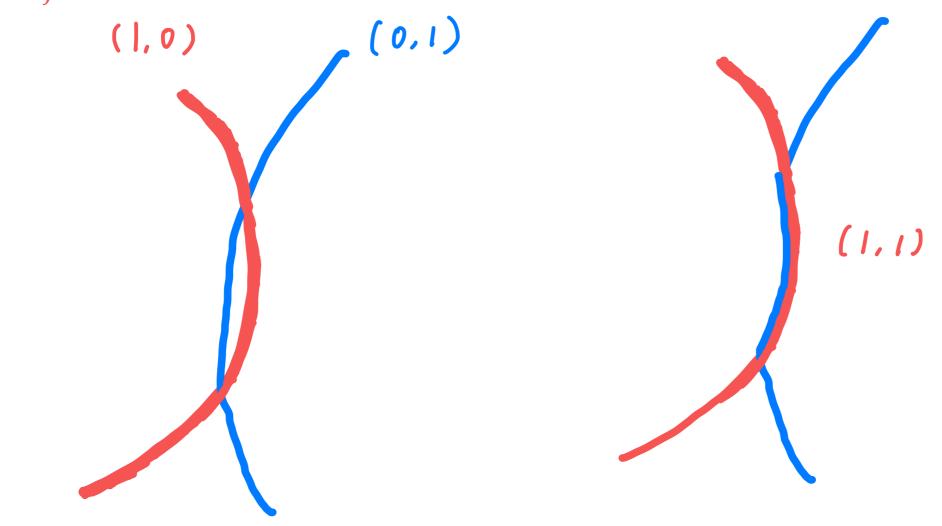
• (1,0) string encounters (0,1) string → (1,1) bound state Y-junctions



• (1,0) string encounters (0,1) string → (1,1) bound state Y-junctions



• (1,0) string encounters (0,1) string → (1,1) bound state Y-junctions



- Other works on simulations of Y-junctions found 1) some fraction of Y-junctions remain
 - 2) scaling solution

Urrestilla, Vilenkin JHEP(2008) Rajentie, Skellariodou, Stoica, JCAP (2007) Copeland, Saffin JHEP (2005)

20

• dark matter abundance

misalignment + string radiation + domain wall collapse

$$\rho_{a,0} = \rho_a^{\text{vac}}(t_0) + m_a n_a^{\text{str}}(t_0) + m_a n_a^{\text{DW}}(t_0)$$

dark matter abundance

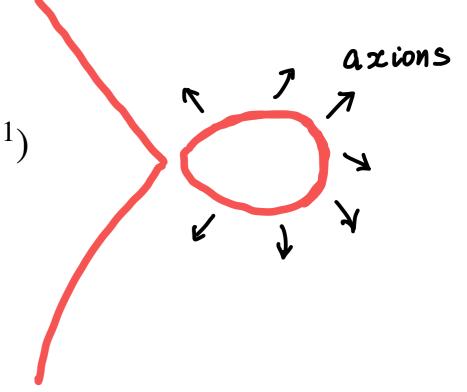
misalignment + string radiation + domain wall collapse

$$\rho_{a,0} = \rho_a^{\text{vac}}(t_0) + m_a n_a^{\text{str}}(t_0) + m_a n_a^{\text{DW}}(t_0)$$

• uncertainty from string radiation

Scenario A: IR spectrum
$$\frac{dE}{d\omega} \propto \delta(\omega - 2\pi t^{-1})$$

Scenario B: flat spectrum
$$\frac{dE}{d\omega} \propto \frac{1}{\omega}$$



dark matter abundance

misalignment + string radiation + domain wall collapse

$$\rho_{a,0} = \rho_a^{\text{vac}}(t_0) + m_a n_a^{\text{str}}(t_0) + m_a n_a^{\text{DW}}(t_0)$$

• uncertainty from string radiation

Scenario A: IR spectrum
$$\frac{dE}{d\omega} \propto \delta(\omega - 2\pi t^{-1})$$

Scenario B: flat spectrum
$$\frac{dE}{d\omega} \propto \frac{1}{\omega}$$

•
$$n_a^{\rm str} \propto \frac{1}{\langle \omega \rangle}$$

azions

Gauged global string

Gauged global string

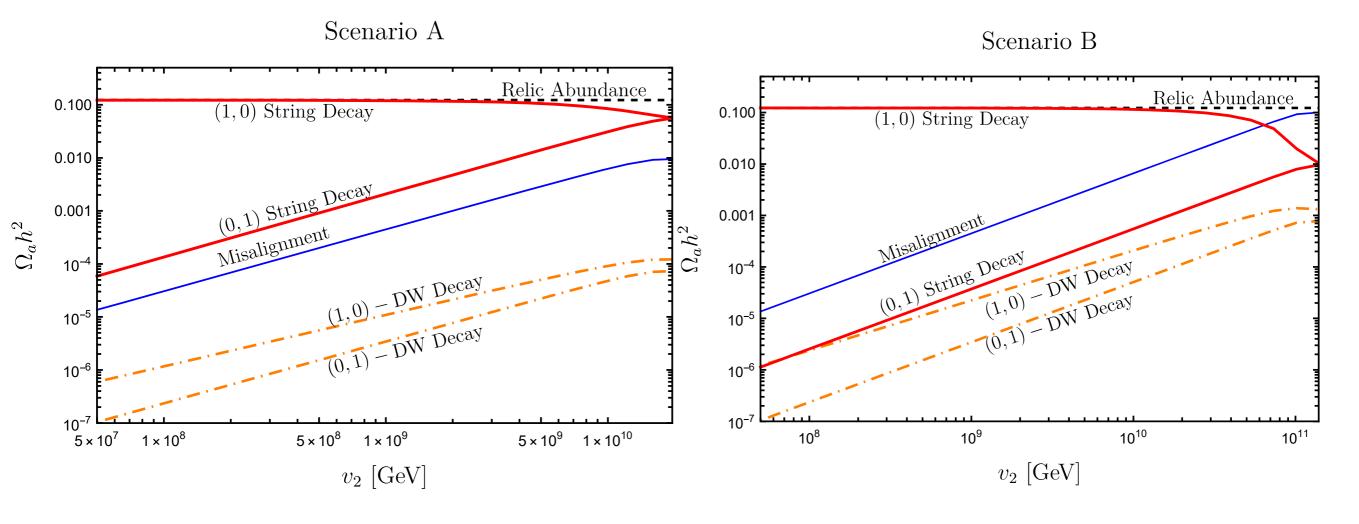
- (0,1) string tension is the same as a standard QCD axion string
- heavy core of (1,0) string

$$\mu_{(1,0)}(t) \simeq \pi v_1^2 \ln\left(\frac{m_1}{m_Z}\right) + \pi f_a^2 \ln\left(\frac{m_Z t}{2}\right)$$

Gauged global string

- (0,1) string tension is the same as a standard QCD axion string
- heavy core of (1,0) string

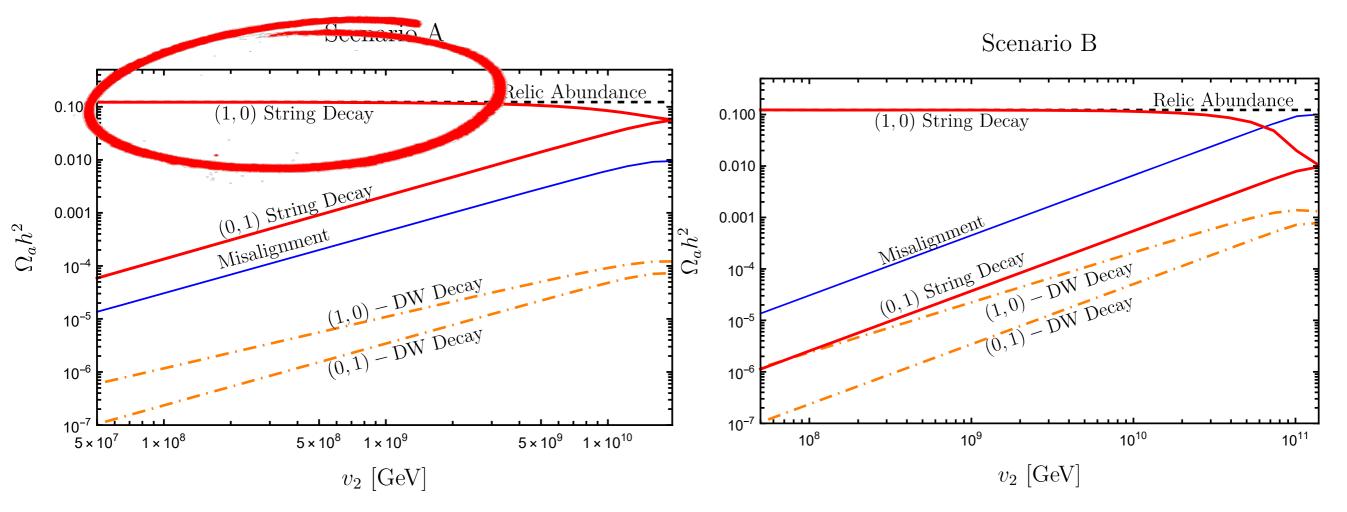
$$\mu_{(1,0)}(t) \simeq \pi v_1^2 \ln \left(\frac{m_1}{m_Z}\right) + \pi f_a^2 \ln \left(\frac{m_Z t}{2}\right)$$



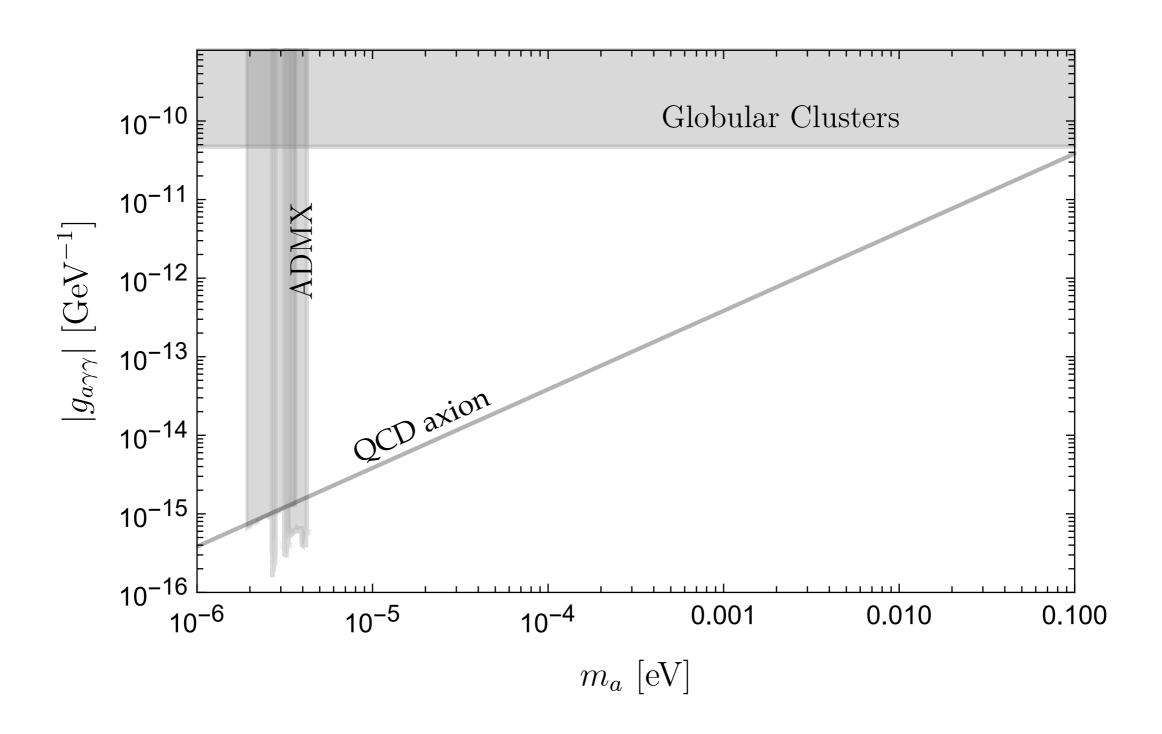
Gauged global string

- (0,1) string tension is the same as a standard QCD axion string
- heavy core of (1,0) string

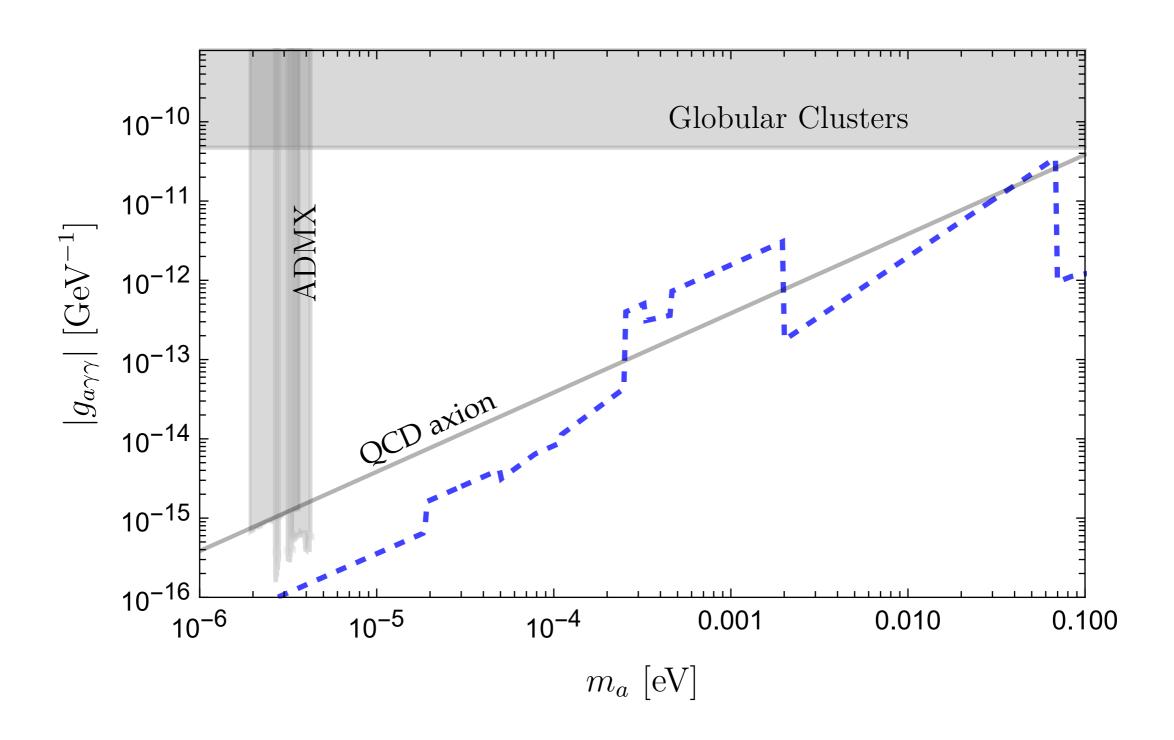
$$\mu_{(1,0)}(t) \simeq \pi v_1^2 \ln \left(\frac{m_1}{m_Z}\right) + \pi f_a^2 \ln \left(\frac{m_Z t}{2}\right)$$



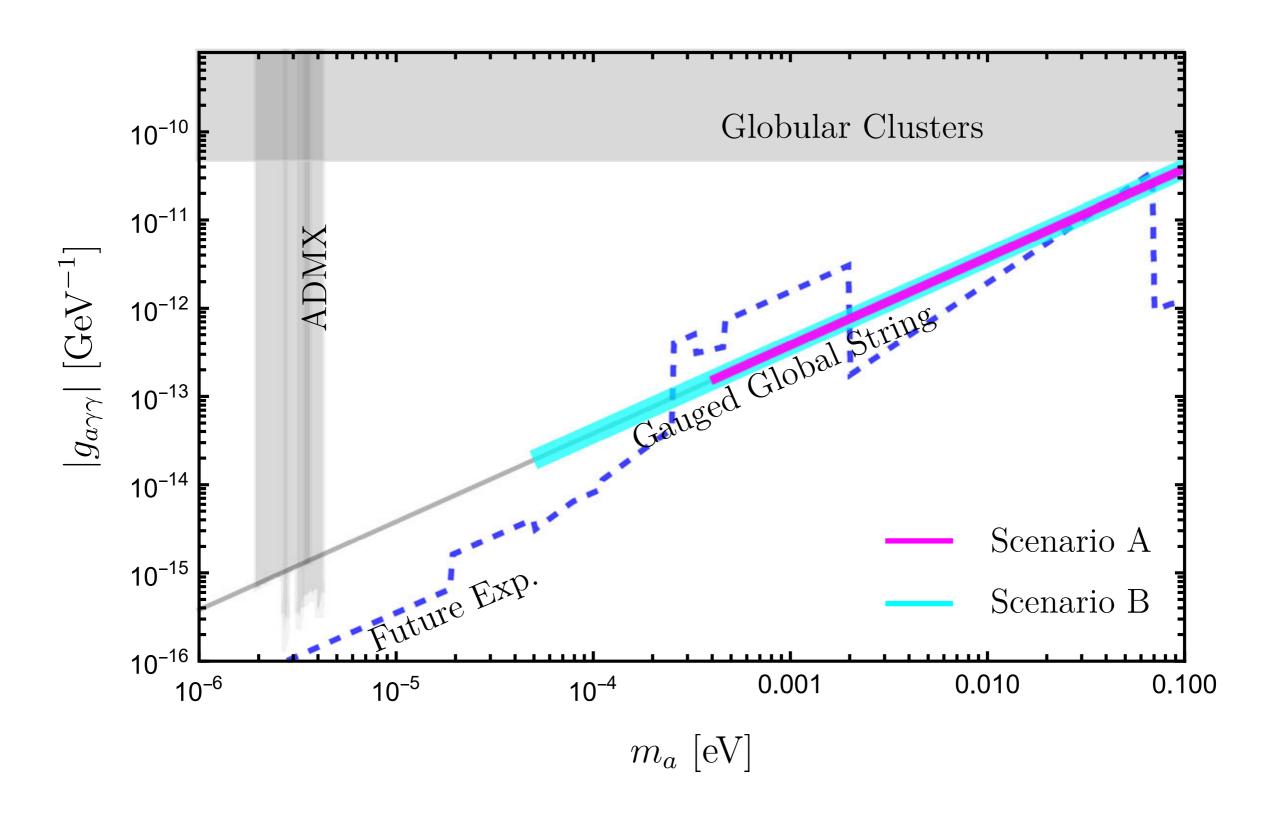
QCD axion window



Future explorations

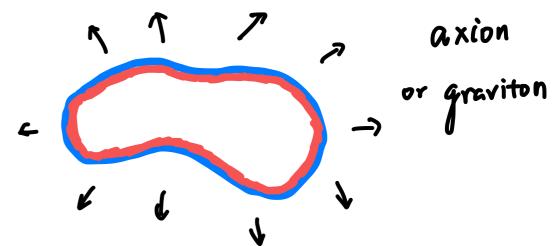


Gauged global string

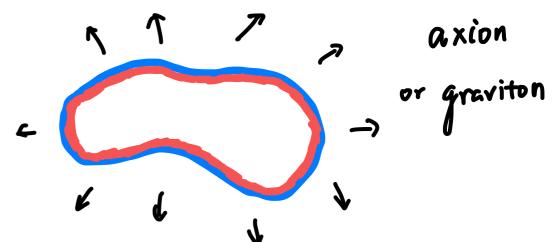


• gauge strings radiate gravitons

- gauge strings radiate gravitons
- How about (1,1) gauge strings?



- gauge strings radiate gravitons
- How about (1,1) gauge strings?

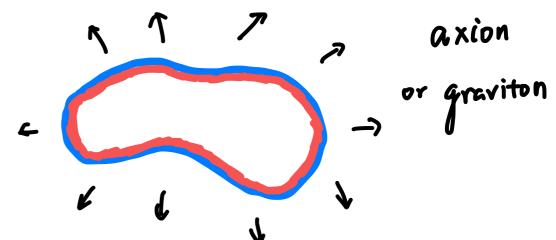


• (1,1) string is gauge string, but it also has axion as light d.o.f

$$\mathcal{L} = -\frac{1}{4}Z_{\mu\nu}Z^{\mu\nu} + \frac{1}{2}e^2(\phi_1^2 + \phi_2^2)Z_{\mu}^2 - \frac{g(\phi_1, \phi_2)}{2}eZ^{\mu}\partial_{\mu}a + \frac{1}{2}f(\phi_1, \phi_2)(\partial_{\mu}a)^2$$

$$g(\phi_1, \phi_2) = f_a \frac{\phi_1^2}{v_1^2} - f_a \frac{\phi_2^2}{v_2^2}$$

- gauge strings radiate gravitons
- How about (1,1) gauge strings?



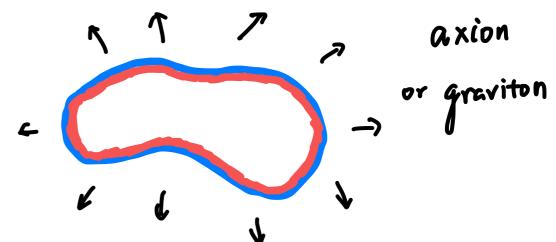
• (1,1) string is gauge string, but it also has axion as light d.o.f

$$\mathcal{L} = -\frac{1}{4}Z_{\mu\nu}Z^{\mu\nu} + \frac{1}{2}e^2(\phi_1^2 + \phi_2^2)Z_{\mu}^2 - \frac{g(\phi_1, \phi_2)}{2}eZ^{\mu}\partial_{\mu}a + \frac{1}{2}f(\phi_1, \phi_2)(\partial_{\mu}a)^2$$

$$g(\phi_1, \phi_2) = f_a \frac{\phi_1^2}{v_1^2} - f_a \frac{\phi_2^2}{v_2^2}$$

• Kalb-Ramond field $B^{\mu\nu}$, $\partial_{\mu}a = \frac{1}{2}\epsilon_{\mu\nu\alpha\beta}\partial^{\nu}B^{\alpha\beta}$

- gauge strings radiate gravitons
- How about (1,1) gauge strings?



• (1,1) string is gauge string, but it also has axion as light d.o.f

$$\mathcal{L} = -\frac{1}{4}Z_{\mu\nu}Z^{\mu\nu} + \frac{1}{2}e^2(\phi_1^2 + \phi_2^2)Z_{\mu}^2 - g(\phi_1, \phi_2)eZ^{\mu}\partial_{\mu}a + \frac{1}{2}f(\phi_1, \phi_2)(\partial_{\mu}a)^2$$

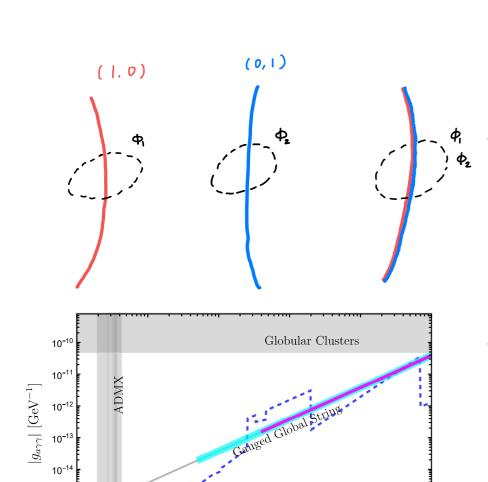
$$g(\phi_1, \phi_2) = f_a \frac{\phi_1^2}{v_1^2} - f_a \frac{\phi_2^2}{v_2^2}$$

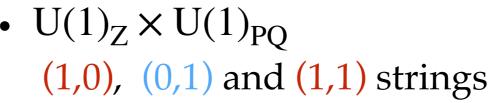
• Kalb-Ramond field $B^{\mu\nu}$, $\partial_{\mu}a = \frac{1}{2}\epsilon_{\mu\nu\alpha\beta}\partial^{\nu}B^{\alpha\beta}$

radiation power

$$\frac{\mathrm{d}P_a}{\mathrm{d}\Omega} \sim e^2 f_a^2$$

Conclusion





Cosmology
 Y-Junctions
 opening QCD axion mass windows

axion
or graviton

 m_a [eV]

0.001

Scenario A Scenario B

0.010

• (1,1) gauge string radiating axions and gravitons