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1 Introduction: what will be addressed in the lec-

tures?

Nowadays, it is commonly accepted that the fundamental theory of strong interac-
tions is Quantum Chromodynamics (QCD), which describes interactions between
quarks and gluons. The quarks are spin-1/2 particles carrying 6 different flavors
u, d, s, c, b, t, with the masses ranging approx. from 2 MeV to 173 GeV. The in-
teractions between quarks is mediated by gluons, which are the (massless) gauge
bosons of unbroken SU(3)c local symmetry (the corresponding quantum number is
called color).

SU(3) is a non-Abelian group, implying that, even in the absence of the quark
fields, the gluons interact with each other. These self-interactions lead to the con-
finement: the observed spectrum of QCD contains only colorless objects – hadrons –
which are made of quarks and gluons. In the naive quark models, all existing mesons
are made up of a quark and an antiquark, and baryons consist of three quarks, ev-
erything bound together by gluons (of course, more complex objects, which are not
covered by the naive quark model, can and do exist in Nature, like tetra- and pen-
taquarks, glueballs, etc.). The gluon interactions grow very strong at large distances
(equivalently, as small momentum scales), so that a colored object cannot escape
into the asymptotic state. On the contrary, at short distances (at large momenta),
the quark-gluon interactions are weak and can be handled in perturbation theory.
This is shown in Fig 1, where the dependence of the renormalized strong coupling
constant on the momentum scale is shown.

In the following, we shall be exclusively concentrated at the physics at small
momentum scales, of order of the dynamically generated QCD scale ΛQCD (for this
reason, we can safely neglect the presence of heavy quarks with mc,mb,mt ≫ ΛQCD

and consider QCD with light u, d, s quark flavors only). At these scales, QCD
becomes a strongly coupled non-local field theory, for which the perturbation theory
cannot be applied. How does one calculate the characteristics of light hadrons from
the underlying theory in this case?

In my lectures, I shall consider two very powerful tools which can be used to
systematically deal with QCD at low energy. The first is an approach based on
the effective chiral Lagrangians, which makes use of the so-called chiral symmetry
of QCD in the light quark sector. This symmetry is spontaneously broken in the
QCD vacuum and an octet of almost massless pseudoscalar Goldstone bosons (π-,
K- and η-mesons) emerges, dominating the physical processes at low energy. The
chiral symmetry of the underlying theory imposes severe constraints on the form
of the possible operators that can enter the Lagrangian describing these Goldstone
bosons and their interactions with other hadrons, and this fact renders predictive
power to the effective theory. However, this approach does not completely solve the
problem – the values of the couplings in the effective Lagrangian are not fixed by
the symmetry requirements and should be determined independently.

Another approach, the so-called lattice QCD, is based on the formulation of QCD
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Figure 1: The running coupling constant in QCD (figure from: arXiv:1506.05407).

in terms of Euclidean path integrals. The latter are defined as ordinary multiple
integrals on a discretized space-time grid (lattice) and are calculated numerically
by using various Monte-Carlo algorithms. The continuum limit emerges, when the
lattice spacing is taken very small, and its volume very large, both in the physical
units characterizing strong interactions at low energy. Potentially, this approach has
capability to describe all low-energy sector of QCD in terms of the parameters of the
underlying QCD Lagrangian only (in particular, it can address the calculation of the
low-energy effective couplings, mentioned in the previous paragraph). In practice, it
is a fascinating approach facing numerous conceptual and calculational challenges.
One of these challenges forms the main topic of the present lectures.

As mentioned above, the lattice used in the calculations is always finite. This
means that the hadrons, which are simulated on the lattice, are always confined to a
box, whose size in physical units, on the present-day lattices, is not even very large.
Thus, finite-volume artifacts emerge in the physical observables, calculated on the
lattice. Moreover, the hadron scattering processes are absent in a finite volume from
the beginning, because asymptotic states cannot be defined. Then, how does one
extract the physical quantities in the scattering sector (say, the phase shifts or the
cross sections) from the lattice QCD calculations?

It turns out that effective field theory methods and the lattice methods beauti-
fully complement each other, when it comes to the study of the finite-volume effects.
In these lectures I shall demonstrate that, using effective field theories in a finite
volume, it is possible to find a systematic solution of the problems mentioned above.

I tried to make the presentation self-contained, as far as it was possible. In
the beginning, I give a very brief introduction to the path integral and introduce
lattice in the non-relativistic quantum mechanics. The lattice artifacts that we are
speaking about, emerge already there, as demonstrated in a couple of very simple
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examples. Then I give a very brief introduction to lattice QCD and effective field
theory methods, both only in order to set notations. Next, finally, I turn to the main
topic of the lectures and consider the finite-volume effects, both in the properties of
stable hadrons as well as in the scattering problems. In all cases, we shall illustrate
the formalism with simple examples that help to better understand the material.

Finally, note that not all the material, contained in these lecture notes, will be
covered during the lectures. I have however kept this additional material, which can
be used for the in-depth understanding of the questions addressed in the lectures.
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2 One-dimensional quantummechanics on the lat-

tice

2.1 Path integral formulation of quantum mechanics

The formulation of quantum field theory on he lattice is based on the path integral
representation of Green functions. In order to make the presentation self-contained,
below we shall briefly consider the essentials of the lattice formulation, starting
from the simplest case of quantum mechanics in one dimension, described by the
Hamiltonian

Ĥ =
p̂2

2m
+ V̂ (x) . (1)

Here, p̂ is the momentum operator of a particle with mas m, moving in the potential
V̂ (x). The evolution operator is given by:

U(t′, t) = e−iĤ(t′−t) . (2)

If the evolution operator is explicitly known for all times, one has found the complete
solution of the problem: given any initial state of a system, described by the wave
function Ψ(x, t), the state at any other time t′, with t′ > t, is given by

Ψ(x′, t′) =

∫ ∞
−∞

dx⟨x′|e−iĤ(t′−t)|x⟩Ψ(x, t) . (3)

In order to find the representation of the evolution operator in terms of path in-
tegrals, we divide the interval [t′, t] into N small intervals of a length a, so that
t′ − t = Na (see Fig. 2). The evolution between t and t′ is then represented, as a
superposition of evolution between t and t+ a, between t+ a and t+2a, and so on.
Thus:

⟨x′|e−iĤ(t′−t)|x⟩ =
∫ ∞
−∞

dx1 · · · dxN−1⟨x′|e−iĤa|xN−1⟩ · · · ⟨x1|e−iĤa|x⟩ . (4)

Taking a infinitesimally small, one can calculate matrix elements, entering this ex-
pression:

⟨x′|e−iĤa|x⟩ =

∫
dp

2π
⟨x′|p⟩⟨p|1− iaĤ +O(a2)|x⟩

=

∫
dp

2π
eip(x

′−x)
(
1− ia

[
p2

2m
+ V (x)

]
+O(a2)

)
. (5)

If we had inserted the unit operator 1 =

∫
dp

2π
|p⟩⟨p| in front of the ket-vector |x⟩, we

would get V (x′) instead of V (x). Bearing this in mind, we shall use the symmetric
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Figure 2: Discretization of the time interval: t′ − t = Na.

expression:

⟨x′|e−iĤa|x⟩ =

∫
dp

2π
eip(x

′−x)
(
1− ia

[
p2

2m
+

1

2
(V (x′) + V (x))

]
+O(a2)

)
=

∫
dp

2π
exp

(
ip(x′ − x)− ia

[
p2

2m
+

1

2
(V (x′) + V (x))

]
+O(a2)

)
.

(6)

The difference between all above expressions in a quantity of order a2.
Finally, performing the (Gaussian) integration in this formula by using∫ ∞

−∞
dp exp(−Ap2) =

√
π

A
, (7)

we get

⟨x′|e−iĤa|x⟩ =
(

m

2πia

)1/2

exp

(
ia

[
m

2

(
x′ − x

a

)2

− 1

2
(V (x′) + V (x))

])
. (8)

In the limit a → 0, we have x′ → x and
x′ − x

a
→ ẋ = v, where v is the velocity

along the classical trajectory from x to x′. Consequently, the above expression can
be rewritten as:

⟨x′|e−iĤa|x⟩ =

(
m

2πia

)1/2

exp

(
ia

[
mẋ2

2
− V (x)

])

=

(
m

2πia

)1/2

exp

(
iaL(x)

)
. (9)

where L(x) = mẋ2

2
− V (x) is the classical Lagrangian of a particle, moving in the

external potential V (x).

6



x1

x2

x3

x

x’

...

Figure 3: The path integral is performed over all trajectories, connecting the points
x and x′.

The evolution operator at finite times is given by:

⟨x′|e−iĤ(t′−t)|x⟩ =

(
m

2πia

)N/2 ∫ ∞
−∞

N−1∏
i=1

dxi

× exp

(
ia

[
m

2

(
x′ − xN−1

a

)2

+ · · ·+ m

2

(
x1 − x

a

)2])
× exp

(
−ia

[
1

2
V (x′) + V (xN−1) + · · ·+ V (x1) +

1

2
V (x)

])
.
=

∫
Dx exp

(
i

∫ t′

t

dτL(x(τ))
)
. (10)

Here the integration is carried out over all trajectories that go from x to x′, see
Fig. 3.

To summarize, path integrals provide an alternative formulation of quantum
mechanics, completely equivalent to the Schrödinger and Heisenberg formulations.
In this formulation, one obtains a representation of the evolution operator in terms
of a path integral. The latter is defined as a multiple integral over dx1 . . . dxN−1
in the limit, when a → 0 and N → ∞. This representation provides a basis for
the calculations on the lattice. Schematically, the argument goes as follows. One
can perform the integration over dx1 . . . dxN−1 numerically and decrease a for fixed
t′− t, until the calculated results become stable with respect to the further decrease.
Then, one would claim that one is obtaining results already in the continuum limit.

Of course, the above argument is given for illustrative purpose only. To apply
these ideas in practice, one has to refine them substantially.

2.2 Euclidean formulation

To start with, the path integral is rigorously defined in the Euclidean space only.
In Minkowski space, the argument of the exponential is a wildly oscillating function
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on the trajectories, which are far from the local minima of the action functional,
coinciding with the solutions of the classical equations of motion:

d

dt

δL
δẋ(t)

− δL
δx(t)

∣∣∣∣
x(t)=xcl(t)

= 0 . (11)

Consequently, in the strict mathematical sense, the limit a → 0 does not exist in
the Minkowski space, and an analytic continuation to the Euclidean space (Wick
rotation) is necessary.

Below, for simplicity of the argument, we shall assume that the potential V (x)
is bound from below. Then, without losing generality, one may assume V (x) > 0.
In Eq. (8) one may then perform the Wick rotation:

a = |a|e−iφ , 0 ≤ φ ≤ π

2
. (12)

Then the real part of the argument takes the form:

Re

(
i

[
m

2|a|e−iφ (x′ − x)2 − |a|e−iφ
2

(V (x′) + V (x))

])
= − sinφ

[
m

2|a| (x
′ − x)2 +

|a|
2

(V (x′) + V (x))

]
< 0 . (13)

Hence, the oscillating exponent transforms into the damping one, and the integral

is convergent. This means that the analytic continuation is allowed. Taking φ =
π

2
,

we arrive at the Euclidean evolution operator:

⟨x′|e−Ĥ(t′−t)|x⟩ =
∫

Dx exp
(
−S[x]

)
, (14)

where the Euclidean action functional is given by:

S[x] = a

[
m

2

(
x′ − xN−1

a

)2

+ · · ·+ m

2

(
x1 − x

a

)2]
+ a

[
1

2
V (x′) + V (xN−1) + · · ·+ V (x1) +

1

2
V (x)

]
, (15)

and the integration measure takes the form

Dx =

(
m

2πa

)N/2 N−1∏
i=1

dxi . (16)

Note the change of sign in front of the potential.
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2.3 The spectral representation

Suppose that |n⟩ are the eigenvectors of the Hamiltonian, corresponding to the
eigenvalue En. The set of states |n⟩ obeys closure elation:∑

n

|n⟩⟨n| = 1 . (17)

Thus,

⟨x′|e−Ĥ(t′−t)|x⟩ =
∑
n

⟨x′|n⟩⟨n|x⟩e−En(t′−t) =
∑
n

Ψn(x
′)Ψ∗n(x)e

−En(t′−t) . (18)

Note: the spectrum and the eigenvectors are the same in the Euclidean and Minkowski
spaces, since the Hamiltonian does not depend on time.

At large Euclidean times, the ground-state n = 0 contribution dominates the
sum, and we have:

⟨x′|e−Ĥ(t′−t)|x⟩ ∼ e−E0(t′−t)Ψ0(x
′)Ψ∗0(x)

{
1 +O(e−(E1−E0)(t′−t))

}
. (19)

The state with the lowest energy |n⟩ = |0⟩ is usually called the vacuum state.

2.4 The Green functions

The Green functions are the vacuum expectation values of the T -ordered products
of operators:

G(t1, · · · , tn) = ⟨0|TÂ(t1) · · · Â(tn)|0⟩ . (20)

We assume that Â(t)
.
= Â(x(t)) are local operators, depending on x = x(t) at time

t only. The time-ordered product is defined as:

TÂ(t1)Â(t2) =

{
Â(t1)Â(t2) , t1 > t2

Â(t2)Â(t1) , t2 > t1
(21)

The generalization to the case of more than two operators is straightforward.
In order to derive the path integral representation of Green functions, assume,

for instance that t1 > t2. Next, let us consider

⟨x′|e−Ĥt′Â(t1)Â(t2)e
Ĥt|x⟩ =

∫ ∞
−∞

dx1dx2⟨x′|e−Ĥ(t′−t1)|x1⟩A(x1)⟨x1|e−Ĥ(t1−t2)|x2⟩

× A(x2)⟨x2|e−Ĥ(t1−t)|x⟩
.
=

∫
DxA(x1)A(x2)e−S . (22)
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Figure 4: Two insertions in the path integral

∫
DxA(x(t1))A(x(t2))e−S.

This is a path integral with two insertions at t = t1 and t = t2, see Fig. 4.
Next, one can use closure relation. In the limit t′ → ∞, t→ −∞, one gets:

⟨x′|e−Ĥt′Â(t1)Â(t2)e
Ĥt|x⟩ =

∑
n′n

⟨x′|n′⟩e−En′ t′⟨n′|Â(t1)Â(t2)|n⟩eEnt⟨n|x⟩

∼ Ψ0(x
′)Ψ∗0(x)e

−E0(t′−t)⟨0|Â(t1)Â(t2)|0⟩ . (23)

Consequently,

⟨0|Â(t1)Â(t2)|0⟩ = lim
t′→∞, t→−∞

∫
DxA(x(t1))A(x(t2))e−S∫

Dxe−S
. (24)

The same expression is obtained, when t1 < t2. Hence, the path integral represen-
tation of the two-point Euclidean Green function ⟨0|TÂ(t1)Â(t2)|0⟩ is given by the
right-hand side of Eq. (24) for all times t1, t2. The generalization to the case of the
Green functions with more external legs is straightforward.

The path integral, entering the above expression, still depends on x, x′. It is
convenient to impose periodic boundary conditions x′ = x = x0 and integrate over
x0 as well. Using the normalization of the wave function∫ ∞

−∞
dx|Ψ0(x)|2 = 1 , (25)

we finally get:

⟨0|TÂ(t1)Â(t2)|0⟩ = lim
t′→∞, t→−∞

∫
DxA(x(t1))A(x(t2))e−S∫

Dxe−S
, (26)
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where, now,

S =
m

2a

[
(x0 − xN−1)

2 + · · ·+ (x1 − x0)
2

]
+ a

[
V (xN−1) + · · ·+ V (x0)

]
,

Dx ∝
N−1∏
i=0

dxi , (27)

and

A(x(t1))A(x(t2)) =
1

N

N−1∑
i=0

A(xi+k)A(xi) , t1 − t2 = ka . (28)

Note also that, due to the translational invariance, the result does not depend on
the choice of the starting point i. One may use this fact to average the expression
over all i that improves the statistical error during the numerical evaluation of the
integral (see below).

The energy spectrum of the Hamiltonian can be extracted directly from the
Euclidean two-point Green functions without continuing analytically back to the
Minkowski space. Indeed, using the closure relation, at large Euclidean times t1 −
t2 → ∞ we get:

⟨0|TÂ(t1)Â(t2)|0⟩ ∼ e−(En−E0)(t1−t2)|⟨0|Â(0)|n⟩|2 , (29)

where |n⟩ is the eigenvector of the Hamiltonian with the lowest eigenvalue, for which
the matrix element ⟨0|Â(0)|n⟩ does not vanish.

Consider, for example, the one-dimensional harmonic oscillator. Due to the
invariance under parity, the following matrix element vanishes identically:

⟨0|x̂(0)|0⟩ = 0 , (30)

but the overlap of the vector x̂(0)|0⟩ with the first excited state does not vanish:

⟨0|x̂(0)|1⟩ ≠ 0 . (31)

Consequently, calculating the Green function of two operators x̂(t), one may extract
the difference between the energies of the first excited state and the ground state:

E1 − E0 = lim
t→∞

1

t
⟨0|T x̂(t)x̂(0)|0⟩ . (32)

The quantity in the right-hand side of the above equation for finite values of t is
called effective mass.

The determination of particle spectrum in lattice QCD (and, in general, in any
lattice quantum field theory) follows exactly the same path. Namely, the Euclidean
two-point functions of operators with pertinent quantum numbers is evaluated nu-
merically, and the spectrum is determined by finding the plateaus of the effective
mass at large Euclidean times.
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2.5 Calculation of the path integral by using Monte-Carlo
method

The discretized path integral on the lattice should be evaluated by using numerical
methods. The usual numerical quadratures are hopelessly slow in case of a large
number of integration variables, and so one has to invoke the Monte-Carlo method.
We explain the essence of the method for the example of a simple one-dimensional
integral:

⟨f⟩ =
∫ b

a

dsf(s)w(s) . (33)

Here, we assume that the function f(s) is smooth and slowly varying on the interval
[a, b]. Further,

w(s) ∈ [0, 1] ,

∫ b

a

dsw(s) = 1 . (34)

The function w(s) can be interpreted as the probability density. Consider now the
set of points s1, . . . , sn ∈ [a, b] which, in the limit of large n, are distributed on this
interval with the probability density w(s). Then, it is clear that

⟨f⟩ = lim
n→∞

1

n

n∑
i=1

f(si) . (35)

If n grows larger, the mean square deviation decreases like
1√
n
. Indeed,

σ2 =
1

n

{
⟨f 2⟩ − ⟨f⟩2

}
=

1

n

{
1

n

n∑
i=1

f 2(si)−
(
1

n

n∑
i=1

f(si)

)2}
. (36)

Since both ⟨f 2⟩ and ⟨f⟩ have finite limits at n→ ∞, one may conclude that
√
σ2 ∼

1√
n
.

In case of many integration variables, sk = (x
(k)
0 , . . . x

(k)
N−1) denote the so-called

configurations. The
1√
n
-rule holds in this case as well. Note that, in order to achieve

reasonable accuracy, n need not be astronomically large and the calculations can be
performed on modern computers.

Moreover, a typical path integral (say, for the two-point function) takes the
following form:

⟨0|TÂ(t1)Â(t2)|0⟩ ∼
∫

DxA(x(t1))A(x(t2))e−S . (37)
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An exponential factor rapidly vanishes away from the local minima of the Eu-
clidean action. For this reason, distributing the configurations uniformly in the
whole integration area would not be an optimal strategy: in this case, the integrand
would be very small on most of the configurations. A better strategy assumes that
A(x(t1))A(x(t2)) and e

−S play the role of the functions f(s) and w(s), respectively,
so the most configurations are concentrated in the vicinity of Euclidean classical
trajectories, which are minima of the action functional S.

There exist different algorithms that allow one to produce a sequence of con-
figurations s1, . . . , sn, distribute with a given probability w(s). All these algo-
rithms have to start at some arbitrary initial configuration s1 and produce a chain
s1 → s2 → s3 → . . . by defining a random update of a given configuration.

At the next step, one has to decide, whether one accepts the configuration,
produced in the random update, or rejects it. We denote the acceptance probability
by wacc(s → s′). If the configuration is accepted, it becomes a new member of the
set and the process goes on.

In order to ensure that the configurations are distributed with the probability
density w(s), the acceptance probability should obey the equation of the detailed
balance:

w(s)wacc(s→ s′) = w(s′)wacc(s
′ → s) . (38)

In practice, one deletes first few members of the set, in order to assume that the con-
figurations have fully thermalized, i.e., all information about the initial configuration
has been completely erased.

Various algorithms differ through choice of the update and acceptance criteria.
Here, for illustrative purpose only, we briefly consider perhaps the simplest one,
which goes under the name of the Metropolis algorithm. In this algorithm, the
acceptance probability is given by the following expression:

wacc(s→ s′) = min

{
1, e−∆S

}
, ∆S = S[s′]− S[s] . (39)

Recalling that

w(s) =
e−S[s]∫
Dxe−S

, (40)

it can be straightforwardly checked that the detailed balance is indeed obeyed.
If you decide to carry out a simple simulation in the one-dimensional quantum-

mechanical problem, considered above, one may, for example, proceed along the
following path:

• Choose some initial configuration, say, x
(1)
i = 0, i = 0, . . . N − 1.
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• Define a random update. To this end, choose i randomly, produce a random
number 0 < r < 1 and define x′i = xi + ∆xi = xi + β(2r − 1). Here, β is
some fixed constant. If β is very small, the update is very slow. If β is large,
acceptance rate will be very small. One has to choose an optimal value of β
by trial and error method, in order to make the code faster.

• Calculate the change of the action under the update. Since the action is local,
this expression contains only few terms:

∆S = −∆xi
xi+1 − 2xi + xi−1

a
+

(∆xi)
2

a
+ a(V (xi +∆xi)− V (xi)) . (41)

• If ∆S < 0, then the new configuration should be accepted. If ∆S > 0, then
it should be accepted with the probability e−∆S. In order to do this, produce
a new random number 0 < r′ < 1 and then accept, if r′ < e−∆S, otherwise
reject.

• Continue, until the required number of configurations is produced.

Using this algorithm, you could write a simple code and try to extract the energy
spectrum on the lattice yourself!

2.6 Numerical artifacts

The main aim of present lectures is not the lattice formulation of quantum mechanics
and quantum field theory per se, but the introduction to what is called lattice arti-
facts and, most notably, to the finite-volume effects. The latter issue has attracted
much attention lately. Moreover, the methods that are used to study finite-volume
effects became the main tool for the extraction of the observables in the scattering
sector from lattice calculations – in this sense, the finite-volume effects cannot be
regarded as pure artifacts anymore.

To start with, any lattice calculation, even performed with a very large number of
configurations (i.e., with an arbitrary small statistical error) still contains artifacts.
In other words, the extracted quantity is not exactly equal to the same quantity in
the continuum. For illustrative purposes, we shall first introduce these artifacts in
the simple case of harmonic oscillator.

The Euclidean action in this example is given by (in order to ease notations, we
have assumed m = 1):

S =
N−1∑
i=0

a

{
1

2

(
xi+1 − xi

a

)2

+
ω2x2i
2

}
, xN = x0 . (42)

Let us consider the quantity

⟨x|e−ĤT |x⟩ =
∑
n

|⟨x|n⟩|2e−EnT ∼ |Ψ0(x)|2e−E0T , T → ∞ . (43)
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From this, we obtain

Z(T ) =

∫ ∞
−∞

dx⟨x|e−ĤT |x⟩ =
∑
n

e−EnT ∼ e−E0T , T → ∞ , (44)

and

E0 = − lim
T→∞

1

T
Z(T ) . (45)

Moreover, at finite values of T ,

E0(T ) = − 1

T
lnZ(T ) = E0 −

1

T
ln

(
1 +

∑
n̸=0

e−(En−E0)T

)
< E0 . (46)

Consequently, carrying out calculations at finite values of T (that is always the case
in practice), one gets the result which is smaller than the true value of E0 in the
continuum. If T is large, then,

E0(T ) = E0 −
1

T
e−(E1−E0)T + · · · , (47)

where E1 is the energy of the first excited state and the ellipses stand for even more
suppressed terms. Here, one encounters the first example of a lattice artifact, which
stems from the fact that T is not infinite in the lattice calculations.

Further, since the Gaussian integral can be calculated explicitly, it is possible to
obtain a closed expression for Z(T ):

Z(T ) =

∫ N−1∏
i=0

dxi√
2πa

exp

(
− 1

2a

{
1

2

(
xi+1 − xi

a

)2

+
ω2x2i
2

})

=

∫ N−1∏
i=0

dxi√
2πa

exp

(
− 1

2a

N−1∑
i,j=0

xiMijxj

)
, (48)

where the matrix M is given by

M =


z −1 0 0 · · · −1
−1 z −1 0 · · · 0
0 −1 z −1 · · · 0
· · · · · · · · · · · · · · · · · ·
−1 0 0 0 · · · z

 , z = 2 + (aω)2 . (49)

Performing Gaussian integration, we get:

E0(T ) = − 1

T
ln

(
det(M)−1/2

)
=

1

2T
ln

(
det(M)

)
. (50)
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Figure 5: The quantity E0(T ), calculated numerically and with the use of Eq. (46).
The harmonic oscillator spectrum E0 = 1/2, E1 = 3/2, E2 = 5/2, . . . is an input in
these calculations. It is seen that Eq. (46) neatly converges to the exact result.

In order to calculate the determinant, let us first solve the eigenvalue equation for
the matrix M:

N−1∑
i=0

Mikx
(n)
k = λ(n)x

(n)
i , (51)

or,

(z − λ(n))x
(n)
k = x

(n)
k−1 + x

(n)
k+1 , k = 0, · · · , N − 1 . (52)

This equation is solved by the following ansatz:

x
(n)
k = c exp

(
2πi

N
nk

)
, n = 0, · · · , N − 1 . (53)

The solution obeys the periodic boundary conditions:

x
(n)
N = c exp(2πin) = x

(n)
0 . (54)

Substituting this ansatz into the eigenvalue equation, we get:

λ(n) = z − 2 cos
2πn

N
= 1 + (aω)2 − 2 cos

2πn

N
, (55)

and

E0(T ) =
1

2T

N−1∑
n=0

ln

(
1 + (aω)2 − 2 cos

2πn

N

)
. (56)

For a fixed T , this expression can be rewritten as:

E0(T ) =
1

2T

N−1∑
n=0

ln

(
1 +

(Tω)2

N2
− 2 cos

2πn

N

)
. (57)
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Figure 6: The N -dependence of the quantity E0(T ), calculated at a fixed large value
T = 10.

Calculating this expression for a fixed T and taking N very large, one should recover
Eq. (46). This is nicely demonstrated in Fig. 5, which shows that, taking contribu-
tions from few excited states, one can nicely reproduce the exact result for all not
very small values of T (in these calculations, we took ω = 1).

Next, we study another limit, taking a fixed and sending T to infinity. In this
manner, we may study the discretization effect in the ground state energy E0. A
straightforward calculation gives:

E0 = lim
T→∞

1

T

N−1∑
n=0

ln

(
1 + (aω)2 − 2 cos

2πn

N

)

=
1

2a

∫ 2π

0

dφ

2π
ln

(
1 + (aω)2 − 2 cosφ

)

=
1

2a
ln

(√
1 +

(aω)2

2
+ (aω)

√
1 +

(aω)2

4

)
≃ ω

2

(
1− aω

4
+O((aω)2)

)
. (58)

This dependence is displayed in Fig. 6, where we display E0(T ) at a large fixed
T = 10 for different values of N .

In both cases of artifacts, considered above, the scale is set by a dynamical
parameter ω. These artifacts are expressible in terms of the dimensional variables
ωT and ωa, respectively.

2.7 Quantum mechanics on the torus

Up to now, we have considered one-dimensional quantum mechanics, where the time
interval was restricted but the variable x could take any value −∞ < x < ∞. The
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R

Figure 7: After imposing boundary condition, the linear x-axis folds into a circle

with the radius R =
L

2π
.

situation is different in quantum field theory, where the space coordinate x, along
with the time t, is the argument of a quantized field and, therefore, its range is also
restricted. In practice, this restriction can be achieved by imposing the boundary
conditions on the quantum fields. In most cases, the periodic boundary conditions
are used in the spatial direction as well:

φ(x+ nL, t) = φ(x, t) , n = · · · ,−2,−1, 0, 1, 2, · · · . (59)

Here, L denotes the size of a space “box.” Geometrically, imposing the boundary

condition transforms the x-axis into a torus with the radius R =
L

2π
, see Fig. 7 (in

case of one dimension, a torus is just a circle). Here, we mention that the variable

t is also defined in a restricted interval, −T
2
< t <

T

2
. There is no reason, why L

and T should be equal. On the contrary, in the most cases considered below, we will
assume T ≫ L and will, eventually, take the limit T → ∞ while leaving L finite.

In the context of quantum mechanics, could also study the effects coming from
confining a system in a finite box. To this end, one imposes the similar boundary
conditions on the wave function:

Ψ(x+ nL, t) = Ψ(x, t) , Ψ′(x+ nL, t) = Ψ′(x, t) . (60)

in other words, the continuity of the wave function itself, together with its first
derivative is required.

Consider first the free motion and start from the infinite space. The eigenfunc-
tions of the free Hamiltonian are:

Ψk(x, t) = exp

(
− k2

2m
t+ ikx

)
= exp

(
− k2

2m
t

)
Φk(x) . (61)

These obey the Schrödinger equation in the Euclidean space:

d

dt
Ψk(x, t) =

1

2m

d2

dx2
Ψk(x, t) . (62)

The spectrum is continuous. The normalization condition takes the form:∫ ∞
−∞

dxΦ∗k(x)Φq(x) = 2πδ(k − q) , (63)

18



and the closure relation is given by∫ ∞
−∞

dk

2π
Φk(x)Φ

∗
k(y) = δ(x− y) . (64)

On the torus, the eigenfunctions obey the same Schrödinger equation. Imposing the
periodic boundary condition gives:

Ψk(x+ nL, t) = exp

(
− k2

2m
t+ ik(x+ nL)

)
= Ψk(x, t) . (65)

From this we get:

eiknL = 1 and k =
2π

L
n , n ∈ Z . (66)

Thus, the spectrum is discrete. The normalization condition takes the form:∫ L/2

−L/2
dxΦ∗k(x)Φq(x) = Lδkq , (67)

and the closure relation is written as:

1

L

∑
k

Φk(x)Φ
∗
k(y) =

∑
n∈Z

δ(x− y + nL) . (68)

Can these results be obtained in the path integral formalism?
Consider first the case of the infinite space. As the path integral is Gaussian,

modulo a constant factor, it is equal to the integrand evaluated at the solution of

the classical equation of motion x(t) = x+
x′ − x

T
t. Thus,

⟨x′|e−ĤT |x⟩ =

∫
Dx exp

(
−
∫ T

0

dt
mẋ(t)2

2

)

= const exp

(
−
∫ T

0

dt
m(x′ − x)2

2T 2

)
= const exp

(
−m(x′ − x)2

2T

)
. (69)

The constant factor is determined from the requirement that

lim
T→0

⟨x′|e−ĤT |x⟩ = ⟨x′|x⟩ = δ(x′ − x) . (70)

This gives

const =

√
m

2πT
, (71)
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x

x′

Figure 8: Two trajectories on the torus from x to x′ with different winding numbers.
The red trajectory corresponds to the winding number 0 and the blue one to the
winding number 1.

and, finally,

⟨x′|e−ĤT |x⟩ =
√

m

2πT
exp

(
−m(x′ − x)2

2T

)
. (72)

Further, it can be seen that

⟨x′|e−ĤT |x⟩ =
∫ ∞
−∞

dk

2π
exp

(
− k2

2m
− ik(x′ − x)

)
. (73)

From the above formula we see that the spectrum is continuous, the stationary wave

functions are Φk(x) = eikx and the energy is given by Ek =
k2

2m
.

Next, let us derive the expression for the transition kernel ⟨x′|e−ĤT |x⟩ of the
non-interacting particle on the torus. In this case, the topology of the torus plays
a decisive role. Recall that the absolute value squared of the transition kernel gives
the transition probability of a particle from x to x′. In the infinite space, we have
just one classical trajectory – a straight line, connecting x and x′, with a particle,
moving along it with a constant velocity. On the opposite, on the torus we have a
tower of trajectories that differ by a winding number. So, the particle can go from
x to x′ directly, or wind around the center of a circle any number of times (in either
direction), see Fig. 8. Consequently, on the torus,

⟨x′|e−ĤT |x⟩ =
∑
n∈Z

⟨x′ − nL|e−ĤT |x⟩ =
∑
n∈Z

√
m

2πT
exp

(
−m(x′ − nL− x)2

2T

)
. (74)

Here, one may use the Poisson formula:∑
n∈Z

δ(y − n) =
∑
n∈Z

e2πiny . (75)
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Figure 9: Two trajectories on the torus from x to x′, passing through the area where
the potential is non-zero. It is seen that the trajectory with the winding number 1
passes twice through this area.

and obtain:

⟨x′|e−ĤT |x⟩ =

√
m

2πT

∑
n∈Z

∫ ∞
−∞

dz

L
exp

(
−m(x′ − z − x)2

2T
+

2πinz

L

)

=
1

L

∑
n∈Z

eikn(x
′−x)

√
m

2πT

∫ ∞
−∞

dz exp

(
−mz

2

2T
+ iknz

)

=
1

L

∑
n∈Z

exp

(
− k2n
2m

+ ikn(x
′ − x)

)
, kn =

2π

L
n . (76)

We see now that the spectrum is discrete, and the stationary wave function is given

by Φn(x) = eiknx with kn =
2π

L
n.

2.8 Introducing a short-range potential

Now, let us consider a particle, moving in the short-range potential V (x). The
short-rangedness of the potential means that its range, r, is much smaller than L.

Consider again the path integral, which connects the points x and x′. As we
have learned in the previous section, one has to sum up over all trajectories that go
from x to x′ – in other words, one has to take into account the trajectories with any
winding number, going “around the world.” Consider, for instance, the trajectory
with a winding number one. It can be easily seen from Fig. 9 that the trajectory
passes twice through the area where the potential is nonzero. The trajectories with
larger winding numbers will pass through this area many times. Unfolding now a
torus into the straight line, we get many copies if the potential, separated from each
other by L. This is shown in Fig. 10. The points x and x + nL on the linear axis
are identified.

Putting differently, the short-range potential on the torus maps into the periodic
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Figure 10: Unfolding the torus, we see that a short-range potential on the torus is
equivalent to the periodic potential on a straight axis.

potential on the straight line:

VL(x) =
∑
n∈Z

V (x+ nL) . (77)

Consequently, the spectrum of the particle on the torus, moving in the potential
V (x), is given by the solution of the Schrödinger equation in the infinite space(

− 1

2m

d2

dx2
+ VL(x)

)
Φk(x) = EkΦk(x) . (78)

In addition, the wave functions are required obey periodicity (i.e., the points x and
x+ nL should be physically equivalent):

Φk(x+ nL) = Φk(x) , Φ′k(x+ nL) = Φk(x) . (79)

The spectrum of Eq. (78) completely differs from the spectrum of a particle, scat-
tered from the short-range potential in the infinite space. Namely, as it is well known,
the spectrum in the infinite space is continuous and, in addition, can contain isolated
bound states. On the other hand, the spectrum in the periodic potential has band
structure and the eigenfunctions (Bloch wave functions) have the property:

Φk(x+ L) = eiθΦk(x) , 0 ≤ θ < 2π . (80)

Imposing the periodic boundary condition chooses one representative in each band.
The spectrum becomes discrete.

It should be pointed out especially that the crucial point in the above discussion
was the short-rangedness of the potential. Different mirror copies of the potential
then do not overlap.

2.9 The energy shift of the bound state on the torus

Suppose that the potential V (x) has a discrete spectrum. Further, assume that one
or few bound states are shallow. This means that the binding momentum of the
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bound state, which is defined by

κB =
√
2mB , (81)

where EB is the binding energy, obeys the following relations

κ−1B ≫ r , κ−1B ≪ L . (82)

In other words, the characteristic length scale in such a bound state is much larger
than the range of the potential. The fine details of the potential do not matter in
this case.

Consider the stationary Schrödinger equation in the infinite space (Ĥ0 denotes
the free Hamiltonian):

(Ĥ0 + V̂ )|ΦB⟩ = −EB|ΦB⟩ . (83)

The bound-state wave function is normalized to unity:∫ ∞
−∞

dx|ΦB(x)|2 = 1 . (84)

The same equation on the torus takes the form:

(Ĥ0 + V̂L)|ΦL⟩ = −EL|ΦL⟩ . (85)

Define the trial wave function:

⟨x|Φ0⟩ =
∑
n∈Z

ΦB(x+ nL) . (86)

Then,

(Ĥ0 + V̂L)|Φ0⟩ = −EB|Φ0⟩+ |η⟩ , (87)

where

⟨x|η⟩ =
∑

n,j∈Z ,n̸=j

V (x+ nL)ΦB(x+ jL) . (88)

Since both V (x) and ΦB(x) are localized, the vector |η⟩ is very small in the whole
space and can be considered as a perturbation. Applying the first-order perturbation
theory, we get:

EL − EB = δE = − ⟨ΦL|η⟩
⟨ΦL|Φ0⟩

≃ − ⟨Φ0|η⟩
⟨Φ0|Φ0⟩

. (89)

There are many terms in the product ⟨Φ0|η⟩. Since the bound-state wave function
falls off exponentially, the largest contribution comes from the terms, in which n
and j differ by 1. There are two such terms. So, finally,

δE = −2

∫ ∞
−∞

dxΦ∗B(x)V (x)ΦB(x+ L) . (90)
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At large distances, the bound-state wave function falls off exponentially:

ΦB(x) ∼ ABe
−κB |x| , (91)

where AB is the so-called asymptotic normalization coefficient. Since V (x) is short-
ranged, one can replace ΦB(x + L) by its asymptotic expression.Using Schrödinger
equation, one gets:

δE = −2ABe
−κBL

∫ ∞
−∞

(
1

2m

d2

dx2
− EB

)
Φ∗B(x)

= 2ABEBe
−κBL

∫ ∞
−∞

dxΦ∗B(x)

= 4|AB|2
EB

κB
e−κBL , (92)

where we have neglected the surface term and used the asymptotic expression to

evaluate the integral

∫ ∞
−∞

dxΦ∗B(x). This is allowed, since only the large-distance

behavior is relevant in this integral.
To summarize, if we take a shallow bound state that emerges in some attractive

short-range potential, and restrict it on a torus, the energy changes. This change
is however exponentially small for large L. The pertinent factor is e−κBL and does
not depend on the details of the potential (except, of course, the value of κB). All
information about the short-range details of the potential is concentrated in the
asymptotic normalization constant AB.

2.10 Scattering on the short-range potential

Again, consider first the infinite space. The reduced Schrödinger equation for the
two-particle scattering is given by:(

− 1

2m

d2

dx2
+ V (x)

)
Φk(x) = EkΦk(x) . (93)

Assume, for simplicity, that the particles are identical. Then, the Bose-symmetry
gives Φk(−x) = Φk(x). Then, the asymptotic form of the solution at |x| ≫ r is:

Φk(x) = e−ik|x| + e2iδ(k)eik|x| , (94)

where k =
√
2mEk and δ(k) is called the scattering phase.

On the torus, there is no scattering in the sense that there is no continuum
spectrum. If the periodic boundary conditions are imposed:

Φk

(
L

2

)
= Φk

(
−L
2

)
, Φ′k

(
L

2

)
= Φ′k

(
−L
2

)
, (95)
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then, using the asymptotic form of the wave functions, we obtain:

e2iδ(k)eikL = 1 , (96)

and, finally,

kL = 2πn− 2δ(k) , n = 0, 1, . . . . (97)

Here, we encounter the simplest example of the quantization condition, i.e., the
equation that determines the spectrum of a particle on a torus, given the phase shift
in the infinite space. One could put the argument other way around: measuring
(numerically) the (discrete) energy levels En on the torus, it is possible to determine
the phase shift δ(k) at kn =

√
2mEn, even there is no scattering on the torus!

The above equation represents a 1-dimensional version of Lüscher equation which,
nowadays, plays a central role in the extraction of the scattering observables on the
lattice. In the following, we shall consider this equation in detail.
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3 Quantum field theory on the lattice

3.1 The scalar field

In the beginning, we shall consider the “latticization” of a single real scalar field
φ(x), which is described by an Euclidean action functional

S[φ] =

∫
d4x

{
1

2
∂µφ(x)∂µφ(x) +

m2

2
φ2(x) +

λ

4
φ4(x)

}
. (98)

The generating functional is given by

Z(j) =

∫
Dφ exp

(
−S[φ] +

∫
d4xj(x)ϕ(x)

)
. (99)

The Euclidean correlators are obtained by differentiating the above expression with
respect to the external current j(x) and setting it to zero at the end:

⟨0|Tφ(x1) · · ·φ(xn)|0⟩ =
δ

δj(x1)
· · · δ

δj(xn)
Z(j)

∣∣∣∣
j=0

. (100)

We shall discretize the path integral in Eq. (99) on the hypercubic Euclidean lattice,
shown in Fig. 11. The lattice is a box of a size L, divided into N intervals of length
a each, so L = Na (In the following, it will be sometimes useful to consider the time
and spatial directions separately, denoting the elongation of a box in time direction
by T . In order to simplify the notations, we however stick to T = L here.).

The fields φ(x) become discrete variables, defined in the sites of the lattice. Any
integral is replaced by the sum:∫ L/2

−L/2
d4xf(x) → a4

∑
x

f(x) = a4
N−1∑
m1=0

· · ·
N−1∑
m4=1

f(m1,m2,m3,m4) . (101)

Hence, ∫
d4x

{
m2

2
φ2(x) +

λ

4
φ4(x)

}
→ a4

∑
x

{
m2

2
φ2(x) +

λ

4
φ4(x)

}
. (102)

Further, there are two equivalent definitions of the derivative that yield the same
result in the continuum limit:

∂µφ(x) =
1

a
(φ(x+ aµ̂)− φ(x)) ,

∂∗µφ(x) =
1

a
(φ(x)− φ(x− aµ̂)) . (103)

Here, µ̂ denotes a unit vector in the direction of µ.
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a

L

Figure 11: Hypercubic lattice. a denotes the lattice spacing and L = Na is the size
of the box.

In order to define the derivative in a consistent manner, one has to impose
boundary conditions, i.e., one has to specify the value of φ(x+Naµ̂), corresponding
to a field gone around the world once. The most widely used choice is to impose the
so-called periodic boundary conditions:

φ(x+Naµ̂) = φ(x) . (104)

In general, the twisted boundary conditions can be imposed

φ(x+Naµ̂) = eiθµφ(x) , 0 ≤ θµ < 2π . (105)

For θµ = 0, this reduces to the periodic boundary conditions. Further, if not men-
tioned specially, the periodic boundary conditions are implicit by default.

The path integral measure is defined as:

Dφ = const
∏
x

∫ ∞
−∞

dφ(x) . (106)

and the Euclidean correlators are given by

⟨0|Tφ(x1) · · ·φ(xn)|0⟩ =
1

Z

∫
Dφφ(x1) · · ·φ(xn)e−S[φ] , (107)

where

Z =

∫
Dφ e−S[φ] , (108)

and

S[φ] = a4
∑
x

{
1

2

∑
µ

(
∂µφ(x)∂µφ(x)

)
+
m2

2
φ2(x) +

λ

4
φ4(x)

}
. (109)
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3.2 Momentum space

Performing the Fourier transform on the lattice, one has to deal with a discrete set of
momenta instead of a continuum, as in the infinite space. If the periodic boundary
conditions are imposed, this set is given by

pµ =
2π

L
nµ , nµ ∈ Z . (110)

For fixed µ, xµ takes the values

xµ = −L
2
+mµa , mµ = 0, · · · , N − 1 . (111)

Since the number of the degrees of freedom in the coordinate and momentum spaces
should be the same, the values of nµ should be also restricted. one may choose
(taking N even for simplicity):

nµ = −N
2

+ 1, · · · , N
2
. (112)

Then, the momentum cutoff on the lattice (the largest available momentum) is given
by

pmax =
π

a
(113)

Consequently, a finite lattice spacing acts as an ultraviolet regulator.
The Fourier transform for the fields takes the form:

φ̃(p) = a4
∑
x

e−ipxφ(x) ,

φ(x) = (Na)−4
∑
p

eipxφ̃(p) . (114)

The momentum integration is replaced by a sum

(Na)−4
∑
p

f̃(p) . (115)

There are two interesting limiting cases. Consider first the case of an infinite volume
at a finite lattice spacing, i.e., L→ ∞ and a = L/N = const. In this case,

(Na)−4
∑
p

f̃(p) →
∫ π/a

−π/a

d4p

(2π)4
f̃(p) . (116)

In other words, a finite lattice spacing indeed acts as a cutoff – the integration is
restricted to the first Brillouin zone.
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In the opposite case a → 0 and L = Na = const, the sum over p runs over all
discrete values from −∞ to +∞. This is the case of continuum physics in a finite
volume, which will be considered in detail in our lectures.

In order to find the propagator of the scalar field, we shall rewrite the quadratic
part of the action in the momentum space:

S0[φ] = −1

2
a8

∑
xy

φ(x)Sxyφ(y) , (117)

where

Sxy = −1

4

∑
z

{
1

a2

∑
µ

(δz+aµ̂,x − δz,x)(δz+aµ̂,y − δz,y) +m2δz,xδz,y

}
, (118)

and

Sp =
a4

N4

∑
xy

e−ip(x−y)Sxy = −m2 − 4

a2

∑
µ

sin2 apµ
2
. (119)

Here, δx,y is the Kronecker’s symbol, corresponding to the periodic boundary condi-
tions, i.e.,

δx,y =

{
1, if xµ + nµL = yµ , nµ ∈ Z ,

0, otherwise.
(120)

From Eq. (119), one can read off the expression of the propagator on the lattice:

G(p) =
1

m2 +
4

a2
∑
µ

sin2 apµ
2

. (121)

In the continuum limit a → 0, the standard expression for the scalar operator is
restored

G(p) =
1

m2 +
∑

µ p
2
µ +O(a2)

→ 1

m2 + p2
. (122)

3.3 Perturbation theory

The perturbative expansion of Green functions can be constructed pretty much in
the same manner as in the continuum. The vertices that describe the interactions are
the same (in case of derivative vertices, one replaces these by the lattice derivatives,
see Eq. (103)), whereas the propagators are replaced by lattice propagators. For
the illustrative purposes, let us consider the calculation of the four-point function at
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T = + + crossed terms
p1

p2

p3

p4

l

p1 + p2 − l

Figure 12: The scattering amplitude in the φ4 theory at one loop.

one loop (the Feynman diagrams are shown in Fig. (12). The scattering amplitude
is given by the familiar expression:

T (p1, p2; p3, p4) = −6λ+
1

2
(6λ)2

[
I(p1 + p2) + I(p1 − p3) + I(p1 − p4)

]
, (123)

where

I(p) = (Na)−4
∑
l

1(
m2 +

1

a2
∑
µ

sin2 alµ
2

) 1(
m2 +

1

a2
∑
µ

sin2 a(pµ − lµ)

2

) . (124)

Consider the limit of the infinite volume L→ ∞ first. The above loop integral takes
the form

I(p) =

∫ π/a

−π/a

d4l

(2π)4
1(

m2 +
1

a2
∑
µ

sin2 alµ
2

) 1(
m2 +

1

a2
∑
µ

sin2 a(pµ − lµ)

2

) . (125)

This integral is well defined, because the ultraviolet divergences are regulated at a
finite a. Moreover, it can be shown by direct calculation that it diverges logarith-
mically, as a→ 0:

I(p) = − 1

16π2

∫ 1

0

dx ln
[
a2(m2 + x(1− x)p2)

]
+ C2 −

1

16π2
+O(a2) , (126)

where C2 = 0.0303457 . . . is a numerical constant.
Next, in the limit a → 0 (but still in a finite volume), the above loop takes the

following form:

I(p) =
1

L4

∑
l

1

(m2 + l2)

1

(m2 + (p− l)2)
. (127)

Finally, we shall often refer to the “final volume effects” as to the one caused by a
finite spatial elongation of a box. It is assumed that time elongation T ≫ L can be
taken to infinity. In this case,

I(p) =
1

L3

∫
dk4
2π

∑
l

1

(m2 + l2)

1

(m2 + (p− l)2)
. (128)
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It is important to note that ultraviolet divergences, arising in the above integrals at
L ̸= ∞ are the same as in the infinite volume. Intuitively, this is obvious, since the
introduction of a box alters the infrared physics only. Hence, the above expressions,
written down in the limit a → 0, strictly speaking, make sense only together with
an ultraviolet regulator. As we know, a can indeed act as such regulator. However,
for convenience, it is more useful to use different regulators, say, the dimensional
regularization or cutoff regularization. The calculations are much simpler in this
case, and the physical results are the same. Such a separate treatment of finite-
volume effects and the ultraviolet divergences is possible because the scales, which
are relevant for these two cases, are vastly different.

3.4 Fermions on the lattice

QCD is formulated in terms of quarks and gluons. Therefore, in order to write down
the generating functional of lattice QCD, we have to learn, how to define fermions
and gauge bosons on the lattice. In this section we start with the fermions.

The free fermion action functional in the Euclidean space in the continuum is
given by

SF [ψ, ψ̄] =

∫
d4xψ̄(x)(γµ∂µ +m)ψ(x) , (129)

where the relation between the gamma-matrices in the Euclidean and Minkowski
spaces is given by:

γ4(Eucl) = γ0(Mink) , γk(Eucl) = iγk(Mink) . (130)

Substituting this action functional into the path integral, one may explicitly perform
the Grassmann integration. The free fermion correlator is given by

⟨0|Tψ(x)ψ̄(y)|0⟩ =
∫

d4p

(2π)4
eip(x−y)

m+ iγµpµ
. (131)

One may proceed with the “latticization” of the fermion field in analogy with the
scalar field, placing the fields ψ(x) and ψ̄(x) in the sites of a hypercubic box. The
derivatives on the fermion fields are defined as:

∂µψ(x) =
1

a
(ψ(x+ aµ̂)− ψ(x)) ,

∂∗µψ(x) =
1

a
(ψ(x)− ψ(x− aµ̂) (132)

(similarly for ψ̄(x)). Further, taking into account the Hermiticity, a natural lattice
generalization of the differential operator γµ∂µ is

Dnaive =
1

2
γµ(∂µ + ∂∗µ) . (133)
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The formulation, which uses the above differential operator, goes under the name
of naive fermions, and is known to have the problem with the so-called doublers.
To illustrate the problem, we display the fermion propagator, which can be directly
obtained from the fermion action functional by performing the Fourier transform,
as in case of the scalar field:

SF (p) =

m− i
∑
µ

γµp̂µ

m2 +
∑
µ

p̂2µ
, (134)

where

p̂µ =
1

a
sin apµ . (135)

Consider, for simplicity of the argument, the case with m = 0. The free fermion
propagator has a pole at pµ = 0, corresponding to the massless particle in the
continuum limit. However, besides this pole, the propagator has 15 additional poles

at pµ =
π

a
nµ, where nµ = (1, 0, 0, 0), nµ = (0, 1, 0, 0), . . . , nµ = (1, 1, 1, 1). These

additional poles at different corners of the Brillouin zone are called doublers. It is
clear that, in the continuum limit, the theory with naive fermion action converges
to a theory with 16 fermion species instead of one. This, at the end, means that the
naive fermion Lagrangian does not represent an appropriate lattice generalization
of the Dirac Lagrangian.

There exist several ways to deal with the problem. Perhaps the simplest one
was proposed by Wilson. The action with Wilson fermions contains the differential
operator

D0
W =

1

2

(
γµ(∂µ + ∂∗µ)− a∂µ∂

∗
µ

)
. (136)

It is clear that the last term (the Wilson term) vanishes, as a → ∞, so, in fact,
the above expression is a valid choice of a lattice generalization for the continuum
differential operator. However, unlike the choice that has led to naive fermions,
this choice does not give rise to the doublers. In order to see this, note that the
propagator for Wilson fermions takes the form:

SW (p) =
−iγµp̂µ +

2

a
sin2 apµ

2
+m

p̂2 +

(
2

a
sin2 apµ

2
+m

)2 . (137)

It is straightforward to see that the expression

2

a
sin2 apµ

2
+m (138)
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plays the role of mass in case of Wilson fermions. This quantity is equal to m at the

origin pµ = 0 and is equal to m +
2

a
,m +

2

a
, m +

4

a
, m +

6

a
, m +

8

a
in the different

corners of the Brillouin zone. Thus, in this approach the doublers get the masses of

order of the ultraviolet cutoff
1

a
and thus disappear in the continuum limit.

3.5 Gauge fields

In the continuum, the gauge fields Gµ ensure that the Lagrangian is invariant under
local symmetry group G. Namely, if Λ(x) ∈ G is an element of this group, the
fermions and the gauge bosons transform as follows:

ψ(x) 7→ Λ(x)ψ(x) ,

ψ̄(x) 7→ ψ̄(x)Λ(x)−1 ,

Gµ(x) 7→ Λ(x)Gµ(x)Λ(x)
−1 + iΛ(x)∂µΛ(x)

−1 . (139)

In case of QCD, the group G coincides with the color group SU(3)c.
The covariant derivative is defined as:

∇µ = ∂µ − iGµ . (140)

It can be straightforwardly seen that the covariant derivatives of ψ(x), ψ̄(x) trans-
form as the fields themselves:

∇µψ(x) 7→ Λ(x)∇µψ(x) ,

ψ̄(x)
←
∇µ 7→ ψ̄(x)

←
∇µ Λ(x)−1 . (141)

Further, the field tensor

Fµν(x) = ∂µGν(x)− ∂νGµ(x)− i[Gµ(x), Gν(x)] (142)

transforms as

Fµν(x) 7→ Λ(x)Fµν(x)Λ(x)
−1 . (143)

The gauge invariant action functional in QCD is given by

S =
1

2g2

∫
d4xtr(Fµν(x)Fµν(x)) +

∫
d4xψ̄(x)(γµ∇µ +m)ψ(x) . (144)

In order to generalize these expressions on the lattice, we start with the definition
of the covariant derivative. The ordinary derivative does not transform covariantly:

∂µ(x) =
1

a
(ψ(x+ aµ̂)− ψ(x)) 7→ 1

a
(Λ(x+ aµ̂)ψ(x+ aµ̂)− Λ(x)ψ(x)) . (145)
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Figure 13: Quark and gluon fields on the lattice

We now define the link variable U(x, µ) ∈ SU(3), which transforms as:

U(x, µ) 7→ Λ(x)U(x, µ)Λ(x+ aµ̂)−1 . (146)

Physically, U(x, µ) can be interpreted as an operator that covariantly transports the
color vector from point x+ aµ̂ to point x. It is given by the expression

U(x, µ) = P exp

(
i

∫
dzµGµ(z)

)
, (147)

where the integral runs along the straight line from x + aµ̂ to x and P exp(· · · )
stands for the path-ordered exponent. To the lowest order in a, one can also write

U(x, µ) = exp(−iaGµ(x)) = 1− iaGµ(x) +O(a2) . (148)

Hence, the fields ψ(x), ψ̄(x) live on the sites of a hypercubic lattice, whereas the
gauge fields U(x, µ) live on the links between two sites. This is shown in Fig. 13.

The covariant derivative on the lattice is defined as:

∇µψ(x) =
1

a

(
U(x, µ)ψ(x+ aµ̂)− ψ(x)

)
, (149)

and it can be checked that

∇µψ(x) 7→ Λ(x)∇µψ(x) . (150)
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Figure 14: An elementary plaquette, with the sides looking in the directions µ̂, ν̂.

The covariant derivative ∇∗µ can be constructed analogously.
In order to define the lattice analog of the field tensor Fµν(x), we have to consider

the elementary plaquette with an origin at point x. A plaquette is a collection of four
lattice sites, which form a square with a side length a (see Fig. 14). The plaquette
field is defined as:

Pµν(x) = U(x, µ)U(x+ aµ̂, ν)U(x+ aν̂, µ)−1U(x, ν)−1 . (151)

It can be checked that

Pµν(x) 7→ Λ(x)Pµν(x)Λ(x)
−1 , (152)

and, therefore, the quantity tr(Pµν(x)) is gauge-invariant. The expansion of this
quantity up to and including terms of order a4 gives:

tr (Pµν(x)) = Nc −
a4

2
tr(Fµν(x)Fµν(x)) + · · · , (153)

where Nc = 3 is the number of colors.
Thus, the generalization of the gluonic action functional on the lattice can be

written as

SG[U ] =
1

g20

∑
x

∑
µν

Re tr(1− Pµν(x)) =
1

2g20
a4

∑
x

∑
µν

tr(Fµν(x)Fµν(x)) + · · · ,(154)

and, finally, the QCD Lagrangian on the lattice with Wilson fermions takes the
form:

S[ψ, ψ̄, U ] =
1

g20

∑
x

∑
µν

Re tr(1− Pµν(x)) + a4
∑
x

ψ̄(x)(DW +m0)ψ(x) , (155)

where

DW =
1

2

∑
µ

(
γµ(∇µ +∇∗µ)− a∇µ∇∗µ

)
. (156)

Further, g0 and m0 here denote the “bare” coupling constant and bare mass, respec-
tively.
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3.6 Calculation of the spectrum

The asymptotic spectrum of QCD contains the following states:

• The vacuum state |0⟩

• States, containing one particle, moving with a three-momentum p: for exam-
ple, the one-pion state |π+(p)⟩, or the one-nucleon state |N(p)⟩.

• Multiparticle states (in- or out- states), for example, the two-pion state
|π+(p1)π

−(p2)⟩.

These states are eigenstates of the total QCD Hamiltonian. For example,

H|0⟩ = 0 ,

H|π+(p)⟩ = Eπ(p)|π+(p)⟩ ,
H|π+(p1)π

−(p2)⟩ = (Eπ(p1) + Eπ(p2))|π+(p1)π
−(p2)⟩ ,

· · · (157)

Here, E(p) =
√
M2

π + p2 is the energy of a one free pion with the three-momentum
p.

In order to calculate, say, the mass of a pion, one has first to choose an operator
which carries the same quantum numbers as the pion. For example, π+ can be
described by the field

ϕπ+(x) = d̄(x)γ5u(x) . (158)

It should be also pointed out that a specific choice of the field operator does not
matter: any operator with appropriate quantum numbers will do the job.

Next, one calculates the Euclidean two-point correlator of these fields on the
lattice:

⟨0|Tϕπ+(x)ϕ†π+(y)|0⟩ =
1

Z

∫
DψDψ̄DUϕπ+(x)ϕ†π+(y) exp(−S[ψ, ψ̄, U ]) .

Z =

∫
DψDψ̄DU exp(−S[ψ, ψ̄, U ]) . (159)

On the other hand, using closure relation and the translational invariance, we get

⟨ϕπ+(x)ϕ†π+(y)⟩ =
∑
n

e−En(x4−y4)eiPn(x−y)|⟨0|ϕπ+(0)|n⟩|2 , (160)

where the sum runs over all eigenstates |n⟩ of the Hamiltonian H. Projecting on a
definite three-momentum p can be performed:

a3
∑
x

e−ipx⟨ϕπ+(x)ϕ†π+(0)⟩ =
∑
n

e−Enx4L3δp,Pn|⟨0|ϕπ+(0)|n⟩|2 . (161)
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Here, p =
2π

L
n denotes the quantized three-momentum on the lattice.1

At large Euclidean time separations, the term with the lowest possible energy
dominates the sum. This is the contribution coming from the one-pion state (the
vacuum contribution vanishes). Consequently, we have

a3
∑
x

e−ipx⟨ϕπ+(x)ϕ†π+(0)⟩ ∼ e−Eπ(p)x4 |⟨0|ϕπ+(0)|π+(p)⟩|2 + · · · , (162)

where ellipses stand for the (suppressed) contributions from higher eigenstates.Thus,
at large Euclidean times x4, one can extract the value of Eπ(p) from the two-point
correlator, calculated on the lattice.

The situation is similar, if one wants to extract the energies of the multi-particle
states. For example, in order to extract the energy of the two-pion state in the
center-of-mass frame, one may, for example, use the operators

ϕπ+π+(x4) =
∑
xy

e−ipyϕπ+

(
x+

y

2
, x4

)
ϕπ+

(
x− y

2
, x4

)
, (163)

where, again, p =
2π

L
n is a quantized three-momentum on the lattice. Choosing n =

(0, 0, 0), (0, 0, 1), . . . produces a set of operators, each having the correct quantum
numbers. Therefore, each operator from this set can be used to extract the energy
of the two-pion state2.

As we have already seen from the quantum-mechanical examples already, the
energies extracted in this manner contain various artifacts. Besides the statistical
error, which – in principle – can be reduced by increasing the number of configura-
tions, there are systematic effects as well. For example, there will be effects caused
by the admixture of other states in the spectrum (thermal pollution), as well as the
effects from a finite lattice spacing and finite volume.

In these lectures, we shall be primarily interested in the finite-volume effects,
leaving aside other (otherwise also very interesting) problems. Namely, we assume
that one has carefully eliminated the admixture to unwanted states in the correlators,
singling out the states whose energies we wish to determine. Also, we assume that
the calculations were performed at different values of the lattice spacing and the

1At this place, it is worth mentioning that the eigenstates |n⟩ of the Hamiltonian in a finite
volume do not coincide with those in the infinite volume given in Eq. (157). The free one-particle
state is an exception, and even its mass is modified in a finite volume (this correction, is, how-
ever, exponentially suppressed in L). The reason for this is that one cannot completely neglect
interactions between different hadrons in a finite volume, since the hadrons are never allowed to
go at the asymptotically large distances. Hence, in fact, |n⟩ denote interacting states and their
interpretation as n-particle states is, strictly speaking, invalid. Below, we shall however sometimes
allow ourselves such a slight abuse of language.

2In fact, to reduce the error, it is convenient to use the whole set of these operators simultane-
ously, solving the generalized eigenvalue problem. We shall not discuss this issue further, because
it is not directly related to the topic of our lectures.
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results were reliably extrapolated to the continuum limit. The results then still
contain the effects, related to the finite spatial elongation of the lattice. These
effects are of two types:

• One-particle states belong to the discrete spectrum. The energy of such state
has a well-defined limit, when the volume becomes very large. The corrections
to the infinite-volume limit are exponential (we have seen this in the example
of the energy of the quantum-mechanical bound state).

• Multi-particle states belong to the continuum. When the volume becomes
large, all these collapse towards the pertinent thresholds, so the meaningful
infinite-volume limit does not exist. The corrections to the threshold energies
go as inverse powers of L. Physical quantities one is interested in should be
extracted at a finite volume (quantum-mechanical example: extracting the
phase shift with the Lüscher equation). The infinite-volume limit should be
performed for these quantities and not for the energies.

Below, a systematic calculation of the finite-volume effects in both cases will be
addressed.

38



4 Effective field theories

4.1 Chiral symmetry

As already mentioned in the introduction, the asymptotic spectrum of QCD does
not contain quarks and gluons but, rather, the mesons and baryons. These emerge
as poles in the Green functions of composite operators with pertinent quantum
numbers. For example, pions are described by the composite field

φa
π = ψ̄(x)iγ5T

aψ(x) , (164)

where ψ(x) = (u(x), d(x), s(x))T is the light quark field, and T a, a = 1, 2, 3 are
the generators of the flavor SU(3) group. The Green functions of the composite
operators are obtained from the (Euclidean) generating functional:

Z(s, p, v, a) =

∫
DGµDψDψ̄ exp

(
−
∫
d4x(LG + LF )

)
, (165)

where LG is the standard gluonic part of the Lagrangian (which may include, in
the continuum, ghosts, gauge fixing term and all that), whereas LF denotes the
fermion part of the Lagrangian, equipped with the scalar, pseudoscalar, vector and
axial-vector external sources:

LF = ψ̄(γµ(Dµ − ivµ − iγ5aµ) + s− iγ5p)ψ , Dµ = ∂µ − iGµ . (166)

The Green functions of the quark bilinear operators are obtained by differentiat-
ing the generating functional Z with respect to the corresponding external sources
s, p, v, a and, at the end, setting:

s = M , p = v = a = 0 , (167)

whereM = diag (mu,md,ms) is the mass matrix of the light quarks. Using Eq. (167),
it is seen that the fermion Lagrangian reduces to the conventional expression:

LF = ψ(γµDµ +M)ψ . (168)

Hence, the above-described procedure indeed yields the Green functions of the com-
posite quark bilinears in QCD.

The generating functional has a symmetry with respect to the transformations
under the local U(3)L×U(3)R flavor group. In order to see this, one has to introduce
the left- and right-hand components of the fermion fields:

ψL(x) =
1

2
(1− γ5)ψ(x) , ψR(x) =

1

2
(1 + γ5)ψ(x) , (169)

and rewrite the fermionic Lagrangian in the following form:

LF = ψ̄Lγµ(Dµ − ilµ)ψL + ψ̄Rγµ(Dµ − irµ)ψR + ψR(s+ ip)ψL + ψ̄L(s− ip)ψR ,(170)
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where

lµ = vµ − aµ , rµ = vµ + aµ . (171)

It is now seen that the Lagrangian is invariant under local chiral U(3)L × U(3)R
transformations:

ψL(x) 7→ ψ′L(x) = gL(x)ψL(x) ,

ψR(x) 7→ ψ′R(x) = gR(x)ψR(x) ,

lµ(x) 7→ l′(x) = gL(x)lµ(x)gL(x)
† − igL(x)∂µgL(x)

† ,

rµ(x) 7→ r′(x) = gR(x)rµ(x)gR(x)
† − igR(x)∂µgR(x)

† ,

s(x) + ip(x) 7→ s′(x) + ip′(x) = gR(x)(s(x) + ip(x))gL(x)
† ,

s(x)− ip(x) 7→ s′(x)− ip′(x) = gL(x)(s(x)− ip(x))gR(x)
† , (172)

where gL,R(x) ∈ U(3)L,R. Note that these transformations act in the flavor space,
leaving the gluonic part of the Lagrangian intact.

Assuming that the fermionic measure DψDψ̄ is invariant under chiral transfor-
mations3, we immediately conclude that the generating functional is also invariant:

Z(s′, p′, v′, a′) = Z(s, p, v, a) . (173)

Further, the chiral symmetry in QCD is broken down to the vector subgroup
SU(3)V × U(1)V . Almost massless octet of Goldstone bosons (pions, kaons and
η) emerges in a result of this breaking (these would be exactly massless, if quark
masses were exactly zero), whereas all other hadrons have nonzero masses in the
chiral limit.

Now, we come to the crucial point in the discussion. As we said, the spectrum
of QCD does not contain free quarks and gluons, i.e., QCD is an inherently non-
perturbative theory. In order to calculate Green functions (e.g., to find the location
of the poles), non-perturbative methods should be applied.

Let us now define the effective theory given by the generating functional:

Zeff (s, p, v, a) =

∫
DΦeff exp

(
−
∫
d4xLeff [Φeff , s, p, v, a]

)
. (174)

Here, Φeff denotes the set of fields which, by construction, correspond to the parti-
cles, observed in the experiment at low energies (i.e., mesons and baryons). Thus,
the correct pole structure in the effective theory emerges in the perturbation theory,
by definition.

3In fact, the statement about the invariance of the fermion measure should be refined due to
the presence of anomalies. We shall, however, do not elaborate on this issue in the following.
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Further, in order to ensure that the effective theory and the original theory are
equivalent, one has to show that:

Zeff (s, p, v, a) = Z(s, p, v, a) . (175)

Below, we shall define a systematic procedure for constructing Zeff , obeying Eq. (175),
order by order in what is termed chiral expansion. The whole setting goes under
the name of Chiral Perturbation Theory (ChPT).

There are two guiding principles that allow one to systematically construct Zeff :

1) Symmetries: Zeff (s, p, v, a) has exactly the same symmetry properties as
Z(s, p, v, a). Along with the fact that they have the same asymptotic spectrum,
this, according to the Weinberg’s theorem, suffices to claim that both theories are
equivalent.

2) Counting rules: A generic Lagrangian built of the effective fields Φeff contains
infinitely many operators that obey required symmetry properties. If one could
not introduce some hierarchy in these operators, the effective theory will possess
no predictive power. In ChPT, various terms in the Lagrangian can be ordered
according to the well-defined counting rules that take into account their relative
importance at low energies. We shall give an illustration of the counting rules
below.

Let us start with the octet of Goldstone bosons, which are hadrons with the
lightest mass and thus dominate the low-energy spectrum. These can be collected
in one matrix field:

U(x) = exp

(
i

F
λaφa(x)

)
, (176)

where λa are the Gell-Mann matrices for the SU(3) group, and F will be seen to
coincide with the pion decay constant in the chiral limit. The chiral transformation
of the field U is defined as:

U 7→ gRUg
†
L . (177)

Further, one constructs the gauge-invariant building blocks, containing the field U :

DµU = ∂µU + irµU − iUlµ , DµU 7→ gRDµUg
†
L ,

rµν = ∂µrν − ∂νrµ + i[rµ, rν ] , rµν 7→ gRrµνg
†
R ,

lµν = ∂µlν − ∂νlµ + i[lµ, lν ] , lµν 7→ gLlµνg
†
L ,

χ = 2B(s+ ip) , χ 7→ gRχg
†
L . (178)

Here, B is a constant, proportional to the quark condensate in the chiral limit.
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Assume now that we want to construct the effective Lagrangian Leff with the
Goldstone boson fields only (this is a valid procedure, because, as already said,
Goldstone bosons are lightest hadrons in the QCD spectrum). This Lagrangian
should be invariant under chiral U(3)L × U(3)R and thus should be constructed
from the covariant building blocks, introduced above. In addition, this effective
Lagrangian is meant to adequately describe the physics at small momenta only, i.e.,
when the components of the momenta of the Goldstone bosons pµ are much smaller
than a typical hadronic scale Λ ≃ 1 GeV (an estimate the latter is given, e.g., by
the nucleon mass). Consequently, one may introduce a small parameter called p and
uniquely assign different orders of this parameter to the various terms appearing in
the Lagrangian. The resulting counting rules are given by:

• The matrix U(x) = 1+
i

F
λaφa(x) + . . . is, obviously, O(1) in chiral counting.

• The covariant derivative DµU(x) is O(p). Since, apart from ordinary deriva-
tive, it contains the fields rµ, lµ, for consistency reason, the latter should be
O(p) as well.

• The tensors rµν , lµν are then O(p2).

• According to the Gell-Mann-Oakes-Renner formula, the mass squared of the
Goldstone boson is proportional to the quark mass. Consequently, the quan-
tities s, p count at O(p2).

Using these counting rules, one can construct the terms of the chirally symmetric
Lagrangian. There is only a finite number of terms at a given chiral order. A tree-
level contribution from a term at O(pn) to a generic amplitude is then suppressed

by a factor

(
p

Λ

)n

.

4.2 The chiral Lagrangian with mesons and calculation of
the observables

The mesonic Lagrangians contain only even powers in the parameter p:

L = L(2) + L(4) + · · · . (179)

At O(p2), it is possible to construct only two chiral-invariant operators (we write
down the Lagrangians in Minkowski space):

L(2) =
F 2

4
tr (DµUD

µU † + χ†U + χU †) . (180)

This Lagrangian contains two unknown constants: F and B, which are not fixed by
symmetry considerations.
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At the next order, the Lagrangian contains 10 unknown low-energy constants
L1, . . . L10:

L(4) = L1tr (DµUD
µU †)2 + L2tr(DµUDνU

†)tr(DµUDνU †) + · · ·
+ L10tr (UlµνU

†rµν) , (181)

and so on. At a fixed order in p, there is only a finite number of unknown couplings,
which are not fixed by chiral symmetry.

Expanding the lowest-order Lagrangian in the fields φa, we get:

L(2) =
1

2

8∑
a=1

∂µφ
a∂µφa −

8∑
a=1

M2
a

2
φaφa +O(φ4) , (182)

where M2
a denote the masses of Goldstone bosons. Assuming, for simplicity that

the u- and d-quark masses are equal (the isospin is not broken),

mu = md = m̂ , (183)

at the lowest order we get:

M2
π = 2Bm̂ ,

M2
K = B(ms + m̂) ,

M2
η =

2

3
B(2ms + m̂) . (184)

The higher terms in the expansion of the Lagrangian in φa produce the vertices
with 4, 6, 8, . . . Goldstone bosons. It is also seen that these vertices correspond to
the derivative interactions, which become weak at low momenta, irrespective of the
values of the couplings. This fact plays crucial role in establishing the counting
rules.

Up to now, we have dealt with the counting rules at the level of tree diagrams,
emerging from the Lagrangian. In the meson ChPT, the counting for the loop
diagrams can be straightforwardly established, since the scaling behavior of the
meson propagators are simple – namely, since both the Goldstone boson masses and

momenta scale like p, the Goldstone boson propagators
1

M2
a − p2

scale at O(p−2).

Consider, for example the one-loop correction to the Goldstone boson mass, shown
in Fig. 15a. The vertex, produced by the lowest-order Lagrangian, scales at O(p2),
the propagator in the loop at O(p−2), and the loop integration adds O(p4). In total,
the self-energy part contributes at O(p2−2+4) = O(p4) and, thus, at the same order
as the tree contribution from the next-to-leading order chiral Lagrangian, shown
in Fig. 15b. Moreover, the loop graph in Fig. 15a is ultraviolet-divergent. This
divergence comes at order p4 and can be canceled by the divergent counterterm in
L(4).
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L(2) L(4)

a b

Figure 15: One-loop correction to the pion mass, together with the counterterms
from L(4).

L(2) L(2) L(4)

a b

Figure 16: One-loop correction to the pion-pion scattering amplitude, together with
the counterterms from L(4).

The next example is the one-loop contribution to the scattering amplitude of
the Goldstone bosons, shown in Fig. 16a. This diagram counts at O(p2+2−2−2+4) =
O(p4). The ultraviolet divergence, emerging in this loop, can be again eaten up
by pertinent counterterms, contained in L4, see Fig. 16b. This pattern carries on
consistently to the amplitudes with an arbitrary number of external legs, and to
higher orders in chiral expansion.

To summarize, we have demonstrated, how the effective chiral Lagrangian can be
constructed order by order in chiral expansion. One may further use this Lagrangian
in order to calculate the Green functions with Goldstone boson fields at the same
order. According to the Weinberg’s theorem, these Green functions will coincide
with those in QCD (at the same order). This, of course, does not really mean that
we have “solved” QCD, since the Lagrangian of ChPT still contains a large number
of couplings that are not fixed by symmetry (even so, this number is finite at any
fixed chiral order). One has to determine these couplings somehow – e.g., matching
a chosen set of calculated observables to the experiment or to the lattice results,
and predicting the rest. We shall not enter this discussion, however, since the use
of ChPT to study the hadron physics at low energy is not the primary goal of the
present lectures. We are rather using the framework to study the finite-volume
effects, taking for granted that these couplings are already determined elsewhere.
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4.3 Baryon ChPT

Below, we give a very brief summary of the ChPT in the one-baryon sector. Here,
both odd and even powers enter:

L = L(1) + L(2) + · · · . (185)

The lowest-order pion-nucleon Lagrangian is given by

L(1) = tr (B̄(i ̸D −m0)B)− D

2
tr (B̄γµγ5{uµ, B})− F

2
tr (B̄γµγ5[u

µ, B]) , (186)

where B is the octet baryon field, m0 denotes the baryon mass in the chiral limit,
and

uµ = i

[
u†(∂µ − irµ)u− u(∂µ − ilµ)u

†
]
,

DµB = ∂µB + [Γµ, B] ,

Γµ =
1

2

[
u†(∂µ − irµ)u+ u(∂µ − ilµ)u

†
]
,

u =
√
U = exp

(
i

2F
λaφa

)
. (187)

The higher-order Lagrangians are constructed, using the covariant building blocks
defined above.

The power counting in the baryon sector is a subtle issue, because the baryon
propagator is no more a homogeneous function of momenta (namely, it contains a
large scale, the baryon mass in the chiral limit, m0, which scales at O(1)). There
exist different prescriptions, how to formulate the power counting consistently in
this case (infrared regularization, extended MOM scheme, heavy baryon ChPT).
We do not dwell on these issues, because they are irrelevant in the calculation of the
finite-volume artifacts.

4.4 The non-relativistic effective field theories

In the previous sections, we have discussed the construction of the effective theory of
QCD, where all components of the four momenta of Goldstone bosons pµ are of order
of the Goldstone boson masses Ma. The relevant degrees of freedom in this case are
the relativistic Goldstone boson fields φa together with the fields of other hadrons
(e.g., the baryon field B). These fields form a basis for the non-linear realization
of chiral symmetry of QCD, and the effective Lagrangian is constructed order-by-
order in the chiral expansion. It should be however realized that, choosing different
momentum scales, both the relevant degrees of freedom and relevant symmetries will
look very different. Consider, for example, the processes with very high momentum
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π
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π
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Figure 17: One pion producing three pions. Such processes are forbidden in NREFT.

transfer (e.g., deep inelastic ep scattering). Using hadronic degrees of freedom is
very inconvenient here, because there are many different hadrons in a final state. In
this case, using quark and gluon degrees of freedom is the best choice. Moreover,
due to the asymptotic freedom, the color gauge symmetry, which played no explicit
role in ChPT, comes now to the fore.

In many physical problems (on the lattice as well), we have to deal with the
opposite situation. Namely, we have to consider slowly moving particles, whose
three-momenta in magnitude are much smaller than their masses. In this case,
one speaks of the non-relativistic effective field theories. It is also clear that the
symmetry content is different here – namely, the chiral symmetry cannot play an
explicit role. This happens because that all masses (including the masses of the
Goldstone bosons) are now regarded as a heavy scale, the expansion in these masses
is no more possible and various chiral orders mix up in the observables.

Another issue is the choice of the relevant degrees of freedom. At a first glance,
we have the same particles as before. The crucial question is, however, whether the
particles can be created and annihilated in the interaction vertices. For example,
in a relativistic field theory, one pion can produce three pions through the vertex
shown in Fig. 17. This is a perfectly allowed process in ChPT, since a mass gap
here amounts to the two pion masses, and the pion mass represents a light scale for
ChPT. On the contrary, in a theory where the pion mass is considered as a heavy
scale, such processes cannot be included explicitly, and one has to set a framework,
which conserves particle number in each interaction vertex. Such a framework goes
under the name of the non-relativistic effective theory (NREFT).

There exist alternative formulations for NREFT. We start from the simplest one.
Consider the system described by the free Lagrangian:

L0 = ϕ†(x)

(
i∂t −m+

∇2

2m

)
ϕ(x) . (188)

Here, ϕ(x) is a scalar field. Its equation of motion (EOM) is given by:(
i∂t −m+

∇2

2m

)
ϕ(x) = 0 . (189)

46



Note that the EOM is of the first order in the time derivative, in contrast to the
Klein-Gordon equation. The solution of this equation is given by:

ϕ(x, t) =

∫
d3k

(2π)3
e−iEkt+ikxa(k) , Ek =

k2

2m
. (190)

Note that the field ϕ(x) contains only annihilation operator and not the creation
operator, i.e., it cannot be Hermitean.

The propagator of the non-relativistic field is given by:

i⟨0|Tϕ(x)ϕ†(y)|0⟩ =
∫

d4k

(2π)4
e−ikx

m+
k2

2m
− k0 − iε

. (191)

It is seen that the dispersion law for this particle differs from the correct, relativistic
dispersion law:

k0 =
√
m2 + k2 = m+

k2

2m
− k4

8m3
+ · · · . (192)

One may modify the free Lagrangian, adding above corrections:

L0 = ϕ†(x)

(
i∂t −m+

∇2

2m
+

∇4

8m3
+ · · ·

)
ϕ(x) . (193)

The higher-order corrections are considered as a perturbation – their insertion in
the diagrams corrects the non-relativistic dispersion law order by order.

Next, we consider the interactions. We write down all operators, which are ro-
tationally invariant and obey discrete symmetries (the Lorentz-invariance or chiral
symmetry are no more explicit in this framework). The small parameter in the
counting rules are now provided by the magnitude of the three-momentum of a
particle. Hence, the interaction Lagrangian contains a tower of operators with in-
creasing number of space derivatives on the fields (time derivatives can be eliminated
with the use of EOM). So, the Lagrangian takes the form:

LI = c0ϕ
†ϕ†ϕϕ+ c1(ϕ

†
↔
∇2 ϕ†ϕϕ+ h.c.) + c2(ϕ

†ϕ†)
↔
∇2 (ϕϕ) + · · ·

+ d0ϕ
†ϕ†ϕ†ϕϕϕ+ · · · , (194)

where a
↔
∇

2

b = a · ∇2b+∇2a · b. The tree-level contribution from the higher-order

terms of order p2n is suppressed by a factor

(
p2

Λ2

)n

, where Λ is the hard scale of

the non-relativistic theory (the lightest mass present).
It is seen that the interactions given in Eq. (194) indeed preserve the particle

number. For this reason, one can consider the sectors with one, two, three, . . .
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particles individually: the sectors with lower number of particles do not talk to the
sectors with more particles present.

The couplings c0, c1, c2, d0, . . . are the analogs of the low-energy couplings in
ChPT. These should be determined from the matching of the physical observables.
Due to the particle number conservation, the matching in the sectors with a given
particle number can be done without considering the sectors containing higher num-
ber of particles.

4.5 Matching in NREFT

We shall give an example of matching in the two-particle sector. Consider the
scattering amplitude of two identical non-relativistic particles p1 + p2 → q1 + q2,
and choose the center-of-mass (CM) frame p1 = −p2 = p and q1 = −q2 = q. The
total momentum in this frame is given by P = (P0,0) = p1 + p2 = q1 + q2. The
non-relativistic scattering amplitude in the CM frame is denoted by TNR(p,q).

Consider now the underlying relativistic theory, which reduces to our non-re-
lativistic theory in the limit of small three-momenta. The same amplitude in the
relativistic theory is denoted by TR(p,q). The partial-wave expansion of this am-
plitude is given by:

TR(p,q) = 4π
∑
lm

Ylm(p̂)T
R
l (p, q)Y ∗lm(q̂) . (195)

On the energy shell, p = q, the partial-wave amplitude TR
l (p, p) = TR

l (p) obeys the
unitarity relation:

ImTR
l (p) =

p

16πE(p)
|TR

l (p)|2 , E(p) = 2
√
m2 + p2 . (196)

The scattering phase is defined as follows:

TR
l (p) =

16πE(p)

p cot δl(p)− ip
. (197)

The effective-range expansion for the S-wave phase shift δ0(p) = δ(p) reads:

p cot δ(p) = −1

a
+

1

2
rp2 +O(p4) (198)

(for simplicity, we restrict ourselves to the S-waves only). Here, a and r are the
S-wave scattering length and the effective radius, respectively.

Next, let us turn to the matching. Our choice of the normalization of the one-
particle states is different in the relativistic and the non-relativistic theories:

Relativistic: ⟨p|q⟩ = 2w(p)(2π)3δ3(p− q) ,

Non-relativistic: ⟨p|q⟩ = (2π)3δ3(p− q) , (199)
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c0 c1

+ + · · ·

Figure 18: Tree diagrams in NREFT: no derivatives, two derivatives and so on.

where w(p) =
√
m2 + p2. Consequently, each external leg in the non-relativistic

theory carries a factor (2w(p))−1/2, as compared to the relativistic theory. The
matching condition for the on-shell amplitudes in the CM frame then reads:

TR(p,q) = (2w(p))2TNR(p,q) , |p| = |q| . (200)

More precisely, the above condition is assumed to hold, if the left- and right-hand
sides are expanded in momenta p,q up to a given order.

Let us now see, how the matching works in practice. The tree contribution to
the non-relativistic on-shell S-wave amplitude is shown in Fig. 18:

TNR
tree(p) = 4c0 − 8c1p

2 +O(p4) . (201)

The one-loop contribution is shown in Fig. 19:

TNR
1−loop(p) = 8c20

∫
dDk

(2π)Di

1

m+
k2

2m
− k0 − iε

1

m+
k2

2m
− P0 + k0 − iε

. (202)

Note that the above integral is ultraviolet-divergent and should be regularized. Here,
we use the dimensional regularization that leads to the much simpler formulae.
Performing the integration over k0, we get:

TNR
1−loop(p) = 8c20

∫
ddk

(2π)d
1

2m− P0 +
k2

m
− iε

= 8c20(m(2m− P0 − iε))d/2−1
∫

ddk

(2π)d
1

k2 + 1
, (203)

where d = D − 1. Using now the formula:

∫
ddk

(2π)d
1

(k2 + 1)n
=

1

(4π)d/2

Γ

(
n− d

2

)
Γ(n)

, (204)

and taking the limit d→ 3, we finally get4:

TNR
1−loop(p) =

ipm

8π
(4c0)

2 , (205)

4In fact, the loop integral is ultraviolet-divergent. However, a linear divergence disappears in
the dimensional regularization and we arrive at a finite answer.
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c0 c0

k

p− k

Figure 19: The simplest one-loop diagram in NREFT with non-derivative vertices.

c0 c1

k

p− k

Figure 20: The one-loop diagram in NREFT with one derivative vertex.

where p =
√
m(P0 − 2m).

What happens, if the derivative vertex is inserted, see, e.g., Fig. 20? The corre-
sponding loop integral is given by:

TNR
1−loop+derivative(p) = (4c0)(−4c1)

1

2

∫
ddk

(2π)d
p2 + k2

2m− P0 +
k2

m
− iε

. (206)

The denominator of the above expression has the form
k2

m
− p2

m
. Rewriting the nu-

merator as 2p2+(k2−p2) and using the fact that, in the dimensional regularization,∫
ddk

(2π)d
· 1 = 0 , (207)

we finally get:

TNR
1−loop+derivative(p) =

ipm

8π
(4c0)(−8c1p

2) . (208)

The pattern is crystal clear. At any given order, we shall have to deal with a bubble
sum, shown in Fig. 21. Since the particle creation/annihilation is not allowed, the
graphs in the non-relativistic theory will have only this topology. Here, V denotes
the three-level matrix element, calculated to all orders5:

V = 4c0 − 8c1p
2 + · · · . (209)

5c2 does not contribute to the matching in the CM frame. Galilean invariance allows to fix c2
in terms on c1.
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T = + + + ...

Figure 21: Lippmann-Schwinger equation in the NREFT. If dimensional regulariza-
tion is used, the potential V coincides with the well-known two-body K-matrix and
is expressed through the scattering phase.

c0 c0 c0 c0
− k4

8m3

− k4

8m3

+

Figure 22: Relativistic insertions in the lowest-order loop diagram in NREFT.

Finally, we consider the relativistic insertions in the particle propagators. The in-
sertions in the external propagators can be summed up easily – they just yield the
relativistic dispersion law for the external particles. The insertions into the internal
lines are shown in Fig. 22. The direct calculation yields:

TNR
1−loop+rel(p) = 16c20

∫
dDk

(2π)Di

1

(m+
k2

2m
− k0 − iε)

k4

8m3

1

m+
k2

2m
− P0 + k0 − iε

=
5ip3

64πm
(4c0)

2 . (210)

Consequently,

TNR
1−loop(p) + TNR

1−loop+rel(p)

=
im(4c0)

2

8π

(
(m(P0 − 2m))1/2 +

5

8m2
(m(P0 − 2m))3/2

)

=
im(4c0)

2

8π

[
P 2
0

4
−m2

]1/2(
1 +

1

2m2

[
P 2
0

4
−m2

])
. (211)

Thus, the relativistic insertions indeed correct the relativistic dispersion law to this
order and, in addition, introduce some higher-order corrections in the amplitude.

At the end, we come to the matching condition. Using Eq. (200), we get:

32πw(p)

−1

a
+

1

2
rp2 + · · · − ip

= (2w(p))2
(
4c0 − 8c1p

2 +
ipm

8π
(4c0)

2

+

(
ipm

8π

)2

(4c0)
3 +O(p3)

)
. (212)
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Expanding the left-hand side in momentum p, we finally get:

c0 = −2πa

m
,

−c1 +
c0
2m2

= −πa2rm . (213)

Thus, c0 is given by the scattering length only, c1 is given by the scattering length and
the effective radius, and so on. The key property in the dimensional regularization
is that the loop vanishes at threshold. Therefore, in order to perform an exact
matching of the couplings c0, c1, . . ., it suffices to carry out calculations at a given
order. This statement does not hold, if another regularization is used.

4.6 “Relativized” non-relativistic effective theory

The approach, considered above, has one important drawback. As we have seen,
the relativistic dispersion law in this approach is restored order by order, since the
relativistic corrections are considered as a perturbation. This is very inconvenient,
especially when moving reference frames are considered. Fortunately, it is possible
to sum up all relativistic corrections in the propagators (but still do not allow for
the particle creation/annihilation). In that vein, it is possible to generalize the
definition of a non-relativistic effective theory, allowing three-momenta, comparable
in magnitude with masses, provided that explicit creation/annihilation processes
still do not have role at these momenta.

In order to achieve the above-mentioned generalization of the standard NREFT
framework, we first rescale the field ϕ(x) →

√
2Wϕ(x), with W =

√
m2 −∇2, in

order to avoid the non-covariant factors
√
2w(p) in the matching condition. Further,

as already said, we include all relativistic corrections into the free Lagrangian, rather
than considering them as a perturbation. Consequently, the Lagrangian takes the
form:

L = ψ†(2W )(i∂t −W )Φ + C0ϕ
†ϕ†ϕϕ+ · · · , (214)

and the free propagator is given by:

⟨0|Tϕ(x)ϕ†(0)|0⟩ =
∫

d4k

(2π)4
e−ikx

2w(k)(w(k)− k0 − iε)
. (215)

In addition to all this, one modifies Feynman rules, applying the so-called threshold
expansion. The prescription consists in the following. One considers (k0 −m) and
k as the quantities much smaller that m. Further, one expands the integrands in
powers of these quantities, integrates in dimensional regularization and sums finally
up. In this way, the original Feynman integral is modified that amounts to a change
in the renormalization prescription.
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In order to see, how the method works, consider the calculation of a single loop.
In order to check the explicit relativistic invariance, we do calculation in a generic
frame with Pµ = (P0,P). The Feynman integral is given by:

J(P ) =

∫
dDk

(2π)Di

1

4w(k)w(P− k)

1

w(k)− k0 − iε

1

w(P− k)− P0 + k0 − iε

=

∫
ddk

(2π)d
1

4w(k)w(P− k)

1

w(k) + w(P− k)− P0 − iε
. (216)

One can now use the identity:

1

4w(k)w(P− k)

1

w(k) + w(P− k)− P0 − iε
=

1

2P0

1

k2 − (kP)2

P 2
0

− q20

+
1

4w(k)w(P− k)

(
1

w(k) + w(P− k) + P0

− 1

w(k)− w(P− k) + P0

− 1

−w(k) + w(P− k) + P0

)
, (217)

where q20 =
s

4
−m2 and s = P 2.

Taking now into account the fact that P0 − 2m is a small quantity as compared
to m, it is seen that the Taylor expansion of all terms except the first one gives
polynomials in momenta. Since integrating the polynomials in dimensional regu-
larization yields zero, only the first term survives the threshold expansion. The
integral in this term can be evaluated explicitly, choosing the integration momen-

tum as k = (k∥,k⊥) with k⊥P = 0, and rescaling k∥ → γk∥ with γ =

(
1−P2

P 2
0

)−1/2
.

The final result is given by:

J(P ) =
i

16π

(
1− 4m2

s

)1/2

. (218)

Thus, the result for the loop in Lorentz-invariant (the result does not change, if
the higher-order momentum insertions are considered in the vertices, provided the
tree-level amplitude is invariant). The matching condition is also Lorentz-invariant.
Consequently, the couplings C0, C1, . . ., determined from the matching condition, do
not depend on the reference frame.

53



5 Finite volume corrections to the stable particle

masses

We finally start putting all pieces of the puzzle together, and show, how the effective
field theories can be used for the calculation of the finite-volume artifacts on the
lattice. The crucial point here is the observation that the size of a box, L, is much
larger than the inverse of the hadronization scale Λ, which in QCD approximately
equals to 1GeV (the nucleon mass). Hence, the box “sees” hadrons and not quarks
and gluons. Consequently, the properties of QCD in a finite volume will be described
by the effective theories of hadrons in a finite volume. This observation lays ground
for the approach we are pursuing.

It should be noted that, even ΛL ≫ 1 should hold always, several different
regimes are possible. These regimes can be characterized by the value of the param-
eter MπL, where the pion mass Mπ is the lightest mass in the system:

• MπL≫ 1: This regime is relevant for the study of the processes in the multi-
particle systems, like elastic and inelastic scattering, properties of the reso-
nances, decay amplitudes. The conditionMπL≫ 1 means that the wave func-
tion of the system, reaching the boundary of the box, has taken the asymptotic
form already and is determined solely through the on-shell S-matrix elements.
NREFT is best suited to deal with this regime since, according to the above
condition, the characteristic three-momenta of particles, given by integer mul-

tiples of
2π

L
, should be much smaller than the lightest mass in the system.

• MπL > 1: This regime is relevant for calculation of the finite-volume artifacts
to stable particle masses and spacelike form factors. ChPT is best suited for
carrying out calculations in this regime.

• MπL < 1: This regime is relevant for the study of the interplay between the
chiral and infinite-volume limits. The so-called zero modes, corresponding to
p = 0, are non-perturbative in this regime and are described by the Lagrangian
of a rigid rotator. Fast modes can be treated perturbatively.

Below, we shall consider all these regimes.

5.1 Particle mass in the φ4-theory

As a warm-up example, we start from the calculation of the single particle mass in
the φ4-theory on the lattice. As seen from Fig. 23, this quantity exhibits quite a
pronounced dependence on the box size L. We show below, how this dependence
can be predicted. In the following, we shall neglect the artifacts, emerging from a
finite lattice spacing, and concentrate on the finite-volume effects only. These two
phenomena are well separated (short-distance vs. large distance) and can be treated
separately.
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Figure 23: L-dependence of the particle mass in the φ4 theory. The solid curve shows
the result of the one-loop calculation. As seen, the agreement is almost perfect. The
figure is taken from Ref. [19].

The Euclidean two-point function of the scalar field in the infinite volume is
given by:

⟨0|Tφ(x)φ(0)|0⟩ =
∫

d4p

(2π)4
eipxG(p) . (219)

The two-point function is given through the self-energy part:

G−1(p) = m2 + p2 − Σ(p) . (220)

Due to O(4)-invariance in the infinite volume, both G(p) and Σ(p) are the functions
of p2 only. Further, m2 is the physical mass. This means that:

Σ(p)

∣∣∣∣
p2=−m2

= 0 ,
d

dp2
Σ(p)

∣∣∣∣
p2=−m2

= 0 . (221)

Consider now the same two-point function on the lattice, with the periodic boundary
conditions imposed. Assume also that one has already extracted the mass from the
large Euclidean time behavior of the two-point function. This implies that the effects
that are related to the finite elongation of the lattice in the time direction (admixture
of the contributions from the states other than the one-particle state of interest) are
properly taken into account and we can forget about them. This corresponds to
the situation when the Euclidean time elongation T is taken to infinity, whereas the
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space elongation L stays finite. Hence, the two-point function on the lattice takes
the form:

⟨0|Tφ(x)φ(0)|0⟩L =
1

L3

∑
p

∫
dp4
2π

eipxGL(p) , (222)

where

G−1L (p) = m2 + p2 − ΣL(p) . (223)

This quantity has a pole at p2 = −m2
L, which is different from m2. Our aim is to

calculate the mass shift in a finite volumemL−m. Note also that, due to breaking of
the O(4)-symmetry by a finite cubic box, mL depends on the frame it is calculated.
We always imply the mass mL to be the mass in the rest frame p = 0.

The equation for mL in the rest frame is given by:

m2 + p24 − ΣL(p4,0) = 0 , p4 = imL . (224)

Since mL − m should be small, in the leading order in perturbation theory one
obtains:

mL −m ≃ − 1

2m
ΣL(im,0) . (225)

At the next step, we calculate the self-energy part in the φ4 theory at lowest order.
The (Euclidean) Lagrangian is given by:

L =
1

2
∂µφ∂µφ+

m2
0

2
φ2 +

λ0
4
φ2 . (226)

Here, m0 and λ0 are bare parameters, which coincide with physical parameters m,λ
only at tree level. Carrying out calculations in the infinite volume at O(λ0), we get:

G−1(p) = m2
0 + p2 + 3λ0

∫
dDk

(2π)D
1

m2
0 + k2

. (227)

from which we immediately conclude that

m2 = m2
0 + 3λ0

∫
dDk

(2π)D
1

m2
0 + k2

. (228)

The inverse propagator in a finite volume is given by:

G−1L (p) = m2
0 + p2 + 3λ0

1

L3

∑
k

∫
dk4
2π

1

m2
0 + k2

. (229)

From this, we immediately get:

ΣL(p) = −3λ0
1

L3

∑
k

∫
dk4
2π

1

m2
0 + k2

+ 3λ0

∫
dDk

(2π)D
1

m2
0 + k2

. (230)
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In order to calculate ΣL, we use Poisson formula (75), generalizing it to d (non-
integer) spatial dimensions (Alternatively, one could consider the replacement dk4 →
d1−ωk4 and D = 4− ω → 4. The result is the same in both cases). We get:

ΣL(p) = −3λ0

∫
dDk

2π

1

m2
0 + k2

1

L3

∑
n∈Z

δd
(
k− 2π

L
n

)
+ 3λ0

∫
dDk

(2π)D
1

m2
0 + k2

= −3λ0

∫
dDk

(2π)D
1

m2
0 + k2

∑
n∈Z

eiLnk + 3λ0

∫
dDk

(2π)D
1

m2
0 + k2

. (231)

The term with n = 0 in the sum cancels the infinite-volume term exactly. Further,
defining:

nµ = (0,n) , (232)

and replacing m0, λ0 with m,λ in the terms which are already at O(λ0), we finally
get:

mL −m =
3λ

2m

∑
n̸=0

∫
d4k

(2π)4
eiLnk

m2 + k2
. (233)

Note that here we have already performed the limit D → 4, since the integrals with
n ̸= 0 are ultraviolet-convergent. These integrals can be calculated in the following
manner:

mL −m =
3λ

2m

∑
n̸=0

∫ ∞
0

dλ

∫
d4k

(2π)4
eiLnk−λ(m

2+k2)

=
3λ

2m

∑
n̸=0

∫ ∞
0

dλ

∫
d4k

(2π)4
exp

(
−λk2 − λm2 − n2L2

4λ

)

=
3λ

32π2m

∑
n̸=0

∫ ∞
0

dλ

λ2
exp

(
−λm2 − n2L2

4λ

)

=
3λ

8π2

∑
n̸=0

1

|n|L K1(|n|mL) . (234)

Here, K1(z) denotes the pertinent Bessel function, and we have used the formula:∫ ∞
0

dλλν−1e−Zλ−Y/λ = 2

(
Y

Z

)ν/2

Kν(2
√
Y Z) , K−ν(z) = Kν(z) . (235)

Recalling now the asymptotic behavior of the Bessel functions:

Kν(z) ∼
√

π

2z
e−z z → ∞ , (236)
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we immediately see that the terms with |n| = 1 give leading contribution to the
mass shift – other contributions are exponentially suppressed with respect to this
one. The leading contribution is also exponentially suppressed:

mL −m ∼ 1

L3/2
e−mL . (237)

The argument of the exponent here is determined by the gap in the diagram. This
is most easily seen from Eq. (233). Consider the term with n = (1, 0, 0) there. The
integration contour in this integral can be deformed k1 → k1+ic with c ≤ m, and the
denominator will not still be singular. After the deformation, the integral acquires
the factor e−cL, where c can be pushed maximally up to m. Finally, we arrive at
the result shown in Eq. (237). On the contrary, the power-law prefactor L−3/2 is
non-universal (is different for the diagrams with different topology). In order to
visualize, how the prediction works in practice, we refer to Fig. 23. The solid curve
in this figure is given by Eq. (234), with the summation restricted to |n| = 1 only.
As seen, the agreement is almost perfect.

The argument with the gap applies to more complicated diagrams as well (and
not only to the calculation of the finite-volume masses). In general, instead ofm2, the
denominator contains an expression, denoted by g(p,m, x), which is a polynomial
in the external momenta, masses and the Feynman parameters x. Vanishing of
this expression in the integration area over the Feynman parameters leads to the
emergence of the imaginary parts in the diagrams (the intermediate particles can
go on shell). However, if the quantity under consideration does not possess an
imaginary part (say, the stable particle masses, or the spacelike form-factors), than
minx g(p,m, x) is always positive and determines the gap. Using the argument with
the deformation of the contour again, we see that the same gap governs the volume
dependence of this quantity at large values of L.

Let us briefly summarize the lessons learn in this simple example. The pertur-
bation theory can be used to predict the volume dependence of the stable particle
masses and other quantities away from the unitarity cuts. The quantity mL can be
of order of 2 or 3 – then, the leading exponent is already small and the terms with
large |n| in the sum are even more suppressed.

Note also that, for the stable particle masses, one can expand the argument to
all orders in perturbation theory, showing that there is a lower bound on the gap
in the diagrams with an arbitrary topology, and relate the coefficient at the leading
exponential term to the two-particle scattering amplitude in the infinite volume.
Moreover, the gap is bound from below by a positive number in all orders. Similar
formulae can be obtained for some other quantities (say, the pion decay constant).
We, however, do not consider this issue in detail.

5.2 Finite volume correction to the pion mass

Our primarily goal is to calculate the finite-volume artifacts in QCD, where pertur-
bation theory in terms of quarks and gluons is no more applicable. The effective
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field theories of QCD, considered above, help to achieve this goal. The conceptual
argument goes here as follows. The finite-volume effects affect the dynamics at low
momenta, where, in the infinite volume, QCD is described by an effective theory
with meson and baryon degrees of freedom. Then, the behavior of the QCD Green
functions in a finite volume should be also described by an effective theory in a finite
volume. The difference can emerge only at short distances of order of 1/Λ ≃ 1 GeV−1

(Here Λ denotes the typical hadronic scale in ChPT, introduced earlier). However,
if ΛL ≫ 1, this effect will be exponentially small and can be safely neglected. In
the scheme that we are describing, L−1 can be counted as a small quantity of O(p),
similar to the momenta of Goldstone bosons. This generalization leads to a con-
sistent power-counting scheme in ChPT, rendering a systematic calculation of the
finite-volume corrections possible.

At this point, it becomes clear, why we invested an effort in reviewing the low-
energy effective theories first. As a demonstration, we consider calculation of the
shift of the pion mass in ChPT in a finite volume at one loop. The calculations
are very similar to the one carried out above for the φ4-theory. For simplicity, we
work in the SU(2) version of ChPT, assuming isospin symmetry. Using the so-called
σ-model parameterization

U =

√
1− φ2

F 2
+

i

F
φτ , (238)

and expanding the lowest-order Lagrangian in fields6, we get (in the Minkowski
space):

L(2) =
1

2
∂µφ∂

µφ− M2

2
φ2 +

1

2F 2
(φ∂µφ)

2 − M2

8F 2
φ4 + · · · . (239)

Here, M2 = 2m̂B is the lowest-order pion mass and the values of the couplings F,B
differ in the SU(3) and SU(2) versions of ChPT.

The calculation of the pion mass in ChPT at one loop proceeds along the stan-
dard path, and we give only a final result here. Apart from the loop, produced from
the lowest-order Lagrangian in Eq. (239), it contains one of the low-energy con-
stants, l3, which stems from the next-to-leading order Lagrangian L(4) and cancels
the divergence of the loop. Performing the Wick rotation in the loop integral, we
finally get:

M2
π =M2

{
1 +

1

2F 2

∫
dDk

(2πD)

1

M2
π + k2

+
2M2

π

F 2
l3

}
. (240)

The expression for the mass in a finite volume is the same, except the integration
over the space components k is replaced by summation. Thus,

M2
π,L −M2

π =M2

{
1 +

1

2F 2
δIL

}
, (241)

6Here, τa are isospin matrices and φ = (φ1, φ2, φ3) denotes the pion field
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where

δIL =
1

L3

∑
k

∫
dk4
2π

1

M2
π + k2

−
∫

dDk

(2π)D
1

M2
π + k2

=
Mπ

4π2F 2

∑
n̸=0

1

|n|L K1(|n|MπL) . (242)

Finally, we arrive at the following result:

Mπ,L −Mπ =
M2

π

16π2F 2

∑
n̸=0

1

|n|L K1(|n|MπL) . (243)

Note that this result does not depend on the low-energy constant l3. In other
words, renormalization in a finite and infinite volume is exactly the same, and no
renormalization is needed in the difference.

The method described above can be used for other physical quantities as well.
In calculating the nucleon mass, one need not care about the breaking of counting
rules since this all concerns the self-energy in the infinite volume and the effect drops
in the mass difference one is looking for. Moreover, the method can be successfully
applied to calculate finite-volume effects in the spacelike form factors, subthreshold
amplitudes, etc – in all quantities, where the intermediate particles in the Feynman
diagrams cannot go on shell and thus the imaginary part vanishes.

6 Chiral limit in a finite volume

The formalism, described above, has a drawback. Namely, one cannot perform the
chiral limit M → 0 in the above expressions. To illustrate this, let us consider the
quantity δIL, given by Eq. (242). Since the infinite-volume integral vanishes, as
M → 0, the quantity δIL at M → 0 is given by:

δIL =
1

L3

∑
k

∫
dk4
2π

1

k24 + k2
=

1

L3

∑
k

1

2|k| . (244)

This quantity does not make sense, because the term with k = 0 diverges. Physically,
it is no wonder that we encounter this difficulty: asM → 0, the Compton wavelength
of a pion becomes infinity and the pion does not fit a box anymore. So, a procedure
for calculating the finite-volume artifacts within the effective field theory should be
modified.

In order to move forward, let us note that, retaining only the zero modes with
k = 0 in the expansion of the (interacting) pion field

φa(x, t) =
1

L3

∑
k

(
e−iw(k)t+ikxca(k, t) + eiw(k)t−ikxc†a(k, t)

)
, (245)
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we get a field that depends of the variable t only (here, ca(k, t), c
†
a(k, t) are annihila-

tion/creation operators for the interacting field φa(x)). This suggests the following
splitting of the matrix U(x):

U(x) =
√
U(t)Ũ(x)

√
U(t) ,

Ũ(x) =

√
1− φ̃(x)2

F 2
+

i

F
φ̃(x) . (246)

Choosing U(t) appropriately, one can always achieve that the expansion of φ̃a(x)
does not contain a zero mode:

φ̃a(x, t) =
1

L3

∑
k̸=0

(
e−iw(k)t+ikxc̃a(k, t) + eiw(k)t−ikxc̃†a(k, t)

)
. (247)

Thus the field U(x) is split into two parts: the field U(t) describing only zero modes
and Ũ(x), describing only non-zero modes. The latter can be treated perturbatively,
because their propagators never vanish. Fur the moment being, we neglect them
completely and concentrate on the zero modes. The action functional for the latter
in Minkowski space takes the form:

S =

∫
d4x

F 2

4
tr

(
∂µU(t)∂

µU †(t)

)
=
F 2L3

4

∫
dttr (U̇ U̇ †) . (248)

Here, we already work in the chiral limit. Introducing now the four-vector

sα =

(√
1− φ2

F 2
,
φ

F

)
, sαsα = 1 , (249)

we may rewrite the action functional in a well-known form, corresponding to the
O(4) quantum-mechanical rigid rotor:

S =
Θ

2

∫
dt ṡαṡα , (250)

where Θ = F 2L3 is the moment of inertia. The energy levels of the rigid rotor are
well known:

En =
n(n+ 2)

2Θ
. (251)

The lowest energy level with n = 1 corresponds to a single pion with k = 0 in a
finite volume. Since the pion is massless in the infinite volume, we finally get:

Mπ,L −Mπ =
3

2Θ
=

3

2F 2L3
. (252)
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In case of Nf flavors, the above formula is modified to:

Mπ,L −Mπ =
N2

f − 1

NfF 2L3
. (253)

In order to carry out consistent calculations in ChPT in this regime, the power-
counting rules should be modified. Introducing an abstract small parameter δ, one
still counts the momenta as O(δ) and 1/L = O(δ). However, one has to countMπ =
O(δ3), in difference to what was done previously. It can be seen that the propagators
of zero and nonzero modes count differently in δ: whereas the contribution from the
latter can be taken into account in the perturbation theory, the former has to be
included by using non-perturbative methods, as in the example considered here.

Note, finally, that the regime MπL ≪ 1, considered is this section, goes under
the name of the δ-regime, whereas the situation MπL > 1, dealt in the previous
section, is referred to as the p-regime.
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Figure 24: The bound and “scattering” states in a finite volume. When L → ∞,
the latter condense to the continuum.

7 Scattering processes in a finite volume

7.1 Maiani-Testa no-go theorem

The spectrum in a finite volume is always discrete – in difference to the infinite
volume, where the spectrum consists of isolated states plus continuum (the scat-
tering states). A correspondence between the infinite- and finite-volume spectra is
schematically given in Fig. 24. The isolated states have their counterparts in a finite
volume and the energy changes very little (the finite-volume effects are exponentially
suppressed). On the contrary, the continuum is replaced by a tower of closely lo-
cated states in a finite volume. Each chosen state in this tower collapses towards
threshold, but there are infinitely many states that condense towards continuum, as
L→ ∞.

This qualitative difference between isolated states and scattering states manifests
itself in the Maiani-Testa no-go theorem. In the Euclidean space, one may directly
extract the characteristics of the isolated states (e.g., the masses of stable particles,
or the matrix elements of a current between stable particle states), without perform-
ing analytic continuation to the Minkowski space. However, one cannot deal in this
way with the multiparticle states that correspond to the continuum in the infinite
volume. In order to see this, consider, for example, the extraction of the timelike
form factor from the Euclidean Green function, and take L very large (infinite):

G(t1, t2,q,−q) = ⟨0|φq(t1)φ−q(t2)J(0)|0⟩ . (254)

Here,

ϕq(t) =

∫
d3xeiqxφ(x, t) , (255)

and J(0) denotes the current operator (for simplicity, we assume that it is a scalar).
Consider first the limit t1 → ∞. Introducing the set of the intermediate states
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gives:

G(t1, t2,q,−q) =
∑
n

⟨0|φq(t1)|n⟩⟨n|φ−q(t2)J(0)|0⟩

→ e−Eqt1⟨0|φq(0)|q⟩⟨q|φ−q(t2)J(0)|0⟩
= e−Eqt1⟨0|φq(0)|q⟩Fq(t2) . (256)

The one-particle state |q⟩ gives the leading contribution here.
Consider now the limit t2 → ∞ in the quantity Fq(t2). introducing again the

sum over all intermediate states, we get:

Fq(t2) =
∑
n

(2π)3δ3(Pn)e
−(En−Eq)t2⟨q|φ−q(0)|n⟩⟨n|J(0)|0⟩ . (257)

The state with the lowest energy in this sum is |0,0⟩. However, the coefficient of
the leading exponential does not provide a useful information. Namely, it is given
by a product of the timelike form-factor at threshold ⟨0,0|J(0)|0⟩ and the off-shell
amplitude ⟨q|φ−q(0)|0,0⟩, which depends on the choice of the interpolating field.
In brief, the extraction of the timelike form factor with a standard method fails, and
one should be looking for the alternatives.

7.2 Perturbative shifts of the energy levels in the scattering
sector

In the quest of the alternative approach, we again invoke the effective field theories
in a finite volume. However, we put further restriction on the volumes that are used.
Namely, in order to describe the scattering processes adequately, the size of the box
must be much larger than the characteristic range of interactions,r ≪ L. Only in
this case, the discrete spectrum, which is determined by the boundary condition
at the box surface, does not depend on the short-range details of interaction and
can be expressed in terms of the physical observables. On the other hand, since
the interaction range is usually given by the inverse mass of the lightest particle
in the system (pion, in case of QCD), i.e., r ≃ M−1

π , the exponential corrections
that are proportional to e−MπL, are suppressed and can be neglected. Further, the

characteristic momenta on a lattice are given in units of
2π

L
, very small as compared

to Mπ. Consequently, one finds himself/herself in the domain of applicability of the
NREFT: the momenta are small, and the finite-volume corrections from the dia-
grams with a non-zero gap (these correspond to the particle creation/annihilation)
are neglected. In the language of the NREFT, this is equivalent to the statement
that the effective couplings to not depend on L.

Let is now see, how this works in practice. To this end, we write down the non-
relativistic effective Lagrangian for a single spinless particle, already considered in
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the previous sections:

L = ϕ†
(
i∂t −m+

∇2

2m

)
ϕ+ c0ϕ

†ϕ†ϕϕ+ · · · , (258)

where, from the matching, c0 = −2πa

m
.

Using canonical method, one can derive the Hamiltonian

H = H0 + V , (259)

where H0 denotes the free Hamiltonian.
The matrix element of the potential in the momentum space, in the CM frame,

takes the form:

⟨p,−p|V |k,−k⟩ = −2c0
L3

. (260)

Note that an additional factor
1

2!
arises in the above matrix element, due to the fact

that one has to deal with the identical particles.
We are now prepared to calculate the finite-volume shift of the ground two-

particle state by using standard Raileigh-Schrödinger perturbation theory. The first-
and the second-order corrections are given by:

δE(1) = ⟨0|V |0⟩ = −2c0
L3

,

δE(2) =
∑
k ̸=0

|⟨0|V |k⟩|2

E
(0)
0 − E

(0)
k

=
∑
k ̸=0

(−2c0
L3

)2
1

0− k2

m

= −mL
2

4π2

(−2c0
L3

)2

I , (261)

where7

I =
∑
n̸=0

1

n2
= −8.91363291781 · · · . (262)

Using the matching condition, we finally get and expression for the ground-state
energy shift:

E0 = 0 + δE(1) + δE(2) + · · · = 4πa

mL3

{
1−

(
a

πL

)
I
}
+O(L−5) . (263)

Few remarks are in order here:
7The calculation of the sum requires ultraviolet regularization. We give the answer in the

dimensional regularization. This is consistent with the fact that dimensional regularization was
also used to regulate divergences in the infinite volume.
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• Using NREFT, we were able to calculate the energy shift of the ground state
in the scattering sector up to O(L−5). The Lagrangian represents a key link
between the infinite- and finite-volume problems: its couplings are the same
in both cases. For this reason, it was possible to relate the finite-volume
shift to the parameters of the system in the infinite volume (the scattering
length, in this case). Using the argument other way around, it is possible to
extract the scattering length from the measured energy shift of the ground
state, circumventing the Maiani-Testa no-go theorem. In doing so, we took
and advantage of working in a finite volume: our energy level(s) have not
collapsed towards threshold yet.

• As it can be easily seen, consecutive terms in the perturbative expansion corre-
spond to the Feynman diagrams with no gap. For this reason, the corrections
decrease as powers of L and not as exponentials.

• The counting rule in the NREFT states p ∼ L−1. Thus, evaluating higher-
order terms in perturbation theory and including derivative vertices in the
Lagrangian, one can calculate corrections to Eq. (263) in higher orders in 1/L
Up to now, the calculations are done, up to and including order L−7. At higher
orders, other effective-range parameters come into the play. For example, the
effective range contributes to the ground-state shift at O(L−6).

• Excited states can be treated on the equal footing.

• Relativistic corrections can be taken into account perturbatively, both in the
matching condition and in the Raileigh-Schrödinger perturbation theory.

• States with three, four and more particles can be considered. More couplings
come into play, but in the higher orders. For example, up to and includ-
ing O(L−5), all energies are determined by the couplings from the two-body
sector. This imposes interesting constraints of the two-body effective-range
parameters that are extracted through a global fit to the energy shifts.

7.3 The Lüscher equation for the two-body scattering

As we have seen, one may extract effective-range expansion parameters from the fit
to the energy shifts in a finite volume. Below, we shall see that, in the two-body
sector, one can afford more – namely, one can extract scattering phase shifts at
a given energy and study the properties of resonances. We have already seen an
example of this in the one-dimensional quantum mechanics, and we wish to derive
an analog of the quantization condition for the scattering in three dimensions here.
NREFT represents an ideal tool for this, as will be seen below. Moreover, for full
generality, we shall derive the three-dimensional Lüscher equation in an arbitrary
moving frame, using to this end the “relativized” version of NREFT, considered
above and consider the case of non-identical particles with different masses m1,2.
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These particles are described by the non-relativistic fields ϕ1,2. The Lagrangian of
the system is given by:

L =
∑
i=1,2

ϕ†i2Wi(i∂t −Wi)ϕi + C0ϕ
†
1ϕ1ϕ

†
2ϕ2 + · · · , (264)

where Wi =
√
m2

i +∇2 and the ellipses stand for the terms that contain at least
two derivatives.

Let us start in the infinite volume. It is straightforward to ensure that the
scattering T -matrix in the infinite volume in an arbitrary moving frame obeys the
Lippmann-Schwinger (LS) equation:

T (p1,p2;q1,q2) = V (p1,p2;q1,q2) +

∫
ddk1

(2π)d2w1(k1)

ddk2

(2π)d2w2(k2)

× (2π)dδd(p1 + p2 − k1 − k2)
V (p1,p2;k1,k2)T (k1,k2;q1,q2)

w1(k1) + w2(k2)− w1(q1)− w2(q2)− iε
, (265)

where wi(l) =
√
m2

i + l2 and the potential is given by the matrix element of the
interaction Lagrangian between the two-particle states. As usual, the parameter d
denotes the number of space dimensions (at the end of calculations, d→ 3).

By construction, the potential V is a Lorentz-invariant low-energy polynomial
that depends only on scalar products of the 4-momenta. The first term in the
expansion is given by

V (p1,p2;q1,q2) = C0 + · · · . (266)

Next, let us define the CM and relative momenta, according to

P = p1 + p2 , p = µ2p1 − µ1p2 ,

µ1,2 =
1

2

(
1± m2

1 −m2
2

P 2

)
, p2 =

λ(P 2,m2
1,m

2
2)

4P 2
, (267)

and, similarly, for other pair of momenta. Here λ(x, y, z) denotes the Källén triangle
function.

Next, we define the momenta boosted to the CM frame (note that the boost ve-
locity is different in the initial and the final states, because the potential is generally
off the energy shell):

p∗ = p+P

(
(γ − 1)

pP

P2
− γv

p0
|P|

)
, p∗0 = γp0 − γv

pP

|P| = 0 ,

P ∗µ = (
√
P 2,0) , v =

|P|
P0

, γ = (1− v2)−1/2 , (268)

and, similarly, for other pair of momenta.
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In the boosted frame, the potential can be expanded in partial waves:

V (p1,p2;q1,q2) = 4π
∑
lm

Vl(|p∗|, |q∗|)Ylm(p
∗)Y∗lm(q∗) . (269)

Here, the function Vl is real and symmetric with respect to its arguments, i.e.,
Eq. (269) describes a Hermitean potential. The quantity Ylm(p) is defined as
Ylm(p) = |p|lYlm(p̂), where Ylm are the usual spherical harmonics.

Performing now the partial-wave expansion in the amplitude

T (p1,p2;q1,q2) = 4π
∑
lm

Tl(|p∗|, |q∗|)Ylm(p
∗)Y∗lm(q∗) , (270)

substituting this expansion into the LS equation (265), it is seen that the equation
diagonalizes in l due to unbroken rotational symmetry. Further, the denominator is
proportional to |k∗|2 − |q∗|2. Hence, in the numerator one may replace

Vl(|p∗|, |k∗|)Tl(|k∗|, |q∗|) → Vl(|p∗|, |q∗|)Tl(|q∗|, |q∗|) , (271)

since the difference of these two quantities is proportional to |k∗|2 − |q∗|2 and the
resulting integral vanishes in the dimensional regularization. Putting finally |p∗| =
|q∗| = λ1/2(s,m2

1,m
2
2)/(2

√
s) on shell, we get an algebraic equation for the fully

on-shell T -matrix and the potential:

Tl(s) = Vl(s) + Vl(s)|p∗|2lG(s)Tl(s) , (272)

where the obvious shorthand notations for the on-shell quantities Vl(s) = Vl(|p∗|, |p∗|)
and Tl(s) = Tl(|p∗|, |p∗|) are used. The quantity G(s) is given by:

G(s) =

∫
ddk1

(2π)d2w1(k1)

ddk2

(2π)d2w2(k2)

(2π)dδd(P− k1 − k2)

w1(k1) + w2(k2)− P0 − i0
=

i|p∗|
8π

√
s
. (273)

Further, unitarity gives:

Tl(s) =
8π

√
s

|p∗|2l+1
eiδl(s) sin δl(s) , Vl(s) =

8π
√
s

|p∗|2l+1
tan δl(s) , (274)

where δl(s) is the scattering phase.
The transition to the finite volume is performed in the “lab frame”. The momenta

are discretized according to

ki =
2π

L
ni , ni ∈ Z3 . (275)

The partial-wave expansion of the potential does not change. However, since the
introduction of a cubic box breaks rotational symmetry, the partial-wave expansion
of the scattering amplitude has to be modified:

T (p1,p2;q1,q2) = 4π
∑

lm,l′m′

Tlm,l′m′(|p∗|, |q∗|;P)Ylm(p
∗)Y∗l′m′(q∗) . (276)
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Substituting this expression into the Lippmann-Schwinger equation, on the energy
shell we obtain:

Tlm,l′m′(s;P) = δlm,l′m′Vl(s) + 4π
∑
l′′m′′

Vl(s)Xlm,l′′m′′(s,P)Tl′′m′′,l′m′(s;P) , (277)

where

Xlm,l′m′(s,P) =
1

L3

∑
k1

Y∗lm(k∗)Yl′m′(k∗)

2w1(k1)2w2(P− k1)(w1(k1) + w2(P− k1)− P0)
. (278)

Next, we use the identity given in Eq. (217). As we already know, all terms in the
right-hand side, except the first term, do not become singular in the physical region.
For regular functions, the Lüscher’s regular summation theorem holds:

1

L3

∑
k

f(k) =

∫
d3k

(2π)3
f(k) + · · · , (279)

where ellipses stand for the terms, exponentially suppressed at large L. Moreover,
using dimensional regularization and threshold expansion, it is seen that this integral
indeed vanishes. So, like in the infinite volume, only the first term survives in a finite
volume, and

Xlm,l′m′(s,P) =
1

2P0

1

L3

∑
k=k1+µ1P

Y∗lm(k∗)Yl′m′(k∗)

k2 − (kP)2

P 2
0

− (p∗)2
. (280)

In order to transform this equation further, let us define the parallel and perpen-
dicular components of the three vectors with respect to the CM momentum P.
In particular, one may write k∗ = (k∗∥,k

∗
⊥), where k

∗
∥ = (γ∗)−1k∥, k

∗
⊥ = k⊥ and

γ∗ = (1 − (v∗)2)−1/2, v∗ = |P|/E∗ = |P|/(w1(k
∗) + w2(k

∗)). Consequently, on the
energy shell E∗ = P0 we obtain: k∗ = r = (γ−1k∥,k⊥) with γ = (1 − P2/P 2

0 )
−1/2.

Up to exponentially suppressed terms, Eq. (280) now takes the form

Xlm,l′m′(s,P) =
(p∗)l+l′+1

32π2
√
s
il−l

′ Mlm,l′m′(s,P) ,

Mlm,l′m′(s,P) =
(−)l

π3/2γ

l+l′∑
j=|l−l′|

j∑
s=−j

ij

ηj+1
Zd

js(1; s)Clm,js,l′m′ , (281)

and the coefficients Clm,js,l′m′ are expressed in terms of Wigner 3j-symbols:

Clm,js,l′m′ = (−)m
′
il−j+l′

√
(2l + 1)(2j + 1)(2l′ + 1)

×
(
l j l′

m s −m′
)(

l j l′

0 0 0

)
, (282)
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where

d =
2π

L
P , η =

|p∗|L
2π

, (283)

and Zd
lm(1; s) stands for the so-called Lüscher zeta-function in the moving frame,

characterized by the CM momentum d (in units of
2π

L
).

Zd
lm(1; s) =

∑
r∈Pd

Ylm(r)

r2 − η2
,

Pd = {r = R3 | r∥ = γ−1(n∥ − µ1|d|), r⊥ = n⊥, n ∈ Z3} . (284)

Note that Zd
lm(1; s) is a function of s and not merely η2. This happens because the

kinematical factor γ depends on s.
The Eq. (277) is a system of linear equations that determines unknown Tlm,l′m′

through Vl. Since the rotational symmetry on a cubic lattice is broken, it mixes
all values of l,m. Consequently, in order to have a tractable system of equations,
one has to make a cutoff on l at some lmax, assuming that the partial waves with
l > lmax are negligibly small at low energies we are considering. Suppose, the cutoff is
done. Than, the above equation determines the spectrum of a system in a finite box
through the known phase shifts. To see this, recall that the finite-volume spectrum
is determined by the pole positions of the scattering matrix. The poles emerge
when the determinant of the system of linear equations (277) vanishes. Taking into
account Eqs. (274,281), the equation determining the the energy spectrum can be
written in the following form:

det

(
δll′δmm′ − tan δl(s)Mlm,l′m′(s;P)

)
= 0 . (285)

This is Lüscher’s equation in a moving frame, or the Gottlieb-Rummukainen formula,
or the quantization condition for the two-particle system. It looks quite complicated
at a first glance. For illustration, let us consider the rest frame d = 0 and restrict
ourselves to the S-waves only. Then, Eq. (285) simplifies to an equation

p cot δ0(p) =
2

π1/2L
Z00(1; η) , Z00(1, η

2) =
1√
4π

∑
n∈Z3

1

n2 − η2
, η =

pL

2π
. (286)

Given the phase shift δ0(s), this equation determines a tower of solutions ηn, giving
a finite-volume spectrum of the system, see Fig. 25. Putting the argument other way
around, one can measure the energy spectrum ηn on the lattice and then calculate
the phase shift δ0(s) exactly at these energies. This method is widely used nowadays
to determine the two-body phase shift for different physical systems. As a simple
illustration, in Fig. 26 we show the S-wave phase shift, extracted in the φ4-theory
with the use of this method.

70



0 2 4 6 8 10

p
2

0

Figure 25: The Lüscher zeta-function (thin black lines) has a very irregular depen-
dence on the momentum p for a fixed L. The intersection points with the function
p cot δ(p) (thick red line) define the spectrum of a system at a finite L.

The method,described in this section, can be trivially generalized to the multi-
channel scattering, if each channel contains only two particles. Than, the Lippmann-
Schwinger equation one started with, is a matrix equation in the channel space. We
refrain here from displaying explicit (rather cumbersome) formulae. Also, instead of
working with Lippmann-Schwinger equation in the dimensional regularization, one
could rewrite the equations of unitary ChPT, that usually uses cutoff regularization,
in a finite volume. Physically, this approach is equivalent to the Lüscher approach
(the difference amounts to only exponentially suppressed terms).

7.4 Resonances

In the vicinity of the resonances, the phase shift rapidly goes through π/2. This
is seen very well in Fig. 27, which shows the P-wave phase shift in ππ scattering,
extracted on the lattice with the use of the Lüscher method.

It is interesting to note that the energy levels behave in a peculiar wave in the
vicinity of a narrow resonance. Solving the Lüscher equation with input resonance
phase shift, we observe an avoided level crossing in the energy levels, see Fig. 28.
Thus, the avoided level crossing, observed in data, may be a signature of a resonance
at this energy8.

However, in order to extract a resonance pole position from lattice data, an
additional effort is needed. In a rigorous manner, a resonance is identified with a
pole in the complex energy plane, so one has to define way, how our results could
be analytically continued to the complex energies. To this end, one may invoke

8A caution is needed here, however. Something like avoided level crossing emerges as well, if a
new threshold is open.
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Figure 26: The S-wave scattering phase, extracted in the φ4-theory with the help of
the Lüscher equation. The solid curve corresponds to the effective-range expansion
with the parameters determined on the lattice. The figure is taken from Ref. [19].

effective-range expansion, assuming, e.g., that the effective range expansion is valid
up to the resonance energy. This assumption works rather well, e.g., for the physical
∆-resonance. The effective-range expansion for the scattering phase shift is written
as:

p2l+1 cot δl(p) = − 1

al
+

1

2
rlp

2 +O(p4) , p2 =
λ(s,m2

1,m
2
2)

4s
. (287)

This means that the lattice data allow one to determine the scattering length al, the
effective range rl, etc. The pole position pR (on the second sheet) is then determined
by solving an algebraic equation with known coefficients:

p2l+1
R cot δl(pR) = − 1

al
+

1

2
rlp

2
R + · · · = −ip2l+1

R . (288)

It should be stressed that, in order to justify the application of this procedure, the
data should cover the energy range where the resonance mass is located. There
exist alternative strategies, which may be applied, if the use of the effective-range
expansion is questionable.

7.5 Shallow bound states

The Lüscher method can be used to study the shallow bound states, which were
considered previously in the context of the one-dimensional quantum mechanics.
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Figure 27: ETM Collaboration: ρ-resonance, seen in the P-wave ππ phase shift.
The figure is taken from arXiv:1907.01237.
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Figure 28: Avoided level crossing in the vicinity of the resonance energy.

For illustrative purpose, let us concentrate on the S-wave bound state and neglect
the mixing to other partial waves completely. Further, for the bound state we have
η2 = −κ20 < 0. For negative values of η2, the Poisson formula can be applied and
we have

Z00(1, η
2) =

1√
4π

∑
n∈Z3

1

n2 + κ20
=

1

2π1/2

∫
ddk

k2 + κ20

∑
n∈Z3

e2πink

= −π3/2κ0 + π1/2
∑
n̸=0

1

n

∫ ∞
0

kdk

2πi

e2πink − e−2πink

k2 + κ20
, (289)

where n = |n|. Changing the integration variable k → −k in the second term of the
integral, and using Cauchy theorem, the integral can be evaluated:

Z00(1, η
2) = −π3/2κ0 + π1/2

∑
n̸=0

1

2n
e−2πnκ0 . (290)
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Using κ0 =
κL

2π
, where κ is the bound-state momentum in physical units, from the

Lüscher equation we get:

p cot δ0(p) = −κ+
∑
n̸=0

1

nL
e−κnL , p = iκ . (291)

Using the effective-range expansion for the phase shift:

p cot δ0(p) = −1

a
+

1

2
p2 +O(p4) , (292)

The above equation can be solved iteratively:

κ =
1

a
+
r2

2a
+

(
1 +

r

a

)∑
n̸=0

1

nL
e−κnL + · · ·

= κB

{
1 +

1

1− rκB

∑
n̸=0

1

nκBL
e−κBnL

}
+ · · · , (293)

where

κB =
1

a
+
r2

2a
+ · · · (294)

is the bound-state momentum in the infinite volume,

AB =
1

(1− rκB)1/2
(295)

is the asymptotic normalization coefficient, and ellipses stand for the higher-order
terms.

At the leading order, only the term with n = 1 contributes to the sum, and for
the shallow bound-state energy in a finite volume we get:

E =
κ2

2m
=
κ2B
2m

{
1 +

12

κBL

1

1− rκB
e−κBL

}
. (296)

Analogy to the case of the one-dimensional quantum mechanics is complete.

7.6 Projecting on the irreps of the cubic group

As already mentioned, the cubic lattice breaks rotational symmetry. In a result of
this, the different partial waves do not decouple in the Lüscher equation.

The rotational symmetry is not broken down completely, however. In case of
scattering in the rest frame, the symmetry of the box is the octahedral group (rota-
tions + inversions), which leave a cube invariant. This group consists of 48 elements:
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24 rotations, and each of them combined with an inversion. These rotations are given
in Table 1. The octahedral group is a finite subgroup of the rotation group combined
with the inversion of all axes. Consequently, the irreducible representations of the
rotation group are also representations of the octahedral group but, in general, not
irreducible anymore.

In case of scattering in the moving frame, the system is invariant under some
subgroup of the octahedral group (the so-called little group), which leaves the CM
vector d invariant. Different choices of d on the lattice correspond to the different
little groups. In the following, we restrict ourselves to the discussion of the rest frame
only, albeit the argument applies to moving frames as well without any modification.

The octahedral group has ten irreducible representations (irreps), which include
4 one-dimensional, 2 two-dimensional and 4 three-dimensional ones. They are:

• A1 is the trivial representation, where all elements of Oh are 1.

• A2 is the trivial representation for O times −1 when an inversion is present.

• B1 assigns Ri = −1 to rotations in the conjugacy classes 6C4 and 6C ′2 and
R = 1 otherwise.

• B2 is the same as B1 multiplying by −1 when an inversion is present.

• E labels a two-dimensional representation. For the octahedral group, the
superscript E± means whether an inversion multiplies the element by ±1.

• T±1 is a three-dimensional representation which coincides with the Wigner
matrices: Ri = exp(−iniJωi), with J the group generators and ni and ωi

as listed in Table 1. The superscript ± labels whether spatial inversion are
assigned always +1 or ±1.

• T±2 is the same as T1 with a change of sign in the conjugacy classes 6C4 and
6C ′2.

75



Class Ri n ω Ri(E
±)

I 1 any 0 1

8C3

2 (1, 1, 1) −2π/3 −1
2
1+ i

√
3

2
σ2

3 (1, 1, 1) 2π/3 −1
2
1− i

√
3

2
σ2

4 (−1, 1, 1) −2π/3 −1
2
1− i

√
3

2
σ2

5 (−1, 1, 1) 2π/3 −1
2
1+ i

√
3

2
σ2

6 (−1,−1, 1) −2π/3 −1
2
1+ i

√
3

2
σ2

7 (−1,−1, 1) 2π/3 −1
2
1− i

√
3

2
σ2

8 (1,−1, 1) −2π/3 −1
2
1− i

√
3

2
σ2

9 (1,−1, 1) 2π/3 −1
2
1+ i

√
3

2
σ2

6C4

10 (1, 0, 0) −π/2 −1
2
σ3 −

√
3
2
σ1

11 (1, 0, 0) π/2 −1
2
σ3 −

√
3
2
σ1

12 (0, 1, 0) −π/2 −1
2
σ3 +

√
3
2
σ1

13 (0, 1, 0) π/2 −1
2
σ3 +

√
3
2
σ1

14 (0, 0, 1) −π/2 σ3
15 (0, 0, 1) π/2 σ3

6C ′2

16 (0, 1, 1) −π −1
2
σ3 −

√
3
2
σ1

17 (0,−1, 1) −π −1
2
σ3 −

√
3
2
σ1

18 (1, 1, 0) −π σ3
19 (1,−1, 0) −π σ3
20 (1, 0, 1) −π −1

2
σ3 +

√
3
2
σ1

21 (−1, 0, 1) −π −1
2
σ3 +

√
3
2
σ1

3C2

22 (1, 0, 0) −π 1
23 (0, 1, 0) −π 1
24 (0, 0, 1) −π 1

Table 1: Pure rotations belonging to the octahedral group. The first column indi-
cates the conjugacy class, to which a given rotation belongs. Last column includes
the element of the two dimensional irreducible representation for the cubic group.

Since the system in a finite box is invariant under the octahedral group (in-
stead of the group of rotations), it follows from the Wigner-Eckart theorem that the
quantization condition can be diagonalized in the basis belonging to different irreps,
rather that in the partial-wave basis. In order to achieve the diagonalization, one
introduces the projectors:

(P Γ,l
αβ )mm′ =

∑
S∈Oh

(RΓ
αβ(S))∗Dl

mm′(S) . (297)

Here, S runs over all 48 elements of the octahedral group, RΓ
αβ(S) are matrices,

belonging to the particular irrep Γ of Oh, and D
l
mm′(S) ale usual Wigner matrices. If

S = IS̄ consists of a pure rotation and an inversion, then, by definition, Dl
mm′(S) =
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(−1)lDl
mm′(S̄). Acting now with these projectors on the basis vectors |lm⟩ of the

rotation group, we get the (unnormalized) basis vectors of the irrep Γ:

|Γ, α, l, n⟩ =
∑
m′

(P Γ,l
αβ )mm′|lm′⟩ , m and β fixed, (298)

where n labels the multiple occurrences of Γ for a given l. Acting in this manner,
we can determine all coefficients in the expansion of the basis vectors |Γ, α, l, n⟩:

|Γ, α, l, n⟩ =
∑
m

cΓαnlm |lm⟩ . (299)

The matrix elements of the operator M from Eq. (285) in the new basis are given
by:

⟨Γαln|M|Γ′α′l′n′⟩ =
∑
mm′

(cΓαnlm )∗cΓ
′α′n′

l′m′ Mlm,l′m′ . (300)

According to the Wigner-Eckart theorem,

⟨Γαln|M|Γ′α′l′n′⟩ = δΓΓ′δαα′MΓ
ln,l′n′ (301)

and the Eq. (285) in a particular irrep Γ reduces to (in the rest frame)

det

(
δll′δnn′ − tan δl(s)MΓ

ln,l′n′(s,0)

)
= 0 . (302)

The dimension of the matrix in this equation is much smaller that in the original
one – for example, the indices m,m′ do not appear at all. Moreover, these equations
allow one to study the spectrum in a particular irrep Γ, whereas the original equation
contained the spectrum from all irreps.

Few remarks are in order:

• As mentioned already, the same method applies in case of the moving frame
as well. In this case, when constructing the projection operators, the sum
runs over the elements of a little group instead of Oh. Further, Γ and RΓ

αβ(S)
stand for a particular irrep of a little group and the matrices in this irrep,
respectively.

• The formalism can be extended in case of particles with spin. In case of
the half-integer total spin, the symmetry group is the double cover of the
octahedral group (and the little groups thereof).

• Using the method of projection operators, one may systematically construct
the operators that belong to a particular irrep Γ.
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7.7 Lellouch-Lüscher formula

As a next illustration of the might and beauty of the effective field theory approach,
we discuss the extraction of the timelike scalar form factor on the lattice (this
is exactly the place where the approach a la Maiani and Testa fails). The main
conceptual problem, that is also the reason for that failure, can be reformulated as
follows: on the lattice, one may extract the matrix element of the current operator
between the vacuum and a two-pion state in a finite volume. Increasing now L
continuously, we see that a given state collapses toward threshold, so a trivial result
emerges in the infinite volume limit. If we instead fix the energy of two pions and
increase L, the measured matrix element will oscillate wildly and does not show
sign of converging at L→ ∞. So, how does one extract this matrix element on the
lattice?

The NREFT can rescue the situation. Here, the bridge between the finite- and
infinite-volume cases is provided by the Lagrangian, which is the same in both cases.
So, carrying out calculations twice, in a finite and in the infinite volume, one can
express the infinite-volume matrix element through its finite-volume counterpart
and perform the infinite-volume limit.

Below, we shall demonstrate, how does this approach work. For simplicity, we
consider the rest frame, albeit the treatment can be carried out in arbitrary moving
frames. Also, to ease notations, we consider the case of non-identical particles with
the same mass (e.g., π+ and π− in the calculation of the timelike electromagnetic
form factor of the pion). We in addition assume that all particles and currents are
scalar. Generalizations are obvious.

In order to study the form factor, the non-relativistic Lagrangian in Eq. (264)
should be equipped by the part that describes the interaction with the external field
A(x). This part of the Lagrangians takes the form

LA = eA(x)j(x) = eAϕ†1ϕ
†
2 + terms with derivatives + h.c. , (303)

where the low-energy constants e, · · · describe the coupling of the field A(x) to ϕ1,2.
Define now the two-particle operators

O(x0;k) =

∫ L/2

−L/2
d3x d3y e−ik(x−y) ϕ1(x0,x)ϕ2(x0,y) , (304)

where k =
2π

L
n, n ∈ Z3, and consider the following matrix element in Euclidean

space for x0 > y0:

⟨0|TO(x0;k)O†(y0;k)|0⟩ =
∑
n

|⟨0|O(0;k)|En⟩|2e−En(x0−y0) , (305)

where the En denote the energy eigenvalues.
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Figure 29: Diagrams contributing to the matrix element on the l.h.s of Eq. (305) in
perturbation theory. The first diagram corresponds to the free propagation of the
fields ϕ1,2.

Note that in the non-relativistic EFT the above matrix element can be calculated
in perturbation theory. The pertinent diagrams are shown in Fig. 29. Using the
Euclidean-space propagator in the non-relativistic EFT

⟨0|Tϕi(x)ϕ
†
i (y)|0⟩ =

∫
dp0
2π

1

L3

∑
p

eip0(x0−y0)+ip(x−y)

2w(p)(w(p) + ip0)
, (306)

for this matrix element we get:

⟨0|TO(x0;k)O†(y0;k)|0⟩ = L3

∫
dP0

2π
eiP0(x0−y0)

×
{ −iL3

4w2(k))(P0 − 2iw(k))
− T

(4w2(k))2(P0 − 2iw(k))2

}
, (307)

where T is the forward scattering amplitude (see Fig. 29):

T = C0 + C2
0

1

L3

∑
l

1

4w2(l)(2w(l) + iP0)
+ · · · .

= C0 + C2
0

p

8π5/2
√
sη
Z00(1; η

2) + · · · ,

s = −P 2
0 , p =

√
s

4
−m2 , η =

pL

2π
, (308)

where we have used Eqs. (278,281), and where we have retained only the S-wave
contribution in the scattering matrix in order to simplify the discussion of the scalar
form factor. Using Eqs. (266,274), the tree-level and bubble diagrams in Fig. 29 can
be summed up to all orders. The result on the energy shell is given by

T =
8π

√
s

p cot δ(p) + p cotϕ(p)
, tanϕ(p) = − π3/2η

Z00(1; η2)
, (309)

where δ(s) = δ0(s) denotes the S-wave phase shift.
The poles of the T -matrix are determined by the Lüscher equation:

δ(pn) = −ϕ(pn) + πn , sn = E2
n = 4(m2 + p2n) . (310)
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Figure 30: Diagrams contributing to the vertex function. The wiggly line corre-
sponds to the external field A(x).

The quantity T defined by Eq. (309) has poles at at P0 = iEn. In the vicinity of
this pole, the quantity T behaves as:

T → 32π sin2 δ(pn)

δ′(pn) + ϕ′(pn)

1

En + iP0

+ regular terms , (311)

where the derivative is taken with respect to the variable p. Substituting now this
expression into Eq. (307), performing the integral over P0 and taking into account
the fact that the “free” poles at P0 = 2iw(k) cancel in the integrand, the final
expression for the matrix element in Eq. (307) for x0 − y0 > 0 reads:

⟨0|TO(x0;k)O†(y0;k)|0⟩ = L3
∑
n

32π sin2 δ(pn)

δ′(pn) + ϕ′(pn)

e−En(x0−y0)

(4w2(k))2(En − 2w(k))2
. (312)

Comparing this expression with Eq. (305), one reads off:

|⟨0|O(0;k)|En⟩| = L3/2 32π sin2 δ(pn)

|δ′(pn) + ϕ′(pn)|
1

4w2(k)

1

|En − 2w(k)| . (313)

Next, we turn to the determination of the form factor in the time-like region. To
this end, we have to consider the amplitude of pair creation from the vacuum in the
presence of an external field A(x), at the first order in the coupling e. This matrix
element is described by

⟨0|O(x0;k)LA(0)|0⟩ = eA(0)F [k;x0] , x0 > 0 . (314)

We evaluate the quantity F in perturbation theory. The pertinent diagrams are
shown in Fig. 30. Summing up all bubbles yields:

F [k;x0] = F̄ (t)

∫
dP0

2πi

eiP0x0

4w2(k)(P0 − 2iw(k))

p cot δ(p)

p cot δ(p) + p cotϕ(p)
, (315)

where the quantity F̄ (t) is a low-energy polynomial that is obtained from the La-
grangian in Eq. (303) at tree level.

Using Eq. (311), we may now perform the integration over the variable P0 in
Eq. (315), with the result

F [k;x0] = F̄ (t)
∑
n

e−Enx0

4w2(k)(2w(k)− En)

4p cot δ(pn) sin
2 δ(pn)

(δ′(pn) + ϕ′(pn))En

. (316)
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On the other hand, the matrix element in Eq. (314) has the following representation:

⟨0|TO(x0;k)LA(0)|0⟩ = eA(0)
∑
n

e−Enx0⟨0|O(0;k)|En⟩⟨En|j(0)|0⟩ . (317)

Using Eqs. (313), (316) and (317), we get

|⟨En|j(0)|0⟩| = L−3/2|F̄ (t)|p| cos δ(pn)|
(2πE2

n)
1/2

1

|δ′(pn) + ϕ′(pn)|1/2
. (318)

This is the expression of the matrix element in a finite volume. It should be compared
with its counterpart in the infinite volume, which is obtained by using Watson’s
theorem:

⟨k1, k2; out|j(0)|0⟩ = F (t) , |F (t)| = |F̄ (t) cos δ(s)| . (319)

From Eqs. (318) and (319) we finally get:

|F (t)|2 = |L3/2⟨En|j(0)|0⟩|2
2πE2

n

p2
|δ′(pn) + ϕ′(pn)| . (320)

This expression allows one to extract the absolute value of a scalar form factor in
the time-like region from the measured matrix element ⟨En(P)|j(0)|0⟩ in a finite
volume. The factor proportional to |δ′(pn) + ϕ′(pn)|, known as Lellouch-Lüscher
factor, rescues the situation. It is an irregular function of L, like the finite-volume
matrix element ⟨En|j(0)|0⟩. However, the combination, which is present in Eq. (320)
has a smooth limit that coincides with the absolute value of the infinite-volume
form factor squared. Since the phase of this form factor, which is determined by
Watson’s theorem, is also measurable on the lattice, we finally conclude that the
real and imaginary parts of the form factor can be measured on the lattice in the
elastic region.

7.8 Three particles

There are quite a few reasons that justify our interest to the study of the three-
particle problem in a finite volume:

• The presence of the multi-particle inelastic channels imposes a major limitation
on the applicability of the Lüscher approach for 2 particles. One would like to
have a framework that allows to include these channels explicitly.

• There are quite some resonances that decay (predominately or to a large part),
into the three-particle final states. These are both the well-known decays, like
K → 3π , η → 3π , ω → 3π or the decay of the Roper resonance, as well as
the decays of exotic particles. In this respect, one would like to ask:
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Figure 31: The dimer propagator, as a sum over bubbles.

– How does one extract the mass and width of a resonance?

– Is there an analog of the Lellouch-Lüscher formula for three particles?

• Three-particle dynamics is needed to study nuclear physics on the lattice, e.g.,
the reaction like nd→ nd.

Let us explain in more detail, what are the requirements to the framework we
are looking for. In the infinite volume, we have a host of observables: the charac-
teristics of the three-body bound states, the amplitudes for the elastic scattering,
rearrangement and breakup reactions, the matrix elements with the interaction in
a final state, like the one that describes the weak decay of a kaon into three pions,
⟨K|HW |πππ⟩. In a finite volume, however, one could measure the two- and three-
particle energy levels, and the counterparts of the displayed matrix elements in a
finite volume. Hence, we need a framework that “translates” the input finite-volume
data into the infinite volume output. Based on our experience in the two-particle
sector, one expects this to be a tough job.

Still, as we shall demonstrate below, the methods of the NREFT, with small
modifications, apply in the three-particle sector as well, and enable one to achieve
the goal. The link is again provided by the couplings in the Lagrangian – these are
the same in a finite and in the infinite volume. In other words, these couplings,
determined from the lattice data, possess a smooth infinite-volume limit, unlike the
amplitudes and the matrix elements, which wildly oscillate in this limit.

This defines the general two-step strategy in the three-particle sector: only the
couplings (or equivalent quantities) are determined from lattice data. All physical
observables in the scattering sector are obtained by solving the integral equations
with given values of the couplings. A direct relation of the amplitudes with the mea-
sured spectrum (like the Lüscher equation in the two-particle sector) is, in general,
not possible.

Let us now see, how does this strategy work. We again start with the NREFT
in the two-particle sector and write down the familiar Lagrangian:

L2 = ϕ†
(
i∂t −m+

∇2

2m

)
ϕ+ c0 ϕ

†ϕ†ϕϕ+ · · · . (321)

To apply the formalism to the three-particle sector, it is useful to introduce an
auxiliary dimer field T in the Lagrangian:

Ldimer
2 = ϕ†

(
i∂0 −m+

∇2

2m

)
ϕ+ σT †T +

(
T †

[
f0ϕϕ+ · · ·

]
+ h.c.

)
. (322)
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Figure 32: Bethe-Salpeter equation for the particle-dimer amplitude.The three-
particle amplitude is obtained from the particle-dimer amplitude by multiplying
each external dimer leg with the two-particle-dimer vertex.

Here, σ = ±1. Integrating out the field T , we arrive at the Lagrangian in Eq. (321)

with c0 = −f
2
0

σ
. Physically, a dimer propagator, shown in Fig. 31, corresponds to

the sum of all bubble diagrams that yield the two-body scattering amplitude. For
example, in the rest frame,

D(P0,0) =
1

σ
+

1

σ2
2f 2

0 J +
1

σ3
(2f 2

0 J)
2 + · · · = σ

1− 2f 2
0

σ
J + · · ·

=
z

p cot δ(p)− ip
, (323)

where

z =
2π

mf 2
0

+ · · · , p =
√
m(P0 − 2m) . (324)

Here J denotes a bubble:

J =

∫
dDk

(2π)Di

1

m+
k2

2m
− k0 − iε

1

m+
k2

2m
− P0 + k0 − iε

=
imp

4π
. (325)

Note also that, in order to simplify the notations, we introduced here an S-wave
dimer only. This restriction can be easily lifted.

Similar to this, the three-body Lagrangian

L3 = d0 ϕ
†ϕ†ϕ†ϕϕϕ+ · · · (326)

can be easily rewritten by using the auxiliary dimer field:

Ldimer
3 = h0T

†Tψ†ψ + · · · , (327)

with

d0 = f 2
0h0 . (328)
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The particle-dimer scattering amplitude obeys the Bethe-Salpeter equation, see
Fig. 32:

M(p,q;E) = Z(p,q;E) +

∫ Λ d3k

(2π)3
Z(p,k;E)τ(k;E)M(k,q;E) , (329)

where

Z(p,q;E) =
1

p2 + q2 + pq−mE
+H0 + · · · , (330)

and

H0(Λ) =
h0
mf 2

0

. (331)

Note also that here only the leading particle-dimer interaction is taken into account.
At higher orders, one has to replace:

H0(Λ) → H0(Λ) +H1(Λ)(p
2 + q2) + · · · . (332)

Further, the two-body amplitude (the dimer propagator) is not in the rest-frame
anymore. The expression for this quantity takes the form:

τ−1(k;E) = k∗ cot δ(k∗) + ik∗ , (333)

where

ik∗ =

√
3

4
k2 −mE (334)

Next, let us consider the three-particle system in a finite volume. The Bethe-Salpeter
equation remains the same, except that the momenta are now discretized:

ML(p,q;E) = Z(p,q;E) +
8π

L3

Λ∑
k

Z(p,q;E)τL(k;E)ML(k,q;E) (335)

and

τ−1L (k;E) = k∗ cot δ(k∗)− 4π

L3

∑
l

1

k2 + l2 + kl−mE
(336)

In a complete analogy with the two-particle case, the energy levels are determined
by the zeros of the determinant of the above linear equation. Consequently, the
quantization condition in the three-particle case is given by:

det(τ−1L − Z) = 0 . (337)
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Note that this is a matrix in the space of the discrete three-momentum k. As in the
two-particle case, one can use the symmetry with respect to the octahedral group
and obtain the quantization condition in different irreps. We shall not pursue this
issue anymore.

The workflow in analyzing data from the three-particle sector can be schemati-
cally represented as follows: the scattering phase δ(p) can be determined separately
in the two-particle sector, using the Lüscher equation. What remains unknown are
the couplings H0(Λ), H1(Λ), . . .. These should be determined from the fit to the
measured energy shift in the three-particle sector. At the end, the particle-dimer
scattering amplitude is obtained from the solution of the Bethe-Salpeter equation
in the infinite volume by using the values of H0(Λ), H1(Λ), . . ., determined on the
lattice. all other amplitudes can be then expressed from the particle-dimer ampli-
tude.

8 Literature

Disclaimer: the given list of literature does not pretend to include everything. I de-
cided to give only few references, which were directly related to the issues considered
in the lectures.

• For the lattice formulation of quantum mechanics, I would recommend Refs. [1,
2].

• There exist several good textbooks on lattice quantum field theory and lattice
QCD, which I also recommend, see Refs. [3–6].

• For the introduction to Chiral Perturbation Theory, you may consult Refs. [7,
8].

• The introduction to the NREFT can be found, e.g., in Ref. [9] (standard
approach) and in Ref. [10] (relativized NREFT).

• Corrections to the stable particle masses, to the binding energies, the shift
of the ground-state energy and the scattering on the torus is considered in
Refs. [11–13].

• The chiral limit is considered, e.g., in Ref. [14].

• The perturbative shift of the ground state is considered, e.g., in Ref. [15].

• For the derivation of the Lüscher equation in NREFT, see, e.g., Refs. [16, 17].

• The group-theoretical analysis of the Lüscher equation is given in Ref. [18],
see also references therein.
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• The finite-volume aspects of the φ4-theory on the lattice in considered in
Ref. [19].

• The formalism to treat three particles in a finite volume, which is based on
NREFT, is given in Ref. [20], see also [21] for the relativistic-invariant formu-
lation. Alternative approaches are discussed, e.g., in Refs. [22, 23].

• The three-particle analog of the Lellouch-Lüscher equation is considered, e.g.,
in Refs. [24–26].
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