

Z_{cs} 000000

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 のの()

1/36

Conclusions 0

Exotic hadrons with heavy quarks Part 3: Applications

A.V. Nefediev

Josef Stefan Institute, Ljubljana, Slovenia

Beijing, April 2024

Z_{cs} 000000

Conclusions 0

Double-charm state T_{cc}^+

 $I = 0 \quad J^P = 1^+$

Minimal quark content: $cc\bar{u}\bar{d}$

 $T_{cc}^+ \to D^0 D^0 \pi^+$

<ロト < 部 > < 目 > < 目 > シート < 部 > < 目 > つへで 2/36

3 / 36

Pole position:

 $E_{\rm pole} = (-347 - i31)~{\rm keV}$

In neglect of D^* width:

$$X_1 = \frac{\sqrt{E_B + \Delta}}{\sqrt{E_B} + \sqrt{E_B + \Delta}} \qquad X_2 = \frac{\sqrt{E_B}}{\sqrt{E_B} + \sqrt{E_B + \Delta}}$$

For $E_B = 347$ keV and $\Delta = 1.41$ MeV: $X_1 = 0.7$ $X_2 = 0.3$

Pion exchange in $I = 0 DD^*$ system

- Short-range OPE absorbed by (re-fitted) contact interaction
- Perturbative long-range OPE as per

$$\alpha_{\pi}^{\text{eff}} = \frac{g_c^2 |\mu_{\pi}^2|}{f_{\pi}^2} \ll 1$$

(XEFT: Voloshin'2004, Fleming et al.'2007,...)

Pion exchange in $I = 0 DD^*$ system

- Short-range OPE absorbed by (re-fitted) contact interaction
- Perturbative long-range OPE as per

$$\alpha_{\pi}^{\text{eff}} = \frac{g_c^2 |\mu_{\pi}^2|}{f_{\pi}^2} \ll 1$$

(XEFT: Voloshin'2004,Fleming et al.'2007,...)

Comment on pion exchange in T_{cc}^+

• Physical T_{cc}^+ $(m_\pi < m_{D^*} - m_D \Longrightarrow \mu_\pi^2 < 0 \& |\mu_\pi| \ll m_\pi)$:

 T^+_{cc}

 \implies T_{cc}^+ spin partner at D^*D^* threshold

 $\alpha_{\pi}^{D\text{-wave}} \simeq g_c^2 q_{\rm typ}^2 / f_{\pi}^2 \simeq g_c^2 m_D (m_{D^*} - m_D) / f_{\pi}^2 > 1$

Comment on pion exchange in T_{cc}^+

• Physical T_{cc}^+ $(m_\pi < m_{D^*} - m_D \Longrightarrow \mu_\pi^2 < 0 \& |\mu_\pi| \ll m_\pi)$:

 $\implies T_{cc}^{+} \text{ spin partner at } D^{*}D^{*} \text{ threshold}$ $\alpha_{\pi}^{D\text{-wave}} \simeq g_{c}^{2}q_{typ}^{2}/f_{\pi}^{2} \simeq g_{c}^{2}m_{D}(m_{D^{*}}-m_{D})/f_{\pi}^{2} > 1$ • Lattice T_{cc}^{+} $(m_{\pi}^{\text{lat}} > m_{D^{*}}^{\text{lat}} - m_{D}^{\text{lat}} \Longrightarrow (\mu_{\pi}^{\text{lat}})^{2} > 0 \& \mu_{\pi}^{\text{lat}} > m_{\pi}^{\text{ph}})$:

$$\implies \quad \alpha_{\pi} = g_c^2 \mu_{\pi}^2 / f_{\pi}^2 \sim 1$$

 T^+

⇒ Left-hand cut in partial-wave amplitudes

$$\int d\Omega_{kk'} V_{\pi}(\boldsymbol{k} - \boldsymbol{k}') \sim \log \frac{\mu_{\pi}^2 + (k + k')^2}{\mu_{\pi}^2 + (k - k')^2} \underset{k' = k = p}{\Longrightarrow} \log \left(1 + \frac{4p^2}{\mu_{\pi}^2} \right)$$

X(6200)

Conclusions 0

EFT approach to T_{cc}^+

 $\begin{array}{l} \gamma_{\rm B} = \sqrt{m_D E_B} \simeq 25 \ {\rm MeV} \\ p_{\rm data}^{\rm max} = \sqrt{m_D \, \Delta E_{\rm data}} \simeq 100 \ {\rm MeV} \\ p_{\rm coupl.ch.} = \sqrt{m_D (m_{D^*} - m_D)} \simeq 500 \ {\rm MeV} \end{array} \right\}$

 $\begin{array}{l} \Lambda = 500 \ \mathrm{MeV} \\ \mathrm{Potential \ at \ LO} \\ \mathrm{OPE} \ \mathrm{included} \\ \mathrm{No} \ \mathrm{couple \ channels} \end{array}$

<ロ> < 回> < 回> < 三> < 三> < 三> < 三) = つへの 7/36

• Lippmann-Schwinger equation for scattering amplitude (1 free parameter)

$$T(M, p, p') = V(M, p, p') - \int \frac{d^3q}{(2\pi)^3} V(M, p, q) G(M, q) T(M, q, p')$$
$$V(M, p, p') = \mathbf{v_0} + V_{\text{OPE}}$$

• Production amplitude (1 additional free parameter: P = point-like source)

$$U(M,p) = P - \int \frac{d^3q}{(2\pi)^3} T(M,p,q) G(M,q) P$$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃|∃ ◇Q⊘

X(6200)

Conclusions 0

EFT approach to T_{cc}^+

• Production amplitude (1 additional free parameter: P = point-like source)

$$U(M,p) = P - \int \frac{d^3q}{(2\pi)^3} T(M,p,q) G(M,q) F$$

8/36

Spin partner T_{cc}^{*+}

 $\label{eq:HQSS:VI=0} \begin{array}{ll} \mathsf{HQSS:} & V^{I=0}(D^*D^* \to D^*D^*, 1^+) = V^{I=0}(D^*D \to D^*D, 1^+) = v_0 \end{array}$

 T_{cc}^+ at D^*D threshold hints existence of T_{cc}^{*+} at D^*D^* threshold

 T^+_{cc}

Scheme I:	$\delta^{*+}_{cc} = -1.4 \; { m MeV}$
Scheme II:	$\delta_{cc}^{*+} = -1.1~{\rm MeV}$
Scheme III:	$\delta_{cc}^{*+}=-0.5~{\rm MeV}$

where $\delta_{cc}^{*+} = m_{T_{cc}^{*+}} - m_c^* - m_0^*$

Conclusions

Spin partner T_{cc}^{*+}

 $\label{eq:HQSS:VI=0} \begin{array}{ll} \mathsf{HQSS:} & V^{I=0}(D^*D^* \to D^*D^*, 1^+) = V^{I=0}(D^*D \to D^*D, 1^+) = v_0 \end{array}$

 T_{cc}^+ at D^*D threshold hints existence of T_{cc}^{*+} at D^*D^* threshold

Scheme I:	$\delta_{cc}^{*+} = -1.4 \text{ MeV}$
Scheme II:	$\delta_{cc}^{*+} = -1.1~{\rm MeV}$
Scheme III:	$\delta_{cc}^{*+}=-0.5~{\rm MeV}$

where
$$\delta_{cc}^{*+} = m_{T_{cc}^{*+}} - m_c^* - m_0^*$$

Disclaimer:

- Coupled-channel effects D^*D - D^*D^* neglected
- Multi-body effects & OPE included not selfconsistently

Conclusion: T_{cc}^{*+} is likely to exist but no reliable prediction is possible yet

Spin partner T_{cc}^{*+}

 T^+

T⁺ 00000000●00000

"Signature of a Doubly Charm Tetraquark Pole in DD* Scattering on Lattice," M. Padmanath and S. Prelovsek, Phys. Rev. Lett. **129**, 032002 (2022)
S. Collins, A. Nefediev, M. Padmanath and S. Prelovsek arXiv:2402.14715 [hep-lat], Phys. Rev. D, in press

 $m_{\pi} = 280 \text{ MeV}$ 5 points in m_c

• " $T_{cc}^+(3875)$ relevant DD^* scattering from $N_f = 2$ lattice QCD," S. Chen, C. Shi, Y. Chen, M. Gong, Z. Liu, W. Sun and R. Zhang, Phys. Lett. B **833**, 137391 (2022)

 $m_{\pi} = 348 \text{ MeV}$

• "Doubly Charmed Tetraquark T_{cc}^+ from Lattice QCD near Physical Point," Y. Lyu, S. Aoki, T. Doi, T. Hatsuda, Y. Ikeda and J. Meng, Phys. Rev. Lett. **131**, 161901 (2023)

 $m_{\pi} = 146 \text{ MeV}$ HALQCD technique

Z_{cs} 0000000 X(6200) 00000000000 Conclusions O

ERE analysis of lattice data for T_{cc}^+

11 / 36

Z_{cs} 000000 X(6200)

Conclusions O

ERE analysis of lattice data for T_{cc}^+

11 / 36

12/36

EFT analysis of lattice data for T_{cc}^+

•

Lippmann–Schwinger equation

$$T(\boldsymbol{p}, \boldsymbol{p}'; E) = V(\boldsymbol{p}, \boldsymbol{p}') - \int \frac{d^3k}{(2\pi)^3} V(\boldsymbol{p}, \boldsymbol{k}) G(\boldsymbol{k}; E) T(\boldsymbol{k}, \boldsymbol{p}'; E)$$
$$V(\boldsymbol{p}, \boldsymbol{p}') = \underbrace{\left[2c_0 + 2c_2(p^2 + p'^2)\right]}_{\text{Contact interactions}} + \underbrace{V_{\pi}^S(p, p')}_{S-\text{wave OPE}}$$

Sketch of full potential V(r) r r Resonance* Types of supported poles Im(p) Bound state Virtual state Resonance

EFT analysis of lattice data for T_{cc}^+

Lattice data: Padmanath & Prelovsek, Phys.Rev.Lett. 129 (2022), 032002 Theoretical curve: Du et al., Phys.Rev.Lett. 131 (2023), 131903

Lattice data: Padmanath & Prelovsek, Phys.Rev.Lett. 129 (2022), 032002 Theoretical curve: Du et al., Phys.Rev.Lett. 131 (2023), 131903

Lattice T_{cc}^+ pole dependence on m_c

14 / 36

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 $\stackrel{T^+_{cc}}{}_{\circ\circ\circ\circ\circ\circ\circ\circ\circ\circ\circ\circ\circ}$

T_{cc}^+ pole motion across (m_c,m_π) plane

- Filled circle physical T_{cc}^+
- Cross starting lattice point
- Open circle lattice T_{cc}^+ as shallow bound state

Z_{cs} 000000

Conclusions 0

Twins $Z_b(10610)$ & $Z_b(10650)$ I = 1 $J^{PC} = 1^{+-}$ Minimal quark content: $\overline{b}b\bar{q}q$

$$\begin{split} \Upsilon(10860) &\to \pi Z_b^{(\prime)} \to \pi \big[B\bar{B}^{(*)} \big] \\ \Upsilon(10860) &\to \pi Z_b^{(\prime)} \to \pi \big[\pi h_b(1,2P) \big] \\ \Upsilon(10860) &\to \pi Z_b^{(\prime)} \to \pi \big[\pi \Upsilon(1,2,3S) \big] \end{split}$$

Z_b 's in EFT approach

 $B^{(*)}\bar{B}^*$ potential:

 $V = V_{\rm CT}$ (to order $O(p^0)$)

Coupled channels:

$$1^{+-}: B\bar{B}^{*}({}^{3}S_{1}, -), B^{*}\bar{B}^{*}({}^{3}S_{1})$$

$$0^{++}: B\bar{B}({}^{1}S_{0}), B^{*}\bar{B}^{*}({}^{1}S_{0})$$

$$1^{++}: B\bar{B}^{*}({}^{3}S_{1}, +)$$

$$2^{++}: B^{*}\bar{B}^{*}({}^{5}S_{2})$$

Z_b 's in EFT approach

 $B^{(*)}\bar{B}^*$ potential:

$$V = V_{\rm CT}$$
 (to order $O(p^2)) + V_{\pi}$

Coupled channels:

$$1^{+-}: B\bar{B}^{*}({}^{3}S_{1}, -), B^{*}\bar{B}^{*}({}^{3}S_{1}), B\bar{B}^{*}({}^{3}D_{1}, -), B^{*}\bar{B}^{*}({}^{3}D_{1})$$

$$0^{++}: B\bar{B}({}^{1}S_{0}), B^{*}\bar{B}^{*}({}^{1}S_{0}), B^{*}\bar{B}^{*}({}^{5}D_{0})$$

$$1^{++}: B\bar{B}^{*}({}^{3}S_{1}, +), B\bar{B}^{*}({}^{3}D_{1}, +), B^{*}\bar{B}^{*}({}^{5}D_{1})$$

$$2^{++}: B^{*}\bar{B}^{*}({}^{5}S_{2}), B\bar{B}({}^{1}D_{2}), B\bar{B}^{*}({}^{3}D_{2}),$$

$$B^{*}\bar{B}^{*}({}^{1}D_{2}), B^{*}\bar{B}^{*}({}^{5}D_{2}), B^{*}\bar{B}^{*}({}^{5}G_{2})$$

Lippmann-Schwinger equation $(\alpha, \beta, \gamma = (B\bar{B}^*, B^*\bar{B}^*) \otimes (L = 0, L = 2))$:

$$T_{\alpha\beta}(M,\boldsymbol{p},\boldsymbol{p}') = V_{\alpha\beta}^{\text{eff}}(\boldsymbol{p},\boldsymbol{p}') - \sum_{\gamma} \int \frac{d^3q}{(2\pi)^3} V_{\alpha\gamma}^{\text{eff}}(\boldsymbol{p},\boldsymbol{q}) G_{\gamma}(M,\boldsymbol{q}) T_{\gamma\beta}(M,\boldsymbol{q},\boldsymbol{p}')$$

19/36

X(6200)

Conclusions 0

Fitted line shapes for Z_b 's

Conclusions O

Predicted line shapes for W_{bJ} 's

X(6200)

Role of pions

- Blue dashed line pionless theory
- Black solid line full theory with pions

Conclusions 0

Strange $Z_{cs}(3982)$

$J^{PC} = 1^{+-}$

Minimal quark content: $c\bar{c}s\bar{q}$

$$e^+e^- \to K^+ \left[D_s^- D^{*0} + D_s^{*-} D^0 \right]$$

<ロ> < 部> < 書> < 言> < 言> ション (の) 23 / 36

Expectations

 Z_{cs}

- Twin bottomonium-like Z_b states $(I=1,\ J^{PC}=1^{+-})$ as $B^{(*)}\bar{B}^*$ molecules
- Similar pattern in the spectrum of charmonium

$Z_c(3900)$	\sim	$D\bar{D}^*$
$Z'_{c}(4020)$	\sim	$D^*\bar{D}^*$

- Flavour SU(3) for light quarks
 - \implies Accurate for couplings & potentials
 - \implies Explicit breaking via $m_s \gg m_{u,d}$
 - \implies Simple relation between potentials in I = 1/2 and I = 1 channels

Expectations

 Z_{cs}

- Twin bottomonium-like Z_b states $(I=1,\ J^{PC}=1^{+-})$ as $B^{(*)}\bar{B}^*$ molecules
 - $\begin{array}{lll} Z_b(10610) & \sim & B\bar{B}^* \sim 0^-_{\bar{q}b} \otimes 1^-_{\bar{b}q} \sim 1^-_{\bar{b}b} \otimes 0^-_{\bar{q}q} + 0^-_{\bar{b}b} \otimes 1^-_{\bar{q}q} \\ Z_b'(10650) & \sim & B^*\bar{B}^* \sim 1^-_{\bar{q}b} \otimes 1^-_{\bar{b}q} \sim 1^-_{\bar{b}b} \otimes 0^-_{\bar{q}q} 0^-_{\bar{b}b} \otimes 1^-_{\bar{q}q} \end{array}$
- Similar pattern in the spectrum of charmonium

$Z_c(3900)$	\sim	$D\bar{D}^*$
$Z'_{c}(4020)$	\sim	$D^*\bar{D}^*$

- Flavour SU(3) for light quarks
 - \implies Accurate for couplings & potentials
 - \implies Explicit breaking via $m_s \gg m_{u,d}$
 - \implies Simple relation between potentials in I = 1/2 and I = 1 channels

Expect: Z_{bs} ($\sqrt{s} \gtrsim 11.2$ GeV) and Z_{cs} ($\sqrt{s} \gtrsim 4.5$ GeV) molecular states exist

 T_{cc}^+

 $\substack{Z_{cs}\\ 0000000}$

X(6200)

Z_{cs} @ BES III (Phys.Rev.Lett. 126 (2021) 10. 102001)

≣ ▶ ४ ≣ ▶ ⊒|≡ ∽९९ 25/36

Z_{cs} @ BES III (Phys.Rev.Lett. 126 (2021) 10. 102001)

Theoretical framework

- Effective Field Theory (EFT) approach \implies LO short-range potential
- Heavy Quark Spin Symmetry (HQSS) ⇒ Multiplets of particles
- Flavour $SU(3) \Longrightarrow$ symmetric potential + explicit breaking via masses
- Number-of-events distribution

$$\frac{dN}{dm_{23}} = \frac{d\sigma}{dm_{23}}\bar{\epsilon}\,\mathcal{L}_{\rm int}\,f_{\rm corr}$$

 $\bar{\epsilon}$ – efficiency, $\mathcal{L}_{\rm int}$ – integrated luminosity, $f_{\rm corr}$ – radiative & vacuum polarisation correction

• Maximum likelihood fit

$$-2\log \mathcal{L} = 2\sum_{i} \left(\mu_i - n_i + n_i \log \frac{n_i}{\mu_i}\right)$$

 n_i – number of events, μ_i – theoretical signal function

• Combined fit of 5 distributions with 5 fitting parameters

<□> < □> < □> < Ξ> < Ξ> < Ξ> < Ξ|= のへの</p>

$\begin{array}{c} Z_b/W_{bJ} \\ \circ \circ \circ \circ \circ \circ \circ \circ \end{array}$

X(6200)

Fit results and different scenarios

RM(K+) [GeV]

2 = 4.698 Ge

Scenario 2

Z_{cs} 000000

Conclusions 0

Double- J/ψ spectrum X(6200) vs X(6900)

$$I = 0 \quad J^{PC} = 0^{++}/2^{++}$$

Minimal quark content: *cccc*

<ロト < 回 ト < 目 ト < 目 ト 三 日 つへで 29 / 36

Z_{cs} 0000000 X(6200) ⊙●○○○○○○○○ Conclusions 0

LHCb: nonresonant production

NRSPS=NonResonant Single Parton Scattering DPS=Double Parton Scattering

X(6200)

Thus LHCb reports:

- A narrow resonance-like structure at 6.9 GeV
- A broad structure just above double- J/ψ threshold
- 5σ deviation from nonresonant double- J/ψ production

Z_{cs} 000000 X(6200)

Conclusions O

Choosing relevant channels

- Restrict ourselves to thresholds in the range 6.2-7.2 GeV
- Consider only *S*-wave channels
- Compatible with light exchanges
 - $J/\psi J/\psi \iff \chi_{cJ}\chi_{cJ} \ (J=0,1)$

Lowest exchange particle (ω) is (relatively) heavy \implies suppression

• $J/\psi J/\psi \Leftrightarrow \psi(2S)J/\psi, \psi(3770)J/\psi, \dots$

Mediated by soft gluons (two pions) \Longrightarrow no suppression

- Retain only HQSS-allowed channels
 - $J/\psi J/\psi \Leftrightarrow h_c h_c$

Heavy quark spin flip needed \implies suppressed by $\Lambda_{\rm QCD}/m_c \ll 1$ (HQSS)

• $J/\psi J/\psi \Leftrightarrow \psi(2S)J/\psi, \psi(3770)J/\psi$ No *c*-quark spin flip needed \Longrightarrow HQSS-allowed

All channels

<ロ> < 部> < 書> < 言> < 言) < 三) < 三) < 三) つへ() 33 / 36

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Conclusion O

X(6200)

X(6200)

Conclusions 0

No heavy exchanges (no $\chi_{c0}\chi_{c0}$, $\chi_{c1}\chi_{c1}$)

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三日三 のへで 33/36

Z_{cs} 000000 X(6200)

Conclusions O

Only HQSS-allowed channels (no h_ch_c)

The models

Two-channel model (7 parameters) $J/\psi J/\psi \& \psi(2S)J/\psi$

 $V_{\rm 2ch}(E) = \begin{pmatrix} a_1 + b_1 k_1^2 & c \\ c & a_2 + b_2 k_2^2 \end{pmatrix}$

Lippmann-Schwinger equation

$$T(E) = V(E) \cdot [1 - G(E)V(E)]^{-1}$$

Production amplitude in $J/\psi J/\psi$ channel (channel 1):

$$\mathcal{M}_1 = \alpha e^{-\beta E^2} \Big[b + G_1(E) T_{11}(E) + G_2(E) T_{21}(E) + r_3 G_3(E) T_{31}(E) \Big]$$

Slope β fixed to double-parton scattering (DPS): $\beta = 0.0123 \text{ GeV}^{-2}$

$$r_3 = \left\{ egin{array}{cc} 0 & 2 \mathrm{ch} \mbox{ model} \\ 1 & 3 \mathrm{ch} \mbox{ model} \end{array}
ight.$$

Three-channel model (8 parameters) $J/\psi J/\psi, \ \psi(2S)J/\psi \ \& \ \psi(3770)J/\psi$

X(6200)

$$V_{3ch}(E) = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix}$$

34 / 36

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃|∃ ◇Q⊘

X(6200) 0000000000000

Fits & poles

Conclusions O

X(6200) vs X(6900)

- Poles above the double- J/ψ threshold (X(6900)) are badly determined
- Pole near the double- J/ψ threshold (X(6200)) is robust

$$\begin{split} E_0^{2\text{ch}} &= 6203^{+\ 6}_{-27} - i\,12^{+\ 1}_{-12} \ (\text{RS}_{-+}) \text{ or } [6179, 6194] \ (\text{RS}_{++}) \\ E_0^{3\text{ch}} [\text{Fit } 1] &= 6163^{+18}_{-32} \ (\text{RS}_{+++}) \\ E_0^{3\text{ch}} [\text{Fit } 2] &= 6189^{+\ 5}_{-10} \ (\text{RS}_{-++}) \text{ or } [6159, 6194] \ (\text{RS}_{+++}) \end{split}$$

X(6200)

• Compositeness of X(6200) is large \implies hint for a molecule

$$T(k) \approx -8\pi\sqrt{s} \left[\frac{1}{a_0} + \frac{1}{2}r_0k^2 - ik\right]^{-1}$$
$$\bar{X}_A = (1+2|r_0/a_0|)^{-1/2} \sim 1$$

Matuschek.et al. Eur.Phys.J. A57 (2021) 101

Conclusions

- Many prominent candidates for hadronic molecules
- Lattice $QCD \implies$ alternative source of information on exotic hadrons
- Well established theoretical tools \implies reliable conclusions/predictions
- Upgraded/future experimental facilities ⇒ Quo vadis?
- Deuteron(90), X(20), Z(10), pentaquarks(9), di- $J/\psi(3)$, $T_{cc}^+(2)$,... to be continued

Backup

Pole positions & Branching fractions

Extracted pole positions for Z_b 's and W_{bJ} 's:

J^{PC}	State	Threshold	E_B w.r.t. threshold, [MeV]
1^{+-}	Z_b	$B\bar{B}^*$	$(-2.3 \pm 0.5) - i(1.1 \pm 0.1)$
1^{+-}	Z_b'	$B^*\bar{B}^*$	$(1.8 \pm 2.0) - i(13.6 \pm 3.1)$
0^{++}	W_{b0}	$B\bar{B}$	$(2.3 \pm 4.2) - i(16.0 \pm 2.6)$
0^{++}	W_{b0}^{\prime}	$B^*\bar{B}^*$	$(-1.3 \pm 0.4) - i(1.7 \pm 0.5)$
1^{++}	W_{b1}	$B\bar{B}^*$	$(10.2 \pm 2.5) - i(15.3 \pm 3.2)$
2^{++}	W_{b2}	$B^*\bar{B}^*$	$(7.4 \pm 2.8) - i(9.9 \pm 2.2)$

Predicted partial branching fractions for W_{bJ} 's:

J^{PC}	$B\bar{B}$	$B\bar{B}^*$	$B^*\bar{B}^*$	$\chi_{b0}(1P)\pi$	$\chi_{b0}(2P)\pi$	$\chi_{b1}(1P)\pi$	$\chi_{b1}(2P)\pi$	$\chi_{b2}(1P)\pi$	$\chi_{b2}(2P)\pi$	$\eta_{b0}(1S)\pi$	$\eta_{b0}(2S)\pi$
0^{++}	0.73	—	0.14	—	—	0.05	0.06	—	—	0.002	0.01
1^{++}	—	0.76	_	0.03	0.06	0.02	0.04	0.04	0.05	—	—
2^{++}	0.06	0.07	0.54	—	—	0.03	0.06	0.09	0.16	_	—

Theoretical uncertainty estimate

Red curve: complete LO Black curve: (almost) complete NLO

$$X^{(\nu)}(Q) = \sum_{n=0}^{\nu} \alpha_n \left(\frac{p_{\text{typ}}}{\Lambda}\right)^n \quad \underset{\text{NLO vs LO}}{\Longrightarrow} \quad \delta E \simeq E_{\text{typ}} \frac{p_{\text{typ}}}{\Lambda} \simeq 15 \frac{500}{1000} \simeq 7.5 \text{ MeV}$$

Complex ω -plane

 $\substack{Z_b\\ 000 \bullet 0000}$

$\Upsilon(10860) \rightarrow \pi^+\pi^-\Upsilon(nS)~(n=1,2,3)$ decays

Pions (kaons) FSI is included via dispersive technique

with all Im parts under theoretical control (real fitting parameters)

 $\substack{Z_b\\ 0000\bullet000}$

$$\Upsilon(10860) \to \pi^+ \pi^- \Upsilon(nS) \ (n = 1, 2, 3)$$
 decays

• No-FSI amplitude: left-hand cuts only, U — the full coupled-channel amplitude

 $M_{\rm no-FSI}(t,u) = U(t) + U(u) = M_0^L + M_{\rm higher} = \frac{1}{2} \int_{-1}^1 dz \, M_{\rm no-FSI}(t,u) + M_{\rm higher}$

• Amplitude with FSI: right-hand cut included, M_0^R restored dispersively from M_0^L

$$M(s,t,u) = M_{\text{no-FSI}}(t,u) + \frac{\Omega_0(s)}{\pi} \int_{4m_\pi^2}^{\infty} ds' \frac{\Omega_0^{-1}(s')T(s')\sigma(s')M_0^L(s')}{s'-s-i\epsilon} ds' \frac{\Omega_0(s)}{s'-s-i\epsilon} ds'$$

$$\Omega_0(s) = \frac{1}{\pi} \int_{4m_\pi^2}^{\infty} ds' \frac{T^*(s')\sigma(s)\Omega_0(s')}{s' - s - i\epsilon} \qquad T(s) = \begin{pmatrix} T_{\pi\pi\to\pi\pi} & T_{\pi\pi\to K\bar{K}} \\ T_{K\bar{K}\to\pi\pi} & T_{K\bar{K}\to K\bar{K}} \end{pmatrix}$$

$\Upsilon(10860) \rightarrow \pi^+\pi^-\Upsilon(nS)~(n=1,2,3)$ decays

- Diminish dependence on the large-s tail of Omnés
 - \implies Two subtractions in dispersive integral
 - \implies Second order polynomial $c_1 + c_2 s$ added to amplitude
- $\text{Im} M_0^L$ under control (including anomalous pieces) \implies Real subtraction constants c_1 and c_2 [as opposed to Molnar et al'2019]
- Low-energy πΥ scattering is described by chiral Lagrangian
 ⇒ Matching c₁ and c₂ to chiral expansion

$\Upsilon(10860) \rightarrow \pi^+\pi^-\Upsilon(nS)~(n=1,2,3)$ decays

- Diminish dependence on the large-s tail of Omnés
 - \implies Two subtractions in dispersive integral
 - \implies Second order polynomial c_1+c_2s added to amplitude
- $\text{Im} M_0^L$ under control (including anomalous pieces) \implies Real subtraction constants c_1 and c_2 [as opposed to Molnar et al'2019]
- Low-energy $\pi \Upsilon$ scattering is described by chiral Lagrangian \implies Matching c_1 and c_2 to chiral expansion

3 real fitting parameters: c_1 , c_2 , \mathcal{N}

Fit to data on $\Upsilon(10860) \rightarrow \pi^+\pi^-\Upsilon(nS)$ (n = 1, 2, 3)

- Data dominated by Z_b 's
- No structures in $M_{\pi\pi}$

Fit to data on $\Upsilon(10860) \rightarrow \pi^+\pi^-\Upsilon(nS)$ (n = 1, 2, 3)

Fit to data on $\Upsilon(10860) \rightarrow \pi^+\pi^-\Upsilon(nS)$ (n = 1, 2, 3)

Conclusions from Z_b 's analysis

- EFT approach provides good simultaneous description of all data
- Parameters are extracted directly from data
- Data are compatible with HQSS
- Parameter-free predictions for spin partners are made
- Effect from (long range) pion exchange is visible
- Puzzle of $B\overline{B}^*-B^*\overline{B}^*$ transitions:
 - Enhanced by pions
 - Not supported by data (surprise!)
 - EFT is flexible to adapt

Relevance of various contributions

 Z_{cs}

Results

Fit	\mathcal{C}_d , fm 2	\mathcal{C}_f , fm 2	$g_{D_{s1}}/g_{D_{s2}}$	$g/g_{D_{s2}}$	\mathcal{N} , $10^{-2} \frac{\mathrm{pb}}{\mathrm{GeV}}$	$-2\log \mathcal{L}$
fit 1	-0.51 ± 0.02	0.18 ± 0.02	0.26 ± 0.02	-2.5 ± 0.3	0.46 ± 0.05	138
fit $1'$	-0.24 ± 0.05	-0.1 ± 0.05	0.37 ± 0.03	-2.8 ± 0.6	0.35 ± 0.04	144
fit 2	0.50	-1.04 ± 0.01	-0.44 ± 0.03	-6.5 ± 2.5	0.28 ± 0.03	146

• Scenario 1

$J^{P(C)}$	^{')} State	Thresh	old, MeV	RS	Poles fit 1	RS	Poles fit 1'
1+	$Z_{cs}(3982)$	$\bar{D}_s D^* / \bar{D}_s^* D$	3975.2/3977.0	(+++)	3942 ± 11	(+)	3937^{+5}_{-29}
1+	$Z_{cs}(3982)$	$\bar{D}_s D^* / \bar{D}_s^* D$	3975.2/3977.0	(+)	3971 ± 2	(+)	3972 ± 2
1+	Z'_{cs}	$\bar{D}_s^* D^*$	4119.1	(+)	$4115 \pm 2 - (10 \pm 2)i$	(++-)	$4087^{+10}_{-10} + 0^{+45}_{-0}i$
1+-	$Z_c(3900)$	$(D\bar{D}^{*}, -)$	3871.7	(++)	3841 ± 11	(-+)	3832^{+25}_{-36}
1+-	$Z_c(4020)$	\bar{D}^*D^*	4013.7	(-+)	$4009 \pm 18 - (9 \pm 2)i$	(+-)	$3975^{+15}_{-10} + 0^{+43}_{-0}i$

• Scenario 2

$J^{P(C)}$) State	Thresh	old, MeV	RS	Poles fit 2
1^{+}	$Z_{cs}(3982)$	$\bar{D}_s D^* / \bar{D}_s^* D$	3975.2/3977.0	(+ + +)	3954 ± 2
1^{+}	$Z_{cs}(3982)$	$\bar{D}_s D^* / \bar{D}_s^* D$	3975.2/3977.0	(+)	$3959 \pm 7 - (47 \pm 16)i$
1^{+}	Z'_{cs}	$\bar{D}_s^* D^*$	4119.1		No state/not spin partner
1^{+-}	$Z_c(3900)$	$(D\bar{D}^{*}, -)$	3871.7	(-+)	$3864 \pm 7 - (58 \pm 13)i$
1^{+-}	$Z_c(4020)$	\bar{D}^*D^*	4013.7		Not spin partner

Z_b 00000000

Values of the parameters found in the fits

Parameters of the two-channel model ($[\bar{a}_i] = \text{GeV}^{-2}$, $[\bar{b}_j] = \text{GeV}^{-4}$, $[\bar{c}] = \text{GeV}^{-2}$) \bar{a}_1 \bar{a}_2 \bar{c} \bar{b}_1 \bar{b}_2 α b $0.2^{+0.6}_{-0.5}$ -4.2 ± 0.7 $2.94^{+0.36}_{-0.29}$ $-1.8^{+0.4}_{-0.5}$ -7.1 ± 0.4 70^{+8}_{-7} 3.3 ± 0.4

Parameters of the three-channel model ($[\bar{a}_{ij}]$ =GeV⁻²)

Each parameter with bar needs to be multiplied by $\prod_{i=1}^{4} \sqrt{2m_i}$, where m_i 's are the involved charmonium masses

 $m_{J/\psi} = 3.0969 \text{ GeV}$ $m_{\psi(2S)} = 3.6861 \text{ GeV}$

Compositeness of X(6200)

$$T(k) = -8\pi\sqrt{s} \left[\frac{1}{a_0} + \frac{1}{2}r_0k^2 - ik + \mathcal{O}(k^4)\right]^{-1}$$
$$\bar{X}_A = (1+2|r_0/a_0|)^{-1/2}$$