Exotic states

EFT 000 Conclusions 0

Exotic hadrons with heavy quarks Part 2: Methods

A.V. Nefediev

Josef Stefan Institute, Ljubljana, Slovenia

Beijing, April 2024

Exotic states

neralities

EFT 000 Conclusions 0

Ordinary hadrons

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

EFT

Conclusions o

Quark model: The structure of hadrons

1964 — Quark model by Gell-Mann & Zweig \Longrightarrow SU(3) multiplets

"Ordinary" hadrons*:

- Meson consists of quark and antiquark
- Baryon consists of 3 quarks

* Compact "exotic" hadrons anticipated

All hadrons understood \implies No "exotic" states

EFT 000 Conclusions 0

Quark model: The structure of hadrons

1964 — Quark model by Gell-Mann & Zweig \Longrightarrow SU(3) multiplets

"Ordinary" hadrons*:

- Meson consists of quark and antiquark
- Baryon consists of 3 quarks

* Compact "exotic" hadrons anticipated

All hadrons understood \implies No "exotic" states

Prediction of the fourth quark:

- Glashow & Bjorken (1964)
- Glashow, Iliopoulos & Maiani (1970)

Exotic states

FT

Conclusions 0

November revolution 1974: Discovery of charm

SLAC ($e^+e^- \rightarrow hadrons$)

Narrow resonance J/ψ with mass around 3.1 GeV

Exotic states 00000000000000 Generalities

FT

Conclusions 0

November revolution 1974: Discovery of charm

SLAC ($e^+e^- \rightarrow hadrons$)

Narrow resonance J/ψ with mass around 3.1 GeV

5 years later \implies 10 charmonia states!

Generalities

EFT

Conclusions

Bottomonia

• 1977 — L.Lederman (Fermilab): discovery $\Upsilon(1S)$ with mass $9.54~{\rm GeV}$

$$p + (Cu, Pt) \rightarrow \mu^+ + \mu^- + anything$$

• 1978 — DESY (Germany): discovery of $\Upsilon(2S)$

• 1980 — CESR (USA): discovery of $\Upsilon(3S)$ and $\Upsilon(4S)$

Breit-Wigner parametrisation: Mass, Width, Poles

first Riemann sheet

sheet

state de la constante de la co

Breit-Wigner parametrisation: Mass, Width, Poles

Exotic states 00000000000000

EFT

Conclusions 0

Lattice simulations

$$C_{ij}(t) = \langle 0|O_i(t)O_j(0)|0\rangle = \sum_n \frac{e^{-E_n t}}{2E_n} \langle 0|O_i(0)|n\rangle \langle n|O_j^{\dagger}(0)|0\rangle$$

- Continuum limit $\Longrightarrow a \to 0$
- Infinite box $\Longrightarrow L \to \infty$
- Unphysical light quark mass ⇒ Chiral extrapolation

Exotic states

Generalities

EFT

Conclusions 0

Quark model: Adding dynamics

$$\hat{H}_0\psi = E_0\psi$$

$$\hat{H}_0 = \frac{p^2}{m_Q} + V_0(r) + V_{\rm SD}(r)$$

$$V_0(r) = \sigma r - \frac{\frac{4}{3}\alpha_s}{r} + C_0$$
 (Cornell potential)

$$V_{SD}(r) = \underbrace{V_{LS}(r)(\boldsymbol{L} \cdot (\boldsymbol{S}_Q + \boldsymbol{S}_{\bar{Q}}))}_{\text{fine structure}} + \underbrace{V_{SS}(r)(\boldsymbol{S}_Q \cdot \boldsymbol{S}_{\bar{Q}})}_{\text{hyperfine structure}}$$

$$+\underbrace{V_{ST}(r)\Big((\mathbf{S}_Q\cdot\mathbf{S}_{\bar{Q}})-3(\mathbf{S}_Q\cdot\mathbf{n})(\mathbf{S}_{\bar{Q}}\cdot\mathbf{n})\Big)}_{\text{spin-tensor force}} \propto \frac{1}{m_Q^2}$$

Exotic states 00000000000000

EFT

Conclusions

Approach to ordinary states

Hadronic physics: Consensus before 2003

- Quark model provides a decent description of low-lying hadrons
- Quark model works surprisingly well even for light flavours
- Heavy flavours (c and b) comply with nonrelativistic theory
- Relativistic corrections improve the description
- Experiment gradually fills "missing states"
- Lattice provides additional/alternative source of information

Hadronic physics: Consensus before 2003

- Quark model provides a decent description of low-lying hadrons
- Quark model works surprisingly well even for light flavours
- Heavy flavours (c and b) comply with nonrelativistic theory
- Relativistic corrections improve the description
- Experiment gradually fills "missing states"
- Lattice provides additional/alternative source of information

General conclusion: Hadronic physics is well understood

Exotic states • 000000000000 neralities

EFT 000 Conclusions 0

Exotic states with heavy quarks

"Exotic animal is more unusual and rare than normal domesticated pets like cats or dogs"

Revolution of 2003: Enfant terrible X(3872)

- I = 0, $J^{PC} = 1^{++}$, contains $c\bar{c}$
- Too light compared with Quark Model prediction

 $M_{\chi_{c1}(2P)}^{\rm QM}-M_X^{\rm exp}\sim 100~{\rm MeV}$

• Strongly attracted to $D\bar{D}^*$ threshold

$$M_X^{\exp} - (M_{D^0} + M_{\bar{D}^{*0}}) \sim 0$$

- Large ($\sim 40\%$) probability of the decay into $D\bar{D}^*$
- Strong isospin violation

$$Br(X \to \pi^+ \pi^- \pi^0 J/\psi) \approx Br(X \to \pi^+ \pi^- J/\psi)$$

٠

Revolution of 2003: Enfant terrible X(3872)

• I = 0, $J^{PC} = 1^{++}$, contains $c\bar{c}$

- \sim 2500 citations (the most cited paper by Belle)
- $J^{PC} = 1^{++}$ unambiguously established by LHCb in 2013
- Nature of X(3872) still under debate

• New name by PDG —
$$\chi_{c1}(3872)$$

 $M_X^* - (M_{\bar{D}^{0}} + M_{\bar{D}^{*0}}) \sim 0$

- Large ($\sim 40\%$) probability of the decay into $D\bar{D}^*$
- Strong isospin violation

$$Br(X \to \pi^+\pi^-\pi^0 J/\psi) \approx Br(X \to \pi^+\pi^- J/\psi)$$

Exotic states

EFT

Conclusions

Spectrum of charmonium

Exotic states

EFT

Conclusions 0

Spectrum of charmonium

Exotic states

Generalities

EFT

Conclusions 0

Spectrum of charmonium

Exotic states

Generalities

EFT

Conclusions 0

Spectrum of charmonium

Exotic states

EFT

Conclusions 0

Spectrum of bottomonium

Spectrum of bottomonium

Spectrum of bottomonium

Spectrum of bottomonium

Exotic states

+

Generalities

EFT

Conclusions 0

Effect of hadronic loops

$$|\Psi
angle = egin{pmatrix} \sqrt{Z}|\psi_0
angle \ \chi(m{k})|H_1H_2
angle_{L=0} \end{pmatrix}$$

$$\frac{1}{E - E_0 + \frac{i}{2}\Gamma_0} \quad \Longrightarrow \quad \frac{1}{E - E_f + \frac{i}{2}(gk + \Gamma_0)} \qquad k = \sqrt{2\mu E}$$

Exotic states

Generalities

EFT

Conclusions 0

Effect of hadronic loops

$$|\Psi
angle = egin{pmatrix} \sqrt{Z}|\psi_0
angle \ \chi(m{k})|H_1H_2
angle_{L=0} \end{pmatrix}$$

Flatté parametrisation:

- + Simple and physically transparent
- + Accounts for threshold phenomena
- Difficult multichannel generalisation
- Obscure effect of particle exchanges
- Not systematically improvable

$$\frac{1}{E - E_0 + \frac{i}{2}\Gamma_0} \implies \frac{1}{E - E_f + \frac{i}{2}(gk + \Gamma_0)} \qquad k = \sqrt{2\mu E}$$

Exotic states

Generalities

EFT

Conclusions

Examples of line shapes

- Bound state $(E_f < 0)$ blue curve
- Virtual state $(E_f > 0)$ yellow curve

Pole resides on real axis below threshold on RS-I or RS-II

Exotic states

Generalities

EFT

Conclusions 0

Effect of experimental resolution

- Left plot before convolution with resolution
- Right plot after convolution with resolution

Sharp structures turn to broad humps

Exotic states

Generalities

EFT

Conclusions O

Models for exotic states

Hadronic Molecule

Extended object made of $(\bar{Q}q)$ and $(\bar{q}Q)$

• Compact Tetraquark

Compact object made of $(Q\bar Q q\bar q)$

• Hybrid

Compact object made of $(Q\bar{Q}) + gluon(s)$

• Hadro-Quarkonium

 $(Qar{Q})$ surrounded by light quarks

Exotic states

Generalities

EFT

Conclusions 0

Models for exotic states

Hadronic Molecule

Extended object made of $(\bar{Q}q)$ and $(\bar{q}Q)$

• ${}^{3}S_{1}$ NN system with I = 0:

Pole on RS-I with $E_B = 2.23$ MeV \implies deuteron

• ${}^{1}S_{0}$ NN system with I = 1:

Pole on RS-II with $E_B = 0.067$ MeV \implies virtual state

Compact object made of $(Q\bar{Q}) + gluon(s)$

Hadro-Quarkonium

 $(Qar{Q})$ surrounded by light quarks

Exotic states

 EFT 000 Conclusions 0

Some generalities

Exotic states

Generalities

EFT

Conclusions

Composite or elementary?

Effective range expansion:
$$-a^{-1} + \frac{1}{2}rk^{2} - ik$$
$$a = \frac{2(1-Z)}{(2-Z)}\frac{1}{\sqrt{2\mu E_{B}}} + O\left(\frac{1}{\beta}\right) \qquad r = -\frac{Z}{(1-Z)}\frac{1}{\sqrt{2\mu E_{B}}} + O\left(\frac{1}{\beta}\right)$$
$$\beta \ (\gg k) - (\text{inverse}) \text{ range of force}$$
$$(Weinberg'1960s)$$

Elementary (confined) state

• Two near-threshold poles

Composite (molecular) stateOne near-threshold pole

 \implies pole counting rules (Morgan'1992)

1

Generalities

EFT

Conclusions

Effective range of a molecule

- Smorodinsky: r > 0 for finite-range negative potential (Smorodinsky'1948,Esposito et al.'2021)
- Wigner: causality bounds r from above (r < 0 for zero-range potentials) (Wigner'1955)
- Molecule: r is defined by range corrections (Weinberg'1960s)

$$r = \underbrace{-\frac{Z}{(1-Z)}}_{\text{small for } Z \to 0} \frac{1}{\sqrt{2\mu E_B}} + \Delta r(\beta)$$

$$\operatorname{small for } Z \to 0$$

$$\operatorname{small} \left[\operatorname{for } Z \to 0 \right]_{|k^2=0} \sim \frac{1}{m_{\pi}} \sim 1 \text{ fm} > 0$$

Weinberg(like) analysis in physics of heavy flavours

- Resonances reside near S-wave two-body threshold (Yes)
- Bound states (Not always)

Solution: $ar{X} = 1 - Z
ightarrow 1/\sqrt{1 + 2|r/a|}$ (Matuschek et al.'2021)

Stable constituents (Almost never)

Solution: $k_{\text{eff}} = \sqrt{2\mu(E + i\frac{\Gamma}{2})} \Longrightarrow \text{ERE at complex point (Braaten et al.'2010)}$

• No additional thresholds near by (Rarely)

Solution: Expand contributions from additional channels at $k_1 \rightarrow 0$ (!!!)

- No additional singularities (Matter of luck)
 - CDD (Castillejo-Dalitz-Dyson) poles
 - Left-hand cuts

• ...

Solution: No general solution...

Exotic states

Generalities

EFT

Conclusions 0

CDD pole

Let direct interaction between hadrons ${\cal H}_1$ and ${\cal H}_2$ produce a near-threshold pole

$$t_V(E) \approx \frac{1}{-\gamma_V - ik}$$

Then the amplitude reads

$$f(E) = \frac{1}{E - E_f + \frac{i}{2}gk - \frac{(E - E_f)^2}{E - E_C}} \quad \text{with} \quad E_C = E_f - \frac{1}{2}g\gamma_V$$

• $|E_C| \gg |E_f|$

$$f(E) \approx \frac{1}{E - E_f + \frac{i}{2}gk}$$

-1

• $|E_C| \sim |E_f|$

 $f(E) \propto (E - E_C)$

Exotic states

Generalities

EFT

Conclusions 0

CDD pole at work

 $|E_C| \gg |E_f|$

 $|E_C| \sim |E_f|$

<ロ><日><日><日><日><日><日><日><日><日><日><日<のQ() 25/44

Exotic states

Generalities

EFT

Conclusions 0

CDD pole at work

 $|E_C| \gg |E_f|$

<ロ><日><日><日><日><日><日><日><日><日><日><日<のQ() 25/44

Exotic states 0000000000000 Generalities

EFT

Conclusions 0

Generalisation to multiple hadronic channels

$$\begin{split} |\Psi\rangle &= \begin{pmatrix} \sqrt{Z} |\psi_0\rangle \\ \chi_1(\boldsymbol{p}) |H_{11}H_{12}\rangle \\ \chi_2(\boldsymbol{p}) |H_{21}H_{22}\rangle \\ \dots \end{pmatrix} \qquad H = \begin{pmatrix} E_0 & f_1 & f_2 & \cdots \\ f_1 & H_{h_1} & V_{12} & \cdots \\ f_2 & V_{21} & H_{h_2} & \cdots \\ \dots & \dots & \dots & \dots \end{pmatrix} \\ H_{h_i}(\boldsymbol{p}, \boldsymbol{p}') &= \left(\Delta_i + \frac{p^2}{2\mu_i}\right) \delta^{(3)}(\boldsymbol{p} - \boldsymbol{p}') + V_{ii}(\boldsymbol{p}, \boldsymbol{p}') \end{split}$$

For two channels V_{ij} (i, j = 1, 2) is parametrised through the singlet and triplet inversed scattering lengths γ_s and γ_t :

- γ_s governs the position of the zero E_C
- γ_t governs the relevance of the term k_1k_2

くちゃ 不良 く ボット キャット しょう

Generalities

EFT 000 Conclusions 0

Solution of the Lippmann-Schwinger equation

$$t_s = \frac{1}{2}(t_{11} + t_{22}) + t_{12} = \frac{(E - E_C)(2\gamma_t + i(k_1 + k_2))}{4\pi^2\mu \ D(E)}$$

$$t_t = \frac{1}{2}(t_{11} + t_{22}) - t_{12} = \frac{2\gamma_s(E - E_f) + i(k_1 + k_2)(E - E_C)}{4\pi^2\mu \ D(E)}$$

$$t_{st} = \frac{1}{2}(t_{11} - t_{22}) = \frac{i(k_2 - k_1)(E - E_C)}{4\pi^2 \mu \ D(E)}$$

$$D(E) = \gamma_s \Big(2\gamma_t + i(k_1 + k_2) \Big) (E - E_f) - \Big(2\mathbf{k_1 k_2} - i\gamma_t(k_1 + k_2) \Big) (E - E_C)$$
$$E_C = E_f - \frac{1}{2}g\gamma_s$$

(Artoisenet et al.'2010, Hanhart et al.'2011)

Exotic states 0000000000000 Generalities

EFT

Conclusions o

Contribution of second channel

Assume $|\gamma_s| \to \infty$ (no CDD pole) and $|\gamma_t| \to \infty$ (no channels entanglement) • Naive expansion

$$E - E_f + \frac{i}{2}g(k_1 + \mathbf{k_2}) = \frac{k_1^2}{2\mu} - E_f + \frac{i}{2}g\left(k_1 + \underbrace{\sqrt{2\mu\Delta - \mathbf{k_1^2}}}_{\text{expand for } k_1 \to 0}\right)$$

$$r = r_0 + \delta r$$
 $r_0 = -\frac{2}{\mu g}$ $\delta r = -\frac{1}{\sqrt{2\mu\Delta}} \xrightarrow{\Delta \to 0} \infty (!!!)$

• Educated expansion: Use exact two-channel expression

$$Z = \left(1 - \frac{1}{r_0} \left(\frac{1}{\sqrt{2\mu E_B}} + \frac{1}{\sqrt{2\mu (E_B + \Delta)}}\right)\right)^{-1}$$

in Weinberg formula for r

$$r = r_0 \frac{\sqrt{E_B + \Delta}}{\sqrt{E_B} + \sqrt{E_B + \Delta}} \quad \underset{\Delta \gg E_B}{\rightarrow} r_0$$

Exotic states

Generalities

EFT

Conclusions O

Can we do without ERE?

Probalility to observe resonance in the α -th channel ($\alpha = 1, 2$) (Hyodo et al, '2012, Aceti & Oset'2012)

$$X_{\alpha} = g_{\alpha}^2 \left[\frac{d}{dM^2} \int \frac{d^3p}{(2\pi)^3} G_{\alpha}(M,p) \right]_{|M=M_{\text{pole}}}$$

with the couplings defined as residues

$$g_{\alpha}g_{\beta} = \lim_{M \to M_{\text{pole}}} (M^2 - M_{\text{pole}}^2)T_{\alpha\beta}(M)$$

In neglect of constituents widths

$$X_1 = \frac{\sqrt{E_B + \Delta}}{\sqrt{E_B} + \sqrt{E_B + \Delta}}$$

$$X_2 = \frac{\sqrt{E_B}}{\sqrt{E_B} + \sqrt{E_B} + \Delta}$$

Exotic states 00000000000000 Generalities

EFT

Conclusions o

Generalisation to compact component

Single hadronic channel

 $Z \propto \sqrt{E_B}$ X = 1 - Z

Two hadronic channels ($\mu_1 = \mu_2 = \mu$)

$$Z = \frac{R_0}{R_0 + R_1 + R_2} \qquad X_1 = \frac{R_1}{R_0 + R_1 + R_2} \qquad X_2 = \frac{R_2}{R_0 + R_1 + R_2}$$

where

$$R_{0} = \frac{2}{\mu g} = |\mathbf{r}_{0}| \qquad R_{1} = \frac{1}{\sqrt{2\mu E_{B}}} \qquad R_{2} = \frac{1}{\sqrt{2\mu (E_{B} + \Delta)}}$$
$$\Delta = M_{2}^{\text{th}} - M_{1}^{\text{th}}$$

<ロト < 回ト < 巨ト < 巨ト < 巨ト 三日日 のへの 31/44

-03

-04

-0.2

-01

E

01

Exotic states

Generalities

EFT

Conclusions

Spectral density

Hint: Extract information from continuum w.f. $(E = k^2/(2\mu))$ $|\Psi\rangle = C_k |\psi_0\rangle + \chi_k(p) |H_1 H_2\rangle$ $w(E) = 4\pi\mu k |C_k|^2 \Theta(E - E_{\rm th}^{\rm min}) = \frac{1}{2\pi i} \left[\frac{1}{E - E_0 + \Sigma^*(E)} - {\rm c.c.} \right]$ (Bogdanova et al.'1991, Baru et al'2004) "Z" = W = $\int_{E-\delta}^{E_{\rm th}+\delta} w(E) dE$ (δ is not well defined) $W_{\rm solid} = \int_{0.6\,{\rm MeV}}^{0.2\,{\rm MeV}} w_{\rm solid}(E) dE \approx 0.3$ $W_{\text{dashed}} = \int_{-0.6 \text{ MeV}}^{0.2 \text{ MeV}} w_{\text{dashed}}(E) dE \approx 0.9$

Exotic states

Generalities

EFT

Conclusions

Unitarisation effects

Particles A and B interact exchanging particle C:

Exotic states

Generalities

EFT

Conclusions

Unitarisation effects

Particles A and B interact exchanging particle C:

• Naive expectations $(\Gamma(A \to BC) \propto g^2)$:

 $V_{AB} \propto g^2 ~~ \mathop{\Longrightarrow}\limits_{g
ightarrow \infty}~~$ deeply bound states

Exotic states

Generalities

EFT

Conclusions

Unitarisation effects

Particles A and B interact exchanging particle C:

• Naive expectations $(\Gamma(A \rightarrow BC) \propto g^2)$:

 $V_{AB} \propto g^2 \quad \Longrightarrow \limits_{g
ightarrow \infty} \quad$ deeply bound states

• Actuality: as g grows, re-scatterings become important

<ロ><日><日><日><日><日><日><日><日><日><日><日><日><日</td>

Exotic states

Generalities

EFT

Conclusions

Unitarisation effects

Particles A and B interact exchanging particle C:

• Naive expectations $(\Gamma(A \rightarrow BC) \propto g^2)$:

$$A = \begin{array}{c} g \\ \downarrow C \\ B \\ \hline g \\ g \\ \end{array} \begin{array}{c} B \\ \downarrow C \\ g \\ \end{array} \begin{array}{c} B \\ \downarrow C \\ B \\ \hline g \\ \end{array}$$

$$V_{AB} \propto g^2 \quad \Longrightarrow \limits_{g
ightarrow \infty} \quad {
m deeply \ bound \ states}$$

- Actuality: as g grows, re-scatterings become important
- Way to proceed: solve Lippmann-Schwinger equation T = V VGT

- Dashed line: neglected A width
- Dot-dashed line: constant A width
- Solid line: dynamical A width

Exotic states

Generalities

EFT

Conclusions O

Unitarisation effects

Resonances $R_n = (\bar{Q}Q)_n$ interact via $(\bar{q}Q)$ field $\varphi (\mathcal{L}_{int} = g \sum_n R_n \bar{\varphi} \varphi)$

Exotic states

Generalities

EFT

Conclusions

Unitarisation effects

Resonances $R_n = (\bar{Q}Q)_n$ interact via $(\bar{q}Q)$ field $\varphi (\mathcal{L}_{int} = g \sum_n R_n \bar{\varphi} \varphi)$

Exotic states

Generalities

EFT

Conclusions 0

Unitarisation effects

Resonances $R_n = (\bar{Q}Q)_n$ interact via $(\bar{q}Q)$ field $\varphi (\mathcal{L}_{int} = g \sum_n R_n \bar{\varphi} \varphi)$

Conclusion: For $g \to \infty$ dressed resonances decouple from each other and a molecule is formed

- Deuteron $(m_{\pi} \gg M_n M_p \implies \mu_{\pi} = m_{\pi}) \Longrightarrow V_{\text{OPE}}^{\text{long-range}} \sim \frac{1}{r} e^{-m_{\pi} r}$
- Charmonium system $(m_{\pi} < M_{D^*} M_D \Longrightarrow \mu_{\pi}^2 < 0 \& |\mu_{\pi}| \ll m_{\pi})$:

• Bottomonium system $(m_{\pi} > M_{B^*} - M_B \Longrightarrow \mu_{\pi}^2 > 0 \& \mu_{\pi} < m_{\pi})$:

$$\int d\Omega_{kk'} V_{\text{OPE}}(\boldsymbol{k} - \boldsymbol{k}') \sim \log \frac{\mu_{\pi}^2 + (k + k')^2}{\mu_{\pi}^2 + (k - k')^2} \implies \text{left-hand cut at } k^2 < -\frac{1}{4}\mu_{\pi}^2$$

• Charmonium system $(m_{\pi} < M_{D^*} - M_D \Longrightarrow \mu_{\pi}^2 < 0 \& |\mu_{\pi}| \ll m_{\pi})$:

• Bottomonium system $(m_{\pi} > M_{B^*} - M_B \Longrightarrow \mu_{\pi}^2 > 0 \& \mu_{\pi} < m_{\pi})$:

$$\int d\Omega_{kk'} V_{\text{OPE}}(\boldsymbol{k} - \boldsymbol{k}') \sim \log \frac{\mu_{\pi}^2 + (k + k')^2}{\mu_{\pi}^2 + (k - k')^2} \implies \text{left-hand cut at } k^2 < -\frac{1}{4}\mu_{\pi}^2$$

• Bottomonium system $(m_{\pi} > M_{B^*} - M_B \Longrightarrow \mu_{\pi}^2 > 0 \& \mu_{\pi} < m_{\pi})$:

$$\int d\Omega_{kk'} V_{\text{OPE}}(\boldsymbol{k} - \boldsymbol{k}') \sim \log \frac{\mu_{\pi}^2 + (k + k')^2}{\mu_{\pi}^2 + (k - k')^2} \implies \text{left-hand cut at } k^2 < -\frac{1}{4}\mu_{\pi}^2$$

Exotic states

Generalities

EFT

Conclusions o

Left-hand cut

$$\mathcal{A} = \frac{1}{u - m^2} = -\frac{1}{m^2 + 2p^2(1 - \cos\theta)}$$

 $s = (p_1 + p_2)^2 = 4(p^2 + M^2) \qquad \Longrightarrow \qquad s_{\rm th} = 4M^2$

$$\mathcal{A}_S = \int \frac{d\Omega}{4\pi} \mathcal{A} = \frac{1}{4p^2} \log \frac{m^2 + 4p^2}{m^2} \implies s_{\text{lhc}} = 4M^2 - m^2$$

37 / 44

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Generalities

EFT

Conclusions

Heavy-quark spin symmetry

- Exotic states contain heavy quarks (HQ)
- In the limit $m_Q
 ightarrow \infty \ (m_Q \gg \Lambda_{
 m QCD})$ spin of HQ decouples

 \implies Heavy Quark Spin Symmetry (HQSS)

- For realistic m_Q 's HQSS is approximate but accurate symmetry of QCD
- HQSS = tool to relate properties of states with different HQ spin orientation

 \implies Spin partners

Exotic states

Generalities

EFT

Conclusions 0

Combined analysis

Considering different channels separately is like blind study of elephant

Combined analysis of all data sets is necessary!

Exotic states

Generalities

EFT

Conclusions

Approach to exotic states

Exotic states

EFT •00 Conclusions

Effective Field Theory for Hadronic Molecules

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Interaction potential between heavy hadrons:

• Includes all relevant interactions

$$\times$$
 + π + \cdots

- Complies with relevant symmetries (chiral, HQSS, etc)
- Incorporates coupled-channel dynamics
- Expanded in powers of p^2/Λ^2 and truncated at necessary order (LO, NLO...)
- Iterated to all orders via (multichannel) Lippmann-Schwinger equation

$$T = V - VGT$$

Effective field theory for hadronic molecules

- $\bullet~{\rm Expanded}$ in powers of p^2/Λ^2 and truncated at necessary order (LO, NLO...)
- Iterated to all orders via (multichannel) Lippmann-Schwinger equation

$$T = V - VGT$$

Effective field theory for hadronic molecules

Free parameters:

- Low-energy constants
- (Bare) couplings to hadronic channels
- Input (combined analysis):
 - Line shapes (Dalitz plots)
 - Partial branchings

Output:

- Pole position M_0 ("mass" = $\operatorname{Re}(M_0)$, "width" = $2 \times \operatorname{Im}(M_0)$)
- Residues at the poles (dressed couplings)

Predictions:

- New properties of state: line shapes, partial widths,...
- Spin partners: poles, line shapes, partial widths,...
- Chiral extrapolations

Exotic states

Generalities

EFT

Conclusions

Conclusions

- Collider experiments at energies above open-flavour thresholds started new era in hadronic physics
- Threshold phenomena, coupled channels, pion exchange are important
- Multibody unitarity and analyticity of amplitude need to be preserved
- Line shapes of non-Breit-Wigner form is current reality
- From "mass" and "width" to pole position and residues (couplings)
- EFT can be employed to a success as model-independent, systematically improvable analysis and prediction tool
- Results of EFT analysis to be used as input for QCD-inspired models
- Lattice simulations are important to fill the gap in experimental data and provide numerical experiment in "alternative Universe"

Backup

OPE sign

	I = 0	I = 1
PV	3	1
$(P\bar{V})_{C=\pm}$	3C	-C

$$\begin{array}{cccc} X(3872) & (I=0, C=+) & T_{cc} & (I=0) & Z_b & (I=1, C=-) & W_{bJ} & (I=1, C=+) \\ +3 & +3 & +1 & -1 \end{array}$$