第二届强子物理新发展研讨会 暨强子物理在线论坛100期特别活动 2024年6月30日-7月4日,合肥

Chiral dynamics of light-flavor meson and axion

Zhi-Hui Guo (郭志辉)

Hebei Normal University (河北师范大学)

Outline:

- **1. Introduction**
- 2. $\pi \eta \eta' a$ mixing and prediction of $g_{a\gamma\gamma}$ from $g_{\pi\gamma\gamma}$, $g_{\eta\gamma\gamma}$, $g_{\eta'\gamma\gamma}$
- 3. Thermal axion-pion scattering and the implication in cosmology
- 4. Summary

Introduction

q

Strong CP problem

implying the invariant quantity: $\ \ ar{ heta}= heta+ heta_q$

$$\mathcal{L}_{\text{QCD}}^{\text{axion}} = \sum_{q} \bar{q} (i D \!\!\!/ - m_q) q - \frac{1}{4} G_{\mu\nu} G^{\mu\nu} + \bar{\theta} \frac{\alpha_s}{8\pi} G_{\mu\nu} \tilde{G}^{\mu\nu}$$

Constraints from neutron electric dipole moment (nEDM)

$$|\bar{\theta}| \lesssim 10^{-10}$$

> Strong CP problem: why is $\bar{\theta}$ so unnaturally tiny ?

Axion: an elegant solution to strong CP [Peccei, Quinn, PRL'77]

$$\mathcal{L}_{\text{QCD}}^{\text{axion}} = \sum_{q} \bar{q} (i D - m_q) q - \frac{1}{4} G_{\mu\nu} G^{\mu\nu} + \bar{\theta} \frac{\alpha_s}{8\pi} G_{\mu\nu} \tilde{G}^{\mu\nu} + \frac{1}{2} \partial_{\mu} a \partial^{\mu} a - \frac{1}{2} m_{a,0}^2 a^2 + \frac{a}{f_a} \frac{\alpha_s}{8\pi} G_{\mu\nu} \tilde{G}^{\mu\nu} + \cdots$$

• It is possible to introduce other model-dependent axion interactions, such as axion-quark and axion-photon.

We will focus on the **MODEL INDEPENDENT QCD axion** interactions.

- f_a : the axion decay constant. Invisible axion: $f_a >> v_{EW}$. Axion interactions with SM particles are accompanied with the factors of $(1/f_a)^n$.
- Stringent constraints for $m_{a,0} = 0$ (QCD axion): $m_a \sim 1/f_a$ QCD-like axion: $m_{a,0} \neq 0 \ll f_a$ with model-independent $aG\widetilde{G}$ interaction
- Axion-hadron and axion-photon interactions are relevant at low energies.

Axion chiral perturbation theory (A χ PT)

$$\mathcal{L}_{\rm QCD}^{\rm axion} = \bar{q}(i\not\!\!D - M_q)q - \frac{1}{4}G_{\mu\nu}G^{\mu\nu} + \frac{1}{2}\partial_{\mu}a\partial^{\mu}a - \frac{1}{2}m_{a,0}^2a^2 + \frac{a}{f_a}\frac{\alpha_s}{8\pi}G_{\mu\nu}\tilde{G}^{\mu\nu}$$

Two ways to proceed:

(1) Remove the $aG\widetilde{G}$ term via the quark axial transformation

$$\begin{split} \mathbf{Mapping to } \chi \mathbf{PT} \quad \mathcal{L}_2 &= \frac{F^2}{4} \langle D_\mu U D^\mu U^\dagger + \chi_a U^\dagger + U \chi_a^\dagger \rangle + \frac{\partial_\mu a}{2f_a} J_A^\mu \big|_{\mathrm{LO}} \\ \chi_a &= 2B_0 e^{-i\frac{a}{2f_a}Q_a} M_q e^{-i\frac{a}{2f_a}Q_a} \qquad J_A^\mu \big|_{\mathrm{LO}} = -i\frac{F^2}{2} \langle Q_a (\partial^\mu U U^\dagger + U^\dagger \partial^\mu U) \rangle \end{split}$$

- $Q_a = M_q^{-1}/\text{Tr}(M_q^{-1})$ is usually taken to eliminate the LO mass mixing between axion and pion [Georgi,Kaplan,Randall, PLB'86], though any other hermitian Q_a should lead to the same physical quantities.
- $J^{\mu}_{A} \partial_{\mu} a$ will cause the kinematical mixing. Should be consistently included. [Bauer, et al., PRL'21]

(2) Explicitly keep the $aG\widetilde{G}$ term and match it to χPT

<u>Reminiscent</u>:

QCD U(1)_A anomaly that is caused by topological charge density $\omega(x) = \alpha_s G_{\mu\nu} \tilde{G}^{\mu\nu} / (8\pi)$ is responsible for the massive singlet η_0 .

Axion could be similarly included as the η_0 via the U(3) χ PT:

$$\mathcal{L}^{\text{LO}} = \frac{F^2}{4} \langle u_{\mu} u^{\mu} \rangle + \frac{F^2}{4} \langle \chi_{+} \rangle + \frac{F^2}{12} M_0^2 X^2$$

$$U = u^2 = e^{i\frac{\sqrt{2\Phi}}{F}}, \qquad \chi = 2B(s+ip), \qquad \chi_{\pm} = u^{\dagger} \chi u^{\dagger} \pm u \chi^{\dagger} u,$$

$$u_{\mu} = iu^{\dagger} D_{\mu} U u^{\dagger}, \qquad D_{\mu} U = \partial_{\mu} U - i(v_{\mu} + a_{\mu}) U + iU(v_{\mu} - a_{\mu})$$

$$X = \log\left(\det U\right) + i\frac{a}{f_a} \qquad \Phi = \begin{pmatrix} \frac{1}{\sqrt{2}}\pi^0 + \frac{1}{\sqrt{6}}\eta_8 + \frac{1}{\sqrt{3}}\eta_0 & \pi^+ & K^+ \\ \pi^- & \frac{-1}{\sqrt{2}}\pi^0 + \frac{1}{\sqrt{6}}\eta_8 + \frac{1}{\sqrt{3}}\eta_0 & K^0 \\ K^- & \overline{K}^0 & \frac{-2}{\sqrt{6}}\eta_8 + \frac{1}{\sqrt{3}}\eta_0 \end{pmatrix}$$

- Q_a is not needed in U(3) χ PT.
- $M_0^2 = 6\tau/F^2$, with τ the topological susceptibility. Note that $M_0^2 \sim O(1/N_c)$.
- δ expansion scheme: $\delta \sim O(p^2) \sim O(m_q) \sim O(1/N_c)$.
- Axion interactions enter via the axion-meson mixing terms.

π - η - η '-a mixing in U(3) A χ PT

Expansion schemes:

- •Strong isospin breaking (IB) effects: leading corrections will be kept.
- •Effects of F/f_a : safe to keep the leading order.
- δ expansion: the same as the standard U(3) χ PT

$$\begin{array}{l} \text{Leading order results} \\ \text{(mass mixing only)} \\ \epsilon \equiv B(m_u - m_d) = m_{K^+}^2 - m_{K^0}^2 - (m_{\pi^+}^2 - m_{\pi^0}^2) \end{array} = \begin{pmatrix} 1 + O(v^2) & -v_{12} & -v_{13} & -v_{14} \\ v_{12} & 1 + O(v^2) & -v_{23} & -v_{24} \\ v_{13} & v_{23} & 1 + O(v^2) & -v_{34} \\ v_{14} & v_{24} & v_{34} & 1 + O(v^2) \end{pmatrix} \begin{pmatrix} \pi^0 \\ \dot{\bar{\eta}} \\ \dot{\bar{\eta}'} \\ a \end{pmatrix}$$

$$v_{12} = -\frac{\epsilon}{\sqrt{3}} \frac{c_{\theta} - \sqrt{2}s_{\theta}}{m_{\pi}^2 - m_{\eta}^2}, \ v_{13} = -\frac{\epsilon}{\sqrt{3}} \frac{\sqrt{2}c_{\theta} + s_{\theta}}{m_{\pi}^2 - m_{\eta'}^2}, \quad v_{24} = -\frac{M_0^2 s_{\theta}}{\sqrt{6}(m_{a,0}^2 - m_{\eta}^2)} \frac{F}{f_a}, \qquad v_{34} = \frac{M_0^2 c_{\theta}}{\sqrt{6}(m_{a,0}^2 - m_{\eta'}^2)} \frac{F}{f_a}$$

$$v_{14} = -\frac{M_0^2 \epsilon}{12} \frac{F}{f_a} \left\{ \frac{2\sqrt{2}}{(m_{a,0}^2 - m_{\overline{\pi}}^2)} \left[\frac{s_\theta (c_\theta - \sqrt{2}s_\theta)}{m_{\overline{\eta}}^2 - m_{\overline{\pi}}^2} - \frac{c_\theta (s_\theta + \sqrt{2}c_\theta)}{m_{\overline{\eta}'}^2 - m_{\overline{\pi}}^2} \right] + \frac{\sqrt{2}s_\theta (\sqrt{2}s_\theta - c_\theta)}{(m_{a,0}^2 - m_{\overline{\eta}'}^2)(m_{\overline{\eta}}^2 - m_{\overline{\pi}}^2)} + \frac{\sqrt{2}c_\theta (\sqrt{2}c_\theta + s_\theta)}{(m_{a,0}^2 - m_{\overline{\eta}'}^2)(m_{\overline{\eta}'}^2 - m_{\overline{\pi}}^2)} \right\}$$

$$m_{\overline{a}}^2 = m_{a,0}^2 + \frac{M_0^2 F^2}{6f_a^2} \bigg[1 + \frac{c_{\theta}^2 M_0^2}{m_{a,0}^2 - m_{\overline{\eta}'}^2} + \frac{s_{\theta}^2 M_0^2}{m_{a,0}^2 - m_{\overline{\eta}}^2} \bigg] + O(\epsilon)$$

For the QCD axion with $m_{a,0}=0$:

[Weinberg, PRL'78]

NLO case: kinetic mixing+mass mixing terms

Relevant NLO operators to the axion-meson mixing

$$\mathcal{L}^{\rm NLO} = L_5 \langle u^{\mu} u_{\mu} \chi_{+} \rangle + \frac{L_8}{2} \langle \chi_{+} \chi_{+} + \chi_{-} \chi_{-} \rangle - \frac{F^2 \Lambda_1}{12} D^{\mu} X D_{\mu} X - \frac{F^2 \Lambda_2}{12} X \langle \chi_{-} \rangle$$

$$\begin{pmatrix} \hat{\pi}^{0} \\ \hat{\eta} \\ \hat{\eta}' \\ \hat{a} \end{pmatrix} = \begin{pmatrix} 1 & -y_{12} & -y_{13} & -y_{14} \\ y_{12} & 1 & -y_{23} & -y_{24} \\ y_{13} & y_{23} & 1 & -y_{34} \\ y_{14} & y_{24} & y_{34} & 1 \end{pmatrix} \times \begin{pmatrix} 1 - x_{11} & -x_{12} & -x_{13} & -x_{14} \\ -x_{12} & 1 - x_{22} & -x_{23} & -x_{24} \\ -x_{13} & -x_{23} & 1 - x_{33} & -x_{34} \\ -x_{14} & -x_{24} & -x_{34} & 1 - x_{44} \end{pmatrix} \begin{pmatrix} \overline{\pi}^{0} \\ \overline{\eta} \\ \overline{\eta}' \\ \overline{a} \end{pmatrix}$$

take care of mass mixing

take care of kinetic mixing and canonicalization

For details, see [Gao,ZHG,Oller,Zhou,JHEP'23]

Free parameters to fix : F, L_5 , L_8 , Λ_1 , Λ_2 , which also appear in

- the masses of π , K, η , η'
- decay constants of π , K
- η η' mixing related quantities

> Lattice simulations provide valuable data, especially m_{π} dependence quantities.

		1.3 - ETMC -		
Parameters	NLO Fit	$\frac{1.2}{1.2} = \frac{1.2}{1.2} = $		
F(MeV)	$91.05_{-0.44}^{+0.42}$	$1.1 = 4 \operatorname{RQCD} = 1.1$		
$10^3 \times L_5$	$1.68\substack{+0.05\\-0.06}$			
$10^3 \times L_8$	$0.88\substack{+0.04\\-0.04}$			
Λ_1	$-0.17\substack{+0.05\\-0.05}$			
Λ_2	$0.06\substack{+0.08\\-0.09}$			
$\chi^2/({\rm d.o.f.})$	219.9/(111-5)			
		0.05 0.10 0.15 0.20 0.25 m _π ² /GeV ²		
0.125 0.120 0.120 0.120			tice P	
0.115	₽ ₽ -	0.54 -		
0.105				
0.100	Į Į			
0.095 - 0.090 - -		0.50		
0.02 0.04	0.06 C.08 0.10		1	
m _π ≮/GeV²		m_2/GeV ²	0.1)	
[RBC/UKQCD,PRD'11]		[RBC/UKQCD,PRD'13] [Durr et al., PRD'10]	[Durr et al., PRD'10]	

decay constants/GeV

Predictions to the mixing pattern and axion mass

$$\begin{pmatrix} \hat{\pi}^{0} \\ \hat{\eta} \\ \hat{\eta}' \\ \hat{a} \end{pmatrix} = M^{\text{LO+NLO}} \begin{pmatrix} \pi^{0} \\ \eta_{8} \\ \eta_{0} \\ a \end{pmatrix}$$
 [Gao, ZHG, Oller, Zhou, JHEP'23]

$$M^{\rm LO+NLO} = \begin{pmatrix} 1 + (0.015 \pm 0.001) & 0.017 + (-0.010 \pm 0.001) & 0.009 + (-0.007 \pm 0.001) & \frac{12.1 + (0.48 \pm 0.08)}{f_a} \\ -0.019 + (0.007 \pm 0.001) & 0.94 + (0.21 \pm 0.01) & 0.33 + (-0.22 \pm 0.03) & \frac{34.3 + (0.9 \pm 0.2)}{f_a} \\ -0.003 + (-0.003 \pm 0.000) & -0.33 + (-0.18 \pm 0.03) & 0.94 + (0.13 \pm 0.02) & \frac{25.9 + (-0.5 \pm 0.1)}{f_a} \\ \frac{-12.1 + (-0.20 \pm 0.03)}{f_a} & \frac{-23.8 + (1.6 + 0.8)}{f_a} & \frac{-35.7 + (-5.7 + 1.6)}{f_a} & 1 + \frac{27.6 \pm 1.0}{f_a^2} \end{pmatrix}$$

$$\begin{split} m_{\hat{\pi}} &= \left[134.90 + (0.10 \pm 0.07) \right] \,\text{MeV} \,, \\ m_{\hat{K}} &= \left[489.2 + (5.0^{+3.4}_{-3.5}) \right] \,\text{MeV} \,, \\ m_{\hat{\eta}} &= \left[490.2 + (60.9^{+10.2}_{-10.0}) \right] \,\text{MeV} \,, \\ m_{\hat{\eta}'} &= \left[954.3 + (-28.4^{+11.9}_{-12.6}) \right] \,\text{MeV} \,, \\ m_{\hat{a}} &= \left[5.96 + (0.12 \pm 0.02) \right] \,\mu\text{eV} \frac{10^{12} \,\text{GeV}}{f_a} \,, \end{split}$$

Two-photon couplings

$$\mathcal{L}_{\rm WZW}^{\rm LO} = -\frac{3\sqrt{2}e^2}{8\pi^2 F} \varepsilon_{\mu\nu\rho\sigma} \partial^{\mu} A^{\nu} \partial^{\rho} A^{\sigma} \langle Q^2 \Phi \rangle$$
$$\mathcal{L}_{\rm WZW}^{\rm NLO} = it_1 \varepsilon_{\mu\nu\rho\sigma} \langle f_+^{\mu\nu} f_+^{\rho\sigma} \chi_- \rangle + k_3 \varepsilon_{\mu\nu\rho\sigma} \langle f_+^{\mu\nu} f_+^{\rho\sigma} \rangle X$$

- One needs the π - η - η '-a mixing as input.
- Our goal: to use the experimental inputs from $g_{\pi\gamma\gamma}$, $g_{\eta\gamma\gamma}$, $g_{\eta\gamma\gamma}$, to predict $g_{a\gamma\gamma}$. LO $a\gamma\gamma$ coupling is purely caused by the mixing.

$$\begin{split} F_{a\gamma\gamma} &= \frac{(c_{\theta} - 2\sqrt{2}s_{\theta})v_{24} + (s_{\theta} + 2\sqrt{2}c_{\theta})v_{34}}{4\sqrt{3}\pi^{2}F} \\ &+ \frac{(c_{\theta} - 2\sqrt{2}s_{\theta})(x_{24} + y_{24}) + (s_{\theta} + 2\sqrt{2}c_{\theta})(x_{34} + y_{34})}{4\sqrt{3}\pi^{2}F} - \frac{64\sqrt{6}}{3F}k_{3}\left(\frac{F}{f_{a}} - \sqrt{6}s_{\theta}v_{24} + \sqrt{6}c_{\theta}v_{34}\right) \\ &- \frac{64}{27F}t_{1}\left[-\sqrt{3}s_{\theta}(4\sqrt{2}v_{24}m_{\pi}^{2} - 7v_{34}m_{\pi}^{2} + 2\sqrt{2}v_{24}m_{K}^{2} + 4v_{34}m_{K}^{2}) \\ &+ \sqrt{3}c_{\theta}(4\sqrt{2}v_{34}m_{\pi}^{2} + 7v_{24}m_{\pi}^{2} + 2\sqrt{2}v_{24}m_{K}^{2} - 4v_{24}m_{K}^{2})\right]. \end{split}$$

$$F_{\pi^{0}\gamma\gamma} &= \frac{1}{4\pi^{2}F} + \frac{1}{4\pi^{2}F}x_{11} - \frac{64}{3F}t_{1}m_{\pi}^{2}, \qquad F_{\eta\gamma\gamma} = \frac{c_{\theta} - 2\sqrt{2}s_{\theta}}{4\sqrt{3}\pi^{2}F}(1 + x_{22}) + \frac{s_{\theta} + 2\sqrt{2}c_{\theta}}{4\sqrt{3}\pi^{2}F}(x_{23} - y_{23}) + \frac{64\sqrt{6}}{3F}s_{\theta}k_{3} \\ &- \frac{64\sqrt{3}}{27F}t_{1}\left[c_{\theta}(7m_{\pi}^{2} - 4m_{K}^{2}) - 2\sqrt{2}s_{\theta}(m_{K}^{2} + 2m_{\pi}^{2})\right], \end{split}$$

$$\begin{split} F_{\pi^{0}\gamma\gamma}^{\text{Exp}} &= 0.274 \pm 0.002 \,\text{GeV}^{-1} \,, \\ F_{\eta\gamma\gamma}^{\text{Exp}} &= 0.274 \pm 0.006 \,\text{GeV}^{-1} \,, \\ F_{\eta'\gamma\gamma}^{\text{Exp}} &= 0.344 \pm 0.008 \,\text{GeV}^{-1} \,. \end{split} \qquad t_{1} &= -(4.4 \pm 2.3) \times 10^{-4} \,\text{GeV}^{-2} \,, \\ k_{3} &= (1.25 \pm 0.23) \times 10^{-4} \,\text{GeV}^{-2} \,, \end{split}$$

This allows us to predict

$$\begin{split} F_{a\gamma\gamma} &= -\frac{[20.1 + (0.5 \pm 0.1)] \times 10^{-3}}{f_a} \\ g_{a\gamma\gamma} &= 4\pi \alpha_{em} F_{a\gamma\gamma} = -\frac{\alpha_{em}}{2\pi f_a} (1.63 \pm 0.01) \\ \end{split}$$
 which can be compared to 1.92 ± 0.04 and 2.05 ± 0.03

[Grilli de Cortona, [Lu, et al., et al., JHEP'16] JHEP'20]

• IB corrections could cause visible effects (working in progress).

Cosmology constraints on axion thermalization rate

Axion thermal production in the early Universe : Extra radiation (ΔN_{eff})

Extra effective number of relativisitc d.o.f :

$$\Delta N_{\rm eff} \simeq \frac{4}{7} \left(\frac{43}{4g_{\star s}(T_D)} \right)^{\frac{4}{3}}$$

 $g_{\bigstar s}(T)$: effective number of entropy d.o.f at temperature T T_D : axion decoupling temperature from the thermal medium

- > CMB constraint (Plank'18) [Aghanim et al., 2020] : $\Delta N_{eff} \le 0.28$
- \succ $T_{\rm D}$: Instantaneous decoupling approximation

$$\Gamma_{a}(T_{\rm D}) = H(T_{\rm D})$$
Axion thermalization rate
$$\Gamma_{a}(T) = \frac{1}{n_{a}^{\rm eq}} \int d\tilde{\Gamma} \sum |\mathcal{M}_{a-\rm SM}|^{2} n_{B}(E_{1}) n_{B}(E_{2})$$

$$[1 + n_{B}(E_{3})][1 + n_{B}(E_{4})]$$

$$H(T) = T^{2} \sqrt{4\pi^{3} g_{*}(T)/45}/m_{\rm Pl}$$

Axion-SM particle scattering amplitudes

Key thermal channels of axion-SM scatterings at different temperatures

- I GeV: $ag \leftrightarrow gg$.
 [Masso et al., 2002, Graf and Steffen, 2011]
- $\square T_D \lesssim 1$ GeV: Hadrons need to be included.
- Image: T_D ≤ 200 MeV: aπ ↔ ππ.
 [Chang and Choi, 1993, Hannestad et al., 2005, Giusarma et al., 2014, D'Eramo et al., 2022]

 ΔN_{eff} from CMB constraint (translated to the T_D limit) sets the lower bound of f_a , or equivalently upper bound of m_a in the QCD-axion case. **D** Reliable $a\pi$ interaction is crucial to determine Γ_a for $T_D < T_c \approx 155$ MeV

- For a long time, only the LO aπ ↔ππ amplitude is employed to calculate the axion thermalization rate Γ_a, e.g., [Chang, Choi, PLB'93] [Hannestad, et al., JCAP'05] [Hannestad, et al., JCAP'05] [D'Eramo, et al., PRL'22]
- ► Recent NLO calculation of Γ_a shows that the reliable chiral expansion is only valid for $T_{\chi} \leq 70$ MeV for perturbative amplitudes at NLO [Di Luzio, et al., PRL'21]
- Chiral unitarization approach is adopted to extend the applicable ranges of energy and temperature. [Di Luzio, et al., PRD'23]
- → However, to our knowledge, all the previous works have ignored the thermal corrections to the $a\pi \leftrightarrow \pi\pi$ amplitudes. We give the first estimation of such effects on the determination of axion parameters.

[Wang, ZHG, Zhou, PRD'24]

$$\Gamma_a(T) = \frac{1}{n_a^{\text{eq}}} \int d\widetilde{\Gamma} \sum_{[1+n_B(E_3)]} |\mathcal{M}_{a-\text{SM}}|^2 n_B(E_1) n_B(E_2)$$

$$[1+n_B(E_3)][1+n_B(E_4)]$$

Calculation of thermal $a\pi \leftrightarrow \pi\pi$ amplitudes at one-loop level

• Finite-temperature effects are included by imaginary time formalism (ITF), where [Kapusta and Gale, 2011, Bellac, 2011, Laine and Vuorinen, 2016]

$$p^{0} \to i\omega_{n}, \quad \text{with } \omega_{n} = 2\pi nT, n \in \mathbb{Z},$$
$$-i\int \frac{\mathrm{d}^{d}q}{(2\pi)^{d}} \to -i\int_{\beta} \frac{\mathrm{d}^{d}q}{(2\pi)^{d}} \equiv T\sum_{n} \int \frac{\mathrm{d}^{d-1}q}{(2\pi)^{d-1}}.$$

• Compute the thermal Green functions in ITF

• The effective Lagrangian at $\mathcal{O}(p^4)$

$$\mathcal{L}_{4} \supset \frac{l_{3}+l_{4}}{16} \left\langle \chi_{a}U^{\dagger}+U\chi_{a}^{\dagger} \right\rangle \left\langle \chi_{a}U^{\dagger}+U\chi_{a}^{\dagger} \right\rangle + \frac{l_{4}}{8} \left\langle \partial_{\mu}U\partial^{\mu}U^{\dagger} \right\rangle \left\langle \chi_{a}U^{\dagger}+U\chi_{a}^{\dagger} \right\rangle \qquad J_{A}^{\mu}|_{\mathrm{NLO}} \supset -il_{1} \left\langle Q_{a} \left\{ \partial^{\mu}U,U^{\dagger} \right\} \right\rangle \left\langle \partial_{\nu}U\partial^{\nu}U^{\dagger} \right\rangle \\ -\frac{l_{7}}{16} \left\langle \chi_{a}U^{\dagger}-U\chi_{a}^{\dagger} \right\rangle \left\langle \chi_{a}U^{\dagger}-U\chi_{a}^{\dagger} \right\rangle + \frac{h_{1}-h_{3}-l_{4}}{16} \left[\left(\left\langle \chi_{a}U^{\dagger}+U\chi_{a}^{\dagger} \right\rangle \right)^{2} \\ + \left(\left\langle \chi_{a}U^{\dagger}-U\chi_{a}^{\dagger} \right\rangle \right)^{2} - 2 \left\langle \chi_{a}U^{\dagger}\chi_{a}U^{\dagger}+U\chi_{a}^{\dagger}U\chi_{a}^{\dagger} \right\rangle \right] + \frac{\partial_{\mu}a}{2f_{a}} J_{A}^{\mu}|_{\mathrm{NLO}}, \qquad -i\frac{l_{4}}{4} \left\langle Q_{a} \left\{ \partial^{\mu}U,U^{\dagger} \right\} \right\rangle \left\langle \chi_{a}U^{\dagger}+U\chi_{a}^{\dagger} \right\rangle.$$

Unitarization of the partial-wave $a\pi \leftrightarrow \pi\pi$ amplitude

Inverse amplitude method (IAM)
$$\mathcal{M}_{a\pi;IJ}^{\text{IAM}} = \frac{\left(\mathcal{M}_{a\pi;IJ}^{(2)}\right)^2}{\mathcal{M}_{a\pi;IJ}^{(2)} - \mathcal{M}_{a\pi;IJ}^{(4)}}$$

$$\mathcal{M}_{a\pi;IJ}(E_{cm}) = \frac{1}{2} \int_{-1}^{+1} \mathrm{d}\cos\theta \,\mathcal{M}_{a\pi;I}(E_{cm},\cos\theta) P_J(\cos\theta)$$

$$\operatorname{Im}\mathcal{M}_{a\pi;IJ}(E_{cm}) \stackrel{s}{=} \frac{1}{2} \rho_{\pi\pi}^{T}(E_{cm}) \mathcal{M}_{\pi\pi;\pi\pi}^{IJ^{*}} \mathcal{M}_{a\pi;IJ}, \quad (E_{cm} > 2m_{\pi})$$
$$\rho_{\pi\pi}^{T}(E_{cm}) = \frac{\sigma_{\pi}(E_{cm}^{2})}{16\pi} \left[1 + 2n_{B}(\frac{E_{cm}}{2}) \right], \qquad \sigma_{\pi}(s) = \sqrt{1 - \frac{4m_{\pi}^{2}}{s}}, \quad n_{B}(E) = \frac{1}{e^{E/T} - 1}$$

• Resonances poles on the second Riemann sheet

	$f_0(500)$	σ	ho(770)	
	$M_{\sigma} \pm i \frac{\Gamma_{\sigma}}{2}$	$ f_a g_{\sigma a \pi} $	$M_{ ho} \pm i \frac{\Gamma_{ ho}}{2}$	$ f_a g_{ ho a \pi} $
T = 0 MeV	$422\pm i240~{\rm MeV}$	$0.032~{ m GeV}^2$	$739\pm i72~{ m MeV}$	$0.035~{ m GeV}^2$
$T = 100 \mathrm{MeV}^*$	$368\pm i310\;{\rm MeV}$	$0.037~{ m GeV}^2$	$744\pm i77~{ m MeV}$	$0.036~{ m GeV}^2$

*Only include *s*-channel unitary thermal correction.

$a\pi \leftrightarrow \pi\pi$ amplitude at finite temperatures

$a\pi \leftrightarrow \pi\pi$ cross-sections at finite temperatures

$$|\mathcal{M}^{(2)} + \mathcal{M}^{(4)}|^2 = (\mathcal{M}^{(2)})^2 + 2\mathcal{M}^{(2)}\operatorname{Re}(\mathcal{M}^{(4)}) + |\mathcal{M}^{(4)}|^2$$

Cosmology implication of thermal corrections to axion-pion scattering amplitudes

• We calculate the axion rate by the temperature dependent $a\pi \rightarrow \pi\pi$ scattering amplitudes [Chang and Choi, 1993, Hannestad et al., 2005]

$$\Gamma_a(T) = \frac{1}{n_a^{\text{eq}}} \int d\tilde{\Gamma} \sum |\mathcal{M}_{a\pi;\pi\pi}|^2 n_B(E_1) n_B(E_2) [1 + n_B(E_3)] [1 + n_B(E_4)],$$

where the phase space integral

$$\int \mathrm{d}\widetilde{\Gamma} = \int \left(\prod_{i=1}^{4} \frac{\mathrm{d}^3 p_i}{(2\pi)^3} \frac{1}{2E_i}\right) (2\pi)^4 \delta^4 (p_1 + p_2 - p_3 - p_4) \,.$$

Resulst from the thermal-IAM improved thermliazation rates

Updated bounds on the axion parameters

[Wang, ZHG, Zhou, PRD'24]

■ The QCD axion mass up to LO & NLO

$$m_a^2|_{\rm LO} = \gamma_{ud} \, m_\pi^2 \frac{F^2}{f_a^2} \,, \qquad \text{where} \quad \gamma_{ud} = \frac{m_u m_d}{(m_u + m_d)^2} \,,$$
$$m_a^2|_{\rm NLO} = \gamma_{ud} \, m_\pi^2 \frac{F^2}{f_a^2} \left\{ 1 - 2 \frac{m_\pi^2}{(4\pi F)^2} \log \frac{m_\pi^2}{\mu^2} + 2 \left[h_1^r(\mu^2) - h_3 \right] \frac{m_\pi^2}{F^2} - 8 l_7 \gamma_{ud} \frac{m_\pi^2}{F^2} \right\}$$

Summary

- Chiral perturbation theory provides a systematical and useful framework to study the axion-meson interactions.
- > π - η - η '-*a* mixing is worked out at NLO and lattice data are found to be very useful to predict the axion mixing pattern and axion mass.
- Thermal aπ ↔ ππ amplitudes in SU(2) AχPT are worked out.
 Thermal corrections to amplitudes cause around 10% shift of the axion parameters.