

Yuxiang Zhao (Institute of Modern Physics, Chinese Academy of Sciences) yxzhao@impcas.ac.cn

Outline

- Introduction
- Physics highlights
- Detector conceptual design
- Summary

Do we understand the building blocks of our visible world?

Open questions:

 \rightarrow How do quarks + gluons as well as their interactions make up a nucleon?

 \rightarrow How can the nucleon's emergent property be explained at quarks and gluons' degree of freedom?

Experimentally... we need to determine each of the above contributions

Lepton-Nucleon Scatterings

Observe scattered electron/muon Observe current jet/hadron Observe remnant jet/hadron as well [1] → inclusive
[1]+[2] → semi-inclusive
[1]+[2]+[3] → exclusive

Why we need an Electron-Ion Collider

Quotation from "Why we need an EIC" by Raju Venugopalan, 2021

Only feasible with a polarized EIC

- 1. Nailing down the quark and gluon spin content of the proton
- 2. Three dimensional images of the internal structure of hadrons
- 3. Exploring the terra incognita of the nuclear quark-gluon landscape
- 4. Discovery and characterization of universal gluon matter?

Electron-Ion Collider:

- 1. Polarized beams (first time)
- 2. High lumi. (100-1000 x HERA)
- 3. High polarization ~70%
- 4. Full detector coverage

Electron Ion Collider in China...Huizhou(惠州) in Guangdong province

Picture in May 2024 \rightarrow Deliver the first heavy ion beam in 2025

H,

Location: Huizhou, Guangdong

8

High Intensity heavy-ion Accelerator Facility (HIAF)

HIAF total investment: 2.5 billion RMB (Funded)

EicC Accelerator complex layout

EicC white paper (arXiv: 2102.09222)

Published in the *Frontiers of Physics* (2021)

https://link.springer.com/article/10.1007/s11467-021-1062-0

- Spin structure of the nucleon: 1D, 3D
 - polarized electron + polarized proton/light nuclei
- Partonic structure of nuclei and the Parton interaction with the cold nuclear environment
 - unpolarized electron + unpolarized various nuclei
- Quarkonium with c/cbar, b/bbar
- Origin of the proton mass study via J/Psi and Upsilon near-threshold production

Detector + Accelerator preliminary design

46 institutes and >100 physicists

- EicC covers the kinematic region between JLab experiments and EIC@BNL
- EicC complements the ongoing scientific programs at JLab and future EIC project
- EicC focuses on moderate x and sea-quark region

Kinematic region VS physics

See a video at: http://eicug.org/

- Different x \rightarrow different picture
- Broad Q² coverage:
 - QCD evolution
 - > Non-perturbative \rightarrow perturbative

13

Valence quarks

EicC and EIC-helicity distribution via SIDIS (1D spin)

D. Anderle, T. Hou, H. Xing, M. Yan, C. -P. Yuan, Y. X. Zhao, JHEP08, 034 (2021)

EicC and EIC-gluon polarization (at large x)

 $A_{LL}^{\vec{e}+\vec{p}\to e'+D^{0}+X} = \frac{d\sigma^{++} - d\sigma^{+-}}{d\sigma^{++} + d\sigma^{+-}}$ $N^{++} - N^{+-}$ $= \overline{P_e P_p} \overline{N^{++} + N^{+-}}$ e e γ*(q) C С **g** (N(p)

Х

D. Anderle, X. Dong, ..., E. Sichtermann, ..., F. Yuan, Y. X. Zhao, Phys. Rev. D104, 114039 (2021)

EicC and EIC-gluon polarization (at large x)

 $e + p \rightarrow e' + D^0 + x$ 0.3 $A_{LL}^{\vec{e}+\vec{p}\to e'+D^{0}+X} = \frac{d\sigma^{++} - d\sigma^{+-}}{d\sigma^{++} + d\sigma^{+-}}$ 50 0.25 EIC Charm hadrons Absolute uncertaint 0.2 A^c₁ Abs. Polarizations: 18 GeV x 275 GeV e: 80%, p: 70% Int. Luminosity: 100 0.15 Uncert 3.0 0.1 EicC 3.5 x 20 GeV² EIC 5 x 41 GeV² 2.5 0.05 EIC 18 x 275 GeV² 0.0 ^{2.0} م/م^س 10⁻¹ complementary 1.0 0.3 + x 0.5 EicC 0.25 10^{-1} 10-2 A^c₁ Abs. х zations e: 80%, p: 70% 0.2 (Ge/ 3.5 GeV x 20 GeV С 0.15 Uncert Ö 20 10 0.05 N(p) 0.0 10⁻³ 10-2 10⁻¹ Bjorken x

D. Anderle, X. Dong, ..., E. Sichtermann, ..., F. Yuan, Y. X. Zhao, Phys. Rev. D104, 114039 (2021)

GPDs: deformation of Parton's spatial distribution when hadron is polarized TMDs: deformation of Parton's confined motion when hadron is polarized

For TMDs study: We need a moderate-energy EIC but with high luminosity

20

Tracking: Silicon + MPGD

EicC detector design

D(ana)	Law attack		Ditals (sum)	Material Budget	Tesh
R(cm)	Length(cr	n) Pixe	el Pitch(µm)	(X/X0 %)	Tech
3.30	28.0		20	0.05	MIC7
4.35	28.0		20	0.05	MIC7
5.40	28.0		20	0.05	MIC7
34.85	90.61		25	0.85	MIC6
38.15	90.61		25	0.85	MIC6
	174.00	150	$(\pi + 1)$	0.40	MDCD
05.50	174.88	150	$(\Gamma \psi) X I S U(Z)$	0.40	IVIPGD
67.50	174.88	150	$(r\phi)$ x150(z)	0.40	MPGD
In R(cm)	Out R(cm)	Z(cm)	Pixel Pitch(μm) Material Budge (X/X0 %)	t Tech
3.18	18.62	25	25	0.42	MIC6
3.18	36.50	49	25	0.42	MIC6
5.08	55.00	103 65	25	0.42	MIC6
6.58	67.50	134.33	25	0.42	MIC6
8.16	150.00	165.00	$50(\mathbf{r}\boldsymbol{\phi})\mathbf{x}25$	D(r) 0.26	MPGD
In R(cm)	Out R(cm)	Z(cm)	Pixel Pitch(μm) Material Budge (X/X0 %)	t Tech
3.18	18.62	-25	25	0.42	MIC6
3.18	36.50	-49	25	0.42	MIC6
3.18	55.00	-73	25	0.42	MIC6
3.95	67.50	-109.0	25	0.42	MIC6
5.26	67.50	-145.0	25	0.42	MIC6

PID: ToF + (DIRC + RICH)

PID: ToF + (DIRC + RICH)

23

PID: ToF + (DIRC + RICH)

25

Timeline

EicC: Multi-dimensional imaging of the structure of the nucleon

nucleus nucleon EicC: QCD dynamics that can affect the identity of nucleons in a nucleus

atom

gluons

quarks

Physics: Understand the inner structure of the visible world

Detector: Push for the development and application of cutting-edge technology

atom

nucleus

nucleon

gluons

Backups

Proton mass study

Lattice QCD calculation Phys. Rev. Lett. 121 (2018) 21, 212001

- Quark energy and gluon energy constrained by PDFs
- Quark mass via πN low energy scattering

• **Trace anomaly** via threshold production of J/Psi and Upsilon?

One of the hot topics under discussions

Near threshold J/Psi production

Near threshold Upsilon production

US EIC at Brookhaven National Laboratory

EIC website:

https://www.bnl.gov/eic/

ePIC collaboration (1st interaction point): <u>https://wiki.bnl.gov/EPIC/index.php?title=Collaboration</u>

EIC User group: <u>https://www.eicug.org/</u>

EIC whitepaper: <u>https://arxiv.org/abs/1212.1701</u>

EIC yellow report: <u>https://arxiv.org/abs/2103.05419</u>

EIC Conceptual Design Report: <u>https://www.osti.gov/biblio/1765663/</u>

Open Questions driving the spin physics

• How do quarks/gluons + their dynamics make up the proton spin?

Helicity distributions + orbital contribution

• How is proton's spin correlated with the motion of the quarks/gluons?

Deformation of parton's **confined motion** When hadron is polarized?

• How does proton's spin influence the spatial distribution of partons?

Deformation of parton's **spatial distribution** When hadron is polarized?

Unified view of nucleon structure

Unified view of nucleon structure

Structure functions and PDFs : Polarized case

Flavor decompositions

• With pure y exchange in inclusive DIS:

$$g_1^P = \frac{1}{2} \left(\frac{4}{9} (\Delta u + \Delta \bar{u}) + \frac{1}{9} (\Delta d + \Delta \bar{d}) + \frac{1}{9} (\Delta s + \Delta \bar{s}) \right)$$
$$g_1^n = \frac{1}{2} \left(\frac{1}{9} (\Delta u + \Delta \bar{u}) + \frac{4}{9} (\Delta d + \Delta \bar{d}) + \frac{1}{9} (\Delta s + \Delta \bar{s}) \right)$$

Hmm ... No third kind of nucleon ... No...

- Assumption: SU(3) flavor symmetry
 - \checkmark Additional inputs from β -decay of neutron and hyperons

$$\Delta u + \Delta d - 2 \Delta s$$
 $\Delta u + \Delta d$

A way out:

SIDIS measurements: with the initial quark flavor tagged Fragmentation Functions needed

SIDIS processes for flavor decompositions

Spin of the nucleon-helicity distribution

Multiplicity measurements at BESIII

Multiplicity:

$$\frac{1}{\sigma_{tot}(e^+e^- \to hadrons)} \frac{d\sigma(e^+e^- \to h + X)}{dP_h}$$

h is a particular type of hadron such as π^0 , $\pi^{+/-}$, $K^{+/-}$...

-
$$\sum_{q} e_q^2 D_1^{h/q}(z)$$
 at LO

- First precision measurements at BESIII: Phys. Rev. Lett. 130, 231901 (2023)
- ➢ Analyses of many other final states are ongoing → provide inputs for future EIC

EicC and EIC-gluon polarization (at large x)

10-2

Bjorken x

10⁻¹

10⁻³

Х

Unified view of nucleon structure

Leading-Twist TMDs

 S_{L}, S_{T} : Target Polarization; λ_{e} : Beam Polarization

Target SSA, beam-target DSA measurements

Separation of Collins, Sivers and Pretzelosity through azimuthal angular dependence

$$A_{UT}(\varphi_h^l, \varphi_S^l) = \frac{1}{P} \frac{N^{\uparrow} - N^{\downarrow}}{N^{\uparrow} + N^{\downarrow}}$$
$$= A_{UT}^{Collins} \sin(\phi_h + \phi_S) + A_{UT}^{Sivers} \sin(\phi_h - \phi_S)$$
$$+ A_{UT}^{Pretzelosity} \sin(3\phi_h - \phi_S)$$

UT: **U**npolarized beam + **T**ransversely polarized target

 $\begin{array}{l} A_{UT}^{Collins} \propto \left\langle \sin(\phi_h + \phi_S) \right\rangle_{UT} \propto h_1 \otimes H_1^{\perp} & \rightarrow \text{TMD: Transversity} \\ A_{UT}^{Sivers} \propto \left\langle \sin(\phi_h - \phi_S) \right\rangle_{UT} \propto f_{1T}^{\perp} \otimes D_1 & \rightarrow \text{TMD: Sivers} \\ A_{UT}^{Pretzelosity} \propto \left\langle \sin(3\phi_h - \phi_S) \right\rangle_{UT} \propto h_{1T}^{\perp} \otimes H_1^{\perp} & \rightarrow \text{TMD: Pretzelosity} \end{array}$

 ϕ_h

hadron plan

 P_{l}

____ Q=2

-- Q=5 - · Q=10

 10^{0}

100

 Q^2 (GeV²)

Spin structure of the nucleon-GPDs

 $12 \cdot$

9

3

-2

-8-

-10

 $\mathfrak{s}_{\mathfrak{m}}^{-4}$

 $\Im \mathfrak{m} \mathcal{H}$

Only with this azimuthal angular modulation

Highlighted physics topics

Spin of the nucleon: 1D, 3D

polarized electron + polarized proton/light nuclei

Partonic structure of nuclei and the parton interaction with the nuclear environment
 > unpolarized electron + unpolarized various nuclei

Exotic states with c/cbar, b/bbar (BESIII community in China)

Mass of the nucleon

"old" and long standing problems for cold nuclear matter effect

- Initial state parton distribution in nucleus (nPDFs)
- Intermediate state parton propagating in nuclear medium (energy loss, broadening...)
- Final state hadronization (hadron transport, FFs...)

Nuclear PDFs study with ion beam

With only a few hours of running

Nuclear medium effect for parton propagation and hadronization

Highlighted physics topics

Spin of the nucleon: 1D, 3D

polarized electron + polarized proton/light nuclei

Partonic structure of nuclei and the parton interaction with the nuclear environment
 > unpolarized electron + unpolarized various nuclei

Exotic states with c/cbar, b/bbar (BESIII community in China)

Mass of the nucleon

J/Psi production at EicC

For W=10-20 GeV,

- Photoproduction: $\sigma(\gamma p \to J/\psi p) \sim O(10 \text{ nb})$, (no resonant enhancement considered), $\sigma(\gamma p \to c\bar{c}X) \sim 50\sigma(\gamma p \to J/\psi p)$
- Leptoproduction: cross sections are roughly two orders of magnitude (α) smaller
- For an integrated luminosity of 50 fb⁻¹, no. of J/ψ is ~ $O(10^7 10^8)$; many more opencharm hadrons D and Λ_c

Upsilon production at EicC

For W=15-20 GeV,

• Photoproduction: $\sigma(\gamma p \to \Upsilon p) \sim O(10 \text{ pb})$ (no resonant enhancement considered),

 $\sigma(\gamma p \rightarrow b \overline{b} X)$ is about two orders higher

- Electroproduction: roughly two orders of magnitude (α) smaller, ~ O(0.1 pb)
- For an integrated luminosity of 50 fb⁻¹, no. of Υ is ~ $O(10^4)$;

Exotic states production at EicC

• Cross section estimates for exclusive reactions assuming VMD (highly model-dependent)

Estimated events for EicC (50 /fb)

Exotic states	Production/decay processes	Detection efficiency	Expected events
$P_c(4312)$	$ep \rightarrow eP_c(4312)$ $P_c(4312) \rightarrow pJ/\psi$ $J/\psi \rightarrow l^+l^-$	$\sim\!\!30\%$	15 - 1450
$P_{c}(4440)$	$ep \rightarrow eP_c(4440)$ $P_c(4440) \rightarrow pJ/\psi$ $J/\psi \rightarrow l^+l^-$	$\sim\!\!30\%$	20-2200
$P_{c}(4457)$	$ep \rightarrow eP_c(4457)$ $P_c(4457) \rightarrow pJ/\psi$ $J/\psi \rightarrow l^+l^-$	$\sim\!\!30\%$	10-650
$P_b(\text{narrow})$	$ep \rightarrow eP_b(\text{narrow})$ $P_b(\text{narrow}) \rightarrow p\Upsilon$ $\Upsilon \rightarrow l^+l^-$	$\sim\!\!30\%$	0-20
$P_b(\text{wide})$	$ep \rightarrow eP_b(\text{wide})$ $P_b(\text{wide}) \rightarrow p\Upsilon$ $\Upsilon \rightarrow l^+l^-$	$\sim\!\!30\%$	0-200
$\chi_{c1}(3872)$	$ep \rightarrow e\chi_{c1}(3872)p$ $\chi_{c1}(3872) \rightarrow \pi^+\pi^- J/\psi$ $J/\psi \rightarrow l^+l^-$	$\sim 50\%$	0-90
$Z_c(3900)^+$	$ep \rightarrow eZ_c(3900)^+ n$ $Z_c^+(3900) \rightarrow \pi^+ J/\psi$ $J/\psi \rightarrow l^+ l^-$	~60%	90-9300

56

Highlighted physics topics

Spin of the nucleon: 1D, 3D

polarized electron + polarized proton/light nuclei

Partonic structure of nuclei and the parton interaction with the nuclear environment
 >unpolarized electron + unpolarized various nuclei

Exotic states with c/cbar, b/bbar (BESIII community in China)

Mass of the nucleon

Proton mass study

Mass decomposition [Ji, 95]

- $M = \underbrace{M_q + M_m}_{\text{Quark}} + \underbrace{M_g + M_a}_{\text{Gluon}}$ $M_q : \text{quark energy}$ $M_m : \text{quark mass (condensate)}$ $M_g : \text{gluon energy}$ $M_a : \text{trace anomaly}$
- M_q and M_g constrained by PDFs.
- M_m via πN low energy scattering.
- M_a via threshold production of J/Ψ (8.2 GeV; JLab) and Υ (12 GeV);
- Threshold requires low CoM energy. (Low y at EIC).
- Complementarity between EicC (and EIC) and lattice. Guideline

Proton mass study

Mass decomposition [Ji, 95]

- $M = \underbrace{M_q + M_m}_{\text{Quark}} + \underbrace{M_g + M_a}_{\text{Gluon}}$ $M_q : \text{quark energy}$ $M_m : \text{quark mass (condensate)}$ $M_g : \text{gluon energy}$ $M_a : \text{trace anomaly}$
- **GPDs** 研究 $W(x, b_T, k_T)$ Wigner distributions $\int d^2 k_T$ $\int d^2 b_T$ Fourier trf. $b_{x} \leftrightarrow \Delta$ $H(x,\xi,t)$ $f(x,k_T)$ $f(x,b_r)$ H(x,0,t)transverse momentum impact parameter generalized parton distributions distributions (GPDs) distributions (TMDs) semi-inclusive processes exclusive process $\int d^2 b_{\tau}$ ∫dx $\int dx x^{n-1}$ d^2k $F_1(t)$ $A_{n,0}(t) + 4\xi^2 A_{n,2}(t) + \dots$ f(x)parton densities form factors generalized form inclusive and semi-inclusive processes elastic scattering factors lattice calculations

'ny

 $x+\xi$

 $x+\xi$

- M_q and M_g constrained by PDFs.
- M_m via πN low energy scattering.

Gravitational Form Factors

Defining Ma related observables...ongoing efforts

Outline

General introductionPhysics highlights

- Project status
- Summary

Towards Conceptual Design Report (CDR)

EicC white paper

Volume I: Accelerator

Volume II: Physics and Detectors

CDR preparation

Contents

1 Overview of EicC

1.1	The Science Goals and the Requirements for EicC
1.2	EicC Design Concept
1.3	Beam Parameters and Luminosity
1.4	Ion Accelerator Complex Design
1.5	Electron Accelerator Complex Design
1.6	Staged Electron Cooling for Ions
1.7	The Interaction Region Design
1.8	Overview Summary

2 Beam Dynamics Design

2.1	EicC Collision Scheme
2.2	Luminosity lifetime
2.3	Collective Effects and Beam Stabilities
2.4	Space Charge Effects
2.5	Beam-Beam Effects
2.6	Intra-beam Scattering

3 Ion Accelerator Complex

3.1	Introduction	
3.2	Formation of EicC Ion Beams	
3.3	Polarized Ion Source	
3.4	iLinac	
3.5	Booster Ring	
3.6	pRing	
3.7	Beam Synchronization	
3.8	Polarization and Polarimetry	

4 Electron Accelerator Complex

4.1	Introduction
4.2	Polarized Electron Source
4.3	Electron Injector
4.4	eRing
4.5	Synchrotron Radiation and Beam Parameters
4.6	Polarization and Polarimetry

5 Electron Cooling

5.1	Introduction
5.2	Medium Energy Electron Cooler
5.3	ERL Based High Energy Electron Cooler
5.4	Novel cooling scheme development

Contents

1 EicC Physics

	1.1	One-dimensional spin structure of nucleons
	1.2	Three-dimensional tomography of nucleons
		1.2.1 TMDs
		1.2.2 GPDs
	1.3	Nucleon mass
	1.4	Partonic structure of nucleus
	1.5	Exotic hadronic states
	1.6	Structure of light pseudoscalar mesons
2	Phy	vsics requirements and detector concept
	2.1	Physics requirements
		2.1.1 Particle multiplicity and event rate
		2.1.2 Scattered electron
		2.1.3 Charged hadron identification
		2.1.4 Small angle detection
	2.2	Detector concept
	2.2	
3	\mathbf{Tra}	cking system
	3.1	Vertex detector
	3.2	Time projection chamber
	3.3	All silicon tracker
		3.3.1 All silicon tracker layout
		3.3.2 Detector simulation and reconstruction
		3.3.3 Tracking and vertexing performance
	3.4	Endcap disk
4	PIL) system
	4.1	Detector consideration
	4.2	Time of flight detector
		4.2.1 MRPC
		4.2.2 DIRC-based TOF
	4.3	Cherenkov detector
		431 DIRC
		4.3.2 Module RICH
٣	G-1	
э	Car	Designeeting
	5.1	
	5.2	Snasnik-type EMCal
		5.2.1 Module design and simulation
		5.2.2 Energy and spatial resolution
		5.2.3 Detector layout
	5.3	Crystall EMCal
	5.4	HCal

Working groups

Accelerator	Physics	Detector
1) EicC Accelerators	1) 1D spin	1) Vertexing + tracking
2) Ion Sources	2) 3D spin (TMDs + GPDs)	2) PID
3) Ion Machine	3) Exotic states	3) Calorimetry
5) Electron Machine	4) EHM and proton mass	4) IR + Magnet
5) Polarization	5) Nuclei	5) Luminosity and polarimetry
6) Electron cooling	6) LQCD	6) Forward detector
7) IR	7) DSE	7) DAQ
8) Common System	 8) New ideas: (1) Jets (2) Heavy flavor observable (3) Fragmentation function 	8) Simulations
		Software: EicCRoot
EicC CDR Volume I	EicC CDR	Volume II

EicC detector considerations

Detailed full Geant4 simulation is ongoing

Subsystem simulations---an example

Tracking with all-silicon or Si+MPGD design

arXiv:2102.08337

Calorimetry system

sTGC detector

Detector R&Ds

Clean rooms of ISO6 and ISO7 (in total of 200 m²) for detector assembling

ALICE style ITS2 MAPS pixel detector

- 25cm x 25 cm Micromegas mass production
- R&D on 0.4m x 0.4m

1m x 0.5 m GEM (self-stretching)

Shashlyk and W-powder+ScFi EMCal

DIRC prototype

Timeline				First version of EicC CDR															
CY	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	
	5-year-plan 5-year-plan								5-year-plan					5-year-plan					
	HIAF																		
					R8	x D													
EI									√s ·	~ 17G	eV, 2	x10 ³³ /	s/cm ²	2					
	R&D and construction																		
	In operation																		

To follow our regular meetings/workshops

• For subscription to the **eicc_member** mailing list, please do it in the following link:

http://lists.ustc.edu.cn/sympa/subscribe/eicc_member?previous_action=info

• For subscription to the **eicc_physics** mailing list, please do it in the following link:

http://lists.ustc.edu.cn/sympa/subscribe/eicc_physics?previous_action=info

• For subscription to the **eicc_detector** mailing list, please do it in the following link:

http://lists.ustc.edu.cn/sympa/subscribe/eicc_detector?previous_action=info

• For subscription to the **eicc_accelerator** mailing list, please do it in the following link:

http://lists.ustc.edu.cn/sympa/subscribe/eicc_accelerator?previous_action=info

Thanks and you are more than welcome to join the effort!

Backups

EicC Detector Overview

- Subsystems to realize the EicC physics goals:
 - 1) Vertex & tracking detectors
 - 2) PID detectors
 - 3) Calorimeters
 - 4) Far Forward detectors
 - 5) Luminosity monitor & Polarimetry
 - 6) DAQ
 - 7) Simulation & software

- Questions need to be addressed:
 - Targeted resolutions
 - Technology candidates
 - Simulation results
 - R&D activities or plan
 - Inputs to DAQ

1.Vertex and tracking detector

Yuming Ma, Aiqiang Guo, Yutie Liang, Yuxiang Zhao (IMP)

- Physics requirements for EicC tracking:
 - ≻Assume B ~ 1.5 T
 - Barrel (-1 < η < 1.6):
 - σ(p)/p ~ 1% @ 1GeV; X/X0 <5%
 - E-endcap (-3 < η < -1):
 - σ(p)/p ~ 2% @ 1GeV; X/X0 <5%
 - P-endcap (1.6 < η < 3):
 - σ(p)/p ~ 2% @ 1GeV; X/X0 <5%

Front. Phys. 16(6), 64701 (2021)

Evolution of the EicC tracker design

-Yuming Ma

All-silicon based on ITS2

- Silicon+MPGD Hybrid design
- Silicon: vertex ITS3 + tracker ITS2
- Only the pixel size is different for v1/v2
- Silicon+MPGD Hybrid design
- Silicon: ITS3
- Geometry is Optimized

✓ Further dedicated optimization of the scale and structure recently based on Det_v3
Performance with new tracking design

-Yuming Ma

- Size of silicon detector: Solved.
 - Radius of Barrel: 77.56 cm -> 55 cm
 - Barrel MPGD : 4 Layers -> 2 Layers
 - The size of Si: ~70%
 - The size of MPDG: \sim 35%
- Only optimized by single track events: Solved.
 - Inclusive MC sample was applied
- The Layer number and radius (position) are not optimized properly:
 - Optimized for lower momentum tracks based on EicC physical requirements.

Vertex resolution

2. PID detectors

实现EicC实验中高亮度、大动量范围的带电粒子鉴别

- ▶ 快速响应和超高分辨
- ▶ 结构紧凑,抗辐照

PID探测器方案:

- ▶ 桶部:内反射切仑科夫探测器 (DIRC)
- ▶ 端盖:环形成像切仑科夫探测器(mRICH、dRICH)
- ▶ 低动量(<1GeV/c): MPRC、LGAD

PID momentum coverage: <4 GeV/c at e-Endcap; <15 GeV/c at ion-Endcap ; <6 GeV/c at Barrel</p>

端盖PID探测器

- Xin Li (IMP)

Modular RICH是一种基于气凝胶的切仑科夫探测器。 它利用菲涅耳透镜产生聚焦作用以提高粒子分辨能力(菲 涅耳透镜聚焦对透射光波长范围具有限制作用,可减小瑞 利散射效应)。其结构紧凑灵活,可以在末端安装高精度 PMT测量飞行时间信息,进而提高其PID能力。

Dual RICH则包含两种不同折射率的辐射体,因此能够 覆盖更大动量范围。由于气凝硅胶辐射体可覆盖低动量区, 在中等动量区与气体辐射体覆盖范围重叠,因此**dRICH**测 量范围不存在中间"空白区"。

预期目标:

- Modular RICH实现3σπ/K分辨范围~6 GeV/c(径迹 角分辨~1mrad)
- ▶ 采用气凝胶+气体辐射体(C₂F₆) dRICH探测器,预期 可达15GeV/c的3σπ/K分辨。
- ▶ 目前方案调研中

桶部PID探测器

- Xin Li (IMP)

内反射切仑科夫探测器(DIRC):

不同带电粒子激发的切仑科夫辐射角不同,基于这 一原理的DIRC探测器通过测量不同粒子激发切仑科 夫光的传输时间和出射角度不同进行粒子鉴别。

预期目标:

- ▶ 采用熔融石英作为切仑科夫辐射体, MPC-PMT作 为光电探测阵列, 作为紧凑型桶部探测器实现高 动量(1~6GeV/c)的粒子鉴别
- ▶ 为此需要~1mrad的角分辨,以及皮秒量级的时间分辨(<100ps)</p>
- ▶ 多通道皮秒定时电子学的配套研发

研究进度:

参考PANDA和EIC的桶部DIRC探测器设计,模拟完成 DIRC初步方案,小尺寸DIRC原型制作中

PANDA和EIC的DIRC粒子鉴别范围

桶部DIRC方案

- Xin Li (IMP)

- ➤ 石英辐射体:13mm x 35mm x 2600mm
- ▶ 梯形光导:(30mm+220mm) x 320mm x 300mm
- ➤ MCP-PMT: 滨松 R10754 (5.75mm, 4x4 Pixel) / H13700 (3mm, 16x16 Pixel)
- ▶ 聚焦透镜: 3-layer lens (fused silica + NLAK33B glass) curvature radius: 30°, 30/7.5cm, 厚度1cm
- ▶ 微型光导:漏斗形光导(厚度2~3mm)连接梯形光导和单个PMT像素单元,消除PMT边框死区和减小串扰影响

单块DIRC角分辨和PID性能模拟

2024/7/2

MRPC/TOF PID at low momentum

- Yi Wang (Tsinghua)

TOF PID:

 $(\pi,k)/p \sim 3.0 \text{ GeV/c}$

Standard parameters:

Resistivity of glass: $\sim 10^{12} \Omega.cm$ Working gas: 90%Freon+5%iso-butane+5%

SF6

Time resolution <100ps

Efficiency >95%

Charge: a few PC

Dark current: a few nA

Noise \sim 1Hz/cm²

Rate <100 Hz/cm²

Large area, low cost

Toward 20ps resolution: narrow gap MRPC

-YiWang

 σ_{TOF} <20 ps, the intrinsic resolution of narrow gaps MRPC is around 15ps, so the time jitter of readout electronics <13~15 ps_

(Tsinghua) Simulation indicates proper ways to design the gap thickness and arrange the

 σ_{MRPC} <20 ps, the gas gap: <0.18mm gap number: >16

LGAD Reference

低增益雪崩探测器(LGAD):一种超快响应硅 探测器。通过半导体中局部雪崩放大产生具有 快速上升沿的信号脉冲,进行高时间分辨的粒 子鉴别。相比MRPC,它的结构更紧凑,测量 飞行时间之外还可提供高分辨粒子径迹位置信 息。

预期目标:

- ➤ 实现低动量(0.1~2GeV/c)的带电粒子鉴别
- ▶ 皮秒量级的高时间分辨(~30ps)。
- ➤ LGAD的像素探测单元尺寸可达几十um,

提供高精度粒子径迹重建信息。

- CMS Endcap Timing Layer
 - Size: 1.3×1.3 mm² • Sensor and chip are bundled together
 - Timing resolution: ~30-50 ps • Last for the whole HL runs
 - Radiation-hard: ~2×10¹⁵ n_{eq}/cm²
 - Thickness: 2.25cm/layer

EicC Barrel
 Radius ~80cm (try to achieve 50cm)
 Time resolution ~20ps

[arXiv: 2003.04838]

Cosmic Ray Platform

*Cooperation with the EicC USTC group

- 宇宙线测试平台:闪烁体 + SiPM, 8 layer
 (4 layer for x, y each), 探测面积 50cm x
 50cm
- One layer: 3 module + 1 electronics
- One module: 16块EJ-200 + 32根光纤 + 8 SiPM
- 位置分辨~1mm,时间分辨<100ps

2024/7/2

3. Calorimeter system for EicC

Ye Tian, Dexu Lin/ (IMP)

Basical ECal special requirement:

- **E-endcap:** good low energy resolution
- **Barrel:** short radius, good angle resolution e
- **Ion-endcap:** angle resolution, π^0 reconstruction, PID.

83

Ecal Design in Simulation

- > General design of whole Ecal Detector.
- CsI is applied in e-endcap, Shashlik style is applied in both barrel and ionendcap
- The actual distances of the two endcaps to IP depend on the available space of the EicC design

	EMC	type	z/r[m]	Length[cm] ,X ₀	Coverage[c m]	pseudorapidi ty	Tower size
EicC	e-endcap	CsI	Z=-1.5	30, 16X ₀	15.0 <r<128< th=""><th>(-3.0, -1.0)</th><th>4.0*4.0(fron t)</th></r<128<>	(-3.0, -1.0)	4.0*4.0(fron t)
	barrel	Shashlik	R=0.9	45, 16X ₀	-105.8 <z<187.5< th=""><th>(-1.0, 1.5)</th><th rowspan="2">4.0*4.0 (front)</th></z<187.5<>	(-1.0, 1.5)	4.0*4.0 (front)
	Ion-endcap	Shashlik	Z=2.4	45, 16X ₀	24.0 <r<113< th=""><th>(1.5, 3.0)</th></r<113<>	(1.5, 3.0)	

Module (7x7) array simulation result

Ye Tian (IMP)

Shashlik ECal cosmic ray test result

Assembled Shashlik module

Horizontal test setup

Horizontal cosmic ray NPE spectrum (PMT)

Ye Tian (IMP)

CsI(TI) attenuation cosmic ray test

- The attenuation length is a main parameter of CsI(TI), influence the uniformity of energy deposit
- Simulation shows muon deposit 22.3 MeV in CsI, created 1.1M photons.

Cosmic ray signal sample

Ye Tian (IMP)

Short attenuation length confirmed, even though the appearance of crystal is

transparent!

4. Far Forward Detectors

<u>Weizhi Xiong(SDU)</u>, Yutie Liang (IMP)

B0pf magnet

EicC Far Forward Detectors

Four disks with pixel size of 10 µm same as the central vertex detector EDT: 16-60 mrad EDT (Endcap Dipole Tracking) FDT (Forward Dipole Tracking)

New Design of FF Beamline

Material Effect for Neutron

- Current ZDC acceptance +/- 15 mrad, 13.5m from IP
- New beamline design effectively reduce all material effect due to beam pipe and air
- Plan to work on ZDC digitization and full detector response studies

5. Beam polarimetry & luminosity monitor

Boxing Gou (IMP), Jinlong Zhang(SDU), Yutie Liang (IMP)

- Proton beam polarimetry
- Electron beam polarimetry
- Luminosity measurement

Luminosity monitor and eCompton apparatus

- Luminosity monitor and polarimetry are largely independent and essentially supportive "experiments"
- Relatively simpler subsystems but complex requirement overall e.g. coordination with accelerator, specific calorimeter and DAQ systems, etc.
- Geant4 simulation is ongoing

Recent studies on proton polarimetry

Boxing Gou (IMP)

Two silicon strip detectors

- Horizontal position X
- Height (Y) and width (Z)
- Thickness

Polarization holding magnet

- Coil structure
- Current
- Target thickness

•

Bunch structure

Beam-target overlap

Beam transverse size

Detection power vs thickness

Holding magnet design

Simulation – event selection

- Elastic protons are selected by comparing measured($T_{\rm R})$ and calculated($T_{\rm cal})$ energy
- T_{cal} is calculated from the hit position(Z)
- Overlapped protons are rejected

6. DAQ design

Kai Chen (CCNU)

Plan towards CDR: Readout and DAQ (CCNU)

Collect information for each sub-detector

- Needs input from all front-end subsystem
- Channel numbers
- Plan of readout electronics
- > Data format and size
- > Based on these information, we should start considering the overall architecture
 - In front-end, trigger or streaming readout?
 - In back-end, do we need hardware-based trigger?
 - Number of fiber optical links
 - Data bandwidth
 - Event size
 - *Etc.*.

Timing distribution system

- ➤ Fan-out via DAQ downlinks
- ➤ Embedded in commands & data stream, precision <10 ps</p>

□ Integrate with detector module & front-end readout electronics

- Provide supports for readout (if needed)
- Start the integration test as early as possible (Huizhou)

7. Simulation framework & software

Structure of EiccRoot

Top level: ROOT, Virtual MC, etc.

Middle level: FairRoot framework manages the general infrastructure with simulation and tasks

EiccRoot: implementation of the EicC detector sim. and rec. inside FairRoot framework

EiccRoot Data flow

Yutie Liang (IMP)

EiccRoot: implementation of EicC detector based on FairRoot

EicC software update & status

> Tracking, ECal, Forward detector packages in good shape

- EiccRoot_2.0.0 released with main updates of:
 - Full magnetic fields (16 field maps) in the IR region
 - GenFit package adapted using field map service in EiccRoot
 - EiccBoxGenerator and EiccEvtGenHybrid updates
 - Complete beam pipe design from -40 to 20 meters

Central: solenoid

Ion Forward region: 3 dipoles + 3 quadrupoles Electron Forward region: 4 dipoles + 5 quadrupoles

Yutie Liang (IMP)