

粲重子实验研究的最近进展和展望

郑阳恒

(zhengyh@ucas.edu.cn)

中国科学院大学 2024年7月2日 强子物理在线论坛100期特别活动,中国科学技术大学

Outline

- > Introduction to the charmed baryons
- Selected recent results on charmed baryons from BESIII/LHCb/Belle/Belle II
- > Prospect and Summary

The charmed baryon family

- Singly charmed baryons
 - ✓ Established ground states:

$$\Lambda_c^+, \Sigma_c, \Xi_c^{(\prime)}, \Omega_c$$

- \checkmark Excited states are being explored
- Observation of other doubly charmed baryon \mathcal{Z}_{cc}^{++}
- No observations of other doubly or triply charmed baryons
 (Doubly charmed baryon topics covered by Jibo's talk.)
- > Λ_c^+ : decay only weakly, many recent experimental progress since 2014
- $\succ \Sigma_c : \mathbf{B}(\Sigma_c \to \Lambda_c^+ \pi) \sim 100\%; \mathbf{B}(\Sigma_c \to \Lambda_c^+ \gamma)?$
- ➤ Ξ_c: decay only weakly; absolute BF measured with poor precision
- > Ω_c : decay only weakly; no absolute BF measured

Λ_c^+ : cornerstone of charmed baryon spectroscopy

- The lightest charmed baryon
- Most of the charmed baryons will eventually decay to Λ_c
- The Λ_c is one of important tagging hadrons in c-quark counting in the productions at high energy energies and Bottom baryon decays
- $B(\Lambda_c^+ \to pK^-\pi^+)$: dominant error for V_{ub} via baryon decay

Quark model picture

a heavy quark (c) with an unexcited spin-zero diquark (u-d)

→ diquark correlation is enhanced by weak Color Magnetic Interaction with a heavy quark.

In some sense, more reliable prediction of heavy-light quark transition without dealing with light degrees of freedom that have net spin or isospin.

 $\underline{\Lambda_{c}^{+}}$ may provide complementary powerful test on internal dynamics to D/Ds does

Charm Facilities

Charm factory

- Threshold production: No boost
- Small X-section : Lowest Statistics
- Quantum coherence
- Inclusive charm, neutrals and neutrinos
- Absolute BFs

B factory

- Low background
- Low statistics
- Low boost
- Good for neutrals and neutrinos
- Some Absolute BFs

Hadron collider

- High background
- High statistics
- High boost
- Challenging for neutrals and neutrinos
- Complex and biasing triggers

 $e^+e^- \rightarrow \psi(3770) \rightarrow D\overline{D}$ $e^+e^- \rightarrow D_{(s)}^{(*)}\overline{D}_{(s)}^{(*)}$ $e^+e^- \rightarrow \Lambda_c^+\overline{\Lambda}_c^-$

BESIII, STCF in the future

 $e^+e^- \rightarrow c\overline{c}$

+ some other Stuff

Belle / Belle II

Belle II

RFLLF

 $p\overline{p} \rightarrow c\overline{c}$ + lots of other Stuff

LHCb

Recent studies on the Λ_c^+ **at BESIII**

- Production cross-section at e^+e^- collision
 - $\Box e^+e^- \rightarrow \Lambda_c^+ \overline{\Lambda}_c^-$ line shape and FF : PRL 131.191901(2023) $\Box e^+e^- \to \Lambda_c^+ \overline{\Lambda}_c^{*-}$
- Rare decays
 - $\Box \Lambda_c^+ \to \gamma \Sigma^+$
- Λ_c^+ leptonic decays $\Box \Lambda_c^+ \to \Lambda \mu^+ \nu_\mu$
 - $\Box \Lambda_c^+ \to X e^+ \nu_e$ $\Box \Lambda_{c}^{+} \to \Lambda \pi^{+} \pi^{-} e^{+} \nu_{e}, \ p K_{s}^{0} \pi^{-} e^{+} \nu_{e} \quad : \text{PLB 843.137993 (2023).}$
- Λ_c^+ hadronic decays(two body) $\Box \Lambda_c^+ \rightarrow p\eta, p\omega$ $\Box \Lambda_c^+ \to p\pi^0$
 - $\Box \Lambda_c^+ \to \Xi^0 K^+$
- Λ_c^+ hadronic decays(multi-body) $\Box \Lambda_c^+ \rightarrow n\pi^+\pi^0, \ n\pi^+\pi^-\pi^+, \ nK^-\pi^+\pi^+$ $\Box \Lambda_c^+ \rightarrow n K_s^0 \pi^+, n K_s^0 K^+$ $\Box \Lambda_c^+ \to \Sigma^+ K^+ K^-, \Sigma^+ \phi, \Sigma^+ K^+ \pi^-(\pi^0)$ $\Box \overline{\Lambda}_c^- \to \overline{n}X$
 - $\Box \Lambda_c^+ \rightarrow \Lambda K^+ \pi^0, \Lambda K^+ \pi^+ \pi^-$
 - $\Box \Lambda_c^+ \to \Sigma^- K^+ \pi^+$
 - $\Box \Lambda_c^+ \to \Xi^0 K^+ \pi^0$
 - $\Box \Lambda_c^+ \to n K_s^0 \pi^+ \pi^0$
 - $\Box \Lambda_c^* \to \Lambda_c^+ \pi^+ \pi^-$

: PRD107, 052002 (2023).

: PRD 109, L071104 (2024)

- : PRD 108.L031105 (2023). : PRD 107.052005 (2023).
 - : JHEP 11.137 (2023). : PRD 109, L091101 (2024). : PRL 132, 031801 (2024).

: CPC 47.023001 (2023). : PRD 109, 072010 (2024). :JHEP 09 125(2023) : PRD 108.L031101 (2023). : PRD 109, 032003 (2024). : PRD 109, L071103 (2024). : PRD 109, 052001 (2024). :PRD 109, 053005 (2024) : arXiv2401.09225.

More details can be found in Prof. Geng Cong's talk.

Charmed baryon thresholds

Production measurement near threshold

PRL 131.191901(2023)

• $e^+e^- \rightarrow \Lambda_c^+ \overline{\Lambda}_c^-$ cross section are measured at twelve energy points from 4.612-4.951GeV.

$$\sigma_{\pm} = \frac{N_{\text{ST}}^{\pm}}{\varepsilon_{\text{ST}}^{\pm} f_{\text{ISR}} f_{\text{VP}} \mathcal{L}_{\text{int}} N_{\text{DT}}} \sum_{n=1}^{9} \left(\frac{N_{\text{ST}}^{\mp, n} \varepsilon_{\text{DT}}^{n}}{\varepsilon_{\text{ST}}^{\mp, n}} \right),$$

- Indicate no enhancement around Y(4630) resonance. =>Conflict with Belle.
- $|G_{\rm E}/G_{\rm M}|$ ratio are derived by fitting to angular distribution.
- The oscillations on $|G_E/G_M|$ ratio is significantly observed with higher frequency than that of the proton. \Rightarrow may imply a non-trivial structure of the lightest charmed baryon.

Form factors of $\Lambda_c^+ \to \Lambda \mu^+ \nu_\mu$

- BF is updated to be $\mathcal{B}(\Lambda_c^+ \to \Lambda \mu^+ \nu_{\mu}) = (3.48 \pm 0.14_{stat} \pm 0.10_{syst})\% =>3$ times more precise.
- LFU are reported $(0.98 \pm 0.05_{stat} \pm 0.03_{syst}) =>$ compatible with Standard Model(0,97).
- Form-factors parameters for $\Lambda_c^+ \rightarrow \Lambda l^+ \nu_l$ are determined to test and calibrate for LQCD.

$\Lambda_c^+ \rightarrow \Lambda \pi^+ \pi^- e^+ \nu_e, \ p K_s^0 \pi^- e^+ \nu_e$

The BFs for $\Lambda_c^+ \to \Lambda^* e^+ \nu_e$ predicted by different theoretical models, in units of 10^{-4} .

Λ^* state	CQM [8]	NRQM [9]	LFQM [10]	LQCD [11]
Λ(1520)	10.00	5.94		5.12 ± 0.82
Λ(1600)	4.00	1.26	(0.7 ± 0.2)	
Λ(1890)		3.16×10^{-2}		
Λ(1820)		1.32×10^{-2}		

- 4.5fb⁻¹ e⁺e⁻ annihilation data are used to search $\Lambda_c^+ \rightarrow \Lambda \pi^+ \pi^- e^+ \nu_e, \ p K_s^0 \pi^- e^+ \nu_e$
- No significant signal is observed and
- $\mathcal{B}(\Lambda_c^+ \to \Lambda \pi^+ \pi^- e^+ \nu_e) < 3.9 \times 10^{-4}$ and $\mathcal{B}(\Lambda_c^+ \to p K_s^0 \pi^- e^+ \nu_e) < 3.3 \times 10^{-4}$ at 90% CL.
- $\mathcal{B}(\Lambda_c^+ \to \Lambda(1520)e^+\nu_e) < 4.3 \times 10^{-3}$ and $\mathcal{B}(\Lambda_c^+ \to \Lambda(1600)e^+\nu_e) < 9.0 \times 10^{-3}$ at 90% CL assuming all $\Lambda \pi^+ \pi^-$ combinations come from Λ^* .
- Limited sensitivity to identify different theoretical calculations.

$\Lambda_c^+ \rightarrow n\pi^+ \text{and } \Lambda_c^+ \rightarrow p\pi^0$

PRL 128.142001 (2022)

PRD 109, L091101 (2024)

 $N(n\pi^+)=50\pm 9$

- First singly Cabibbo-suppressed Λ_c^+ decay involved neutron was observed (7.3 σ).
- Absolute BF is measured to be $\mathcal{B}(\Lambda_c^+ \to n\pi^+) = (6.6 \pm 1.2_{stat} \pm 0.4_{syst}) \times 10^{-4}$. =>Consistent with SU(3) flavor asymmetry prediction[PLB790,225(2019),] =>twice larger than the dynamical calculation based on pole model and CA[PRD97,074028(2018)]
- $R = \frac{\mathcal{B}(\Lambda_c^+ \to n\pi^+)}{\mathcal{B}(\Lambda_c^+ \to p\pi^0)} > 7.2@90\%C.L.(\mathcal{B}(\Lambda_c^+ \to p\pi^0) < 8.0 \times 10^{-5} @90\%C.L.$ from Belle)

=>Disagrees with SU(3) asymmetry and dynamical calculation (2-4.7) while in consistent with SU(3) plus topological-diagram approach(9.6).

$$\mathcal{B}(\Lambda_c^+ \to p\pi^0) = (1.56^{+0.72}_{-0.58} \pm 0.2_{syst}) \times 10^{-4}$$
; $R = 3.2^{+2.2}_{-1.2}$

More details can be found in Prof. Geng Cong's talk.

Decay asymmetry for pure W-exchange process $\ \Lambda_c^+ \to \Xi^0 K^+$

- Previous theoretical calculation on the BF lower than exp. measurement, which all predicted zero decay asymmetry
 - BESIII confirmed the exp. result of BF in 2018 [PLB 783, 200 (2018)]
 - In theory, BF is enhanced by enhancing the decay asymmetry close to 1

FIG. 1. Feynman diagrams for $\Lambda_c^+\to \Xi^0 K^+$

- three-level cascade decay $\Lambda_c^+ \to \Xi^0 K^+$, $\Xi^0 \to \Lambda \pi^0$, $\Lambda \to p \pi^-$
- First determination of decay asymmetry $\alpha_{\Xi^0K^+} = 0.01 \pm 0.16 \pm 0.03$, consistent with zero
- No theoretical model explains the current results
- First determination on phase difference $\delta_p \delta_s$, with two solutions of $\pi/2$ and $-\pi/2$

~378 signals

+ Data@4.60GeV

Misreconstructed

BKG

PRL 132, 031801 (2024)

Λ_c^+ decay asymmetries

Predictions and measurements	$lpha^{pK_s^0}_{\Lambda_c^+}$	$lpha_{\Lambda_c^+}^{\Lambda_\pi^+}$	$\alpha^{\Sigma^0\pi^+}_{\Lambda^+_c}$	$\alpha^{\Sigma^+\pi^0}_{\Lambda^+_c}$	$\alpha^{\Xi^0 K^+}_{\Lambda^+_c}$
CLEO(1990) [1]	-	$-1.0^{+0.4}_{-0.1}$	-	-	-
ARGUS(1992) [2]	-	-0.96 ± 0.42	-	-	-
Körner(1992), CCQM [3]	-0.10	-0.70	0.70	0.71	0
Xu(1992), Pole [4]	0.51	-0.67	0.92	0.92	0
Cheng, $Tseng(1992)$, Pole [5]	-0.49	-0.96	0.83	0.83	-
Cheng, Tseng(1993), Pole [6]	-0.49	-0.95	0.78	0.78	-
Źencaykowski(1994), Pole [7]	-0.90	-0.86	-0.76	-0.76	0
Źencaykowski(1994), Pole [8]	-0.66	-0.99	0.39	0.39	0
CLEO(1995) [9]	-	$-0.94^{+0.21+0.12}_{-0.06-0.06}$	-	$-0.45 \pm 0.31 \pm 0.06$	-
Alakabha Datta(1995), CA [10]	-0.91	-0.94	-0.47	-0.47	-
Ivanov(1998), CCQM [11]	-0.97	-0.95	0.43	0.43	0
Sharma(1999), CA [12]	-0.99	-0.99	-0.31	-0.31	0
FOCUS(2006) [13]	-	$-0.78 \pm 0.16 \pm 0.19$	-	-	-
BESIII(2018) [14]	$0.18 \pm 0.43 \pm 0.14$	$-0.80 \pm 0.11 \pm 0.02$	$-0.73 \pm 0.17 \pm 0.07$	$-0.57 \pm 0.10 \pm 0.07$	-
Geng(2019), SU(3) [15]	$-0.89^{+0.26}_{-0.11}$	-0.87 ± 0.10	-0.35 ± 0.27	-0.35 ± 0.27	$0.94^{+0.06}_{-0.11}$
Zou(2020), CA [16]	-0.75	-0.93	-0.76	-0.76	0.90
BELLE(2022) [17, 18]	-	$-0.755 \pm 0.005 \pm 0.003$	$-0.463 \pm 0.016 \pm 0.008$	$-0.48 \pm 0.02 \pm 0.02$	-
Zhong(2022), $SU(3)^a$ [19]	-0.57 ± 0.21	-0.75 ± 0.01	-0.47 ± 0.03	-0.47 ± 0.03	$0.91^{+0.03}_{-0.04}$
Zhong(2022), $SU(3)^{b}$ [19]	-0.29 ± 0.24	-0.75 ± 0.01	-0.47 ± 0.03	-0.47 ± 0.03	0.99 ± 0.01
Liu(2023), Pole [20]	-0.81 ± 0.05	-0.75 ± 0.01	-0.47 ± 0.01	-0.45 ± 0.04	0.95 ± 0.02
L in (2022), L D [20]	-0.68 ± 0.01	-0.75 ± 0.01	-0.47 ± 0.01	-0.45 ± 0.04	0.02
BESIII(2023) [21]	-	-	-	-	0.01 ± 0.16
Geng(2023), SU(3) [22]	-0.40 ± 0.49	-0.75 ± 0.01	-0.47 ± 0.02	-0.47 ± 0.02	-0.15 ± 0.14
Zhong(2024), TDA [23]	0.01 ± 0.24	-0.76 ± 0.01	-0.48 ± 0.02	-0.48 ± 0.02	-0.16 ± 0.13
Zhong(2024), IRA [23]	0.03 ± 0.24	-0.76 ± 0.01	-0.48 ± 0.02	-0.48 ± 0.02	-0.19 ± 0.12
PDG(for now) [24]	0.20 ± 0.50 (only BESIII)	-0.84 ± 0.09	-0.73 ± 0.18 (only BESIII)	-0.55 ± 0.11	-

BF measurement of $\overline{\Lambda}_{\mathbf{c}}^- \to \overline{n}X$

PRD 108.L031101 (2023).

- The deposited energy in EMC is used to identify \overline{n} .
- Data-driven technique to model \overline{n} behavior in the detector.
- Absolute BFs are measured to be

 $\mathcal{B}(\overline{\Lambda}_c^- \to \overline{n}X) = (33.5 \pm 0.7_{stat} \pm 1.2_{syst})\%$, precision up to 4%.

- All known exclusive process with neutron in final state is about 25%=>more space to be explored.
- Asymmetry between $\mathcal{B}(\Lambda_{c}^{+} \rightarrow nX)$ and $\mathcal{B}(\Lambda_{c}^{+} \rightarrow pX)$ is observed.

LHCb

- Huge Ac production at LHCb: ~100µb
- **Prompt charm: using exclusive reconstruction**
- **Secondary charm** from *b*-hadron decays with inclusive *b* triggers
 - $\Lambda_c^+ \to p K^- \pi^+$ CF yields: 0.8M in 0.65/fb (~20% of Run I data)
 - CS samples O(10⁵) in Run I:
 - **BF measurement and CPV**
 - DCS $\Lambda_c^+ \rightarrow p K^+ \pi^-$ can be measured with best precision

Potential to set up the SL modes $pK^{-}\mu^{+}n$ and $p\pi^{-}\mu^{+}n$

Charmed baryon results at LHCb

- singly charmed baryon
 - ✓ Ξ_c^+ mass [Phys. Rev. Lett. 113, 032001 (2014)]
 - $\checkmark \text{ BF for } \Lambda_c^+ \rightarrow pK^+\pi^-, pK^+K^-, p\pi^+\pi^- \text{ [JHEP 03, 043 (2018)]}$
 - ✓ CPV search in $\Lambda_c^+ \rightarrow pK^+K^-$, $p\pi^+\pi^-$ [JHEP 03, 182 (2018)]
 - ✓ Rare decay of $\Lambda_c^+ \rightarrow p\mu^+\mu^-$ [Phys. Rev. D 97, 091101 (2018)]
 - ✓ Lifetime of Ω_c^0 [Phys. Rev. Lett. 121, 092003 (2018)]
 - ✓ Lifetimes of Λ_c^+ , Ξ_c^+ and Ξ_c^0 [Phys. Rev. D 100, 032001 (2019)]
 - ✓ CPV search in Ξ_c^+ → $pK^-\pi^+$ [Eur. Phys. J. C 80, 986 (2020)]
 - ✓ Suppressed decay $\Xi_c^0 \to \Lambda_c^+ \pi^-$ [Phys. Rev. D 102, 071101 (2020)]
 - ✓ Lifetime of Ω_c^0 and Ξ_c^0 [Sci. Bull. 67, 479 (2022)]
 - ✓ $\Lambda_c^+ \rightarrow pK^-\pi^+$ amplitude analysis [Phys. Rev. D 108, 012023 (2023)]
 - ✓ Λ_c^+ polarimetry [JHEP 07, 228 (2023)]
 - ✓ $\Omega_c^0 \to \Omega^- K^+$, $\Xi^- \pi^+$ and Ω_c^0 mass [Phys. Rev. Lett. 132.081802 (2024)]
- doubly charmed baryon: Ξ_{cc}^{++} discovery and other researches since 2017
- charmed baryon spectroscopy
 - $\checkmark \Lambda_c^{**+} \text{ in } \Xi_c^+ K^- \text{ via } \Lambda_b^0 \rightarrow D^0 p \pi^- \text{ [JHEP 05, 030 (2017)]}$
 - ✓ Ω_c^{**0} in $\Xi_c^+ K^-$ via prompt production [Phys. Rev. Lett. 118,182001 (2017)]
 - ✓ \mathcal{Z}_{c}^{**0} in $\Lambda_{c}^{+}K^{-}$ final states [Phys. Rev. Lett. 124, 222001 (2020)]
 - ✓ Ω_c^{**0} in $\Xi_c^+ K^-$ from $\Omega_b^- \to \Xi_c^+ K^- \pi^-$ [Phys. Rev. D 104, L091102 (2021)]
 - ✓ Ω_c^{**0} in $\Xi_c^+ K^-$ via prompt production [Phys. Rev. Lett. 131, 131902 (2023)]
- charmed baryon production in *pp* and *p*Pb collisions
 - Λ_c^+ in pp [NPB 871 (2013), JHEP06, 147 (2017)]
 - Λ_c^+ in pPb [JHEP 02, 102 (2019), JHEP06(2023)132]
 - \mathcal{Z}_c^+ in pPb [Phys. Rev. C 109, 044901 (2024)]

Charm lifetimes from HQE

Satisfactory agreement with the experiment!

Observation of $\Omega_c^0 \to \Omega^- K^+$, $\Xi^- \pi^+$ and Ω_c^0 mass

20

$\Lambda_c^+ \rightarrow p K^- \pi^+$ amplitude analysis

Phys. Rev. D 108, 012023 (2023)

 Λ_c^+ signals are selected via $\Lambda_b^0 \to \Lambda_c^+ \mu^- \nu$ from dataset taken in 2016, where only a subset of 0.4 M signals are employed

5-dim fit

Resonance	Fit fraction (%)
$\Lambda(1405)$	7.7
Λ(1520)	1.86
Λ(1600)	5.2
Λ(1670)	1.18
Λ(1690)	1.19
$\Lambda(2000)$	9.58
$\Delta(1232)^{++}$	28.60
$\Delta(1600)^{++}$	4.5
$\Delta(1700)^{++}$	3.90
$K_{0}^{*}(700)$	3.02
K [*] (892)	22.14
$K_0^*(1430)$	14.7

Resonance	α
Model $\sqrt{3}S$	0.662
$K^*(892) \sqrt{3}S$	0.873
$\Lambda(1405)$	-0.58
Λ(1520)	-0.925
$\Lambda(1600)$	-0.20
Λ(1670)	-0.817
Λ(1690)	-0.958
$\Lambda(2000)$	-0.57
$\Delta(1232)^{++}$	-0.548
$\Delta(1600)^{++}$	-0.50
$\Delta(1700)^{++}$	-0.216
$K_0^*(700)$	-0.06
$K_0^*(1430)$	-0.34

Λ_c^+ polarization and $\Lambda_c^+ \to p K^- \pi^+$ polarimetry

Phys. Rev. D 108, 012023 (2023)

Component	Value (%)
$\overline{P_{x}}$ (lab)	$\overline{60.32 \pm 0.68 \pm 0.98 \pm 0.21}$
P_{v}^{n} (lab)	$-0.41 \pm 0.61 \pm 0.16 \pm 0.07$
$P_{z}(lab)$	$-24.7 \pm 0.6 \pm 0.3 \pm 1.1$
$P_x(\tilde{B})$	$21.65 \pm 0.68 \pm 0.36 \pm 0.15$
$P_{\gamma}(\tilde{B})$	$1.08\pm 0.61\pm 0.09\pm 0.08$
$P_z(\tilde{B})$	$-66.5 \pm 0.6 \pm 1.1 \pm 0.1$

A large Λ_c^+ polarization is found in *b* semi-leptonic decays $\Lambda_b^0 \to \Lambda_c^+ \mu^- \nu$

- The obtained representation can facilitate polarization measurements of the Λ_c^+ baryon and eases inclusion of the $\Lambda_c^+ \rightarrow p K^- \pi^+$ decay mode in hadronic amplitude analyses.
- At BESIII, the transverse polarization of Λ_c^+ can be obtained via $\Lambda_c^+ \to p K^- \pi^+$ polarimetry

JHEP 07, 228 (2023)

The amplitude model is used to produce the distribution of the kinematic-dependent polarimeter vector in the space of Mandelstam variables to express the polarized decay rate in a model-independent way.

Recent Belle/Belle II results

- 1. $\Xi_c^0 \rightarrow \Xi^0 h^0$ ($h^0 = \pi^0, \eta, \eta'$) [Preliminary results]
- 2. $\Xi_c^0 \to \Xi^0 \ell^+ \ell^-$ [PRD 109, 052003 (2024)]
- 3. $\Lambda_c^+ \rightarrow \Sigma^+ h^0 \ (h^0 = \pi^0, \eta, \eta') \ [PRD 107, 032003 \ (2023)]$
- 4. $\Lambda_c^+ \rightarrow p K_S^0 K_S^0, p K_S^0 \eta$ [PRD 107, 032004 (2023)]
- 5. $\Lambda_{\rm c}(2625)^+ \rightarrow \Sigma_{\rm c}^{0,++} \pi \text{ [PRD 107, 032008 (2023)]}$
- 6. $\Lambda_{c}^{+} \rightarrow \Lambda \pi^{+} \pi^{-} [PRL 130, 151903 (2023)]$
- 7. $\Omega_c^0 \to \Xi^- \pi^+ / \Xi^- K^+ / \Omega^- K^+$ [JHEP 01 (2023) 055]

Search for the semileptonic decays of $\Xi_c^0 \to \Xi^0 \ell^+ \ell^-$

Motivation

- Few baryonic neutrino-less semileptonic decays were observed experimentally [1-4].
- Only upper limits were set for $\Lambda_c^+ \to p\ell^+\ell^-$ decay for the charmed baryons [5, 6].
- With the SU(3) flavor symmetry, $\mathcal{B}(\Xi_c^0 \to \Xi^0 e^+ e^-) \le 2.35 \times 10^{-6}$ and $\mathcal{B}(\Xi_c^0 \to \Xi^0 \mu^+ \mu^-) \le 2.25 \times 10^{-6}$ [PRD 103, 013007 (2021)].
- It will help the understanding of the recent anomalies in $b \to s\ell^+\ell^-$ processes, i.e. $B \to K^{(*)}\ell^+\ell^-$.

decays	Experimental results on \mathcal{B}_{f}	Ref.
$\Xi^0 ightarrow \Lambda e^+ e^-$	$(7.6 \pm 0.4 \pm 0.4 \pm 0.2) \times 10^{-6}$	[1] PLB 650, 1 (2007)
$\Sigma^+ ightarrow p \mu^+ \mu^-$	$(8.6^{+6.6}_{-5.4} \pm 5.5) \times 10^{-8}$	[2] PRL 94, 021801 (2005)
$\Lambda^0_b \to \Lambda \mu^+ \mu^-$	$(1.73 \pm 0.42 \pm 0.55) \times 10^{-6}$	[3] PRL 107, 201802 (2011)
$\Lambda_b^0 \to \Lambda \mu^+ \mu^-$	$(0.96 \pm 0.16 \pm 0.13 \pm 0.21) \times 10^{-6}$	[4] JHEP 06, 115 (2015)
$\Lambda_c^+ \rightarrow p e^+ e^-$	$< 5.5 \times 10^{-6}$ @ 90% C. L.	[5] PRD 84, 072006 (2011)
$\Lambda_{c}^{+} \rightarrow p \mu^{+} \mu^{-}$	$< 44 \times 10^{-6}$ @ 90% C. L.	[5] PRD 84, 072006 (2011)
$\Lambda_{\rm c}^+ \rightarrow p \mu^+ \mu^-$	$< 7.7 \times 10^{-8}$ @ 90% C. L.	[6] PRD 97, 091101(2018)

Search for the semileptonic decays of $\Xi_c^0 \to \Xi^0 \ell^+ \ell^-$

Results:

[PRD 109, 052003 (2024)]

- No significant signals are observed in the $\Xi^0 \ell^+ \ell^-$ invariant-mass spectra.
- 90% credibility upper limits on branching fractions are set:
 > B(Ξ⁰_c → Ξ⁰ℓ⁺ℓ⁻)/B(Ξ⁰_c → Ξ⁻π⁺) < 6.7 (4.3) × 10⁻³ and
 > B(Ξ⁰_c → Ξ⁰ℓ⁺ℓ⁻) < 9.9 (6.5) × 10⁻⁵ for electron (muon) mode.

Peak at $\overline{K}N$ threshold in $\Lambda_c^+ \to \Lambda \pi^+ \pi^+ \pi^-$

[PRL 130, 151903 (2023)]

Motivation

- The Λ(1405) (I = 0) state, which has been interpreted as an orbitally excited quark-diquark [PRC 49, 2831 (1994)], or as a KN bound state [PRL 114, 132002 (2015)].
- The \overline{KN} (I = 1) interaction is a virtual state could exist [PLB 500, 263 (2001)] and could be observed as a

Standard Breit-Wigner

$$f_{\rm BW} = \frac{\Gamma/2}{(E - E_{\rm BW})^2 + \Gamma^2/4} \quad \begin{array}{c} {\rm Mode} \\ \hline \Lambda \pi^+ \\ \hline \Lambda \pi^- \end{array}$$

Mode	Mass (MeV/c ²)	Width (MeV)	χ^2/NDF
$\Lambda \pi^+$	$1434.3\pm 0.6\pm 0.9$	$11.5 \pm 2.8 \pm 5.3$	74/68
$\Lambda\pi^-$	$1438.5 \pm 0.9 \pm 2.5$	$33.0 \pm 7.5 \pm 23.6$	92/68

Peak at $\overline{K}N$ threshold in $\Lambda_c^+ \to \Lambda \pi^+ \pi^+ \pi^-$

Dalitz model (cusp) [Czech. J. Phys. B 32, 1021 (1982)] For scattering length A=a+ib and decay momentum k/κ .

$$f_D = rac{4\pi b}{(1+kb)^2 + (ka)^2}, E > m_{\bar{K}N}$$

$$= rac{4\pi b}{(1+\kappa a)^2 + (\kappa b)^2}, E < m_{\bar{K}N}$$

Mode	a [fm]	b [fm]	χ^2/NDF
$\Lambda\pi^+$	$0.48 \pm 0.32 \pm 0.38$	$1.22 \pm 0.83 \pm 2.54$	69/68
$\Lambda\pi^{-}$	$1.24 \pm 0.57 \pm 1.56$	$0.18 \pm 0.13 \pm 0.20$	78/68

Obtained center values for a are larger than most theories(e.g., $a(K^-n)=0.3\sim0.6$ fm for [Nucl. Phys. A 881, 98 (2012)]),but with large uncertainties.28

Proposal of the upgrade BEPCII

An upgrade of BEPCII (**BEPCII-U**) has been approved in July 2021 and planned to be completed by the end of 2024

✓ Improve luminosity by 3 times higher than current BEPCII at 4.7 GeV
 ✓ Extend the maximum energy to 5.6 GeV

Heavier charmed baryons

• Energy thresholds

$$\checkmark e^+e^- \to \Lambda_c^+ \overline{\Sigma}_c^- \qquad 4.74 \text{ GeV}$$

$$\checkmark e^+e^- \to \Lambda_c^+ \overline{\Sigma}_c \pi \qquad 4.88 \text{ GeV}$$

$$\checkmark e^+e^- \to \Sigma_c \overline{\Sigma}_c \qquad 4.91 \text{ GeV}$$

$$\checkmark e^+e^- \to \Xi_c \overline{\Xi}_c \qquad 4.94 \text{ GeV}$$

$$\checkmark e^+e^- \to \Omega_c^0 \overline{\Omega}_c^0 \qquad 5.40 \text{ GeV}$$

- Cover all the ground-state charmed baryons: studies on their production & decays, CPV search, to help developing more reliable QCD-derived models in charm sector
- Studies on the production and decays of excited charmed baryons

Future opportunity at LHCb

- > Further improvement on mass and lifetime measurement
- SCS and DCS hadronic decays
 - $\circ \quad \text{e.g.} \ \Xi_c^0 \to pK^-, \ \Xi_c^+ \to pK_S, \ \Omega_c^0 \to \Lambda K_S, \ pK^-$
- Semi-leptonic decays via b-baryon four-body decays
 - $\circ \quad \text{e.g. } \Lambda_c^+ \to pK^-\mu^+\nu, p\pi^-\mu^+\nu; \Xi_c^0 \to \Xi^-\mu^+\nu; \Xi_c^+ \to \Lambda\mu^+\nu; \Omega_c^0 \to \Omega^-\mu^+\nu$
- ➢ Decay asymmetries and CPV search via prompt production or b-baryon decays
 e.g. Λ⁺_c → pK_S, Λπ⁺, ΛK⁺; Ξ⁰_c → ΛK_S, Ξ⁻π⁺, Ξ⁻K⁺; Ω⁰_c → Ω⁻π⁺, Ω⁻K⁺, Ξ⁻π⁺
- > Amplitude analysis of multi-body hadronic decays

Super Tau-Charm Facility (STCF)

Anhui provice and USTC have officially endorsed 364M RMB R&D project of STCF, and great progress is achieved; the site is preliminarily decided in Hefei, and geological exploration and engineering design is ongoing. Will apply for the construction (~4.5B RMB) during the 15th five-year plan (2026-2030) from central government.

Summary

- In the past year, many important results of charm baryon decays were reported by BESIII, Belle, and LHCb.
- Non-perturbative QCD is the main challenge. The theoretical calculations are hard for the Hadronic charm baryon decays.
 - Tools are improving.
 - Collaborations between theorists and experimentalists are crucial for accelerating research.
- The future of charm is promising. Lots of high quality data coming our way: LHCb, Belle II, BESIII(+upgrade)
- A dedicated charm facility, STCF, has been proposed in China. The R&D project with 364M RMB budget has been officially supported by Anhui province and USTC.

Backup

Form factors of $\Lambda_c^+ \to \Lambda e^+ \nu_e$

- BF is updated to be $\mathcal{B}(\Lambda_c^+ \to \Lambda e^+ \nu_e) = (3.56 \pm 0.11_{stat} \pm 0.07_{syst})\% = >$ precision improved.
- Helicity amplitude deduced form factors can be extracted with 4D fitting to data.
- The differential decay rate is roughly consistent with LQCD calculation while discrepancies can be noticed on FFs show different kinematic behaviors.
- |Vcs| element from charmed baryons is measured to be $0.936 \pm 0.017_{\mathcal{B}} \pm 0.024_{LQCD} \pm 0.007_{\tau_{Ac}}$ which is consistent with the value obtained in charmed mesons decay.

Decay asymmetry for pure W-exchange process $\Lambda_c^+ \to \Xi^0 K^+$

$$\alpha_{BP} = \frac{2\text{Re}(s^*p)}{|s|^2 + |p|^2}, \quad \beta_{BP} = \frac{2\text{Im}(s^*p)}{|s|^2 + |p|^2}, \quad \gamma_{BP} = \frac{|s|^2 - |p|^2}{|s|^2 + |p|^2}$$

Level	Decay	Helicity angle	Helicity amplitude
0	$e^+e^- ightarrow \Lambda_c^+(\lambda_1) ar\Lambda_c^-(\lambda_2)$	$(heta_0)$	A_{λ_1,λ_2}
1	$\Lambda_c^+ o \Xi^0(\lambda_3) K^+$	$_{(heta_1,\phi_1)}$	B_{λ_3}
2	$\Xi^0 o \Lambda(\lambda_4) \pi^0$	$_{(heta_2,\phi_2)}$	C_{λ_4}
3	$\Lambda o p(\lambda_5) \pi^-$	$_{(heta_3,\phi_3)}$	D_{λ_5}

$d\Gamma$

 $\overline{d {\cos} \theta_0 \ d {\cos} \theta_1 \ d {\cos} \theta_2 \ d {\cos} \theta_3 \ d \phi_1 \ d \phi_2 \ d \phi_3}$

 $\propto 1 + \alpha_0 \cos^2 \theta_0$

+ $(1 + \alpha_0 \cos^2 \theta_0) \alpha_{\Xi^0 K^+} \alpha_{\Lambda \pi^0} \cos \theta_2$

+ $(1 + \alpha_0 \cos^2 \theta_0) \alpha_{\Xi^0 K^+} \alpha_{p\pi^-} \cos \theta_2 \cos \theta_3$

+ $(1 + \alpha_0 \cos^2 \theta_0) \alpha_{\Lambda \pi^0} \alpha_{p \pi^-} \cos \theta_3$

 $-\left(1+\alpha_0\cos^2\theta_0\right)\,\alpha_{\Xi^0K^+}\sqrt{1-\alpha_{\Lambda\pi^0}^2}\,\alpha_{p\pi^-}\sin\theta_2\sin\theta_3\cos(\Delta_{\Lambda\pi^0}+\phi_3)$

 $+\sqrt{1-\alpha_0^2}\sin\Delta_0\sin\theta_0\cos\theta_0\alpha_{\Xi^0K^+}\sin\theta_1\sin\phi_1$

 $+\sqrt{1-\alpha_0^2\,\sin\Delta_0\sin\theta_0\cos\theta_0\alpha_{\Lambda\pi^0}\sin\theta_1\sin\phi_1\cos\theta_2}$

 $+\sqrt{1-\alpha_0^2\sin\Delta_0\sin\theta_0\cos\theta_0\alpha_{\Xi^0K^+}\alpha_{\Lambda\pi^0}\alpha_{p\pi^-}\sin\theta_1\sin\phi_1\cos\theta_3}$

 $+\sqrt{1-\alpha_0^2}\sin\Delta_0\sin\theta_0\cos\theta_0\alpha_{p\pi^-}\sin\theta_1\sin\phi_1\cos\theta_2\cos\theta_3$

 $+\sqrt{1-\alpha_0^2}\sin\Delta_0\sin\theta_0\cos\theta_0\sqrt{1-\alpha_{\Xi^0K^+}^2}\alpha_{\Lambda\pi^0}\cos\theta_1\sin\phi_1\sin\theta_2\cos(\Delta_{\Xi^0K^+}+\phi_2)$

- $+\sqrt{1-\alpha_0^2}\,\sin\Delta_0\sin\theta_0\cos\theta_0\sqrt{1-\alpha_{\Xi^0K^+}^2}\,\,\alpha_{p\pi^-}\cos\theta_1\sin\phi_1\sin\theta_2\cos(\Delta_{\Xi^0K^+}+\phi_2)\cos\theta_3$
- $+\sqrt{1-\alpha_0^2}\,\sin\Delta_0\sin\theta_0\cos\theta_0\sqrt{1-\alpha_{\Xi^0K^+}^2}\,\alpha_{p\pi^-}\cos\phi_1\sin\theta_2\sin(\Delta_{\Xi^0K^+}+\phi_2)\cos\theta_3$
- $-\sqrt{1-\alpha_0^2}\sin\Delta_0\sin\theta_0\cos\theta_0\sqrt{1-\alpha_{\Xi^0K^+}^2}\sqrt{1-\alpha_{\Lambda\pi^0}^2}\alpha_{p\pi^-}\cos\theta_1\sin\phi_1\sin(\Delta_{\Xi^0K^+}+\phi_2)\sin\theta_3\sin(\Delta_{\Lambda\pi^0}+\phi_3)$
- $+\sqrt{1-\alpha_0^2}\sin\Delta_0\sin\theta_0\cos\theta_0\sqrt{1-\alpha_{\Xi^0K^+}^2}\sqrt{1-\alpha_{\Lambda\pi^0}^2}\alpha_{p\pi^-}\cos\theta_1\sin\phi_1\cos\theta_2\cos(\Delta_{\Xi^0K^+}+\phi_2)\sin\theta_3\cos(\Delta_{\Lambda\pi^0}+\phi_3)$
- $+\sqrt{1-\alpha_0^2}\sin\Delta_0\sin\theta_0\cos\theta_0\sqrt{1-\alpha_{\Xi^0K^+}^2}\sqrt{1-\alpha_{\Lambda\pi^0}^2}\alpha_{p\pi^-}\cos\phi_1\cos(\Delta_{\Xi^0K^+}+\phi_2)\sin\theta_3\sin(\Delta_{\Lambda\pi^0}+\phi_3)$
- $+\sqrt{1-\alpha_0^2}\sin\Delta_0\sin\theta_0\cos\theta_0\sqrt{1-\alpha_{\Xi^0K^+}^2}\sqrt{1-\alpha_{\Lambda\pi^0}^2}\alpha_{p\pi^-}\cos\phi_1\cos\theta_2\sin(\Delta_{\Xi^0K^+}+\phi_2)\sin\theta_3\cos(\Delta_{\Lambda\pi^0}+\phi_3)$

arXiv2309.02774(PRL accepted)

• The joint angular distribution for $\Lambda_c^+ \to \Xi^0 K^+$ is derived based on helicity amplitude.

PWA for $\Lambda_c^+ \to \Lambda \pi^+ \pi^0$

JHEP 12.033 (2022).

Data Background		() +			Process	Magnitude	Phase ϕ (rad)	FF (%)	Significance
$\sum_{i=1}^{n} \frac{1}{1000} = \frac{1}{1000} \frac{1}{1000} = 1$			╓╴╶╌╴╷┽┰┿┯╼┹	π. ·	$\Lambda \rho(770)^+$	1.0 (fixed)	0.0 (fixed)	57.2 ± 4.2	36.9σ
$U_{\text{res}}^{\text{res}} = \frac{NR_{1}(\pi^{+}\pi^{0})\Lambda}{\pi^{0}\Sigma(1385)^{+}} = \frac{1}{2}$	S				$\Sigma(1385)^{+}\pi^{0}$	0.43 ± 0.06	-0.23 ± 0.18	7.18 ± 0.60	14.8σ
$\sum_{n=1}^{\infty} \frac{\pi^{0} \Sigma(1670)^{+}}{1770^{+}}$			ہے	Ϋ́̈́̈́̈́, Τ	$\Sigma(1385)^{0}\pi^{+}$	0.37 ± 0.07	2.84 ± 0.23	7.92 ± 0.72	16.0σ
			house of	L I	$\Sigma(1670)^{+}\pi^{0}$	0.31 ± 0.08	-0.77 ± 0.23	2.90 ± 0.63	5.1σ
$\sum_{i=1}^{\infty} \frac{1}{\pi^{+}\Sigma(1670)^{0}} + \frac{1}{\pi^{+}\Sigma(1750)^{0}} + \frac{1}{\pi^$	st		have a second and a second a s	L L	$\Sigma(1670)^{0}\pi^{+}$	0.41 ± 0.07	2.77 ± 0.20	2.65 ± 0.58	5.2σ
	Sector Contraction of the sector of the sect			<u></u> 1	$\Sigma(1750)^{+}\pi^{0}$	1.75 ± 0.21	-1.73 ± 0.11	16.6 ± 2.2	10.1σ
					$\Sigma(1750)^0\pi^+$	1.83 ± 0.21	1.34 ± 0.11	17.5 ± 2.3	10.2σ
	2 1.2 1.4 1.6 1.8 2	2.2 I.2	1.4 1.6 1.8	2 2.2	$\Lambda + NR_{1^-}$	4.05 ± 0.47	2.16 ± 0.13	29.7 ± 4.5	10.5σ
$M_{\pi^{\dagger}\pi^{0}}$ (GeV/ c^{2})	$M_{\Lambda\pi^+}({ m GeV}/c^2)$	01	$M_{\Lambda\pi^0} ({ m GeV}/c^2)$:					
		Theoretical	algulation	This w	orle DI				
		Theoretical	calculation	1 IIIS W					
	$10^2 \times \mathcal{B}(\Lambda_c^+ \to \Lambda \rho(770)^+)$	4.81 ± 0.58 [13]	$4.0 \ [14, \ 15]$	4.06 ± 0	0.52 <	6			
	$10^3 \times \mathcal{B}(\Lambda_c^+ \to \Sigma(1385)^+ \pi^0)$	2.8 ± 0.4 [16]	2.2 ± 0.4 [17]	5.86 ± 0	0.80 –	_			
	$10^3 \times \mathcal{B}(\Lambda_c^+ \to \Sigma(1385)^0 \pi^+)$	2.8 ± 0.4 [16]	2.2 ± 0.4 [17]	6.47 ± 0	0.96 –	_			
	$lpha_{\Lambda ho(770)^+}$	-0.27 ± 0.04 [13]	-0.32 [14, 15]	$ -0.763 \pm$	0.066 –	_			
	$lpha_{\Sigma(1385)^+\pi^0}$	$-0.91\substack{+0\\-0}$	$^{.45}_{.10}$ [17]	$ -0.917 \pm$	0.083 -	_			
	$lpha_{\Sigma(1385)^0\pi^+}$	-0.91^{+0}_{-0}	$^{.45}_{.10}$ [17]	$ -0.79 \pm$	0.11 –	_			

- About 10K events survived which purity is larger than 80%.
- Interference mostly exist between $\Lambda \rho(770)$ and $\Sigma(1385)^{0/+}\pi^{+/0}$.
- NO theoretical models is able to explain both BFs and decay asymmetries simultaneously.
- Decay asymmetry parameters can be obtained by the fit results of the PWA.
- provide crucial input to extend the understanding of dynamics of charmed baryon hadronic decays.

PWA for $\Lambda_c^+ \to \Lambda \pi^+ \pi^0$

JHEP 12.033 (2022).

$\frac{1}{2}^+(\Lambda_c^+)$	$) \rightarrow \frac{3}{2}^{+} (\Sigma(1385)^{+})$	$) + 0^{-}(\pi^{0})$	$\frac{1}{2}^+(\Lambda_c^+)$ -	$\rightarrow \frac{3}{2}^+ (\Sigma(1385))$	$)^{0}) + 0^{-}(\pi^{+})$	
Amplitude	Magnitude	Phase ϕ (rad)	Amplitude	Magnitude	Phase ϕ (rad)	
$g_{1,rac{3}{2}}^{\Sigma(1385)^+}$	1.0 (fixed)	0.0 (fixed)	$g_{1,rac{3}{2}}^{\Sigma(1385)^{0}}$	1.0 (fixed)	0.0 (fixed)	$lpha_{\Lambda}$
$g_{2,rac{3}{2}}^{\Sigma(1385)^+}$	1.29 ± 0.25	2.82 ± 0.18	$g_{2,rac{3}{2}}^{\Sigma(1385)^0}$	1.70 ± 0.38	2.70 ± 0.22	
$\frac{1}{2}^+(\Lambda_c^+)$	$) \rightarrow \frac{3}{2}^{-}(\Sigma(1670)^{+})$	$) + 0^{-}(\pi^{0})$	$\frac{1}{2}^+(\Lambda_c^+)$ -	$\rightarrow \frac{3}{2}^{-}(\Sigma(1670))$	$)^{0}) + 0^{-}(\pi^{+})$	
Amplitude	Magnitude	Phase ϕ (rad)	Amplitude	Magnitude	Phase ϕ (rad)	
$g_{1,rac{3}{2}}^{\Sigma(1670)^+}$	1.0 (fixed)	0.0 (fixed)	$g_{1,rac{3}{2}}^{\Sigma(1670)^{0}}$	1.0 (fixed)	0.0 (fixed)	
$g_{2,rac{3}{2}}^{\Sigma(1670)^+}$	1.39 ± 0.42	0.85 ± 0.26	$g_{2,rac{3}{2}}^{\Sigma(1670)^0}$	0.74 ± 0.18	0.29 ± 0.24	
$rac{1}{2}^+(\Lambda_c^+)$	$) \rightarrow \frac{1}{2}^{-} (\Sigma(1750)^{+})$	$) + 0^{-}(\pi^{0})$	$\frac{1}{2}^+(\Lambda_c^+)$ -	$\rightarrow \frac{1}{2}^{-}(\Sigma(1750))$	$)^{0}) + 0^{-}(\pi^{+})$	
Amplitude	Magnitude	Phase ϕ (rad)	Amplitude	Magnitude	Phase ϕ (rad)	
$g_{0,rac{1}{2}}^{\Sigma(1750)^+}$	1.0 (fixed)	0.0 (fixed)	$g_{0,\frac{1}{2}}^{\Sigma(1750)^0}$	1.0 (fixed)	0.0 (fixed)	
$g_{1,rac{1}{2}}^{\Sigma(1750)^+}$	0.45 ± 0.10	-2.28 ± 0.22	$g_{1,rac{1}{2}}^{\Sigma(1750)^0}$	0.38 ± 0.10	-2.03 ± 0.20	
$\frac{1}{2}^+(\Lambda_d^2)$	$(\frac{1}{2}) \rightarrow \frac{1}{2}^{+}(\Lambda) + 1^{-}(\Lambda)$	$(\rho(770)^+)$	$\frac{1}{2}^+(\Lambda_c^+$	$() \rightarrow \frac{1}{2}^+(\Lambda) +$	$1^{-}(NR_{1^{-}})$	
Amplitude	Magnitude	Phase ϕ (rad)	Amplitude	Magnitude	Phase ϕ (rad)	
$g^ ho_{0,rac{1}{2}}$	1.0 (fixed)	0.0 (fixed)	$g_{0,rac{1}{2}}^{N\!R}$	1.0 (fixed)	0.0 (fixed)	
$g_{1,rac{1}{2}}^{ ho}$ -	0.48 ± 0.12	-1.69 ± 0.12	$g_{1,rac{1}{2}}^{N\!R}$	0.94 ± 0.12	-0.49 ± 0.16	
$g_{1,rac{3}{2}}^{ ho}$	0.90 ± 0.10	0.48 ± 0.13	$g_{1,rac{3}{2}}^{N\!ar{R}}$	0.21 ± 0.09	-2.84 ± 0.53	(
$g^{ ho}_{2,rac{3}{2}}$	0.55 ± 0.08	-0.04 ± 0.18	$g_{2,rac{3}{2}}^{N\! ilde{R}}$	0.33 ± 0.14	-1.92 ± 0.30	
$\frac{1}{2}^+$	$\overline{(\Lambda)} \rightarrow \frac{1}{2}^+(p) + 0^-$	$^{-}(\pi^{-})$				
Amplitude	Magnitude	Phase ϕ (rad)				
$g^{\Lambda}_{0,rac{1}{2}}$	1.0 (fixed)	0.0 (fixed)				
$g^{\Lambda}_{1,rac{1}{2}}$	0.435376 (fixed)	0.0 (fixed)				

$$\begin{split} \alpha_{\Lambda\rho(770)^{+}} &= \frac{|H^{\rho}_{\frac{1}{2},1}|^{2} - |H^{\rho}_{-\frac{1}{2},-1}|^{2} + |H^{\rho}_{\frac{1}{2},0}|^{2} - |H^{\rho}_{-\frac{1}{2},0}|^{2}}{|H^{\rho}_{\frac{1}{2},1}|^{2} + |H^{\rho}_{-\frac{1}{2},-1}|^{2} + |H^{\rho}_{\frac{1}{2},0}|^{2} + |H^{\rho}_{-\frac{1}{2},0}|^{2}} \\ &= \frac{\sqrt{\frac{1}{9}} \cdot 2 \cdot \Re\left(g^{\rho}_{0,\frac{1}{2}} \cdot \bar{g}^{\rho}_{1,\frac{1}{2}} - g^{\rho}_{1,\frac{3}{2}} \cdot \bar{g}^{\rho}_{2,\frac{3}{2}}\right) - \sqrt{\frac{8}{9}} \cdot 2 \cdot \Re\left(g^{\rho}_{0,\frac{1}{2}} \cdot \bar{g}^{\rho}_{1,\frac{3}{2}} + g^{\rho}_{1,\frac{1}{2}} \cdot \bar{g}^{\rho}_{2,\frac{3}{2}}\right) (4.28)}{|g^{\rho}_{0,\frac{1}{2}}|^{2} + |g^{\rho}_{1,\frac{3}{2}}|^{2} + |g^{\rho}_{2,\frac{3}{2}}|^{2}}. \end{split}$$

$\alpha_{\Sigma(1385)\pi} =$	$ H_{0,\frac{1}{2}}^{\Sigma(1385)} ^2- H_{0,-\frac{1}{2}}^{\Sigma(1385)} ^2$		$2\Re\left(g_{1,\frac{3}{2}}^{\Sigma(1385)}\right.$	$\bar{g}_{2,rac{3}{2}}^{\Sigma(1385)} ight)$	
	$\overline{ H_{0,\frac{1}{2}}^{\Sigma(1385)} ^2+ H_{0,-\frac{1}{2}}^{\Sigma(1385)} ^2}$	_	$ g_{1,rac{3}{2}}^{\Sigma(1385)} ^2$ -	$+ g_{2,\frac{3}{2}}^{\Sigma(1385)} ^2$	

Decay asymmetry parameters can be obtained by the fit results of the partial wave • amplitudes.

PWA for $\Lambda_c^+ \to \Lambda \pi^+ \pi^0$

JHEP 12.033 (2022).

$$\frac{\mathcal{B}(\Lambda_c^+ \to \Lambda \rho(770)^+)}{\mathcal{B}(\Lambda_c^+ \to \Lambda \pi^+ \pi^0)} = (57.2 \pm 4.2 \pm 4.9)\%,$$

$$\frac{\mathcal{B}(\Lambda_c^+ \to \Sigma(1385)^+ \pi^0) \cdot \mathcal{B}(\Sigma(1385)^+ \to \Lambda \pi^+)}{\mathcal{B}(\Lambda_c^+ \to \Lambda \pi^+ \pi^0)} = (7.18 \pm 0.60 \pm 0.64)\%,$$
$$\frac{\mathcal{B}(\Lambda_c^+ \to \Sigma(1385)^0 \pi^+) \cdot \mathcal{B}(\Sigma(1385)^0 \to \Lambda \pi^0)}{\mathcal{B}(\Lambda_c^+ \to \Lambda \pi^+ \pi^0)} = (7.92 \pm 0.72 \pm 0.80)\%.$$

 $\mathcal{B}(\Lambda_c^+ \to \Lambda \rho(770)^+) = (4.06 \pm 0.30 \pm 0.35 \pm 0.23)\%,$

 $\mathcal{B}(\Lambda_c^+ \to \Sigma(1385)^+ \pi^0) = (5.86 \pm 0.49 \pm 0.52 \pm 0.35) \times 10^{-3},$ $\mathcal{B}(\Lambda_c^+ \to \Sigma(1385)^0 \pi^+) = (6.47 \pm 0.59 \pm 0.66 \pm 0.38) \times 10^{-3},$

 $\alpha_{\Lambda\rho(770)^+} = -0.763 \pm 0.053 \pm 0.039,$

 $\alpha_{\Sigma(1385)^+\pi^0} = -0.917 \pm 0.069 \pm 0.046,$

 $\alpha_{\Sigma(1385)^0\pi^+} = -0.789 \pm 0.098 \pm 0.056.$

Table 9. The comparison among this work, various theoretical calculations and PDG results. Here, the uncertainties of this work are the combined uncertainties. "—" means unavailable.

	Theoretical c	alculation	This work	PDG
$10^2 \times \mathcal{B}(\Lambda_c^+ \to \Lambda \rho(770)^+)$	4.81 ± 0.58 [13]	$4.0 \ [14, \ 15]$	4.06 ± 0.52	< 6
$10^3 \times \mathcal{B}(\Lambda_c^+ \to \Sigma(1385)^+ \pi^0)$	2.8 ± 0.4 [16]	2.2 ± 0.4 [17]	5.86 ± 0.80	
$10^3 \times \mathcal{B}(\Lambda_c^+ \to \Sigma(1385)^0 \pi^+)$	2.8 ± 0.4 [16]	2.2 ± 0.4 [17]	6.47 ± 0.96	
$lpha_{\Lambda ho(770)^+}$	-0.27 ± 0.04 [13]	-0.32 [14, 15]	-0.763 ± 0.066	
$lpha_{\Sigma(1385)^+\pi^0}$	$-0.91^{+0.4}_{-0.1}$	$^{45}_{10}$ [17]	-0.917 ± 0.083	
$lpha_{\Sigma(1385)^0\pi^+}$	$-0.91\substack{+0.4\\-0.5}$	$^{45}_{10}$ [17]	-0.79 ± 0.11	

- NO theoretical models is able to explain both BFs and decay asymmetries simultaneously.
- Decay asymmetry parameters can be obtained by the fit results of the PWA.
- Fruitful results are extracted which provide crucial input to extend the understanding of dynamics of charmed baryon hadronic decays.

Decay asymmetry for pure W-exchange process $\ \Lambda_c^+ \to \Xi^0 K^+$

- From the fit, we obtain $\alpha_{\Xi^0K^+} = 0.01 \pm 0.16_{stat} \pm 0.03_{syst}$ and $\beta_{\Xi^0K^+} = -0.64 \pm 0.69_{stat} \pm 0.13_{syst}$ and $\gamma_{\Xi^0K^+} = -0.77 \pm 0.58_{stat} \pm 0.11_{syst}$
- $\alpha_{\Xi^0K^+}$ is in good agreement with zero=>strong identification for theoretical predictions.

$$\begin{split} \Gamma &= \frac{\mathcal{B}(\Lambda_c^+ \to \Xi^0 K^+)}{\tau_{\Lambda_c^+}} = \frac{|\vec{p}_c|}{8\pi} \Big[\frac{(m_{\Lambda_c^+} + m_{\Xi^0})^2 - m_{K^+}^2}{m_{\Lambda_c^+}^2} |A|^2 + \frac{(m_{\Lambda_c^+} - m_{\Xi^0})^2 - m_{K^+}^2}{m_{\Lambda_c^+}^2} |B|^2 \Big] \\ \alpha_{\Xi^0 K^+} &= \frac{2\kappa |A| |B| \cos(\delta_p - \delta_s)}{|A|^2 + \kappa^2 |B|^2}, \\ \Delta_{\Xi^0 K^+} &= \arctan \frac{2\kappa |A| |B| \sin(\delta_p - \delta_s)}{|A|^2 - \kappa^2 |B|^2}, \end{split}$$

- Combine decay width and decay asymmetry, the decay dynamics parameters are derived.
- Especially, $\cos(\delta_p \delta_s)$ is measured to close to zero.=>not considered in previous literature.
- Fills the long-standing puzzle on how to model $\alpha_{\Xi^0K^+}$ and $\mathcal{B}(\Lambda_c^+ \to \Xi^0K^+)$ simultaneously.

Study of $\Xi_c^0 \to \Xi^0 h^0$ $(h^0 = \pi^0, \eta, \eta')$

Motivation:

• Nonfactorizable amplitudes arising from internal *W*-emission and *W*-exchange lead to the difficulties for theoretical predictions in hadronic weak decay of charmed baryons.

Reference	Model	$\mathcal{B}(\Xi_c^0 \to \Xi^0 \pi^0)$	$\mathcal{B}(\Xi_c^0 \to \Xi^0 \eta)$	$\mathcal{B}(\Xi_c^0 \to \Xi^0 \eta')$	$\alpha(\Xi_c^0\to\Xi^0\pi^0)$
Körner, Krämer [5]	quark	0.5	3.2	11.6	0.92
Xu, Kamal [7]	pole	7.7	.		0.92
Cheng, Tseng [8]	pole	3.8	-	-	-0.78
Cheng, Tseng [8]	CA	17.1	-	-	0.54
Żenczykowski [9]	pole	6.9	1.0	9.0	0.21
Ivanov et al. [6]	quark	0.5	3.7	4.1	0.94
Sharma, Verma [11]	\mathbf{CA}	÷	-	-	-0.8
Geng <i>et al.</i> [12]	${ m SU}(3)_{ m F}$	4.3 ± 0.9	$1.7^{+1.0}_{-1.7}$	$8.6^{+11.0}_{-6.3}$	×
Geng <i>et al.</i> [13]	$SU(3)_F$	7.6 ± 1.0	10.3 ± 2.0	9.1 ± 4.1	$-1.00^{+0.07}_{-0.00}$
Zhao <i>et al.</i> [14]	$\rm SU(3)_F$	4.7 ± 0.9	8.3 ± 2.3	7.2 ± 1.9	-
Zou et al. [10]	pole	18.2	26.7		-0.77
Huang et al. [15]	${ m SU}(3)_{ m F}$	2.56 ± 0.93	-	-	-0.23 ± 0.60
Hsiao et al. [16]	${ m SU}(3)_{ m F}$	6.0 ± 1.2	$4.2^{+1.6}_{-1.3}$	-	=
Hsiao et al. [16]	$SU(3)_{F}$ -breaking	3.6 ± 1.2	7.3 ± 3.2	-	-
Zhong et al. [17]	${ m SU}(3)_{ m F}$	$1.13_{-0.49}^{+0.59}$	$1.56{\pm}1.92$	$0.683^{+3.272}_{-3.268}$	$0.50_{-0.35}^{+0.37}$
Zhong et al. [17]	$SU(3)_{F}$ -breaking	$7.74^{+2.52}_{-2.32}$	$2.43^{+2.79}_{-2.90}$	$1.63^{+5.09}_{-5.14}$	$-0.29\substack{+0.20\\-0.17}$
Xing et al. [18]	${ m SU}(3)_{ m F}$	$1.30{\pm}0.51$	-		-0.28 ± 0.18

[5] Z. Phys. C 55 (1992) 659 [6] PRD 57 (1998) 6532 [7] PRD 46 (1992) 053004 [8] PRD 48 (1993) 4188 [9] PRD 50 (1994) 5787 [10] PRD 101 (2020) 014011 [11] EPJC 7 (1999) 217 [12] PRD 97 (2018) 073006 [13] PLB 794 (2019) 19 [14] JHEP 02 (2020) 165 [15] JHEP 03 (2022) 143 [16] JHEP 09 (2022) 35 [17] JHEP 02 (2023) 235 [18] PRD 108 (2023) 053004

Reference mode of $\Xi_c^0\to\Xi^-\pi^+$

First BELLE + Belle II combined charm measurement.

Datasets	Signal yield
Belle	36340 ± 348
Belle II	13719 ± 184

Branching fractions for $\Xi_c^0 \rightarrow \Xi^0 h^0$ ($h^0 = \pi^0, \eta, \eta'$)

2.6

2.55

Preliminary results, will be submitted to JHEP

Signal yield:

Channel	Belle	Belle II
$\Xi_c^0 \to \Xi^0 \pi^0$	1315 ± 66	869 ± 46
$\Xi_c^0\to\Xi^0\eta$	81±15	60 ± 11
$\Xi_c^0\to\Xi^0\eta'$	23 ± 6	8±4

First measurement of the following BRs:

 $\mathcal{B}(\Xi_c^0 \to \Xi^0 \pi^0) = (6.9 \pm 0.3 (\text{stat.}) \pm 0.5 (\text{syst.}) \pm 1.5 (\text{norm.})) \times 10^{-3}$ $\mathcal{B}(\Xi_c^0 \to \Xi^0 \eta) = (1.6 \pm 0.2 (\text{stat.}) \pm 0.2 (\text{syst.}) \pm 0.4 (\text{norm.})) \times 10^{-3}$ $\mathcal{B}(\Xi_c^0 \to \Xi^0 \eta') = (1.2 \pm 0.3 (\text{stat.}) \pm 0.1 (\text{syst.}) \pm 0.3 (\text{norm.})) \times 10^{-3}$

They are compatible with theoretical prediction based on SU(3)_F-breaking [JHEP 02, 235 (2023)].

Asymmetry parameter for $\Xi_c^0 \to \Xi^0 \pi^0$

The asymmetry parameter, related to P-violation, is measured through the differential decay rate: *AN Preliminary results*

$$\frac{dN}{d\cos\theta_{\Xi^0}} \propto 1 + \alpha(\Xi_c^0 \to \Xi^0 h^0) \alpha(\Xi^0 \to \Lambda \pi^0) \cos\theta_{\Xi^0}$$

The $\cos\theta_{\Xi^0}$ is the angle between the Λ momentum vector and the opposite of the Ξ_c^0 momentum vector in the Ξ^0 rest frame.

The $\alpha(\Xi_c^0 \rightarrow \Xi^0 \pi^0) = -0.90 \pm 0.15 \pm 0.23$, which is consistent with predictions based on the pole model [PRD 48 (1993) 4188, PRD 101 (2020) 014011], CA [EPJC 7 (1999) 217], and SU(3)_F flavor symmetry [PLB 794 (2019) 19] approaches.

Measurements of $\Lambda_c^+ \to \Sigma^+ \pi^0$, $\Sigma^+ \eta$, and $\Sigma^+ \eta'$

Motivation

- For the charmed baryon weak decays: $B_c \rightarrow B + M$, there are six topological diagrams. Among them, T and C are factorizable, while C' and E_{1-3} are nonfactorizable.
- All the nonfactorizable diagrams contribute to $\Lambda_c^+ \to \Sigma^+ \eta(\eta')$.

W-exchange diagrams E_1, E_2, E_3

Measurements of $\Lambda_c^+ \to \Sigma^+ \pi^0$, $\Sigma^+ \eta$, and $\Sigma^+ \eta'$

Motivation

- Theoretical predictions on the branching fractions and asymmetry parameters of $\Lambda_c^+ \rightarrow \Sigma^+ \eta(\eta')$ vary across.
- Branching fractions of $\Lambda_c^+ \rightarrow \Sigma^+ \eta(\eta')$ are measured with large uncertainty ($\delta B/B > 40\%$). Decay asymmetry parameters for these two modes have never been measured.

Decay	Körner [1]	Ivanov [2]	Żenczykowski [7]	Sharma [8]	Zou [10]	Geng [11]	Experiment [18]	
$\Lambda_c^+ \rightarrow \Sigma^+ \eta$	0.16	0.11	0.90	0.57	0.74	$0.32{\pm}0.13$	$0.44{\pm}0.20$	
$\Lambda_c^+ { ightarrow} \Sigma^+ \eta'$	1.28	0.12	0.11	0.10	—	$1.44{\pm}0.56$	$1.5{\pm}0.6$	× 10 -
$\Lambda_c^+ \rightarrow \Sigma^+ \pi^0$	0.70	0.43	0.39	-0.31	-0.76	$-0.35{\pm}0.27$	$-0.55 {\pm} 0.11$	
$\Lambda_c^+ { ightarrow} \Sigma^+ \eta$	0.33	0.55	0.00	-0.91	-0.95	$-0.40{\pm}0.47$	—	
$\Lambda_c^+ \rightarrow \Sigma^+ \eta'$	-0.45	-0.05	-0.91	0.78	0.68	$1.00\substack{+0.00\\-0.17}$	—	

Branching fractions

Asymmetry parameters

[1] Z. Phys. C 55, 659 (1992) [2] PRD 57, 5632 (1998) [7] PRD 50, 5787 (1994) [8] EPJC 7, 217 (1999) [10] PRD 49, 3417 (1994) [11] PLB 794, 19 (2019) [18] PTEP 2022, 083C01 (2022)

Measurements of $\Lambda_c^+ \rightarrow \Sigma^+ \pi^0$, $\Sigma^+ \eta$, and $\Sigma^+ \eta'$

• Measurements of branching fractions of $\Lambda_c^+ \rightarrow \Sigma^+ \eta$ and $\Lambda_c^+ \rightarrow \Sigma^+ \eta'$

[PRD 107, 032003 (2023)]

 $\frac{B(\Lambda_{c}^{+}\to\Sigma^{+}\eta)}{B(\Lambda_{c}^{+}\to\Sigma^{+}\pi^{0})} = 0.25 \pm 0.03 \pm 0.01; \qquad B(\Lambda_{c}^{+}\to\Sigma^{+}\eta) = (3.14 \pm 0.35 \pm 0.11 \pm 0.25) \times 10^{-3}$ $\frac{B(\Lambda_{c}^{+}\to\Sigma^{+}\pi^{0})}{B(\Lambda_{c}^{+}\to\Sigma^{+}\pi^{0})} = 0.33 \pm 0.06 \pm 0.02; \qquad B(\Lambda_{c}^{+}\to\Sigma^{+}\eta') = (4.16 \pm 0.75 \pm 0.21 \pm 0.33) \times 10^{-3}$ $I \qquad I \qquad 1$ PDG: $B(\Lambda_{c}^{+}\to\Sigma^{+}\eta) = (4.4 \pm 2.0) \times 10^{-3}$ statistical systematical from $B(\Lambda_{c}^{+}\to\Sigma^{+}\pi^{0})$ PDG: $B(\Lambda_{c}^{+}\to\Sigma^{+}\eta') = (15 \pm 6) \times 10^{-3}$ Consistent with PDG. Most precise result to date.

Measurements of $\Lambda_c^+ \rightarrow \Sigma^+ \pi^0$, $\Sigma^+ \eta$, and $\Sigma^+ \eta'$

• Measurements of asymmetry parameters of $\Lambda_c^+ \rightarrow \Sigma^+ \pi^0$, $\Sigma^+ \eta$, and $\Sigma^+ \eta'$ [PRD 107, 032003 (2023)]

The differential decay rate depends on the asymmetry parameter $\alpha_{\Sigma^+ X}$ as:

$$\frac{dN}{d\cos\theta_{\Sigma^{+}}} \propto 1 + \alpha_{\Sigma^{+}X} \alpha_{p\pi^{0}} \cos\theta_{\Sigma^{+}}$$

 $\alpha_{p\pi^0} = -0.982 \pm 0.014$ from world average value.

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 COSθ_{Σ+}

• $\alpha_{\Sigma^+\pi^0} = -0.48 \pm 0.02 \pm 0.02$

- > agrees with the world average value: -0.55 ± 0.11 .
- \succ with much improved precision
- ➤ The consistency with $\alpha_{\Sigma^0 \pi^+} = -0.463 \pm 0.016 \pm 0.008$ [Sci.Bull. 68 (2023) 583] indicates no isospin symmetry broken.

•
$$\alpha_{\Sigma^+\eta} = -0.99 \pm 0.03 \pm 0.05$$
 and $\alpha_{\Sigma^+\eta'} = -0.46 \pm 0.06 \pm 0.03$
 \succ measured for the first time

Branching fractions of $\Lambda_c^+ \rightarrow p K_S^0 K_S^0$, $p K_S^0 \eta$

Motivation

- No result of branching fraction for $\Lambda_c^+ \to p K_S^0 K_S^0$ (singly Cabibbo-suppressed) is reported. According to theoretically results based on SU(3)_F symmetry [EPJC 79 (2019) 946], $\mathcal{B}(\Lambda_c^+ \to p K_S^0 K_S^0) = (1.9 \pm 0.4) \times 10^{-3}$.
- Measured branching fraction $B(\Lambda_c^+ \rightarrow pK_S^0\eta) = (4.15 \pm 0.90) \times 10^{-3}$ has large uncertainty ($\delta B/B \sim 20\%$) [PDG].
- Check Dalitz-plot for the intermediate resonances existence, e.g. $N^*(1535) \rightarrow p\eta$.

Branching fractions of $\Lambda_c^+ \rightarrow p K_S^0 K_S^0$, $p K_S^0 \eta$

Signal Yield Extraction

[PRD 107, 032004 (2023)] Full Belle dataset

Branching fractions of $\Lambda_c^+ \rightarrow p K_S^0 K_S^0$, $p K_S^0 \eta$

Branching fraction

- $\frac{B(\Lambda_c^+ \to pK_S^0K_S^0)}{B(\Lambda_c^+ \to pK_S^0)} = (1.48 \pm 0.08 \pm 0.04) \times 10^{-2} \implies B(\Lambda_c^+ \to pK_S^0K_S^0) = (2.35 \pm 0.12 \pm 0.07 \pm 0.12) \times 10^{-4}$ > First observation
- $\frac{B(\Lambda_c^+ \to pK_S^0\eta)}{B(\Lambda_c^+ \to pK_S^0)} = (2.73 \pm 0.06 \pm 0.13) \times 10^{-1} \Rightarrow B(\Lambda_c^+ \to pK_S^0\eta) = (4.35 \pm 0.10 \pm 0.20 \pm 0.22) \times 10^{-3}$
 - > Consistent with world average value $(4.15 \pm 0.90) \times 10^{-3}$ and threefold improvement in precision.

Mass and width of $\Lambda_c(2625)^+$ and BR of $\Lambda_c(2625)^+ \rightarrow \Sigma_c^{0,++} \pi$

Motivation

- $\Lambda_c(2625)^+(J^P = 3/2^-)$ is the excited state of Λ_c^+ . It dominantly decays to $\Lambda_c^+\pi^+\pi^-$ via P-wave decay. The D-wave decay $\Lambda_c(2625)^+ \rightarrow \Sigma_c^{0,++}\pi$ is also allowed, but its contribution is known to be small.
- The mass of the $\Lambda_c(2625)^+$, relative to the Λ_c^+ mass, is already relatively well known [PRD 84,012003 (2011)], but the large Belle data sample allows for a more precise measurement.
- No intrinsic width of the $\Lambda_c(2625)^+$ has yet been measured, and the current upper limit $\Gamma < 0.97 \text{ MeV/c}^2$ at 90% confidence level is based on the CDF measurement in 2011 [PRD 84,012003 (2011)].

Mass and width of $\Lambda_c(2625)^+$ and BR of $\Lambda_c(2625)^+ \rightarrow \Sigma_c^{0,++} \pi$

Measurements of mass and width

Reconstruction mode: $\Lambda_c(2625)^+ \rightarrow \Lambda_c^+ \pi^+ \pi^-, \Lambda_c^+ \rightarrow pK^- \pi^+$

Full Belle dataset

 $\square M[\Lambda_c(2625)^+] - M(\Lambda_c^+) = 341.518 \pm 0.006 \pm 0.049 \text{ MeV/}c^2$

- > consistent with the world average value 341.65 ± 0.13 MeV/ c^2
- has approximately half the uncertainty
- Γ Γ[Λ_c(2625)⁺] < 0.52 MeV
 - \succ a factor of 2 more stringent than the previous limit $\Gamma < 0.97$ MeV
 - > An improved limit on the width of the $\Lambda_c(2625)^+$ will help to constrain various theoretical predictions.

Mass and width of $\Lambda_c(2625)^+$ and BR of $\Lambda_c(2625)^+ \rightarrow \Sigma_c^{0,++} \pi$

[PRD 107, 032008 (2023)]

Measurements of branching fractions Full Dalitz plot fitted with AmpTools is performed [PRD 98, 114007 (2018)].

900 120 Candidates / (0.75 MeV/*c*²) 6.2 **Overall fit** 800 Phase space 100 700 600 80 $\Sigma_{c}(2520)^{+1}$ 500 60 3-bodv 400 300 40 200 20 5.9 100 0 6.2 5.9 5.95 6.05 6.1 6.15 2.42 2.43 2.46 2.47 2.48 2.49 6 2.44 2.45 2.5 2.51 $M^{2}(\Lambda_{c}^{+}\pi^{-})$ (GeV²/*c*⁴) $M(\Lambda_c^+\pi^+)$ (GeV/ c^2) $\frac{B(\Lambda_c(2625)^+ \to \Sigma_c^0 \pi)}{B(\Lambda_c(2625)^+ \to \Lambda_c^+ \pi^+ \pi^-)} = (5.19 \pm 0.23 \pm 0.40)\%$ $\frac{B(\Lambda_c(2625)^+ \to \Sigma_c^{++}\pi)}{B(\Lambda_c(2625)^+ \to \Lambda_c^{+}\pi^+\pi^-)} = (5.13 \pm 0.26 \pm 0.32)\%$

□ The measured branching fraction ratios agree with PDG values and are the most precise to date.

 \Box Our measurements align with the prediction that assuming $\Lambda_c(2625)^+$ is a λ mode excitation [PRD 98, 114007 (2018)]. 54

Evidence for $\Omega_c^0 \to \Xi^- \pi^+$ and search for $\Omega_c^0 \to \Xi^- K^+$ and $\Omega^- K^+$ decays

- The theoretical study of hadronic weak decays of the Ω_c^0 has a long history. But due to the low production rate of Ω_c^0 and low detection efficiency for long-lived final states, our knowledge of the Ω_c^0 state is very limited.
- The singly Cabibbo-suppressed decay $\Omega_c^0 \to \Xi^- \pi^+$ and doubly Cabibbo-suppressed decay $\Omega_c^0 \to \Xi^- K^+$ decays have been studied systematically in various theoretical models.

Predicted ratios of branching fractions for using light-front quark model (LFQM), pole model, and current algebra (CA).

Branching fraction ratios	LFQM CPC 42, 093101 (2018)	Pole model and CA PRD 101, 094033 (2020)
$\mathcal{B}(\Omega_{c}^{0} \to \Xi^{-}\pi^{+})/\mathcal{B}(\Omega_{c}^{0} \to \Omega^{-}\pi^{+})$	1.96×10^{-3}	1.04×10^{-1}
$\mathcal{B}(\Omega_{c}^{0} \rightarrow \Xi^{-}K^{+})/\mathcal{B}(\Omega_{c}^{0} \rightarrow \Omega^{-}\pi^{+})$	1.74×10^{-4}	1.06×10^{-2}

 $\begin{aligned} \mathcal{B}(\Omega_{\rm c}^{0} \to \Xi^{-}\pi^{+})/\mathcal{B}(\Omega_{\rm c}^{0} \to \Omega^{-}\pi^{+}) &= 0.253 \pm 0.053(\text{stat.}) \pm 0.030(\text{syst.}) \\ \mathcal{B}(\Omega_{\rm c}^{0} \to \Xi^{-}\mathrm{K}^{+})/\mathcal{B}(\Omega_{\rm c}^{0} \to \Omega^{-}\pi^{+}) < 0.070 \\ \mathcal{B}(\Omega_{\rm c}^{0} \to \Omega^{-}\mathrm{K}^{+})/\mathcal{B}(\Omega_{\rm c}^{0} \to \Omega^{-}\pi^{+}) < 0.29 \end{aligned}$

Experimental studies on Λ_c^+ until 2014

Before 2014, the *c*-ed baryons have been produced and studied at many experiments, notably fixed-target experiments (such as FOCUS and SELEX) and e^+e^- B-factories (ARGUS, CLEO, BABAR, and BELLE).

- ✓ Total branching fraction ~60%
- ✓ Lots of unknown decay channels
- ✓ Quite large uncertainties(>20%)
- ✓ Most BFs are measured relative to $\Lambda_c^+ \rightarrow pK^-\pi^+$

Λ_c^+ data in PDG2015

			Scale factor/	p
C DECAY MODES	1	Fraction (Γ _i /Γ)	Confidence level	(MeV/c)
Hadronic modes	with	<i>p</i> : <i>S</i> = −1 fi	nal states	
pK ⁰		(3.21± 0.30)	%	
$pK^{-}\pi^{+}$		(6.84 + 0.32)	%	
p. t	[a]	(212+020)		
$A(1222)^{++}K^{}$	[9]	(2.13± 0.30)	70	22.0%
A(1520) = +	اما	(1.10 ± 0.27)	70 9/	25.0%
$nK^{-}\pi^{+}$ nonresonant	[9]	(2.4 ± 0.0)	70 94	10.5%
n K0 -0		(3.5 ± 0.4)	/0	13.3%
pK *		(4.5 ± 0.0)	70 9/	23.5%
$pK^{0} + -$		(1.7 ± 0.4)	70	11 4%
$K^{-} = + = 0$		(3.5 ± 0.4)	70	13.0%
= K*(802)==+	1.1	(4.6 ± 0.8)	70	33.3%
$p(K=\pm)$ = 0	[9]	(1.5 ± 0.5)	70	18.0%
$p(K \pi^{-})_{nonresonant}\pi^{-}$		(5.0 ± 0.9)	%	10.070
$\Delta(1232) K^{\circ}(892)$		seen		66 70/
$pK \pi' \pi' \pi$		(1.5 ± 1.0)	× 10 ⁻⁵	66.7%
$pK^{-}\pi^{+}\pi^{0}\pi^{0}$		(1.1 ± 0.5)	%	45.4%
Hadronic mode	s with	a p: S = 0 fin	al states	
$p\pi^{+}\pi^{-}$		(4.7 ± 2.5)	× 10 ⁻³	45.4%
p f ₀ (980)	[9]	(3.8 ± 2.5)	× 10 ⁻³	53.2%
$p\pi^{+}\pi^{+}\pi^{-}\pi^{-}$		(2.5 ± 1.6)	× 10 ⁻³	64.0%
ρK ⁺ K [−]		(1.1 ± 0.4)	× 10 ⁻³	36.4%
pφ	[9]	(1.12± 0.23)	× 10 ⁻³	
pK^+K^- non- ϕ		(4.8 ± 1.9)	× 10 ⁻⁴	
Hadronic modes wi	th a h	peron: S = -	1 final states	
$\Lambda \pi^+$		(1.46 ± 0.13)	%	8.9%
$\Lambda \pi^+ \pi^0$		(5.0 ± 1.3)	%	26.0%
$\Lambda \rho^+$		< 6	% CL=95%	
$\Lambda \pi^{+} \pi^{+} \pi^{-}$		(359 ± 0.28)	%	7.8%
$\Sigma(1385)^+\pi^+\pi^-\Sigma^{*+}\rightarrow$		(10 ± 0.5)	%	20.0%
Λ_{π^+}		(1.0 ± 0.5)	/ v	
$\Sigma(1385)^-\pi^+\pi^+, \Sigma^{*-} \rightarrow$		(7.5 ± 1.4)	× 10 ⁻³	18.7%
Λπ-		().		

Large uncertainties in experiment slow development in theory