

Looking inside the Strong Interaction with Charm Data

第二届强子物理新发展研讨会暨强子物理在线论坛100期特别活动

JinFei Wu^{1,2}, XinChou Lou¹, JingBo Ye¹ IHEP, CAS¹ and CCAST² Jul. 1st 2024

Contents

- Introduction
 - Standard Model in HEP
 - Strong interaction
- Recent Progresses from charm data
- BESIII detector and charm data at BESIII
- 1^{-+} exotics at BESIII
- Glueballs at BESIII
- States near $p\bar{p}$ threshold at BESIII
- α_S from charm data
- Summary

JinFei Wu

ata 11

Standard Model in HEP

- the universe...
- The standard model (SM) is one of the "past" successes, but it's not totally understood. Still many puzzles.
- The elementary particles and their interactions are demonstrated in SM.

JinFei Wu

Past successes in particle physics have revolutionized our understanding of From P5 report

- The mesons $(q\bar{q})$ and baryons (qqq) or $\bar{q}\bar{q}\bar{q}$ are observed in experiments over past decades.

- In SM, the quarks and gluons form hadrons through strong interaction.
 - Furthermore, people realized that there may exist exotic states allowed by the QCD,
 - Hybrid state, glueballs,
 - Multi-quark state,
 - **Molecular state**
 - In BESIII, hunting for these exotic states is one of major targets, that could help to reveal the nature of QCD.
 - The huge and clean **charm and charmonium data** will help a lot on these studies, such as J/ψ , $\psi(3686)$ and $\psi(3770)...$

among quarks and gluons.

$$\mathscr{L} = \sum_{q} \bar{\psi}_{q,a} (i\gamma^{\mu}\partial_{\mu}\delta_{ab} - g_{s}\gamma^{\mu}t_{ab}^{C}A_{\mu}^{C} - m_{q}\delta_{ab})\psi_{q,b} - \frac{1}{4}F_{\mu\nu}^{A}F^{A\mu\nu}$$

The $\alpha_{S} = \frac{g_{s}^{2}}{4\pi}$ is the strong coupling constant,

- interaction.
- precision fit...
- μ_R^2 – In theory, the $\alpha_{\rm S}$ follows the RGE,

JinFei Wu

• In SM, the Quantum Chromodynamics (QCD) describes the strong interaction

5

Quantize the strength of strong interaction, and dictate many features of the strong

The $\alpha_{\rm S}$ is measured using many methods, such as hadronic au decay, PDF fits and EW

$$\frac{d\alpha_s}{d\mu_R^2} = \beta(\alpha_s) = -(b_0\alpha_s^2 + b_1\alpha_s^3 + b_2\alpha_s^4 + \cdots)$$

_arger?

- In the region from m_{τ} to ~2 TeV, the α_{S} increases with the energy scale decreasing according to the measurements.
 - The "asymptotic freedom" and color confinement.

To David J.Gross, H. David Politzer, and Frank Wilczek in 2004.

If Q goes below m_{τ} , what will happen on α_S ? Where does the logarithmic dependence of α_S disappear? what can we use as a tool to measure the $\alpha_{\rm S}$ below m_{τ} ?

The c quark may be a good choice, lighter than τ but not too light.

BESIII detector

potential to look into QCD.

Nature Rev. Phys. 1 (2019) 8, 480-494

• The BESIII is still well-performed detector after 10+ years running.

JinFei Wu

The huge charm data + excellent detector performance, provides good

- 93% coverage of full solid angle
- $\sigma_{P, charged trk}@1GeV/c:0.5\%$
- $\sigma_{dE/dX}$ for electron : 6%
- $\sigma_{E_{\gamma} in EMC} @ 1 GeV/c : 2.5(5)\%$ for barrel (end-cap) region.
- $\sigma_{t in TOF}$: 68(110)ps for barrel (end-cap) region, the updated endcap gives 60 ps.

J/ ψ and $\psi(3770)$ at BESII • The BESIII has collected the $(10.09 \pm 0.04) \times 10^9 J/\psi$ sample and ~20.3 fb^{-1} e^+e^- collision data sample at 3.773 GeV. Chin.Phys.C 46 (2022) 7, 074001 Arxiv.2406.05827

- J/ψ on peak sample : the world largest
- 3.773 GeV sample : 10~20 × CLEO-c

JinFei wheess background in e^+e^- collision

Huge and clean charm data@BESIII

~5

• The huge J/ψ data contributes a lot to this study. Please see Prof. Beijiang Liu's report for the details.

• The search for glueball is one of the main target of BES, BESII, and BESIII experiments, which is carried out by ~30 yeas.

• Recently, the J^{PC} of the X(2370) is determined to be 0^{-+} , that is constant with the pseudo-scalar glueball from LQCD calculation. PhysRevLett.132.181901

• The huge J/ψ data also contributes a lot to this study. Please see Prof. Yanping Huang's report for details. JinFei Wu

TABLE V. The mass of pseudoscalar glueball, m_G , and the form-factor $\hat{V}(0)$ of $J/\psi \rightarrow \gamma G_{ps}$. The continuum limits of m_G and $\hat{V}(0)$ are achieved by linear extrapolations in a_s^2 .

β	m_G (GeV)	$\hat{V}(0)$
2.4	2.724(18)	0.0307(59)
2.8	2.550(13)	0.0294(32)
3.0	2.464(11)	0.0247(33)
Continuum limit	2.395(14)	0.0246(43)
	2.560(35)(120) [2]	

PhysRevD.100.054511 LQCD calculation

10

States near pp threshold at BESIII • Several structures near $p\bar{p}$ are observed in the decay of J/ψ .

step by step.

- Take $J/\psi \rightarrow \gamma 3(\pi^+\pi^-)$ as an example. PhysRevLett.132.151901 JinFei Wu

- What are these states? $p\bar{p}$ bound states, glueballs, radial excitation of η' meson?
 - A sizable $s\bar{s}$ component indicates more complicated nature.
 - Are these states related to each other?
 - May need coupled channel amplitude analysis.

• With J/ψ sample increasing, we could clarify the nature of these states

States near pp threshold at BESII

- The significance of second state is larger than 10σ .
- JinFei Wu

• In $J/\psi \rightarrow \gamma 3(\pi^+\pi^-)$, an anomalous line shape around 1.84 GeV is observed. The mass spectrum fitting indicates there are two overlapping resonant structures.

• In $J/\psi \to \gamma \pi^+ \pi^- \eta'$, an **anomalous line shape** around 1.8 GeV is also observed.

States near pp threshold at BESIII

threshold are investigated using the J/ψ sample.

JinFei Wu

Can not distinguish if there are 2 states or not. Need use all of the J/ψ sample.

States near pp threshold at BESIII

- are different with each other.
- To identify the relation among these states, coupled partial wave analysis are necessary.
 - It is difficult, but worth to do.
- The underlying things could help to understand the nature of QCD.

• Several states near $p\bar{p}$ threshold are observed, whose masses and widths

• From the experience of $J/\psi \to \gamma 3(\pi^+\pi^-)$ and $J/\psi \to \gamma \pi^+\pi^-\eta'$, the huge

J/ψ sample is very meaningful to discover the underlying things in data.

α_S from charm data

- The c quark may be used to extract α_S , but it is confined in hadrons.
- We cannot get a free c quark to measure α_S , so how about charmed mesons(has c)?
- We look at the inclusive semi-leptonic decays of charmed mesons,
 - The inclusive semi-leptonic decay widths (Γ_{SL}) are quite close.
 - The measurements indicate the impact of **spectator quark** in SL may be negligible.

α_{S} from charm data

- The measurements demonstrate that we could use Γ_{SL} to extract α_S .

JinFei Wu

• Except Γ_{SL} , we also check the distributions of $|p_{e^+}|$ in the SL of charmed mesons.

Kolmogorov-Smirnov tests among $|p_{e^+}|$ and average of $|p_{e^+}|$

st Samples	Test Statistic	P Va
p_0 and p_{e+1}	0.125	0.9
$p_{+} $ and $\overline{ p_{e^+} }$	0.063	1.0
$p_s^+ $ and $\overline{ p_{e^+} }$	0.132	0.9
A_{e}^{+} and $\overline{ p_{e^{+}} }$	0.125	0.9

Same distributions of $|p_{e^+}|$ among different charmed mesons,

Heavy quarks " \approx " heavy mesons for *c* quark in SL

- The measurements of $|p_e|$ is in lab frame, which cannot be used to extract α_S directly.

 The authors work on the inclusive semi-leptonic decay of beauty and charm mesons for almost 25 years.

Nucl.Phys.B 840 (2010) 424-437

α_{S} from charm data

- The parameters involved in the Γ_{SL} of charmed mesons are listed in table.
 - The values are from the measurements without involving the Γ_{SL} of D mesons.
 - To avoid the bad convergence behavior, we use the **kinetic scheme** to perform this study.

Parameter	Value
G_F	1.1663788×10^{-5}
$ V_{cs} $	0.975 ± 0.006
$m_c(0.5 \text{ GeV})$	$(1.370 \pm 0.034) \text{ GeV}$
$m_s(0.5 { m GeV})$	$(93.4 \pm 8.6) { m MeV}$
$\mu_G^2(0.5 \text{ GeV})$	$(0.288 \pm 0.049) \ { m GeV}^2$
$\mu_{\pi}^2(0.5 \text{ GeV})$	$(0.26 \pm 0.06) \ { m GeV}^2$
$ ho_D^3 (0.5 { m GeV})$	$(0.05 \pm 0.04) \text{ GeV}^3$
$ ho_{LS}^3(0.5 \text{ GeV})$	$(-0.113 \pm 0.090) \text{ GeV}^3$
$B_{WA,D^+,0}$	$-0.001 \ \mathrm{GeV}^3$
B_{WA,D_s^+}	$-0.002 \ \mathrm{GeV}^3$

JHEP02(2024)206 PhysRevD.73.073008 <u>PDG</u> Arxiv. 2406.16119

- These parameters are used in the extraction of α_{S} .
- The uncertainties of these parameters are dominate uncertainty source of the
 - extraction of $\alpha_{\rm S}$.
 - It is important to reduce the uncertainties of these parameters.

α_{S} from charm data

- We calculate the Γ_{SL} of D_i meson using the mean lifetime (au_{D_i}) and branching ratio of inclusive semi-leptonic decay (Br_{SI}) .
 - - $\Gamma_{SL, D_i} = \frac{6.582 \times 10^{-25}}{10^{-25}}$
- The measured values of Γ_{SL} of charmed mesons are used to extract α_S .

PhysRevD.81.052007 PhysRevD.81.052007 PhysRevD.107.052005 PDG Arxiv. 2406.16119 JinFei Wu

$$\delta \cdot Br_{SL}(D_i \to Xe\nu_e)$$

 τ_{D_i} GeV

α_{S} from charm data • A χ^2 minimization method is employed to determine $\alpha_S(m_c^2)$ from the Γ_{SL} , $\frac{\hat{\Gamma}_{SL}(\alpha_{S},\theta_{j})]^{2}}{\sum_{i} \sum_{SL,D_{i}} \sum_{j} \frac{(\theta_{j} - \theta_{j}')^{2}}{\sigma_{\theta_{j}'}^{2}}$ - $\sigma_{\Gamma_{SL, D_i}}$: uncertainty of Γ_{SL} for D_i meson. - Γ_{SL, D_i} : measured Γ_{SL} for D_i meson.

$$\chi^{2}(\alpha_{S},\theta_{j}) = \sum_{i} \frac{[\Gamma_{SL,D_{i}} - I]}{\sigma_{\Gamma}^{2}}$$

- $\hat{\Gamma}_{SL, D_i}$: predicational Γ_{SL} for D_i meson.
- θ'_i and $\sigma_{\theta'_i}$: the value and uncertainty of constrained parameters in the fit.
- uncertainty. Details in backup.

Nucl.Phys.B 840 (2010) 424-437

JinFei Wu

- In this study, the predication of Γ_{SL} in reference is used to perform the fit. – The uncertainty caused by theoretical calculation is estimated by varying $\hat{\Gamma}_{SL}$ with 10%

 α_{S} from charm data - Float the m_c and $|V_{cs}|$, $\chi^2/ndof = 7.7/6$ $m_c = 1.4 GeV$ $m_{Z} = 91.2 GeV$ D^{0}, D^{+}, D^{+}_{S} D⁰, D⁺

- average of $\alpha_S(m_Z^2) = 0.1180 \pm 0.0009$.
- The consistence among different D mesons demonstrate the robustness of this method.

- The reasonable $\chi^2/ndof$ indicates that the method is reliable. JinFei Wu

α_{S} from charm data

- If Q goes below m_{τ} , what will happen on α_{S} ? Where does the logarithmic dependence of $\alpha_{\rm S}$ disappear?
- \bullet The charmed mesons could be one of choices to extract the α_S below m_{τ} .
- **Low** to $m_c = 1.4 \ GeV$, the α_s looks still following the theoretical prediction.
- what can we use as a tool to measure the $\alpha_{\rm S}$ below m_{τ} ?
 - •We could use charmed mesons as a tool, and still need more investigation.
 - \bullet Even the charmed baryons may also be used to measure $\alpha_{\rm S}$, at least Λ_c^+ .
- The huge charmed data at BESIII could contributes a lot to this study.

- Summary
 We summarize a part of the recent progresses about QCD using the charm data, including J/ψ and D mesons.
- The charm data is an ideal ground to investigate and understand the puzzles in QCD.

Exotic hadrons, including hybrids and glueballs.

 \mathbf{A}_{S} and QCD at the low energy region.

- The huge charm data provides unprecedented opportunities, meanwhile considerable challenges.
 - Charmonium for the hunting of exotic states,
 - \bullet Charmed data for the α_{S} determination,
 - QCD at low energy scale region,

Thanks for your listening! Look forward the collaboration with you!

JinFei Wu

25

Γ_{SL} of charmed meson in theory

- simplify this study.
- To avoid the bad convergence behavior, we use the **kinetic scheme** to perform this study.
- The relation of m_c between the \overline{MS} and kinetic had been studied to N³LO. The $m_c^{kin}(0.5 \ GeV)$ is calculated from different scale in \overline{MS} .

 $m_c^{kin}(0.5 \text{ GeV}) = 1336 \text{ MeV from } \overline{m}_c(\mu_s = 3 \text{ GeV})$ $m_c^{kin}(0.5 \text{ GeV}) = 1372 \text{ MeV from } \overline{m}_c(\mu_s = 2 \text{ GeV})$ $m_c^{kin}(0.5 \text{ GeV}) = 1404 \text{ MeV from } \overline{m}_c(\mu_s = \overline{m}_c)$

The average among 3 options is taken into account for m_c in this study.

Nucl.Phys.B 426 (1994) 301-343

Phys.Rept. 494 (2010) 197-414

JinFei Wu

• Since the Γ_{SL} has strong dependence on m_c , the reasonable definition of m_c can

- $m_c^{kin}(0.5 \ GeV) = 1370 \pm 34 \ MeV$ The μ^{kin} is set to 0.5 GeV.

The prediction of Γ_{SL}

of HQE⁴.

$$f_0(r) = 1 - 8r + 8r^3 - r^4 - 12r^2 \cdot \log(r)$$

$$f_1(r) = 2.86\sqrt{r} - 3.84r \cdot \log(r)$$

$$f_2(r) = \beta_0[8.16\sqrt{r} - 1.21r \cdot \log(r) - 3.38]$$

$$f_G(r) = \frac{1}{2}f_0(r) - 2(1 - r)^4$$

[4] Nucl.Phys.B 840 (2010) 424-437

JinFei Wu

• The <u>P. Gambino</u> and <u>J. F. Kamenik</u> calculated the Γ_{SL} using the framework

$$f_{\pi}(r) = -f_0(r)/2$$

$$f_{LS}(r) = -f_G(r)$$

$$f_D(r) = \frac{77}{6} + \mathcal{O}(r) + 8\log(\frac{\mu_{WA}^2}{m_c^2})$$

α_{s} from charm data

- In the prediction of Γ_{SL} , two parts are missed :
- The high order $\alpha_{\rm S}$ correction,
- The absence of Cabibbo suppressed processes of $c \rightarrow dl\bar{\nu}$ in the calculation.
- The high order α_S correction in $b \to c l \bar{\nu}$ is less than 1%. We take **5 times larger** than $b \to c l \bar{\nu}$ as the high order correction in $c \to s l \bar{\nu}$, PhysRevD.104.016003
- 5% is taken.
- The absence of $c \to dl\bar{\nu}$ causes the 5% uncertainty on Γ_{SL} , that is proportional to $|V_{cd}|^2 / (|V_{cd}|^2 + |V_{cs}|^2) = 5\%$.
- In total, we take 10% as the uncertainty of theoretical Γ_{SL} .

1⁻⁺ exotics at BESII • The process of $J/\psi \to \gamma \eta \eta'$ is investigated using the J/ψ sample via 2 decay modes of η' at BESIII.

• The $\alpha_S(m_c^2)$ is extracted for different combination among D^0 , D^+ , and D_s^+ . - Float the m_c and $|V_{cS}|$, the first and second uncertainty of α_S are experimental and theoretical uncertainty.

Combination	$m_c^{\rm float}[{ m GeV}]$
D^0	1.370 ± 0.034
D^+	1.370 ± 0.034
D_s^+	1.370 ± 0.034
$D^{0,+}$	1.370 ± 0.034
$D^{0,+}, D_s^+$	1.392 ± 0.033

- The values of $\alpha_S(m_c^2)$ are consistent within 1 σ among different D mesons, and with the world average of $\alpha_{\rm S}(m_{\rm Z}^2) = 0.1180 \pm 0.0009$.
- The combination of $D^{0,+}$ and D_s^+ changes the fit results of $\alpha_s(m_c^2)$ a lot. May be caused by the strong dependence on m_c .
- The reasonable $\chi^2/ndof$ indicates that the method is reliable.

α_{S} from charm data

- - Fix the m_c and $|V_{cs}|$, the uncertainty is estimated by varying them by 1σ .

- $m_c^{fix} = (1.370 \pm 0.034) \ GeV$, $|V_{cs}| = \sqrt{1 - |V_{cb}|^2 - |V_{cd}|^2} = 0.974 \pm 0.001$ is calculated

using the unitarity of CKM matrix.

• The values of $\alpha_{S}(m_{c}^{2})$ are also consistent within 1 σ among different D mesons, and with the world average of $\alpha_S(m_Z^2) = 0.1180 \pm 0.0009$.

JinFei Wu

• The $\alpha_s(m_c^2)$ is extracted for different combination among D^0 , D^+ , and D_s^+ .

dof = 8.2/6 <u>Arxiv. 2406.16119</u>	
$\alpha_S(m_c^2) \ [10^{-3}]$	$\alpha_S(m_Z^2)$ [10
$450 \pm 13 \pm 116$	1178^{+7+5}_{-7-7}
$444 \pm 12 \pm 116$	1175_{-7-7}^{+6+5}
$402 \pm 14 \pm 114$	1149_{-10-9}^{+9+70}
$447 \pm 9 \pm 115$	1177^{+5+5}_{-5-7}
$433 \pm 7 \pm 115$	1168_{-4-8}^{+4+6}

• Let's take proton as a naive example, $m_p \gg 2m_u + m_d$

- The strong interaction may be one of the other source.
- Need more careful investigation of strong interaction, especially in low energy scale region.

JinFei Wu

Charm and charmonium data can help! 32

